1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём),
20  *         Frank Haverkamp
21  */
22 
23 /*
24  * This file includes UBI initialization and building of UBI devices.
25  *
26  * When UBI is initialized, it attaches all the MTD devices specified as the
27  * module load parameters or the kernel boot parameters. If MTD devices were
28  * specified, UBI does not attach any MTD device, but it is possible to do
29  * later using the "UBI control device".
30  *
31  * At the moment we only attach UBI devices by scanning, which will become a
32  * bottleneck when flashes reach certain large size. Then one may improve UBI
33  * and add other methods, although it does not seem to be easy to do.
34  */
35 
36 #ifdef UBI_LINUX
37 #include <linux/err.h>
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/stringify.h>
41 #include <linux/stat.h>
42 #include <linux/miscdevice.h>
43 #include <linux/log2.h>
44 #include <linux/kthread.h>
45 #endif
46 #include <ubi_uboot.h>
47 #include "ubi.h"
48 
49 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
50 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
51 #endif
52 
53 /* Maximum length of the 'mtd=' parameter */
54 #define MTD_PARAM_LEN_MAX 64
55 
56 /**
57  * struct mtd_dev_param - MTD device parameter description data structure.
58  * @name: MTD device name or number string
59  * @vid_hdr_offs: VID header offset
60  */
61 struct mtd_dev_param
62 {
63 	char name[MTD_PARAM_LEN_MAX];
64 	int vid_hdr_offs;
65 };
66 
67 /* Numbers of elements set in the @mtd_dev_param array */
68 static int mtd_devs = 0;
69 
70 /* MTD devices specification parameters */
71 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
72 
73 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
74 struct class *ubi_class;
75 
76 #ifdef UBI_LINUX
77 /* Slab cache for wear-leveling entries */
78 struct kmem_cache *ubi_wl_entry_slab;
79 
80 /* UBI control character device */
81 static struct miscdevice ubi_ctrl_cdev = {
82 	.minor = MISC_DYNAMIC_MINOR,
83 	.name = "ubi_ctrl",
84 	.fops = &ubi_ctrl_cdev_operations,
85 };
86 #endif
87 
88 /* All UBI devices in system */
89 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
90 
91 #ifdef UBI_LINUX
92 /* Serializes UBI devices creations and removals */
93 DEFINE_MUTEX(ubi_devices_mutex);
94 
95 /* Protects @ubi_devices and @ubi->ref_count */
96 static DEFINE_SPINLOCK(ubi_devices_lock);
97 
98 /* "Show" method for files in '/<sysfs>/class/ubi/' */
ubi_version_show(struct class * class,char * buf)99 static ssize_t ubi_version_show(struct class *class, char *buf)
100 {
101 	return sprintf(buf, "%d\n", UBI_VERSION);
102 }
103 
104 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
105 static struct class_attribute ubi_version =
106 	__ATTR(version, S_IRUGO, ubi_version_show, NULL);
107 
108 static ssize_t dev_attribute_show(struct device *dev,
109 				  struct device_attribute *attr, char *buf);
110 
111 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
112 static struct device_attribute dev_eraseblock_size =
113 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
114 static struct device_attribute dev_avail_eraseblocks =
115 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
116 static struct device_attribute dev_total_eraseblocks =
117 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
118 static struct device_attribute dev_volumes_count =
119 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
120 static struct device_attribute dev_max_ec =
121 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
122 static struct device_attribute dev_reserved_for_bad =
123 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_bad_peb_count =
125 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_max_vol_count =
127 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_min_io_size =
129 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_bgt_enabled =
131 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_mtd_num =
133 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
134 #endif
135 
136 /**
137  * ubi_get_device - get UBI device.
138  * @ubi_num: UBI device number
139  *
140  * This function returns UBI device description object for UBI device number
141  * @ubi_num, or %NULL if the device does not exist. This function increases the
142  * device reference count to prevent removal of the device. In other words, the
143  * device cannot be removed if its reference count is not zero.
144  */
ubi_get_device(int ubi_num)145 struct ubi_device *ubi_get_device(int ubi_num)
146 {
147 	struct ubi_device *ubi;
148 
149 	spin_lock(&ubi_devices_lock);
150 	ubi = ubi_devices[ubi_num];
151 	if (ubi) {
152 		ubi_assert(ubi->ref_count >= 0);
153 		ubi->ref_count += 1;
154 		get_device(&ubi->dev);
155 	}
156 	spin_unlock(&ubi_devices_lock);
157 
158 	return ubi;
159 }
160 
161 /**
162  * ubi_put_device - drop an UBI device reference.
163  * @ubi: UBI device description object
164  */
ubi_put_device(struct ubi_device * ubi)165 void ubi_put_device(struct ubi_device *ubi)
166 {
167 	spin_lock(&ubi_devices_lock);
168 	ubi->ref_count -= 1;
169 	put_device(&ubi->dev);
170 	spin_unlock(&ubi_devices_lock);
171 }
172 
173 /**
174  * ubi_get_by_major - get UBI device description object by character device
175  *                    major number.
176  * @major: major number
177  *
178  * This function is similar to 'ubi_get_device()', but it searches the device
179  * by its major number.
180  */
ubi_get_by_major(int major)181 struct ubi_device *ubi_get_by_major(int major)
182 {
183 	int i;
184 	struct ubi_device *ubi;
185 
186 	spin_lock(&ubi_devices_lock);
187 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
188 		ubi = ubi_devices[i];
189 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
190 			ubi_assert(ubi->ref_count >= 0);
191 			ubi->ref_count += 1;
192 			get_device(&ubi->dev);
193 			spin_unlock(&ubi_devices_lock);
194 			return ubi;
195 		}
196 	}
197 	spin_unlock(&ubi_devices_lock);
198 
199 	return NULL;
200 }
201 
202 /**
203  * ubi_major2num - get UBI device number by character device major number.
204  * @major: major number
205  *
206  * This function searches UBI device number object by its major number. If UBI
207  * device was not found, this function returns -ENODEV, otherwise the UBI device
208  * number is returned.
209  */
ubi_major2num(int major)210 int ubi_major2num(int major)
211 {
212 	int i, ubi_num = -ENODEV;
213 
214 	spin_lock(&ubi_devices_lock);
215 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
216 		struct ubi_device *ubi = ubi_devices[i];
217 
218 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
219 			ubi_num = ubi->ubi_num;
220 			break;
221 		}
222 	}
223 	spin_unlock(&ubi_devices_lock);
224 
225 	return ubi_num;
226 }
227 
228 #ifdef UBI_LINUX
229 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
dev_attribute_show(struct device * dev,struct device_attribute * attr,char * buf)230 static ssize_t dev_attribute_show(struct device *dev,
231 				  struct device_attribute *attr, char *buf)
232 {
233 	ssize_t ret;
234 	struct ubi_device *ubi;
235 
236 	/*
237 	 * The below code looks weird, but it actually makes sense. We get the
238 	 * UBI device reference from the contained 'struct ubi_device'. But it
239 	 * is unclear if the device was removed or not yet. Indeed, if the
240 	 * device was removed before we increased its reference count,
241 	 * 'ubi_get_device()' will return -ENODEV and we fail.
242 	 *
243 	 * Remember, 'struct ubi_device' is freed in the release function, so
244 	 * we still can use 'ubi->ubi_num'.
245 	 */
246 	ubi = container_of(dev, struct ubi_device, dev);
247 	ubi = ubi_get_device(ubi->ubi_num);
248 	if (!ubi)
249 		return -ENODEV;
250 
251 	if (attr == &dev_eraseblock_size)
252 		ret = sprintf(buf, "%d\n", ubi->leb_size);
253 	else if (attr == &dev_avail_eraseblocks)
254 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
255 	else if (attr == &dev_total_eraseblocks)
256 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
257 	else if (attr == &dev_volumes_count)
258 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
259 	else if (attr == &dev_max_ec)
260 		ret = sprintf(buf, "%d\n", ubi->max_ec);
261 	else if (attr == &dev_reserved_for_bad)
262 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
263 	else if (attr == &dev_bad_peb_count)
264 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
265 	else if (attr == &dev_max_vol_count)
266 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
267 	else if (attr == &dev_min_io_size)
268 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
269 	else if (attr == &dev_bgt_enabled)
270 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
271 	else if (attr == &dev_mtd_num)
272 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
273 	else
274 		ret = -EINVAL;
275 
276 	ubi_put_device(ubi);
277 	return ret;
278 }
279 
280 /* Fake "release" method for UBI devices */
dev_release(struct device * dev)281 static void dev_release(struct device *dev) { }
282 
283 /**
284  * ubi_sysfs_init - initialize sysfs for an UBI device.
285  * @ubi: UBI device description object
286  *
287  * This function returns zero in case of success and a negative error code in
288  * case of failure.
289  */
ubi_sysfs_init(struct ubi_device * ubi)290 static int ubi_sysfs_init(struct ubi_device *ubi)
291 {
292 	int err;
293 
294 	ubi->dev.release = dev_release;
295 	ubi->dev.devt = ubi->cdev.dev;
296 	ubi->dev.class = ubi_class;
297 	sprintf(&ubi->dev.bus_id[0], UBI_NAME_STR"%d", ubi->ubi_num);
298 	err = device_register(&ubi->dev);
299 	if (err)
300 		return err;
301 
302 	err = device_create_file(&ubi->dev, &dev_eraseblock_size);
303 	if (err)
304 		return err;
305 	err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
306 	if (err)
307 		return err;
308 	err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
309 	if (err)
310 		return err;
311 	err = device_create_file(&ubi->dev, &dev_volumes_count);
312 	if (err)
313 		return err;
314 	err = device_create_file(&ubi->dev, &dev_max_ec);
315 	if (err)
316 		return err;
317 	err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
318 	if (err)
319 		return err;
320 	err = device_create_file(&ubi->dev, &dev_bad_peb_count);
321 	if (err)
322 		return err;
323 	err = device_create_file(&ubi->dev, &dev_max_vol_count);
324 	if (err)
325 		return err;
326 	err = device_create_file(&ubi->dev, &dev_min_io_size);
327 	if (err)
328 		return err;
329 	err = device_create_file(&ubi->dev, &dev_bgt_enabled);
330 	if (err)
331 		return err;
332 	err = device_create_file(&ubi->dev, &dev_mtd_num);
333 	return err;
334 }
335 
336 /**
337  * ubi_sysfs_close - close sysfs for an UBI device.
338  * @ubi: UBI device description object
339  */
ubi_sysfs_close(struct ubi_device * ubi)340 static void ubi_sysfs_close(struct ubi_device *ubi)
341 {
342 	device_remove_file(&ubi->dev, &dev_mtd_num);
343 	device_remove_file(&ubi->dev, &dev_bgt_enabled);
344 	device_remove_file(&ubi->dev, &dev_min_io_size);
345 	device_remove_file(&ubi->dev, &dev_max_vol_count);
346 	device_remove_file(&ubi->dev, &dev_bad_peb_count);
347 	device_remove_file(&ubi->dev, &dev_reserved_for_bad);
348 	device_remove_file(&ubi->dev, &dev_max_ec);
349 	device_remove_file(&ubi->dev, &dev_volumes_count);
350 	device_remove_file(&ubi->dev, &dev_total_eraseblocks);
351 	device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
352 	device_remove_file(&ubi->dev, &dev_eraseblock_size);
353 	device_unregister(&ubi->dev);
354 }
355 #endif
356 
357 /**
358  * kill_volumes - destroy all volumes.
359  * @ubi: UBI device description object
360  */
kill_volumes(struct ubi_device * ubi)361 static void kill_volumes(struct ubi_device *ubi)
362 {
363 	int i;
364 
365 	for (i = 0; i < ubi->vtbl_slots; i++)
366 		if (ubi->volumes[i])
367 			ubi_free_volume(ubi, ubi->volumes[i]);
368 }
369 
370 /**
371  * uif_init - initialize user interfaces for an UBI device.
372  * @ubi: UBI device description object
373  *
374  * This function returns zero in case of success and a negative error code in
375  * case of failure.
376  */
uif_init(struct ubi_device * ubi)377 static int uif_init(struct ubi_device *ubi)
378 {
379 	int i, err;
380 #ifdef UBI_LINUX
381 	dev_t dev;
382 #endif
383 
384 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
385 
386 	/*
387 	 * Major numbers for the UBI character devices are allocated
388 	 * dynamically. Major numbers of volume character devices are
389 	 * equivalent to ones of the corresponding UBI character device. Minor
390 	 * numbers of UBI character devices are 0, while minor numbers of
391 	 * volume character devices start from 1. Thus, we allocate one major
392 	 * number and ubi->vtbl_slots + 1 minor numbers.
393 	 */
394 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
395 	if (err) {
396 		ubi_err("cannot register UBI character devices");
397 		return err;
398 	}
399 
400 	ubi_assert(MINOR(dev) == 0);
401 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
402 	dbg_msg("%s major is %u", ubi->ubi_name, MAJOR(dev));
403 	ubi->cdev.owner = THIS_MODULE;
404 
405 	err = cdev_add(&ubi->cdev, dev, 1);
406 	if (err) {
407 		ubi_err("cannot add character device");
408 		goto out_unreg;
409 	}
410 
411 	err = ubi_sysfs_init(ubi);
412 	if (err)
413 		goto out_sysfs;
414 
415 	for (i = 0; i < ubi->vtbl_slots; i++)
416 		if (ubi->volumes[i]) {
417 			err = ubi_add_volume(ubi, ubi->volumes[i]);
418 			if (err) {
419 				ubi_err("cannot add volume %d", i);
420 				goto out_volumes;
421 			}
422 		}
423 
424 	return 0;
425 
426 out_volumes:
427 	kill_volumes(ubi);
428 out_sysfs:
429 	ubi_sysfs_close(ubi);
430 	cdev_del(&ubi->cdev);
431 out_unreg:
432 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
433 	ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
434 	return err;
435 }
436 
437 /**
438  * uif_close - close user interfaces for an UBI device.
439  * @ubi: UBI device description object
440  */
uif_close(struct ubi_device * ubi)441 static void uif_close(struct ubi_device *ubi)
442 {
443 	kill_volumes(ubi);
444 	ubi_sysfs_close(ubi);
445 	cdev_del(&ubi->cdev);
446 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
447 }
448 
449 /**
450  * attach_by_scanning - attach an MTD device using scanning method.
451  * @ubi: UBI device descriptor
452  *
453  * This function returns zero in case of success and a negative error code in
454  * case of failure.
455  *
456  * Note, currently this is the only method to attach UBI devices. Hopefully in
457  * the future we'll have more scalable attaching methods and avoid full media
458  * scanning. But even in this case scanning will be needed as a fall-back
459  * attaching method if there are some on-flash table corruptions.
460  */
attach_by_scanning(struct ubi_device * ubi)461 static int attach_by_scanning(struct ubi_device *ubi)
462 {
463 	int err;
464 	struct ubi_scan_info *si;
465 
466 	si = ubi_scan(ubi);
467 	if (IS_ERR(si))
468 		return PTR_ERR(si);
469 
470 	ubi->bad_peb_count = si->bad_peb_count;
471 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
472 	ubi->max_ec = si->max_ec;
473 	ubi->mean_ec = si->mean_ec;
474 
475 	err = ubi_read_volume_table(ubi, si);
476 	if (err)
477 		goto out_si;
478 
479 	err = ubi_wl_init_scan(ubi, si);
480 	if (err)
481 		goto out_vtbl;
482 
483 	err = ubi_eba_init_scan(ubi, si);
484 	if (err)
485 		goto out_wl;
486 
487 	ubi_scan_destroy_si(si);
488 	return 0;
489 
490 out_wl:
491 	ubi_wl_close(ubi);
492 out_vtbl:
493 	vfree(ubi->vtbl);
494 out_si:
495 	ubi_scan_destroy_si(si);
496 	return err;
497 }
498 
499 /**
500  * io_init - initialize I/O unit for a given UBI device.
501  * @ubi: UBI device description object
502  *
503  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
504  * assumed:
505  *   o EC header is always at offset zero - this cannot be changed;
506  *   o VID header starts just after the EC header at the closest address
507  *     aligned to @io->hdrs_min_io_size;
508  *   o data starts just after the VID header at the closest address aligned to
509  *     @io->min_io_size
510  *
511  * This function returns zero in case of success and a negative error code in
512  * case of failure.
513  */
io_init(struct ubi_device * ubi)514 static int io_init(struct ubi_device *ubi)
515 {
516 	if (ubi->mtd->numeraseregions != 0) {
517 		/*
518 		 * Some flashes have several erase regions. Different regions
519 		 * may have different eraseblock size and other
520 		 * characteristics. It looks like mostly multi-region flashes
521 		 * have one "main" region and one or more small regions to
522 		 * store boot loader code or boot parameters or whatever. I
523 		 * guess we should just pick the largest region. But this is
524 		 * not implemented.
525 		 */
526 		ubi_err("multiple regions, not implemented");
527 		return -EINVAL;
528 	}
529 
530 	if (ubi->vid_hdr_offset < 0)
531 		return -EINVAL;
532 
533 	/*
534 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
535 	 * physical eraseblocks maximum.
536 	 */
537 
538 	ubi->peb_size   = ubi->mtd->erasesize;
539 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
540 	ubi->flash_size = ubi->mtd->size;
541 
542 	if (ubi->mtd->block_isbad && ubi->mtd->block_markbad)
543 		ubi->bad_allowed = 1;
544 
545 	ubi->min_io_size = ubi->mtd->writesize;
546 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
547 
548 	/*
549 	 * Make sure minimal I/O unit is power of 2. Note, there is no
550 	 * fundamental reason for this assumption. It is just an optimization
551 	 * which allows us to avoid costly division operations.
552 	 */
553 	if (!is_power_of_2(ubi->min_io_size)) {
554 		ubi_err("min. I/O unit (%d) is not power of 2",
555 			ubi->min_io_size);
556 		return -EINVAL;
557 	}
558 
559 	ubi_assert(ubi->hdrs_min_io_size > 0);
560 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
561 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
562 
563 	/* Calculate default aligned sizes of EC and VID headers */
564 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
565 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
566 
567 	dbg_msg("min_io_size      %d", ubi->min_io_size);
568 	dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
569 	dbg_msg("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
570 	dbg_msg("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
571 
572 	if (ubi->vid_hdr_offset == 0)
573 		/* Default offset */
574 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
575 				      ubi->ec_hdr_alsize;
576 	else {
577 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
578 						~(ubi->hdrs_min_io_size - 1);
579 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
580 						ubi->vid_hdr_aloffset;
581 	}
582 
583 	/* Similar for the data offset */
584 	ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE;
585 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
586 
587 	dbg_msg("vid_hdr_offset   %d", ubi->vid_hdr_offset);
588 	dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
589 	dbg_msg("vid_hdr_shift    %d", ubi->vid_hdr_shift);
590 	dbg_msg("leb_start        %d", ubi->leb_start);
591 
592 	/* The shift must be aligned to 32-bit boundary */
593 	if (ubi->vid_hdr_shift % 4) {
594 		ubi_err("unaligned VID header shift %d",
595 			ubi->vid_hdr_shift);
596 		return -EINVAL;
597 	}
598 
599 	/* Check sanity */
600 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
601 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
602 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
603 	    ubi->leb_start & (ubi->min_io_size - 1)) {
604 		ubi_err("bad VID header (%d) or data offsets (%d)",
605 			ubi->vid_hdr_offset, ubi->leb_start);
606 		return -EINVAL;
607 	}
608 
609 	/*
610 	 * It may happen that EC and VID headers are situated in one minimal
611 	 * I/O unit. In this case we can only accept this UBI image in
612 	 * read-only mode.
613 	 */
614 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
615 		ubi_warn("EC and VID headers are in the same minimal I/O unit, "
616 			 "switch to read-only mode");
617 		ubi->ro_mode = 1;
618 	}
619 
620 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
621 
622 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
623 		ubi_msg("MTD device %d is write-protected, attach in "
624 			"read-only mode", ubi->mtd->index);
625 		ubi->ro_mode = 1;
626 	}
627 
628 	ubi_msg("physical eraseblock size:   %d bytes (%d KiB)",
629 		ubi->peb_size, ubi->peb_size >> 10);
630 	ubi_msg("logical eraseblock size:    %d bytes", ubi->leb_size);
631 	ubi_msg("smallest flash I/O unit:    %d", ubi->min_io_size);
632 	if (ubi->hdrs_min_io_size != ubi->min_io_size)
633 		ubi_msg("sub-page size:              %d",
634 			ubi->hdrs_min_io_size);
635 	ubi_msg("VID header offset:          %d (aligned %d)",
636 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
637 	ubi_msg("data offset:                %d", ubi->leb_start);
638 
639 	/*
640 	 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
641 	 * unfortunately, MTD does not provide this information. We should loop
642 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
643 	 * each physical eraseblock. So, we skip ubi->bad_peb_count
644 	 * uninitialized and initialize it after scanning.
645 	 */
646 
647 	return 0;
648 }
649 
650 /**
651  * autoresize - re-size the volume which has the "auto-resize" flag set.
652  * @ubi: UBI device description object
653  * @vol_id: ID of the volume to re-size
654  *
655  * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
656  * the volume table to the largest possible size. See comments in ubi-header.h
657  * for more description of the flag. Returns zero in case of success and a
658  * negative error code in case of failure.
659  */
autoresize(struct ubi_device * ubi,int vol_id)660 static int autoresize(struct ubi_device *ubi, int vol_id)
661 {
662 	struct ubi_volume_desc desc;
663 	struct ubi_volume *vol = ubi->volumes[vol_id];
664 	int err, old_reserved_pebs = vol->reserved_pebs;
665 
666 	/*
667 	 * Clear the auto-resize flag in the volume in-memory copy of the
668 	 * volume table, and 'ubi_resize_volume()' will propogate this change
669 	 * to the flash.
670 	 */
671 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
672 
673 	if (ubi->avail_pebs == 0) {
674 		struct ubi_vtbl_record vtbl_rec;
675 
676 		/*
677 		 * No avalilable PEBs to re-size the volume, clear the flag on
678 		 * flash and exit.
679 		 */
680 		memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
681 		       sizeof(struct ubi_vtbl_record));
682 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
683 		if (err)
684 			ubi_err("cannot clean auto-resize flag for volume %d",
685 				vol_id);
686 	} else {
687 		desc.vol = vol;
688 		err = ubi_resize_volume(&desc,
689 					old_reserved_pebs + ubi->avail_pebs);
690 		if (err)
691 			ubi_err("cannot auto-resize volume %d", vol_id);
692 	}
693 
694 	if (err)
695 		return err;
696 
697 	ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
698 		vol->name, old_reserved_pebs, vol->reserved_pebs);
699 	return 0;
700 }
701 
702 /**
703  * ubi_attach_mtd_dev - attach an MTD device.
704  * @mtd_dev: MTD device description object
705  * @ubi_num: number to assign to the new UBI device
706  * @vid_hdr_offset: VID header offset
707  *
708  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
709  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
710  * which case this function finds a vacant device nubert and assings it
711  * automatically. Returns the new UBI device number in case of success and a
712  * negative error code in case of failure.
713  *
714  * Note, the invocations of this function has to be serialized by the
715  * @ubi_devices_mutex.
716  */
ubi_attach_mtd_dev(struct mtd_info * mtd,int ubi_num,int vid_hdr_offset)717 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
718 {
719 	struct ubi_device *ubi;
720 	int i, err;
721 
722 	/*
723 	 * Check if we already have the same MTD device attached.
724 	 *
725 	 * Note, this function assumes that UBI devices creations and deletions
726 	 * are serialized, so it does not take the &ubi_devices_lock.
727 	 */
728 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
729 		ubi = ubi_devices[i];
730 		if (ubi && mtd->index == ubi->mtd->index) {
731 			dbg_err("mtd%d is already attached to ubi%d",
732 				mtd->index, i);
733 			return -EEXIST;
734 		}
735 	}
736 
737 	/*
738 	 * Make sure this MTD device is not emulated on top of an UBI volume
739 	 * already. Well, generally this recursion works fine, but there are
740 	 * different problems like the UBI module takes a reference to itself
741 	 * by attaching (and thus, opening) the emulated MTD device. This
742 	 * results in inability to unload the module. And in general it makes
743 	 * no sense to attach emulated MTD devices, so we prohibit this.
744 	 */
745 	if (mtd->type == MTD_UBIVOLUME) {
746 		ubi_err("refuse attaching mtd%d - it is already emulated on "
747 			"top of UBI", mtd->index);
748 		return -EINVAL;
749 	}
750 
751 	if (ubi_num == UBI_DEV_NUM_AUTO) {
752 		/* Search for an empty slot in the @ubi_devices array */
753 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
754 			if (!ubi_devices[ubi_num])
755 				break;
756 		if (ubi_num == UBI_MAX_DEVICES) {
757 			dbg_err("only %d UBI devices may be created", UBI_MAX_DEVICES);
758 			return -ENFILE;
759 		}
760 	} else {
761 		if (ubi_num >= UBI_MAX_DEVICES)
762 			return -EINVAL;
763 
764 		/* Make sure ubi_num is not busy */
765 		if (ubi_devices[ubi_num]) {
766 			dbg_err("ubi%d already exists", ubi_num);
767 			return -EEXIST;
768 		}
769 	}
770 
771 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
772 	if (!ubi)
773 		return -ENOMEM;
774 
775 	ubi->mtd = mtd;
776 	ubi->ubi_num = ubi_num;
777 	ubi->vid_hdr_offset = vid_hdr_offset;
778 	ubi->autoresize_vol_id = -1;
779 
780 	mutex_init(&ubi->buf_mutex);
781 	mutex_init(&ubi->ckvol_mutex);
782 	mutex_init(&ubi->volumes_mutex);
783 	spin_lock_init(&ubi->volumes_lock);
784 
785 	ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
786 
787 	err = io_init(ubi);
788 	if (err)
789 		goto out_free;
790 
791 	err = -ENOMEM;
792 	ubi->peb_buf1 = vmalloc(ubi->peb_size);
793 	if (!ubi->peb_buf1)
794 		goto out_free;
795 
796 	ubi->peb_buf2 = vmalloc(ubi->peb_size);
797 	if (!ubi->peb_buf2)
798 		goto out_free;
799 
800 #ifdef CONFIG_MTD_UBI_DEBUG
801 	mutex_init(&ubi->dbg_buf_mutex);
802 	ubi->dbg_peb_buf = vmalloc(ubi->peb_size);
803 	if (!ubi->dbg_peb_buf)
804 		goto out_free;
805 #endif
806 
807 	err = attach_by_scanning(ubi);
808 	if (err) {
809 		dbg_err("failed to attach by scanning, error %d", err);
810 		goto out_free;
811 	}
812 
813 	if (ubi->autoresize_vol_id != -1) {
814 		err = autoresize(ubi, ubi->autoresize_vol_id);
815 		if (err)
816 			goto out_detach;
817 	}
818 
819 	err = uif_init(ubi);
820 	if (err)
821 		goto out_detach;
822 
823 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
824 	if (IS_ERR(ubi->bgt_thread)) {
825 		err = PTR_ERR(ubi->bgt_thread);
826 		ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
827 			err);
828 		goto out_uif;
829 	}
830 
831 	ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
832 	ubi_msg("MTD device name:            \"%s\"", mtd->name);
833 	ubi_msg("MTD device size:            %llu MiB", ubi->flash_size >> 20);
834 	ubi_msg("number of good PEBs:        %d", ubi->good_peb_count);
835 	ubi_msg("number of bad PEBs:         %d", ubi->bad_peb_count);
836 	ubi_msg("max. allowed volumes:       %d", ubi->vtbl_slots);
837 	ubi_msg("wear-leveling threshold:    %d", CONFIG_MTD_UBI_WL_THRESHOLD);
838 	ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
839 	ubi_msg("number of user volumes:     %d",
840 		ubi->vol_count - UBI_INT_VOL_COUNT);
841 	ubi_msg("available PEBs:             %d", ubi->avail_pebs);
842 	ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
843 	ubi_msg("number of PEBs reserved for bad PEB handling: %d",
844 		ubi->beb_rsvd_pebs);
845 	ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
846 
847 	/* Enable the background thread */
848 	if (!DBG_DISABLE_BGT) {
849 		ubi->thread_enabled = 1;
850 		wake_up_process(ubi->bgt_thread);
851 	}
852 
853 	ubi_devices[ubi_num] = ubi;
854 	return ubi_num;
855 
856 out_uif:
857 	uif_close(ubi);
858 out_detach:
859 	ubi_eba_close(ubi);
860 	ubi_wl_close(ubi);
861 	vfree(ubi->vtbl);
862 out_free:
863 	vfree(ubi->peb_buf1);
864 	vfree(ubi->peb_buf2);
865 #ifdef CONFIG_MTD_UBI_DEBUG
866 	vfree(ubi->dbg_peb_buf);
867 #endif
868 	kfree(ubi);
869 	return err;
870 }
871 
872 /**
873  * ubi_detach_mtd_dev - detach an MTD device.
874  * @ubi_num: UBI device number to detach from
875  * @anyway: detach MTD even if device reference count is not zero
876  *
877  * This function destroys an UBI device number @ubi_num and detaches the
878  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
879  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
880  * exist.
881  *
882  * Note, the invocations of this function has to be serialized by the
883  * @ubi_devices_mutex.
884  */
ubi_detach_mtd_dev(int ubi_num,int anyway)885 int ubi_detach_mtd_dev(int ubi_num, int anyway)
886 {
887 	struct ubi_device *ubi;
888 
889 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
890 		return -EINVAL;
891 
892 	spin_lock(&ubi_devices_lock);
893 	ubi = ubi_devices[ubi_num];
894 	if (!ubi) {
895 		spin_unlock(&ubi_devices_lock);
896 		return -EINVAL;
897 	}
898 
899 	if (ubi->ref_count) {
900 		if (!anyway) {
901 			spin_unlock(&ubi_devices_lock);
902 			return -EBUSY;
903 		}
904 		/* This may only happen if there is a bug */
905 		ubi_err("%s reference count %d, destroy anyway",
906 			ubi->ubi_name, ubi->ref_count);
907 	}
908 	ubi_devices[ubi_num] = NULL;
909 	spin_unlock(&ubi_devices_lock);
910 
911 	ubi_assert(ubi_num == ubi->ubi_num);
912 	dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
913 
914 	/*
915 	 * Before freeing anything, we have to stop the background thread to
916 	 * prevent it from doing anything on this device while we are freeing.
917 	 */
918 	if (ubi->bgt_thread)
919 		kthread_stop(ubi->bgt_thread);
920 
921 	uif_close(ubi);
922 	ubi_eba_close(ubi);
923 	ubi_wl_close(ubi);
924 	vfree(ubi->vtbl);
925 	put_mtd_device(ubi->mtd);
926 	vfree(ubi->peb_buf1);
927 	vfree(ubi->peb_buf2);
928 #ifdef CONFIG_MTD_UBI_DEBUG
929 	vfree(ubi->dbg_peb_buf);
930 #endif
931 	ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
932 	kfree(ubi);
933 	return 0;
934 }
935 
936 /**
937  * find_mtd_device - open an MTD device by its name or number.
938  * @mtd_dev: name or number of the device
939  *
940  * This function tries to open and MTD device described by @mtd_dev string,
941  * which is first treated as an ASCII number, and if it is not true, it is
942  * treated as MTD device name. Returns MTD device description object in case of
943  * success and a negative error code in case of failure.
944  */
open_mtd_device(const char * mtd_dev)945 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
946 {
947 	struct mtd_info *mtd;
948 	int mtd_num;
949 	char *endp;
950 
951 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
952 	if (*endp != '\0' || mtd_dev == endp) {
953 		/*
954 		 * This does not look like an ASCII integer, probably this is
955 		 * MTD device name.
956 		 */
957 		mtd = get_mtd_device_nm(mtd_dev);
958 	} else
959 		mtd = get_mtd_device(NULL, mtd_num);
960 
961 	return mtd;
962 }
963 
ubi_init(void)964 int __init ubi_init(void)
965 {
966 	int err, i, k;
967 
968 	/* Ensure that EC and VID headers have correct size */
969 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
970 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
971 
972 	if (mtd_devs > UBI_MAX_DEVICES) {
973 		ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
974 		return -EINVAL;
975 	}
976 
977 	/* Create base sysfs directory and sysfs files */
978 	ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
979 	if (IS_ERR(ubi_class)) {
980 		err = PTR_ERR(ubi_class);
981 		ubi_err("cannot create UBI class");
982 		goto out;
983 	}
984 
985 	err = class_create_file(ubi_class, &ubi_version);
986 	if (err) {
987 		ubi_err("cannot create sysfs file");
988 		goto out_class;
989 	}
990 
991 	err = misc_register(&ubi_ctrl_cdev);
992 	if (err) {
993 		ubi_err("cannot register device");
994 		goto out_version;
995 	}
996 
997 #ifdef UBI_LINUX
998 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
999 					      sizeof(struct ubi_wl_entry),
1000 					      0, 0, NULL);
1001 	if (!ubi_wl_entry_slab)
1002 		goto out_dev_unreg;
1003 #endif
1004 
1005 	/* Attach MTD devices */
1006 	for (i = 0; i < mtd_devs; i++) {
1007 		struct mtd_dev_param *p = &mtd_dev_param[i];
1008 		struct mtd_info *mtd;
1009 
1010 		cond_resched();
1011 
1012 		mtd = open_mtd_device(p->name);
1013 		if (IS_ERR(mtd)) {
1014 			err = PTR_ERR(mtd);
1015 			goto out_detach;
1016 		}
1017 
1018 		mutex_lock(&ubi_devices_mutex);
1019 		err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1020 					 p->vid_hdr_offs);
1021 		mutex_unlock(&ubi_devices_mutex);
1022 		if (err < 0) {
1023 			put_mtd_device(mtd);
1024 			ubi_err("cannot attach mtd%d", mtd->index);
1025 			goto out_detach;
1026 		}
1027 	}
1028 
1029 	return 0;
1030 
1031 out_detach:
1032 	for (k = 0; k < i; k++)
1033 		if (ubi_devices[k]) {
1034 			mutex_lock(&ubi_devices_mutex);
1035 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1036 			mutex_unlock(&ubi_devices_mutex);
1037 		}
1038 #ifdef UBI_LINUX
1039 	kmem_cache_destroy(ubi_wl_entry_slab);
1040 out_dev_unreg:
1041 #endif
1042 	misc_deregister(&ubi_ctrl_cdev);
1043 out_version:
1044 	class_remove_file(ubi_class, &ubi_version);
1045 out_class:
1046 	class_destroy(ubi_class);
1047 out:
1048 	ubi_err("UBI error: cannot initialize UBI, error %d", err);
1049 	return err;
1050 }
1051 module_init(ubi_init);
1052 
ubi_exit(void)1053 void __exit ubi_exit(void)
1054 {
1055 	int i;
1056 
1057 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1058 		if (ubi_devices[i]) {
1059 			mutex_lock(&ubi_devices_mutex);
1060 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1061 			mutex_unlock(&ubi_devices_mutex);
1062 		}
1063 	kmem_cache_destroy(ubi_wl_entry_slab);
1064 	misc_deregister(&ubi_ctrl_cdev);
1065 	class_remove_file(ubi_class, &ubi_version);
1066 	class_destroy(ubi_class);
1067 	mtd_devs = 0;
1068 }
1069 module_exit(ubi_exit);
1070 
1071 /**
1072  * bytes_str_to_int - convert a string representing number of bytes to an
1073  * integer.
1074  * @str: the string to convert
1075  *
1076  * This function returns positive resulting integer in case of success and a
1077  * negative error code in case of failure.
1078  */
bytes_str_to_int(const char * str)1079 static int __init bytes_str_to_int(const char *str)
1080 {
1081 	char *endp;
1082 	unsigned long result;
1083 
1084 	result = simple_strtoul(str, &endp, 0);
1085 	if (str == endp || result < 0) {
1086 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1087 		       str);
1088 		return -EINVAL;
1089 	}
1090 
1091 	switch (*endp) {
1092 	case 'G':
1093 		result *= 1024;
1094 	case 'M':
1095 		result *= 1024;
1096 	case 'K':
1097 		result *= 1024;
1098 		if (endp[1] == 'i' && endp[2] == 'B')
1099 			endp += 2;
1100 	case '\0':
1101 		break;
1102 	default:
1103 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1104 		       str);
1105 		return -EINVAL;
1106 	}
1107 
1108 	return result;
1109 }
1110 
1111 /**
1112  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1113  * @val: the parameter value to parse
1114  * @kp: not used
1115  *
1116  * This function returns zero in case of success and a negative error code in
1117  * case of error.
1118  */
ubi_mtd_param_parse(const char * val,struct kernel_param * kp)1119 int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1120 {
1121 	int i, len;
1122 	struct mtd_dev_param *p;
1123 	char buf[MTD_PARAM_LEN_MAX];
1124 	char *pbuf = &buf[0];
1125 	char *tokens[2] = {NULL, NULL};
1126 
1127 	if (!val)
1128 		return -EINVAL;
1129 
1130 	if (mtd_devs == UBI_MAX_DEVICES) {
1131 		printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1132 		       UBI_MAX_DEVICES);
1133 		return -EINVAL;
1134 	}
1135 
1136 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1137 	if (len == MTD_PARAM_LEN_MAX) {
1138 		printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1139 		       "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1140 		return -EINVAL;
1141 	}
1142 
1143 	if (len == 0) {
1144 		printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1145 		       "ignored\n");
1146 		return 0;
1147 	}
1148 
1149 	strcpy(buf, val);
1150 
1151 	/* Get rid of the final newline */
1152 	if (buf[len - 1] == '\n')
1153 		buf[len - 1] = '\0';
1154 
1155 	for (i = 0; i < 2; i++)
1156 		tokens[i] = strsep(&pbuf, ",");
1157 
1158 	if (pbuf) {
1159 		printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1160 		       val);
1161 		return -EINVAL;
1162 	}
1163 
1164 	p = &mtd_dev_param[mtd_devs];
1165 	strcpy(&p->name[0], tokens[0]);
1166 
1167 	if (tokens[1])
1168 		p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1169 
1170 	if (p->vid_hdr_offs < 0)
1171 		return p->vid_hdr_offs;
1172 
1173 	mtd_devs += 1;
1174 	return 0;
1175 }
1176 
1177 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1178 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1179 		      "mtd=<name|num>[,<vid_hdr_offs>].\n"
1180 		      "Multiple \"mtd\" parameters may be specified.\n"
1181 		      "MTD devices may be specified by their number or name.\n"
1182 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1183 		      "header position and data starting position to be used "
1184 		      "by UBI.\n"
1185 		      "Example: mtd=content,1984 mtd=4 - attach MTD device"
1186 		      "with name \"content\" using VID header offset 1984, and "
1187 		      "MTD device number 4 with default VID header offset.");
1188 
1189 MODULE_VERSION(__stringify(UBI_VERSION));
1190 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1191 MODULE_AUTHOR("Artem Bityutskiy");
1192 MODULE_LICENSE("GPL");
1193