1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/IR/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24class HwMode<string FS> {
25  // A string representing subtarget features that turn on this HW mode.
26  // For example, "+feat1,-feat2" will indicate that the mode is active
27  // when "feat1" is enabled and "feat2" is disabled at the same time.
28  // Any other features are not checked.
29  // When multiple modes are used, they should be mutually exclusive,
30  // otherwise the results are unpredictable.
31  string Features = FS;
32}
33
34// A special mode recognized by tablegen. This mode is considered active
35// when no other mode is active. For targets that do not use specific hw
36// modes, this is the only mode.
37def DefaultMode : HwMode<"">;
38
39// A class used to associate objects with HW modes. It is only intended to
40// be used as a base class, where the derived class should contain a member
41// "Objects", which is a list of the same length as the list of modes.
42// The n-th element on the Objects list will be associated with the n-th
43// element on the Modes list.
44class HwModeSelect<list<HwMode> Ms> {
45  list<HwMode> Modes = Ms;
46}
47
48// A common class that implements a counterpart of ValueType, which is
49// dependent on a HW mode. This class inherits from ValueType itself,
50// which makes it possible to use objects of this class where ValueType
51// objects could be used. This is specifically applicable to selection
52// patterns.
53class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
54    : HwModeSelect<Ms>, ValueType<0, 0> {
55  // The length of this list must be the same as the length of Ms.
56  list<ValueType> Objects = Ts;
57}
58
59// A class representing the register size, spill size and spill alignment
60// in bits of a register.
61class RegInfo<int RS, int SS, int SA> {
62  int RegSize = RS;         // Register size in bits.
63  int SpillSize = SS;       // Spill slot size in bits.
64  int SpillAlignment = SA;  // Spill slot alignment in bits.
65}
66
67// The register size/alignment information, parameterized by a HW mode.
68class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
69    : HwModeSelect<Ms> {
70  // The length of this list must be the same as the length of Ms.
71  list<RegInfo> Objects = Ts;
72}
73
74// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
75class SubRegIndex<int size, int offset = 0> {
76  string Namespace = "";
77
78  // Size - Size (in bits) of the sub-registers represented by this index.
79  int Size = size;
80
81  // Offset - Offset of the first bit that is part of this sub-register index.
82  // Set it to -1 if the same index is used to represent sub-registers that can
83  // be at different offsets (for example when using an index to access an
84  // element in a register tuple).
85  int Offset = offset;
86
87  // ComposedOf - A list of two SubRegIndex instances, [A, B].
88  // This indicates that this SubRegIndex is the result of composing A and B.
89  // See ComposedSubRegIndex.
90  list<SubRegIndex> ComposedOf = [];
91
92  // CoveringSubRegIndices - A list of two or more sub-register indexes that
93  // cover this sub-register.
94  //
95  // This field should normally be left blank as TableGen can infer it.
96  //
97  // TableGen automatically detects sub-registers that straddle the registers
98  // in the SubRegs field of a Register definition. For example:
99  //
100  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
101  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
102  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
103  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
104  //
105  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
106  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
107  // CoveringSubRegIndices = [dsub_1, dsub_2].
108  list<SubRegIndex> CoveringSubRegIndices = [];
109}
110
111// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
112// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
113class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
114  : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
115                        !if(!eq(B.Offset, -1), -1,
116                            !add(A.Offset, B.Offset)))> {
117  // See SubRegIndex.
118  let ComposedOf = [A, B];
119}
120
121// RegAltNameIndex - The alternate name set to use for register operands of
122// this register class when printing.
123class RegAltNameIndex {
124  string Namespace = "";
125}
126def NoRegAltName : RegAltNameIndex;
127
128// Register - You should define one instance of this class for each register
129// in the target machine.  String n will become the "name" of the register.
130class Register<string n, list<string> altNames = []> {
131  string Namespace = "";
132  string AsmName = n;
133  list<string> AltNames = altNames;
134
135  // Aliases - A list of registers that this register overlaps with.  A read or
136  // modification of this register can potentially read or modify the aliased
137  // registers.
138  list<Register> Aliases = [];
139
140  // SubRegs - A list of registers that are parts of this register. Note these
141  // are "immediate" sub-registers and the registers within the list do not
142  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
143  // not [AX, AH, AL].
144  list<Register> SubRegs = [];
145
146  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
147  // to address it. Sub-sub-register indices are automatically inherited from
148  // SubRegs.
149  list<SubRegIndex> SubRegIndices = [];
150
151  // RegAltNameIndices - The alternate name indices which are valid for this
152  // register.
153  list<RegAltNameIndex> RegAltNameIndices = [];
154
155  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
156  // These values can be determined by locating the <target>.h file in the
157  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
158  // order of these names correspond to the enumeration used by gcc.  A value of
159  // -1 indicates that the gcc number is undefined and -2 that register number
160  // is invalid for this mode/flavour.
161  list<int> DwarfNumbers = [];
162
163  // CostPerUse - Additional cost of instructions using this register compared
164  // to other registers in its class. The register allocator will try to
165  // minimize the number of instructions using a register with a CostPerUse.
166  // This is used by the x86-64 and ARM Thumb targets where some registers
167  // require larger instruction encodings.
168  int CostPerUse = 0;
169
170  // CoveredBySubRegs - When this bit is set, the value of this register is
171  // completely determined by the value of its sub-registers.  For example, the
172  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
173  // covered by its sub-register AX.
174  bit CoveredBySubRegs = 0;
175
176  // HWEncoding - The target specific hardware encoding for this register.
177  bits<16> HWEncoding = 0;
178
179  bit isArtificial = 0;
180}
181
182// RegisterWithSubRegs - This can be used to define instances of Register which
183// need to specify sub-registers.
184// List "subregs" specifies which registers are sub-registers to this one. This
185// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
186// This allows the code generator to be careful not to put two values with
187// overlapping live ranges into registers which alias.
188class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
189  let SubRegs = subregs;
190}
191
192// DAGOperand - An empty base class that unifies RegisterClass's and other forms
193// of Operand's that are legal as type qualifiers in DAG patterns.  This should
194// only ever be used for defining multiclasses that are polymorphic over both
195// RegisterClass's and other Operand's.
196class DAGOperand {
197  string OperandNamespace = "MCOI";
198  string DecoderMethod = "";
199}
200
201// RegisterClass - Now that all of the registers are defined, and aliases
202// between registers are defined, specify which registers belong to which
203// register classes.  This also defines the default allocation order of
204// registers by register allocators.
205//
206class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
207                    dag regList, RegAltNameIndex idx = NoRegAltName>
208  : DAGOperand {
209  string Namespace = namespace;
210
211  // The register size/alignment information, parameterized by a HW mode.
212  RegInfoByHwMode RegInfos;
213
214  // RegType - Specify the list ValueType of the registers in this register
215  // class.  Note that all registers in a register class must have the same
216  // ValueTypes.  This is a list because some targets permit storing different
217  // types in same register, for example vector values with 128-bit total size,
218  // but different count/size of items, like SSE on x86.
219  //
220  list<ValueType> RegTypes = regTypes;
221
222  // Size - Specify the spill size in bits of the registers.  A default value of
223  // zero lets tablgen pick an appropriate size.
224  int Size = 0;
225
226  // Alignment - Specify the alignment required of the registers when they are
227  // stored or loaded to memory.
228  //
229  int Alignment = alignment;
230
231  // CopyCost - This value is used to specify the cost of copying a value
232  // between two registers in this register class. The default value is one
233  // meaning it takes a single instruction to perform the copying. A negative
234  // value means copying is extremely expensive or impossible.
235  int CopyCost = 1;
236
237  // MemberList - Specify which registers are in this class.  If the
238  // allocation_order_* method are not specified, this also defines the order of
239  // allocation used by the register allocator.
240  //
241  dag MemberList = regList;
242
243  // AltNameIndex - The alternate register name to use when printing operands
244  // of this register class. Every register in the register class must have
245  // a valid alternate name for the given index.
246  RegAltNameIndex altNameIndex = idx;
247
248  // isAllocatable - Specify that the register class can be used for virtual
249  // registers and register allocation.  Some register classes are only used to
250  // model instruction operand constraints, and should have isAllocatable = 0.
251  bit isAllocatable = 1;
252
253  // AltOrders - List of alternative allocation orders. The default order is
254  // MemberList itself, and that is good enough for most targets since the
255  // register allocators automatically remove reserved registers and move
256  // callee-saved registers to the end.
257  list<dag> AltOrders = [];
258
259  // AltOrderSelect - The body of a function that selects the allocation order
260  // to use in a given machine function. The code will be inserted in a
261  // function like this:
262  //
263  //   static inline unsigned f(const MachineFunction &MF) { ... }
264  //
265  // The function should return 0 to select the default order defined by
266  // MemberList, 1 to select the first AltOrders entry and so on.
267  code AltOrderSelect = [{}];
268
269  // Specify allocation priority for register allocators using a greedy
270  // heuristic. Classes with higher priority values are assigned first. This is
271  // useful as it is sometimes beneficial to assign registers to highly
272  // constrained classes first. The value has to be in the range [0,63].
273  int AllocationPriority = 0;
274
275  // The diagnostic type to present when referencing this operand in a match
276  // failure error message. If this is empty, the default Match_InvalidOperand
277  // diagnostic type will be used. If this is "<name>", a Match_<name> enum
278  // value will be generated and used for this operand type. The target
279  // assembly parser is responsible for converting this into a user-facing
280  // diagnostic message.
281  string DiagnosticType = "";
282
283  // A diagnostic message to emit when an invalid value is provided for this
284  // register class when it is being used an an assembly operand. If this is
285  // non-empty, an anonymous diagnostic type enum value will be generated, and
286  // the assembly matcher will provide a function to map from diagnostic types
287  // to message strings.
288  string DiagnosticString = "";
289}
290
291// The memberList in a RegisterClass is a dag of set operations. TableGen
292// evaluates these set operations and expand them into register lists. These
293// are the most common operation, see test/TableGen/SetTheory.td for more
294// examples of what is possible:
295//
296// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
297// register class, or a sub-expression. This is also the way to simply list
298// registers.
299//
300// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
301//
302// (and GPR, CSR) - Set intersection. All registers from the first set that are
303// also in the second set.
304//
305// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
306// numbered registers.  Takes an optional 4th operand which is a stride to use
307// when generating the sequence.
308//
309// (shl GPR, 4) - Remove the first N elements.
310//
311// (trunc GPR, 4) - Truncate after the first N elements.
312//
313// (rotl GPR, 1) - Rotate N places to the left.
314//
315// (rotr GPR, 1) - Rotate N places to the right.
316//
317// (decimate GPR, 2) - Pick every N'th element, starting with the first.
318//
319// (interleave A, B, ...) - Interleave the elements from each argument list.
320//
321// All of these operators work on ordered sets, not lists. That means
322// duplicates are removed from sub-expressions.
323
324// Set operators. The rest is defined in TargetSelectionDAG.td.
325def sequence;
326def decimate;
327def interleave;
328
329// RegisterTuples - Automatically generate super-registers by forming tuples of
330// sub-registers. This is useful for modeling register sequence constraints
331// with pseudo-registers that are larger than the architectural registers.
332//
333// The sub-register lists are zipped together:
334//
335//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
336//
337// Generates the same registers as:
338//
339//   let SubRegIndices = [sube, subo] in {
340//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
341//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
342//   }
343//
344// The generated pseudo-registers inherit super-classes and fields from their
345// first sub-register. Most fields from the Register class are inferred, and
346// the AsmName and Dwarf numbers are cleared.
347//
348// RegisterTuples instances can be used in other set operations to form
349// register classes and so on. This is the only way of using the generated
350// registers.
351class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
352  // SubRegs - N lists of registers to be zipped up. Super-registers are
353  // synthesized from the first element of each SubRegs list, the second
354  // element and so on.
355  list<dag> SubRegs = Regs;
356
357  // SubRegIndices - N SubRegIndex instances. This provides the names of the
358  // sub-registers in the synthesized super-registers.
359  list<SubRegIndex> SubRegIndices = Indices;
360}
361
362
363//===----------------------------------------------------------------------===//
364// DwarfRegNum - This class provides a mapping of the llvm register enumeration
365// to the register numbering used by gcc and gdb.  These values are used by a
366// debug information writer to describe where values may be located during
367// execution.
368class DwarfRegNum<list<int> Numbers> {
369  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
370  // These values can be determined by locating the <target>.h file in the
371  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
372  // order of these names correspond to the enumeration used by gcc.  A value of
373  // -1 indicates that the gcc number is undefined and -2 that register number
374  // is invalid for this mode/flavour.
375  list<int> DwarfNumbers = Numbers;
376}
377
378// DwarfRegAlias - This class declares that a given register uses the same dwarf
379// numbers as another one. This is useful for making it clear that the two
380// registers do have the same number. It also lets us build a mapping
381// from dwarf register number to llvm register.
382class DwarfRegAlias<Register reg> {
383      Register DwarfAlias = reg;
384}
385
386//===----------------------------------------------------------------------===//
387// Pull in the common support for MCPredicate (portable scheduling predicates).
388//
389include "llvm/Target/TargetInstrPredicate.td"
390
391//===----------------------------------------------------------------------===//
392// Pull in the common support for scheduling
393//
394include "llvm/Target/TargetSchedule.td"
395
396class Predicate; // Forward def
397
398//===----------------------------------------------------------------------===//
399// Instruction set description - These classes correspond to the C++ classes in
400// the Target/TargetInstrInfo.h file.
401//
402class Instruction {
403  string Namespace = "";
404
405  dag OutOperandList;       // An dag containing the MI def operand list.
406  dag InOperandList;        // An dag containing the MI use operand list.
407  string AsmString = "";    // The .s format to print the instruction with.
408
409  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
410  // otherwise, uninitialized.
411  list<dag> Pattern;
412
413  // The follow state will eventually be inferred automatically from the
414  // instruction pattern.
415
416  list<Register> Uses = []; // Default to using no non-operand registers
417  list<Register> Defs = []; // Default to modifying no non-operand registers
418
419  // Predicates - List of predicates which will be turned into isel matching
420  // code.
421  list<Predicate> Predicates = [];
422
423  // Size - Size of encoded instruction, or zero if the size cannot be determined
424  // from the opcode.
425  int Size = 0;
426
427  // DecoderNamespace - The "namespace" in which this instruction exists, on
428  // targets like ARM which multiple ISA namespaces exist.
429  string DecoderNamespace = "";
430
431  // Code size, for instruction selection.
432  // FIXME: What does this actually mean?
433  int CodeSize = 0;
434
435  // Added complexity passed onto matching pattern.
436  int AddedComplexity  = 0;
437
438  // These bits capture information about the high-level semantics of the
439  // instruction.
440  bit isReturn     = 0;     // Is this instruction a return instruction?
441  bit isBranch     = 0;     // Is this instruction a branch instruction?
442  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
443  bit isCompare    = 0;     // Is this instruction a comparison instruction?
444  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
445  bit isMoveReg    = 0;     // Is this instruction a move register instruction?
446  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
447  bit isSelect     = 0;     // Is this instruction a select instruction?
448  bit isBarrier    = 0;     // Can control flow fall through this instruction?
449  bit isCall       = 0;     // Is this instruction a call instruction?
450  bit isAdd        = 0;     // Is this instruction an add instruction?
451  bit isTrap       = 0;     // Is this instruction a trap instruction?
452  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
453  bit mayLoad      = ?;     // Is it possible for this inst to read memory?
454  bit mayStore     = ?;     // Is it possible for this inst to write memory?
455  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
456  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
457  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
458  bit isReMaterializable = 0; // Is this instruction re-materializable?
459  bit isPredicable = 0;     // Is this instruction predicable?
460  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
461  bit usesCustomInserter = 0; // Pseudo instr needing special help.
462  bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
463  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
464  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
465  bit isConvergent = 0;     // Is this instruction convergent?
466  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
467  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
468  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
469  bit isRegSequence = 0;    // Is this instruction a kind of reg sequence?
470                            // If so, make sure to override
471                            // TargetInstrInfo::getRegSequenceLikeInputs.
472  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
473                            // If so, won't have encoding information for
474                            // the [MC]CodeEmitter stuff.
475  bit isExtractSubreg = 0;  // Is this instruction a kind of extract subreg?
476                             // If so, make sure to override
477                             // TargetInstrInfo::getExtractSubregLikeInputs.
478  bit isInsertSubreg = 0;   // Is this instruction a kind of insert subreg?
479                            // If so, make sure to override
480                            // TargetInstrInfo::getInsertSubregLikeInputs.
481
482  // Does the instruction have side effects that are not captured by any
483  // operands of the instruction or other flags?
484  bit hasSideEffects = ?;
485
486  // Is this instruction a "real" instruction (with a distinct machine
487  // encoding), or is it a pseudo instruction used for codegen modeling
488  // purposes.
489  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
490  // instructions can (and often do) still have encoding information
491  // associated with them. Once we've migrated all of them over to true
492  // pseudo-instructions that are lowered to real instructions prior to
493  // the printer/emitter, we can remove this attribute and just use isPseudo.
494  //
495  // The intended use is:
496  // isPseudo: Does not have encoding information and should be expanded,
497  //   at the latest, during lowering to MCInst.
498  //
499  // isCodeGenOnly: Does have encoding information and can go through to the
500  //   CodeEmitter unchanged, but duplicates a canonical instruction
501  //   definition's encoding and should be ignored when constructing the
502  //   assembler match tables.
503  bit isCodeGenOnly = 0;
504
505  // Is this instruction a pseudo instruction for use by the assembler parser.
506  bit isAsmParserOnly = 0;
507
508  // This instruction is not expected to be queried for scheduling latencies
509  // and therefore needs no scheduling information even for a complete
510  // scheduling model.
511  bit hasNoSchedulingInfo = 0;
512
513  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
514
515  // Scheduling information from TargetSchedule.td.
516  list<SchedReadWrite> SchedRW;
517
518  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
519
520  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
521  /// be encoded into the output machineinstr.
522  string DisableEncoding = "";
523
524  string PostEncoderMethod = "";
525  string DecoderMethod = "";
526
527  // Is the instruction decoder method able to completely determine if the
528  // given instruction is valid or not. If the TableGen definition of the
529  // instruction specifies bitpattern A??B where A and B are static bits, the
530  // hasCompleteDecoder flag says whether the decoder method fully handles the
531  // ?? space, i.e. if it is a final arbiter for the instruction validity.
532  // If not then the decoder attempts to continue decoding when the decoder
533  // method fails.
534  //
535  // This allows to handle situations where the encoding is not fully
536  // orthogonal. Example:
537  // * InstA with bitpattern 0b0000????,
538  // * InstB with bitpattern 0b000000?? but the associated decoder method
539  //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
540  //
541  // The decoder tries to decode a bitpattern that matches both InstA and
542  // InstB bitpatterns first as InstB (because it is the most specific
543  // encoding). In the default case (hasCompleteDecoder = 1), when
544  // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
545  // hasCompleteDecoder = 0 in InstB, the decoder is informed that
546  // DecodeInstB() is not able to determine if all possible values of ?? are
547  // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
548  // decode the bitpattern as InstA too.
549  bit hasCompleteDecoder = 1;
550
551  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
552  bits<64> TSFlags = 0;
553
554  ///@name Assembler Parser Support
555  ///@{
556
557  string AsmMatchConverter = "";
558
559  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
560  /// two-operand matcher inst-alias for a three operand instruction.
561  /// For example, the arm instruction "add r3, r3, r5" can be written
562  /// as "add r3, r5". The constraint is of the same form as a tied-operand
563  /// constraint. For example, "$Rn = $Rd".
564  string TwoOperandAliasConstraint = "";
565
566  /// Assembler variant name to use for this instruction. If specified then
567  /// instruction will be presented only in MatchTable for this variant. If
568  /// not specified then assembler variants will be determined based on
569  /// AsmString
570  string AsmVariantName = "";
571
572  ///@}
573
574  /// UseNamedOperandTable - If set, the operand indices of this instruction
575  /// can be queried via the getNamedOperandIdx() function which is generated
576  /// by TableGen.
577  bit UseNamedOperandTable = 0;
578
579  /// Should FastISel ignore this instruction. For certain ISAs, they have
580  /// instructions which map to the same ISD Opcode, value type operands and
581  /// instruction selection predicates. FastISel cannot handle such cases, but
582  /// SelectionDAG can.
583  bit FastISelShouldIgnore = 0;
584}
585
586/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
587/// Which instruction it expands to and how the operands map from the
588/// pseudo.
589class PseudoInstExpansion<dag Result> {
590  dag ResultInst = Result;     // The instruction to generate.
591  bit isPseudo = 1;
592}
593
594/// Predicates - These are extra conditionals which are turned into instruction
595/// selector matching code. Currently each predicate is just a string.
596class Predicate<string cond> {
597  string CondString = cond;
598
599  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
600  /// matcher, this is true.  Targets should set this by inheriting their
601  /// feature from the AssemblerPredicate class in addition to Predicate.
602  bit AssemblerMatcherPredicate = 0;
603
604  /// AssemblerCondString - Name of the subtarget feature being tested used
605  /// as alternative condition string used for assembler matcher.
606  /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
607  ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
608  /// It can also list multiple features separated by ",".
609  /// e.g. "ModeThumb,FeatureThumb2" is translated to
610  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
611  string AssemblerCondString = "";
612
613  /// PredicateName - User-level name to use for the predicate. Mainly for use
614  /// in diagnostics such as missing feature errors in the asm matcher.
615  string PredicateName = "";
616
617  /// Setting this to '1' indicates that the predicate must be recomputed on
618  /// every function change. Most predicates can leave this at '0'.
619  ///
620  /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
621  bit RecomputePerFunction = 0;
622}
623
624/// NoHonorSignDependentRounding - This predicate is true if support for
625/// sign-dependent-rounding is not enabled.
626def NoHonorSignDependentRounding
627 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
628
629class Requires<list<Predicate> preds> {
630  list<Predicate> Predicates = preds;
631}
632
633/// ops definition - This is just a simple marker used to identify the operand
634/// list for an instruction. outs and ins are identical both syntactically and
635/// semantically; they are used to define def operands and use operands to
636/// improve readibility. This should be used like this:
637///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
638def ops;
639def outs;
640def ins;
641
642/// variable_ops definition - Mark this instruction as taking a variable number
643/// of operands.
644def variable_ops;
645
646
647/// PointerLikeRegClass - Values that are designed to have pointer width are
648/// derived from this.  TableGen treats the register class as having a symbolic
649/// type that it doesn't know, and resolves the actual regclass to use by using
650/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
651class PointerLikeRegClass<int Kind> {
652  int RegClassKind = Kind;
653}
654
655
656/// ptr_rc definition - Mark this operand as being a pointer value whose
657/// register class is resolved dynamically via a callback to TargetInstrInfo.
658/// FIXME: We should probably change this to a class which contain a list of
659/// flags. But currently we have but one flag.
660def ptr_rc : PointerLikeRegClass<0>;
661
662/// unknown definition - Mark this operand as being of unknown type, causing
663/// it to be resolved by inference in the context it is used.
664class unknown_class;
665def unknown : unknown_class;
666
667/// AsmOperandClass - Representation for the kinds of operands which the target
668/// specific parser can create and the assembly matcher may need to distinguish.
669///
670/// Operand classes are used to define the order in which instructions are
671/// matched, to ensure that the instruction which gets matched for any
672/// particular list of operands is deterministic.
673///
674/// The target specific parser must be able to classify a parsed operand into a
675/// unique class which does not partially overlap with any other classes. It can
676/// match a subset of some other class, in which case the super class field
677/// should be defined.
678class AsmOperandClass {
679  /// The name to use for this class, which should be usable as an enum value.
680  string Name = ?;
681
682  /// The super classes of this operand.
683  list<AsmOperandClass> SuperClasses = [];
684
685  /// The name of the method on the target specific operand to call to test
686  /// whether the operand is an instance of this class. If not set, this will
687  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
688  /// signature should be:
689  ///   bool isFoo() const;
690  string PredicateMethod = ?;
691
692  /// The name of the method on the target specific operand to call to add the
693  /// target specific operand to an MCInst. If not set, this will default to
694  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
695  /// signature should be:
696  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
697  string RenderMethod = ?;
698
699  /// The name of the method on the target specific operand to call to custom
700  /// handle the operand parsing. This is useful when the operands do not relate
701  /// to immediates or registers and are very instruction specific (as flags to
702  /// set in a processor register, coprocessor number, ...).
703  string ParserMethod = ?;
704
705  // The diagnostic type to present when referencing this operand in a
706  // match failure error message. By default, use a generic "invalid operand"
707  // diagnostic. The target AsmParser maps these codes to text.
708  string DiagnosticType = "";
709
710  /// A diagnostic message to emit when an invalid value is provided for this
711  /// operand.
712  string DiagnosticString = "";
713
714  /// Set to 1 if this operand is optional and not always required. Typically,
715  /// the AsmParser will emit an error when it finishes parsing an
716  /// instruction if it hasn't matched all the operands yet.  However, this
717  /// error will be suppressed if all of the remaining unmatched operands are
718  /// marked as IsOptional.
719  ///
720  /// Optional arguments must be at the end of the operand list.
721  bit IsOptional = 0;
722
723  /// The name of the method on the target specific asm parser that returns the
724  /// default operand for this optional operand. This method is only used if
725  /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
726  /// where Foo is the AsmOperandClass name. The method signature should be:
727  ///   std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
728  string DefaultMethod = ?;
729}
730
731def ImmAsmOperand : AsmOperandClass {
732  let Name = "Imm";
733}
734
735/// Operand Types - These provide the built-in operand types that may be used
736/// by a target.  Targets can optionally provide their own operand types as
737/// needed, though this should not be needed for RISC targets.
738class Operand<ValueType ty> : DAGOperand {
739  ValueType Type = ty;
740  string PrintMethod = "printOperand";
741  string EncoderMethod = "";
742  bit hasCompleteDecoder = 1;
743  string OperandType = "OPERAND_UNKNOWN";
744  dag MIOperandInfo = (ops);
745
746  // MCOperandPredicate - Optionally, a code fragment operating on
747  // const MCOperand &MCOp, and returning a bool, to indicate if
748  // the value of MCOp is valid for the specific subclass of Operand
749  code MCOperandPredicate;
750
751  // ParserMatchClass - The "match class" that operands of this type fit
752  // in. Match classes are used to define the order in which instructions are
753  // match, to ensure that which instructions gets matched is deterministic.
754  //
755  // The target specific parser must be able to classify an parsed operand into
756  // a unique class, which does not partially overlap with any other classes. It
757  // can match a subset of some other class, in which case the AsmOperandClass
758  // should declare the other operand as one of its super classes.
759  AsmOperandClass ParserMatchClass = ImmAsmOperand;
760}
761
762class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
763  : DAGOperand {
764  // RegClass - The register class of the operand.
765  RegisterClass RegClass = regclass;
766  // PrintMethod - The target method to call to print register operands of
767  // this type. The method normally will just use an alt-name index to look
768  // up the name to print. Default to the generic printOperand().
769  string PrintMethod = pm;
770
771  // EncoderMethod - The target method name to call to encode this register
772  // operand.
773  string EncoderMethod = "";
774
775  // ParserMatchClass - The "match class" that operands of this type fit
776  // in. Match classes are used to define the order in which instructions are
777  // match, to ensure that which instructions gets matched is deterministic.
778  //
779  // The target specific parser must be able to classify an parsed operand into
780  // a unique class, which does not partially overlap with any other classes. It
781  // can match a subset of some other class, in which case the AsmOperandClass
782  // should declare the other operand as one of its super classes.
783  AsmOperandClass ParserMatchClass;
784
785  string OperandType = "OPERAND_REGISTER";
786
787  // When referenced in the result of a CodeGen pattern, GlobalISel will
788  // normally copy the matched operand to the result. When this is set, it will
789  // emit a special copy that will replace zero-immediates with the specified
790  // zero-register.
791  Register GIZeroRegister = ?;
792}
793
794let OperandType = "OPERAND_IMMEDIATE" in {
795def i1imm  : Operand<i1>;
796def i8imm  : Operand<i8>;
797def i16imm : Operand<i16>;
798def i32imm : Operand<i32>;
799def i64imm : Operand<i64>;
800
801def f32imm : Operand<f32>;
802def f64imm : Operand<f64>;
803}
804
805// Register operands for generic instructions don't have an MVT, but do have
806// constraints linking the operands (e.g. all operands of a G_ADD must
807// have the same LLT).
808class TypedOperand<string Ty> : Operand<untyped> {
809  let OperandType = Ty;
810  bit IsPointer = 0;
811}
812
813def type0 : TypedOperand<"OPERAND_GENERIC_0">;
814def type1 : TypedOperand<"OPERAND_GENERIC_1">;
815def type2 : TypedOperand<"OPERAND_GENERIC_2">;
816def type3 : TypedOperand<"OPERAND_GENERIC_3">;
817def type4 : TypedOperand<"OPERAND_GENERIC_4">;
818def type5 : TypedOperand<"OPERAND_GENERIC_5">;
819
820let IsPointer = 1 in {
821  def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
822  def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
823  def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
824  def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
825  def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
826  def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
827}
828
829/// zero_reg definition - Special node to stand for the zero register.
830///
831def zero_reg;
832
833/// All operands which the MC layer classifies as predicates should inherit from
834/// this class in some manner. This is already handled for the most commonly
835/// used PredicateOperand, but may be useful in other circumstances.
836class PredicateOp;
837
838/// OperandWithDefaultOps - This Operand class can be used as the parent class
839/// for an Operand that needs to be initialized with a default value if
840/// no value is supplied in a pattern.  This class can be used to simplify the
841/// pattern definitions for instructions that have target specific flags
842/// encoded as immediate operands.
843class OperandWithDefaultOps<ValueType ty, dag defaultops>
844  : Operand<ty> {
845  dag DefaultOps = defaultops;
846}
847
848/// PredicateOperand - This can be used to define a predicate operand for an
849/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
850/// AlwaysVal specifies the value of this predicate when set to "always
851/// execute".
852class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
853  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
854  let MIOperandInfo = OpTypes;
855}
856
857/// OptionalDefOperand - This is used to define a optional definition operand
858/// for an instruction. DefaultOps is the register the operand represents if
859/// none is supplied, e.g. zero_reg.
860class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
861  : OperandWithDefaultOps<ty, defaultops> {
862  let MIOperandInfo = OpTypes;
863}
864
865
866// InstrInfo - This class should only be instantiated once to provide parameters
867// which are global to the target machine.
868//
869class InstrInfo {
870  // Target can specify its instructions in either big or little-endian formats.
871  // For instance, while both Sparc and PowerPC are big-endian platforms, the
872  // Sparc manual specifies its instructions in the format [31..0] (big), while
873  // PowerPC specifies them using the format [0..31] (little).
874  bit isLittleEndianEncoding = 0;
875
876  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
877  // by default, and TableGen will infer their value from the instruction
878  // pattern when possible.
879  //
880  // Normally, TableGen will issue an error it it can't infer the value of a
881  // property that hasn't been set explicitly. When guessInstructionProperties
882  // is set, it will guess a safe value instead.
883  //
884  // This option is a temporary migration help. It will go away.
885  bit guessInstructionProperties = 1;
886
887  // TableGen's instruction encoder generator has support for matching operands
888  // to bit-field variables both by name and by position. While matching by
889  // name is preferred, this is currently not possible for complex operands,
890  // and some targets still reply on the positional encoding rules. When
891  // generating a decoder for such targets, the positional encoding rules must
892  // be used by the decoder generator as well.
893  //
894  // This option is temporary; it will go away once the TableGen decoder
895  // generator has better support for complex operands and targets have
896  // migrated away from using positionally encoded operands.
897  bit decodePositionallyEncodedOperands = 0;
898
899  // When set, this indicates that there will be no overlap between those
900  // operands that are matched by ordering (positional operands) and those
901  // matched by name.
902  //
903  // This option is temporary; it will go away once the TableGen decoder
904  // generator has better support for complex operands and targets have
905  // migrated away from using positionally encoded operands.
906  bit noNamedPositionallyEncodedOperands = 0;
907}
908
909// Standard Pseudo Instructions.
910// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
911// Only these instructions are allowed in the TargetOpcode namespace.
912// Ensure mayLoad and mayStore have a default value, so as not to break
913// targets that set guessInstructionProperties=0. Any local definition of
914// mayLoad/mayStore takes precedence over these default values.
915class StandardPseudoInstruction : Instruction {
916  let mayLoad = 0;
917  let mayStore = 0;
918  let isCodeGenOnly = 1;
919  let isPseudo = 1;
920  let hasNoSchedulingInfo = 1;
921  let Namespace = "TargetOpcode";
922}
923def PHI : StandardPseudoInstruction {
924  let OutOperandList = (outs unknown:$dst);
925  let InOperandList = (ins variable_ops);
926  let AsmString = "PHINODE";
927  let hasSideEffects = 0;
928}
929def INLINEASM : StandardPseudoInstruction {
930  let OutOperandList = (outs);
931  let InOperandList = (ins variable_ops);
932  let AsmString = "";
933  let hasSideEffects = 0;  // Note side effect is encoded in an operand.
934}
935def CFI_INSTRUCTION : StandardPseudoInstruction {
936  let OutOperandList = (outs);
937  let InOperandList = (ins i32imm:$id);
938  let AsmString = "";
939  let hasCtrlDep = 1;
940  let hasSideEffects = 0;
941  let isNotDuplicable = 1;
942}
943def EH_LABEL : StandardPseudoInstruction {
944  let OutOperandList = (outs);
945  let InOperandList = (ins i32imm:$id);
946  let AsmString = "";
947  let hasCtrlDep = 1;
948  let hasSideEffects = 0;
949  let isNotDuplicable = 1;
950}
951def GC_LABEL : StandardPseudoInstruction {
952  let OutOperandList = (outs);
953  let InOperandList = (ins i32imm:$id);
954  let AsmString = "";
955  let hasCtrlDep = 1;
956  let hasSideEffects = 0;
957  let isNotDuplicable = 1;
958}
959def ANNOTATION_LABEL : StandardPseudoInstruction {
960  let OutOperandList = (outs);
961  let InOperandList = (ins i32imm:$id);
962  let AsmString = "";
963  let hasCtrlDep = 1;
964  let hasSideEffects = 0;
965  let isNotDuplicable = 1;
966}
967def KILL : StandardPseudoInstruction {
968  let OutOperandList = (outs);
969  let InOperandList = (ins variable_ops);
970  let AsmString = "";
971  let hasSideEffects = 0;
972}
973def EXTRACT_SUBREG : StandardPseudoInstruction {
974  let OutOperandList = (outs unknown:$dst);
975  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
976  let AsmString = "";
977  let hasSideEffects = 0;
978}
979def INSERT_SUBREG : StandardPseudoInstruction {
980  let OutOperandList = (outs unknown:$dst);
981  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
982  let AsmString = "";
983  let hasSideEffects = 0;
984  let Constraints = "$supersrc = $dst";
985}
986def IMPLICIT_DEF : StandardPseudoInstruction {
987  let OutOperandList = (outs unknown:$dst);
988  let InOperandList = (ins);
989  let AsmString = "";
990  let hasSideEffects = 0;
991  let isReMaterializable = 1;
992  let isAsCheapAsAMove = 1;
993}
994def SUBREG_TO_REG : StandardPseudoInstruction {
995  let OutOperandList = (outs unknown:$dst);
996  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
997  let AsmString = "";
998  let hasSideEffects = 0;
999}
1000def COPY_TO_REGCLASS : StandardPseudoInstruction {
1001  let OutOperandList = (outs unknown:$dst);
1002  let InOperandList = (ins unknown:$src, i32imm:$regclass);
1003  let AsmString = "";
1004  let hasSideEffects = 0;
1005  let isAsCheapAsAMove = 1;
1006}
1007def DBG_VALUE : StandardPseudoInstruction {
1008  let OutOperandList = (outs);
1009  let InOperandList = (ins variable_ops);
1010  let AsmString = "DBG_VALUE";
1011  let hasSideEffects = 0;
1012}
1013def DBG_LABEL : StandardPseudoInstruction {
1014  let OutOperandList = (outs);
1015  let InOperandList = (ins unknown:$label);
1016  let AsmString = "DBG_LABEL";
1017  let hasSideEffects = 0;
1018}
1019def REG_SEQUENCE : StandardPseudoInstruction {
1020  let OutOperandList = (outs unknown:$dst);
1021  let InOperandList = (ins unknown:$supersrc, variable_ops);
1022  let AsmString = "";
1023  let hasSideEffects = 0;
1024  let isAsCheapAsAMove = 1;
1025}
1026def COPY : StandardPseudoInstruction {
1027  let OutOperandList = (outs unknown:$dst);
1028  let InOperandList = (ins unknown:$src);
1029  let AsmString = "";
1030  let hasSideEffects = 0;
1031  let isAsCheapAsAMove = 1;
1032  let hasNoSchedulingInfo = 0;
1033}
1034def BUNDLE : StandardPseudoInstruction {
1035  let OutOperandList = (outs);
1036  let InOperandList = (ins variable_ops);
1037  let AsmString = "BUNDLE";
1038  let hasSideEffects = 1;
1039}
1040def LIFETIME_START : StandardPseudoInstruction {
1041  let OutOperandList = (outs);
1042  let InOperandList = (ins i32imm:$id);
1043  let AsmString = "LIFETIME_START";
1044  let hasSideEffects = 0;
1045}
1046def LIFETIME_END : StandardPseudoInstruction {
1047  let OutOperandList = (outs);
1048  let InOperandList = (ins i32imm:$id);
1049  let AsmString = "LIFETIME_END";
1050  let hasSideEffects = 0;
1051}
1052def STACKMAP : StandardPseudoInstruction {
1053  let OutOperandList = (outs);
1054  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1055  let hasSideEffects = 1;
1056  let isCall = 1;
1057  let mayLoad = 1;
1058  let usesCustomInserter = 1;
1059}
1060def PATCHPOINT : StandardPseudoInstruction {
1061  let OutOperandList = (outs unknown:$dst);
1062  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1063                       i32imm:$nargs, i32imm:$cc, variable_ops);
1064  let hasSideEffects = 1;
1065  let isCall = 1;
1066  let mayLoad = 1;
1067  let usesCustomInserter = 1;
1068}
1069def STATEPOINT : StandardPseudoInstruction {
1070  let OutOperandList = (outs);
1071  let InOperandList = (ins variable_ops);
1072  let usesCustomInserter = 1;
1073  let mayLoad = 1;
1074  let mayStore = 1;
1075  let hasSideEffects = 1;
1076  let isCall = 1;
1077}
1078def LOAD_STACK_GUARD : StandardPseudoInstruction {
1079  let OutOperandList = (outs ptr_rc:$dst);
1080  let InOperandList = (ins);
1081  let mayLoad = 1;
1082  bit isReMaterializable = 1;
1083  let hasSideEffects = 0;
1084  bit isPseudo = 1;
1085}
1086def LOCAL_ESCAPE : StandardPseudoInstruction {
1087  // This instruction is really just a label. It has to be part of the chain so
1088  // that it doesn't get dropped from the DAG, but it produces nothing and has
1089  // no side effects.
1090  let OutOperandList = (outs);
1091  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1092  let hasSideEffects = 0;
1093  let hasCtrlDep = 1;
1094}
1095def FAULTING_OP : StandardPseudoInstruction {
1096  let OutOperandList = (outs unknown:$dst);
1097  let InOperandList = (ins variable_ops);
1098  let usesCustomInserter = 1;
1099  let hasSideEffects = 1;
1100  let mayLoad = 1;
1101  let mayStore = 1;
1102  let isTerminator = 1;
1103  let isBranch = 1;
1104}
1105def PATCHABLE_OP : StandardPseudoInstruction {
1106  let OutOperandList = (outs unknown:$dst);
1107  let InOperandList = (ins variable_ops);
1108  let usesCustomInserter = 1;
1109  let mayLoad = 1;
1110  let mayStore = 1;
1111  let hasSideEffects = 1;
1112}
1113def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1114  let OutOperandList = (outs);
1115  let InOperandList = (ins);
1116  let AsmString = "# XRay Function Enter.";
1117  let usesCustomInserter = 1;
1118  let hasSideEffects = 0;
1119}
1120def PATCHABLE_RET : StandardPseudoInstruction {
1121  let OutOperandList = (outs);
1122  let InOperandList = (ins variable_ops);
1123  let AsmString = "# XRay Function Patchable RET.";
1124  let usesCustomInserter = 1;
1125  let hasSideEffects = 1;
1126  let isTerminator = 1;
1127  let isReturn = 1;
1128}
1129def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1130  let OutOperandList = (outs);
1131  let InOperandList = (ins);
1132  let AsmString = "# XRay Function Exit.";
1133  let usesCustomInserter = 1;
1134  let hasSideEffects = 0; // FIXME: is this correct?
1135  let isReturn = 0; // Original return instruction will follow
1136}
1137def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
1138  let OutOperandList = (outs);
1139  let InOperandList = (ins variable_ops);
1140  let AsmString = "# XRay Tail Call Exit.";
1141  let usesCustomInserter = 1;
1142  let hasSideEffects = 1;
1143  let isReturn = 1;
1144}
1145def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1146  let OutOperandList = (outs);
1147  let InOperandList = (ins ptr_rc:$event, i8imm:$size);
1148  let AsmString = "# XRay Custom Event Log.";
1149  let usesCustomInserter = 1;
1150  let isCall = 1;
1151  let mayLoad = 1;
1152  let mayStore = 1;
1153  let hasSideEffects = 1;
1154}
1155def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1156  let OutOperandList = (outs);
1157  let InOperandList = (ins i16imm:$type, ptr_rc:$event, i32imm:$size);
1158  let AsmString = "# XRay Typed Event Log.";
1159  let usesCustomInserter = 1;
1160  let isCall = 1;
1161  let mayLoad = 1;
1162  let mayStore = 1;
1163  let hasSideEffects = 1;
1164}
1165def FENTRY_CALL : StandardPseudoInstruction {
1166  let OutOperandList = (outs unknown:$dst);
1167  let InOperandList = (ins variable_ops);
1168  let AsmString = "# FEntry call";
1169  let usesCustomInserter = 1;
1170  let mayLoad = 1;
1171  let mayStore = 1;
1172  let hasSideEffects = 1;
1173}
1174def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1175  let OutOperandList = (outs unknown:$dst);
1176  let InOperandList = (ins variable_ops);
1177  let AsmString = "";
1178  let hasSideEffects = 1;
1179}
1180
1181// Generic opcodes used in GlobalISel.
1182include "llvm/Target/GenericOpcodes.td"
1183
1184//===----------------------------------------------------------------------===//
1185// AsmParser - This class can be implemented by targets that wish to implement
1186// .s file parsing.
1187//
1188// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1189// syntax on X86 for example).
1190//
1191class AsmParser {
1192  // AsmParserClassName - This specifies the suffix to use for the asmparser
1193  // class.  Generated AsmParser classes are always prefixed with the target
1194  // name.
1195  string AsmParserClassName  = "AsmParser";
1196
1197  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1198  // function of the AsmParser class to call on every matched instruction.
1199  // This can be used to perform target specific instruction post-processing.
1200  string AsmParserInstCleanup  = "";
1201
1202  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1203  // written register name matcher
1204  bit ShouldEmitMatchRegisterName = 1;
1205
1206  // Set to true if the target needs a generated 'alternative register name'
1207  // matcher.
1208  //
1209  // This generates a function which can be used to lookup registers from
1210  // their aliases. This function will fail when called on targets where
1211  // several registers share the same alias (i.e. not a 1:1 mapping).
1212  bit ShouldEmitMatchRegisterAltName = 0;
1213
1214  // Set to true if MatchRegisterName and MatchRegisterAltName functions
1215  // should be generated even if there are duplicate register names. The
1216  // target is responsible for coercing aliased registers as necessary
1217  // (e.g. in validateTargetOperandClass), and there are no guarantees about
1218  // which numeric register identifier will be returned in the case of
1219  // multiple matches.
1220  bit AllowDuplicateRegisterNames = 0;
1221
1222  // HasMnemonicFirst - Set to false if target instructions don't always
1223  // start with a mnemonic as the first token.
1224  bit HasMnemonicFirst = 1;
1225
1226  // ReportMultipleNearMisses -
1227  // When 0, the assembly matcher reports an error for one encoding or operand
1228  // that did not match the parsed instruction.
1229  // When 1, the assmebly matcher returns a list of encodings that were close
1230  // to matching the parsed instruction, so to allow more detailed error
1231  // messages.
1232  bit ReportMultipleNearMisses = 0;
1233}
1234def DefaultAsmParser : AsmParser;
1235
1236//===----------------------------------------------------------------------===//
1237// AsmParserVariant - Subtargets can have multiple different assembly parsers
1238// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1239// implemented by targets to describe such variants.
1240//
1241class AsmParserVariant {
1242  // Variant - AsmParsers can be of multiple different variants.  Variants are
1243  // used to support targets that need to parser multiple formats for the
1244  // assembly language.
1245  int Variant = 0;
1246
1247  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1248  string Name = "";
1249
1250  // CommentDelimiter - If given, the delimiter string used to recognize
1251  // comments which are hard coded in the .td assembler strings for individual
1252  // instructions.
1253  string CommentDelimiter = "";
1254
1255  // RegisterPrefix - If given, the token prefix which indicates a register
1256  // token. This is used by the matcher to automatically recognize hard coded
1257  // register tokens as constrained registers, instead of tokens, for the
1258  // purposes of matching.
1259  string RegisterPrefix = "";
1260
1261  // TokenizingCharacters - Characters that are standalone tokens
1262  string TokenizingCharacters = "[]*!";
1263
1264  // SeparatorCharacters - Characters that are not tokens
1265  string SeparatorCharacters = " \t,";
1266
1267  // BreakCharacters - Characters that start new identifiers
1268  string BreakCharacters = "";
1269}
1270def DefaultAsmParserVariant : AsmParserVariant;
1271
1272/// AssemblerPredicate - This is a Predicate that can be used when the assembler
1273/// matches instructions and aliases.
1274class AssemblerPredicate<string cond, string name = ""> {
1275  bit AssemblerMatcherPredicate = 1;
1276  string AssemblerCondString = cond;
1277  string PredicateName = name;
1278}
1279
1280/// TokenAlias - This class allows targets to define assembler token
1281/// operand aliases. That is, a token literal operand which is equivalent
1282/// to another, canonical, token literal. For example, ARM allows:
1283///   vmov.u32 s4, #0  -> vmov.i32, #0
1284/// 'u32' is a more specific designator for the 32-bit integer type specifier
1285/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1286///   def : TokenAlias<".u32", ".i32">;
1287///
1288/// This works by marking the match class of 'From' as a subclass of the
1289/// match class of 'To'.
1290class TokenAlias<string From, string To> {
1291  string FromToken = From;
1292  string ToToken = To;
1293}
1294
1295/// MnemonicAlias - This class allows targets to define assembler mnemonic
1296/// aliases.  This should be used when all forms of one mnemonic are accepted
1297/// with a different mnemonic.  For example, X86 allows:
1298///   sal %al, 1    -> shl %al, 1
1299///   sal %ax, %cl  -> shl %ax, %cl
1300///   sal %eax, %cl -> shl %eax, %cl
1301/// etc.  Though "sal" is accepted with many forms, all of them are directly
1302/// translated to a shl, so it can be handled with (in the case of X86, it
1303/// actually has one for each suffix as well):
1304///   def : MnemonicAlias<"sal", "shl">;
1305///
1306/// Mnemonic aliases are mapped before any other translation in the match phase,
1307/// and do allow Requires predicates, e.g.:
1308///
1309///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1310///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1311///
1312/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1313///
1314///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1315///
1316/// If no variant (e.g., "att" or "intel") is specified then the alias is
1317/// applied unconditionally.
1318class MnemonicAlias<string From, string To, string VariantName = ""> {
1319  string FromMnemonic = From;
1320  string ToMnemonic = To;
1321  string AsmVariantName = VariantName;
1322
1323  // Predicates - Predicates that must be true for this remapping to happen.
1324  list<Predicate> Predicates = [];
1325}
1326
1327/// InstAlias - This defines an alternate assembly syntax that is allowed to
1328/// match an instruction that has a different (more canonical) assembly
1329/// representation.
1330class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
1331  string AsmString = Asm;      // The .s format to match the instruction with.
1332  dag ResultInst = Result;     // The MCInst to generate.
1333
1334  // This determines which order the InstPrinter detects aliases for
1335  // printing. A larger value makes the alias more likely to be
1336  // emitted. The Instruction's own definition is notionally 0.5, so 0
1337  // disables printing and 1 enables it if there are no conflicting aliases.
1338  int EmitPriority = Emit;
1339
1340  // Predicates - Predicates that must be true for this to match.
1341  list<Predicate> Predicates = [];
1342
1343  // If the instruction specified in Result has defined an AsmMatchConverter
1344  // then setting this to 1 will cause the alias to use the AsmMatchConverter
1345  // function when converting the OperandVector into an MCInst instead of the
1346  // function that is generated by the dag Result.
1347  // Setting this to 0 will cause the alias to ignore the Result instruction's
1348  // defined AsmMatchConverter and instead use the function generated by the
1349  // dag Result.
1350  bit UseInstAsmMatchConverter = 1;
1351
1352  // Assembler variant name to use for this alias. If not specified then
1353  // assembler variants will be determined based on AsmString
1354  string AsmVariantName = VariantName;
1355}
1356
1357//===----------------------------------------------------------------------===//
1358// AsmWriter - This class can be implemented by targets that need to customize
1359// the format of the .s file writer.
1360//
1361// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1362// on X86 for example).
1363//
1364class AsmWriter {
1365  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1366  // class.  Generated AsmWriter classes are always prefixed with the target
1367  // name.
1368  string AsmWriterClassName  = "InstPrinter";
1369
1370  // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1371  // the various print methods.
1372  // FIXME: Remove after all ports are updated.
1373  int PassSubtarget = 0;
1374
1375  // Variant - AsmWriters can be of multiple different variants.  Variants are
1376  // used to support targets that need to emit assembly code in ways that are
1377  // mostly the same for different targets, but have minor differences in
1378  // syntax.  If the asmstring contains {|} characters in them, this integer
1379  // will specify which alternative to use.  For example "{x|y|z}" with Variant
1380  // == 1, will expand to "y".
1381  int Variant = 0;
1382}
1383def DefaultAsmWriter : AsmWriter;
1384
1385
1386//===----------------------------------------------------------------------===//
1387// Target - This class contains the "global" target information
1388//
1389class Target {
1390  // InstructionSet - Instruction set description for this target.
1391  InstrInfo InstructionSet;
1392
1393  // AssemblyParsers - The AsmParser instances available for this target.
1394  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1395
1396  /// AssemblyParserVariants - The AsmParserVariant instances available for
1397  /// this target.
1398  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1399
1400  // AssemblyWriters - The AsmWriter instances available for this target.
1401  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1402
1403  // AllowRegisterRenaming - Controls whether this target allows
1404  // post-register-allocation renaming of registers.  This is done by
1405  // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1406  // for all opcodes if this flag is set to 0.
1407  int AllowRegisterRenaming = 0;
1408}
1409
1410//===----------------------------------------------------------------------===//
1411// SubtargetFeature - A characteristic of the chip set.
1412//
1413class SubtargetFeature<string n, string a,  string v, string d,
1414                       list<SubtargetFeature> i = []> {
1415  // Name - Feature name.  Used by command line (-mattr=) to determine the
1416  // appropriate target chip.
1417  //
1418  string Name = n;
1419
1420  // Attribute - Attribute to be set by feature.
1421  //
1422  string Attribute = a;
1423
1424  // Value - Value the attribute to be set to by feature.
1425  //
1426  string Value = v;
1427
1428  // Desc - Feature description.  Used by command line (-mattr=) to display help
1429  // information.
1430  //
1431  string Desc = d;
1432
1433  // Implies - Features that this feature implies are present. If one of those
1434  // features isn't set, then this one shouldn't be set either.
1435  //
1436  list<SubtargetFeature> Implies = i;
1437}
1438
1439/// Specifies a Subtarget feature that this instruction is deprecated on.
1440class Deprecated<SubtargetFeature dep> {
1441  SubtargetFeature DeprecatedFeatureMask = dep;
1442}
1443
1444/// A custom predicate used to determine if an instruction is
1445/// deprecated or not.
1446class ComplexDeprecationPredicate<string dep> {
1447  string ComplexDeprecationPredicate = dep;
1448}
1449
1450//===----------------------------------------------------------------------===//
1451// Processor chip sets - These values represent each of the chip sets supported
1452// by the scheduler.  Each Processor definition requires corresponding
1453// instruction itineraries.
1454//
1455class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
1456  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1457  // appropriate target chip.
1458  //
1459  string Name = n;
1460
1461  // SchedModel - The machine model for scheduling and instruction cost.
1462  //
1463  SchedMachineModel SchedModel = NoSchedModel;
1464
1465  // ProcItin - The scheduling information for the target processor.
1466  //
1467  ProcessorItineraries ProcItin = pi;
1468
1469  // Features - list of
1470  list<SubtargetFeature> Features = f;
1471}
1472
1473// ProcessorModel allows subtargets to specify the more general
1474// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1475// gradually move to this newer form.
1476//
1477// Although this class always passes NoItineraries to the Processor
1478// class, the SchedMachineModel may still define valid Itineraries.
1479class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
1480  : Processor<n, NoItineraries, f> {
1481  let SchedModel = m;
1482}
1483
1484//===----------------------------------------------------------------------===//
1485// InstrMapping - This class is used to create mapping tables to relate
1486// instructions with each other based on the values specified in RowFields,
1487// ColFields, KeyCol and ValueCols.
1488//
1489class InstrMapping {
1490  // FilterClass - Used to limit search space only to the instructions that
1491  // define the relationship modeled by this InstrMapping record.
1492  string FilterClass;
1493
1494  // RowFields - List of fields/attributes that should be same for all the
1495  // instructions in a row of the relation table. Think of this as a set of
1496  // properties shared by all the instructions related by this relationship
1497  // model and is used to categorize instructions into subgroups. For instance,
1498  // if we want to define a relation that maps 'Add' instruction to its
1499  // predicated forms, we can define RowFields like this:
1500  //
1501  // let RowFields = BaseOp
1502  // All add instruction predicated/non-predicated will have to set their BaseOp
1503  // to the same value.
1504  //
1505  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1506  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1507  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1508  list<string> RowFields = [];
1509
1510  // List of fields/attributes that are same for all the instructions
1511  // in a column of the relation table.
1512  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1513  // based on the 'predSense' values. All the instruction in a specific
1514  // column have the same value and it is fixed for the column according
1515  // to the values set in 'ValueCols'.
1516  list<string> ColFields = [];
1517
1518  // Values for the fields/attributes listed in 'ColFields'.
1519  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1520  // that models this relation) should be non-predicated.
1521  // In the example above, 'Add' is the key instruction.
1522  list<string> KeyCol = [];
1523
1524  // List of values for the fields/attributes listed in 'ColFields', one for
1525  // each column in the relation table.
1526  //
1527  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1528  // table. First column requires all the instructions to have predSense
1529  // set to 'true' and second column requires it to be 'false'.
1530  list<list<string> > ValueCols = [];
1531}
1532
1533//===----------------------------------------------------------------------===//
1534// Pull in the common support for calling conventions.
1535//
1536include "llvm/Target/TargetCallingConv.td"
1537
1538//===----------------------------------------------------------------------===//
1539// Pull in the common support for DAG isel generation.
1540//
1541include "llvm/Target/TargetSelectionDAG.td"
1542
1543//===----------------------------------------------------------------------===//
1544// Pull in the common support for Global ISel register bank info generation.
1545//
1546include "llvm/Target/GlobalISel/RegisterBank.td"
1547
1548//===----------------------------------------------------------------------===//
1549// Pull in the common support for DAG isel generation.
1550//
1551include "llvm/Target/GlobalISel/Target.td"
1552
1553//===----------------------------------------------------------------------===//
1554// Pull in the common support for the Global ISel DAG-based selector generation.
1555//
1556include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
1557