1 /** @file
2   CPU MP Initialize Library common functions.
3 
4   Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>
5   SPDX-License-Identifier: BSD-2-Clause-Patent
6 
7 **/
8 
9 #include "MpLib.h"
10 
11 EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
12 
13 /**
14   The function will check if BSP Execute Disable is enabled.
15 
16   DxeIpl may have enabled Execute Disable for BSP, APs need to
17   get the status and sync up the settings.
18   If BSP's CR0.Paging is not set, BSP execute Disble feature is
19   not working actually.
20 
21   @retval TRUE      BSP Execute Disable is enabled.
22   @retval FALSE     BSP Execute Disable is not enabled.
23 **/
24 BOOLEAN
IsBspExecuteDisableEnabled(VOID)25 IsBspExecuteDisableEnabled (
26   VOID
27   )
28 {
29   UINT32                      Eax;
30   CPUID_EXTENDED_CPU_SIG_EDX  Edx;
31   MSR_IA32_EFER_REGISTER      EferMsr;
32   BOOLEAN                     Enabled;
33   IA32_CR0                    Cr0;
34 
35   Enabled = FALSE;
36   Cr0.UintN = AsmReadCr0 ();
37   if (Cr0.Bits.PG != 0) {
38     //
39     // If CR0 Paging bit is set
40     //
41     AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
42     if (Eax >= CPUID_EXTENDED_CPU_SIG) {
43       AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
44       //
45       // CPUID 0x80000001
46       // Bit 20: Execute Disable Bit available.
47       //
48       if (Edx.Bits.NX != 0) {
49         EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
50         //
51         // MSR 0xC0000080
52         // Bit 11: Execute Disable Bit enable.
53         //
54         if (EferMsr.Bits.NXE != 0) {
55           Enabled = TRUE;
56         }
57       }
58     }
59   }
60 
61   return Enabled;
62 }
63 
64 /**
65   Worker function for SwitchBSP().
66 
67   Worker function for SwitchBSP(), assigned to the AP which is intended
68   to become BSP.
69 
70   @param[in] Buffer   Pointer to CPU MP Data
71 **/
72 VOID
73 EFIAPI
FutureBSPProc(IN VOID * Buffer)74 FutureBSPProc (
75   IN  VOID            *Buffer
76   )
77 {
78   CPU_MP_DATA         *DataInHob;
79 
80   DataInHob = (CPU_MP_DATA *) Buffer;
81   AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
82 }
83 
84 /**
85   Get the Application Processors state.
86 
87   @param[in]  CpuData    The pointer to CPU_AP_DATA of specified AP
88 
89   @return  The AP status
90 **/
91 CPU_STATE
GetApState(IN CPU_AP_DATA * CpuData)92 GetApState (
93   IN  CPU_AP_DATA     *CpuData
94   )
95 {
96   return CpuData->State;
97 }
98 
99 /**
100   Set the Application Processors state.
101 
102   @param[in]   CpuData    The pointer to CPU_AP_DATA of specified AP
103   @param[in]   State      The AP status
104 **/
105 VOID
SetApState(IN CPU_AP_DATA * CpuData,IN CPU_STATE State)106 SetApState (
107   IN  CPU_AP_DATA     *CpuData,
108   IN  CPU_STATE       State
109   )
110 {
111   AcquireSpinLock (&CpuData->ApLock);
112   CpuData->State = State;
113   ReleaseSpinLock (&CpuData->ApLock);
114 }
115 
116 /**
117   Save BSP's local APIC timer setting.
118 
119   @param[in] CpuMpData          Pointer to CPU MP Data
120 **/
121 VOID
SaveLocalApicTimerSetting(IN CPU_MP_DATA * CpuMpData)122 SaveLocalApicTimerSetting (
123   IN CPU_MP_DATA   *CpuMpData
124   )
125 {
126   //
127   // Record the current local APIC timer setting of BSP
128   //
129   GetApicTimerState (
130     &CpuMpData->DivideValue,
131     &CpuMpData->PeriodicMode,
132     &CpuMpData->Vector
133     );
134   CpuMpData->CurrentTimerCount   = GetApicTimerCurrentCount ();
135   CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
136 }
137 
138 /**
139   Sync local APIC timer setting from BSP to AP.
140 
141   @param[in] CpuMpData          Pointer to CPU MP Data
142 **/
143 VOID
SyncLocalApicTimerSetting(IN CPU_MP_DATA * CpuMpData)144 SyncLocalApicTimerSetting (
145   IN CPU_MP_DATA   *CpuMpData
146   )
147 {
148   //
149   // Sync local APIC timer setting from BSP to AP
150   //
151   InitializeApicTimer (
152     CpuMpData->DivideValue,
153     CpuMpData->CurrentTimerCount,
154     CpuMpData->PeriodicMode,
155     CpuMpData->Vector
156     );
157   //
158   // Disable AP's local APIC timer interrupt
159   //
160   DisableApicTimerInterrupt ();
161 }
162 
163 /**
164   Save the volatile registers required to be restored following INIT IPI.
165 
166   @param[out]  VolatileRegisters    Returns buffer saved the volatile resisters
167 **/
168 VOID
SaveVolatileRegisters(OUT CPU_VOLATILE_REGISTERS * VolatileRegisters)169 SaveVolatileRegisters (
170   OUT CPU_VOLATILE_REGISTERS    *VolatileRegisters
171   )
172 {
173   CPUID_VERSION_INFO_EDX        VersionInfoEdx;
174 
175   VolatileRegisters->Cr0 = AsmReadCr0 ();
176   VolatileRegisters->Cr3 = AsmReadCr3 ();
177   VolatileRegisters->Cr4 = AsmReadCr4 ();
178 
179   AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
180   if (VersionInfoEdx.Bits.DE != 0) {
181     //
182     // If processor supports Debugging Extensions feature
183     // by CPUID.[EAX=01H]:EDX.BIT2
184     //
185     VolatileRegisters->Dr0 = AsmReadDr0 ();
186     VolatileRegisters->Dr1 = AsmReadDr1 ();
187     VolatileRegisters->Dr2 = AsmReadDr2 ();
188     VolatileRegisters->Dr3 = AsmReadDr3 ();
189     VolatileRegisters->Dr6 = AsmReadDr6 ();
190     VolatileRegisters->Dr7 = AsmReadDr7 ();
191   }
192 
193   AsmReadGdtr (&VolatileRegisters->Gdtr);
194   AsmReadIdtr (&VolatileRegisters->Idtr);
195   VolatileRegisters->Tr = AsmReadTr ();
196 }
197 
198 /**
199   Restore the volatile registers following INIT IPI.
200 
201   @param[in]  VolatileRegisters   Pointer to volatile resisters
202   @param[in]  IsRestoreDr         TRUE:  Restore DRx if supported
203                                   FALSE: Do not restore DRx
204 **/
205 VOID
RestoreVolatileRegisters(IN CPU_VOLATILE_REGISTERS * VolatileRegisters,IN BOOLEAN IsRestoreDr)206 RestoreVolatileRegisters (
207   IN CPU_VOLATILE_REGISTERS    *VolatileRegisters,
208   IN BOOLEAN                   IsRestoreDr
209   )
210 {
211   CPUID_VERSION_INFO_EDX        VersionInfoEdx;
212   IA32_TSS_DESCRIPTOR           *Tss;
213 
214   AsmWriteCr3 (VolatileRegisters->Cr3);
215   AsmWriteCr4 (VolatileRegisters->Cr4);
216   AsmWriteCr0 (VolatileRegisters->Cr0);
217 
218   if (IsRestoreDr) {
219     AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
220     if (VersionInfoEdx.Bits.DE != 0) {
221       //
222       // If processor supports Debugging Extensions feature
223       // by CPUID.[EAX=01H]:EDX.BIT2
224       //
225       AsmWriteDr0 (VolatileRegisters->Dr0);
226       AsmWriteDr1 (VolatileRegisters->Dr1);
227       AsmWriteDr2 (VolatileRegisters->Dr2);
228       AsmWriteDr3 (VolatileRegisters->Dr3);
229       AsmWriteDr6 (VolatileRegisters->Dr6);
230       AsmWriteDr7 (VolatileRegisters->Dr7);
231     }
232   }
233 
234   AsmWriteGdtr (&VolatileRegisters->Gdtr);
235   AsmWriteIdtr (&VolatileRegisters->Idtr);
236   if (VolatileRegisters->Tr != 0 &&
237       VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {
238     Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
239                                   VolatileRegisters->Tr);
240     if (Tss->Bits.P == 1) {
241       Tss->Bits.Type &= 0xD;  // 1101 - Clear busy bit just in case
242       AsmWriteTr (VolatileRegisters->Tr);
243     }
244   }
245 }
246 
247 /**
248   Detect whether Mwait-monitor feature is supported.
249 
250   @retval TRUE    Mwait-monitor feature is supported.
251   @retval FALSE   Mwait-monitor feature is not supported.
252 **/
253 BOOLEAN
IsMwaitSupport(VOID)254 IsMwaitSupport (
255   VOID
256   )
257 {
258   CPUID_VERSION_INFO_ECX        VersionInfoEcx;
259 
260   AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
261   return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
262 }
263 
264 /**
265   Get AP loop mode.
266 
267   @param[out] MonitorFilterSize  Returns the largest monitor-line size in bytes.
268 
269   @return The AP loop mode.
270 **/
271 UINT8
GetApLoopMode(OUT UINT32 * MonitorFilterSize)272 GetApLoopMode (
273   OUT UINT32     *MonitorFilterSize
274   )
275 {
276   UINT8                         ApLoopMode;
277   CPUID_MONITOR_MWAIT_EBX       MonitorMwaitEbx;
278 
279   ASSERT (MonitorFilterSize != NULL);
280 
281   ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
282   ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
283   if (ApLoopMode == ApInMwaitLoop) {
284     if (!IsMwaitSupport ()) {
285       //
286       // If processor does not support MONITOR/MWAIT feature,
287       // force AP in Hlt-loop mode
288       //
289       ApLoopMode = ApInHltLoop;
290     }
291   }
292 
293   if (ApLoopMode != ApInMwaitLoop) {
294     *MonitorFilterSize = sizeof (UINT32);
295   } else {
296     //
297     // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
298     // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
299     //
300     AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
301     *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
302   }
303 
304   return ApLoopMode;
305 }
306 
307 /**
308   Sort the APIC ID of all processors.
309 
310   This function sorts the APIC ID of all processors so that processor number is
311   assigned in the ascending order of APIC ID which eases MP debugging.
312 
313   @param[in] CpuMpData        Pointer to PEI CPU MP Data
314 **/
315 VOID
SortApicId(IN CPU_MP_DATA * CpuMpData)316 SortApicId (
317   IN CPU_MP_DATA   *CpuMpData
318   )
319 {
320   UINTN             Index1;
321   UINTN             Index2;
322   UINTN             Index3;
323   UINT32            ApicId;
324   CPU_INFO_IN_HOB   CpuInfo;
325   UINT32            ApCount;
326   CPU_INFO_IN_HOB   *CpuInfoInHob;
327   volatile UINT32   *StartupApSignal;
328 
329   ApCount = CpuMpData->CpuCount - 1;
330   CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
331   if (ApCount != 0) {
332     for (Index1 = 0; Index1 < ApCount; Index1++) {
333       Index3 = Index1;
334       //
335       // Sort key is the hardware default APIC ID
336       //
337       ApicId = CpuInfoInHob[Index1].ApicId;
338       for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
339         if (ApicId > CpuInfoInHob[Index2].ApicId) {
340           Index3 = Index2;
341           ApicId = CpuInfoInHob[Index2].ApicId;
342         }
343       }
344       if (Index3 != Index1) {
345         CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
346         CopyMem (
347           &CpuInfoInHob[Index3],
348           &CpuInfoInHob[Index1],
349           sizeof (CPU_INFO_IN_HOB)
350           );
351         CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
352 
353         //
354         // Also exchange the StartupApSignal.
355         //
356         StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;
357         CpuMpData->CpuData[Index3].StartupApSignal =
358           CpuMpData->CpuData[Index1].StartupApSignal;
359         CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
360       }
361     }
362 
363     //
364     // Get the processor number for the BSP
365     //
366     ApicId = GetInitialApicId ();
367     for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
368       if (CpuInfoInHob[Index1].ApicId == ApicId) {
369         CpuMpData->BspNumber = (UINT32) Index1;
370         break;
371       }
372     }
373   }
374 }
375 
376 /**
377   Enable x2APIC mode on APs.
378 
379   @param[in, out] Buffer  Pointer to private data buffer.
380 **/
381 VOID
382 EFIAPI
ApFuncEnableX2Apic(IN OUT VOID * Buffer)383 ApFuncEnableX2Apic (
384   IN OUT VOID  *Buffer
385   )
386 {
387   SetApicMode (LOCAL_APIC_MODE_X2APIC);
388 }
389 
390 /**
391   Do sync on APs.
392 
393   @param[in, out] Buffer  Pointer to private data buffer.
394 **/
395 VOID
396 EFIAPI
ApInitializeSync(IN OUT VOID * Buffer)397 ApInitializeSync (
398   IN OUT VOID  *Buffer
399   )
400 {
401   CPU_MP_DATA  *CpuMpData;
402 
403   CpuMpData = (CPU_MP_DATA *) Buffer;
404   //
405   // Load microcode on AP
406   //
407   MicrocodeDetect (CpuMpData, FALSE);
408   //
409   // Sync BSP's MTRR table to AP
410   //
411   MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
412 }
413 
414 /**
415   Find the current Processor number by APIC ID.
416 
417   @param[in]  CpuMpData         Pointer to PEI CPU MP Data
418   @param[out] ProcessorNumber   Return the pocessor number found
419 
420   @retval EFI_SUCCESS          ProcessorNumber is found and returned.
421   @retval EFI_NOT_FOUND        ProcessorNumber is not found.
422 **/
423 EFI_STATUS
GetProcessorNumber(IN CPU_MP_DATA * CpuMpData,OUT UINTN * ProcessorNumber)424 GetProcessorNumber (
425   IN CPU_MP_DATA               *CpuMpData,
426   OUT UINTN                    *ProcessorNumber
427   )
428 {
429   UINTN                   TotalProcessorNumber;
430   UINTN                   Index;
431   CPU_INFO_IN_HOB         *CpuInfoInHob;
432   UINT32                  CurrentApicId;
433 
434   CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
435 
436   TotalProcessorNumber = CpuMpData->CpuCount;
437   CurrentApicId = GetApicId ();
438   for (Index = 0; Index < TotalProcessorNumber; Index ++) {
439     if (CpuInfoInHob[Index].ApicId == CurrentApicId) {
440       *ProcessorNumber = Index;
441       return EFI_SUCCESS;
442     }
443   }
444 
445   return EFI_NOT_FOUND;
446 }
447 
448 /**
449   This function will get CPU count in the system.
450 
451   @param[in] CpuMpData        Pointer to PEI CPU MP Data
452 
453   @return  CPU count detected
454 **/
455 UINTN
CollectProcessorCount(IN CPU_MP_DATA * CpuMpData)456 CollectProcessorCount (
457   IN CPU_MP_DATA         *CpuMpData
458   )
459 {
460   UINTN                  Index;
461 
462   //
463   // Send 1st broadcast IPI to APs to wakeup APs
464   //
465   CpuMpData->InitFlag     = ApInitConfig;
466   CpuMpData->X2ApicEnable = FALSE;
467   WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);
468   CpuMpData->InitFlag = ApInitDone;
469   ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
470   //
471   // Wait for all APs finished the initialization
472   //
473   while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
474     CpuPause ();
475   }
476 
477   if (CpuMpData->CpuCount > 255) {
478     //
479     // If there are more than 255 processor found, force to enable X2APIC
480     //
481     CpuMpData->X2ApicEnable = TRUE;
482   }
483   if (CpuMpData->X2ApicEnable) {
484     DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
485     //
486     // Wakeup all APs to enable x2APIC mode
487     //
488     WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);
489     //
490     // Wait for all known APs finished
491     //
492     while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
493       CpuPause ();
494     }
495     //
496     // Enable x2APIC on BSP
497     //
498     SetApicMode (LOCAL_APIC_MODE_X2APIC);
499     //
500     // Set BSP/Aps state to IDLE
501     //
502     for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
503       SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
504     }
505   }
506   DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
507   //
508   // Sort BSP/Aps by CPU APIC ID in ascending order
509   //
510   SortApicId (CpuMpData);
511 
512   DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
513 
514   return CpuMpData->CpuCount;
515 }
516 
517 /**
518   Initialize CPU AP Data when AP is wakeup at the first time.
519 
520   @param[in, out] CpuMpData        Pointer to PEI CPU MP Data
521   @param[in]      ProcessorNumber  The handle number of processor
522   @param[in]      BistData         Processor BIST data
523   @param[in]      ApTopOfStack     Top of AP stack
524 
525 **/
526 VOID
InitializeApData(IN OUT CPU_MP_DATA * CpuMpData,IN UINTN ProcessorNumber,IN UINT32 BistData,IN UINT64 ApTopOfStack)527 InitializeApData (
528   IN OUT CPU_MP_DATA      *CpuMpData,
529   IN     UINTN            ProcessorNumber,
530   IN     UINT32           BistData,
531   IN     UINT64           ApTopOfStack
532   )
533 {
534   CPU_INFO_IN_HOB          *CpuInfoInHob;
535 
536   CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
537   CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
538   CpuInfoInHob[ProcessorNumber].ApicId        = GetApicId ();
539   CpuInfoInHob[ProcessorNumber].Health        = BistData;
540   CpuInfoInHob[ProcessorNumber].ApTopOfStack  = ApTopOfStack;
541 
542   CpuMpData->CpuData[ProcessorNumber].Waiting    = FALSE;
543   CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
544   if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {
545     //
546     // Set x2APIC mode if there are any logical processor reporting
547     // an Initial APIC ID of 255 or greater.
548     //
549     AcquireSpinLock(&CpuMpData->MpLock);
550     CpuMpData->X2ApicEnable = TRUE;
551     ReleaseSpinLock(&CpuMpData->MpLock);
552   }
553 
554   InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
555   SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
556 }
557 
558 /**
559   This function will be called from AP reset code if BSP uses WakeUpAP.
560 
561   @param[in] ExchangeInfo     Pointer to the MP exchange info buffer
562   @param[in] ApIndex          Number of current executing AP
563 **/
564 VOID
565 EFIAPI
ApWakeupFunction(IN MP_CPU_EXCHANGE_INFO * ExchangeInfo,IN UINTN ApIndex)566 ApWakeupFunction (
567   IN MP_CPU_EXCHANGE_INFO      *ExchangeInfo,
568   IN UINTN                     ApIndex
569   )
570 {
571   CPU_MP_DATA                *CpuMpData;
572   UINTN                      ProcessorNumber;
573   EFI_AP_PROCEDURE           Procedure;
574   VOID                       *Parameter;
575   UINT32                     BistData;
576   volatile UINT32            *ApStartupSignalBuffer;
577   CPU_INFO_IN_HOB            *CpuInfoInHob;
578   UINT64                     ApTopOfStack;
579   UINTN                      CurrentApicMode;
580 
581   //
582   // AP finished assembly code and begin to execute C code
583   //
584   CpuMpData = ExchangeInfo->CpuMpData;
585 
586   //
587   // AP's local APIC settings will be lost after received INIT IPI
588   // We need to re-initialize them at here
589   //
590   ProgramVirtualWireMode ();
591   //
592   // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
593   //
594   DisableLvtInterrupts ();
595   SyncLocalApicTimerSetting (CpuMpData);
596 
597   CurrentApicMode = GetApicMode ();
598   while (TRUE) {
599     if (CpuMpData->InitFlag == ApInitConfig) {
600       //
601       // Add CPU number
602       //
603       InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
604       ProcessorNumber = ApIndex;
605       //
606       // This is first time AP wakeup, get BIST information from AP stack
607       //
608       ApTopOfStack  = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
609       BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));
610       //
611       // Do some AP initialize sync
612       //
613       ApInitializeSync (CpuMpData);
614       //
615       // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
616       //   to initialize AP in InitConfig path.
617       // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
618       //
619       RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
620       InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
621       ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
622     } else {
623       //
624       // Execute AP function if AP is ready
625       //
626       GetProcessorNumber (CpuMpData, &ProcessorNumber);
627       //
628       // Clear AP start-up signal when AP waken up
629       //
630       ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
631       InterlockedCompareExchange32 (
632         (UINT32 *) ApStartupSignalBuffer,
633         WAKEUP_AP_SIGNAL,
634         0
635         );
636       if (CpuMpData->ApLoopMode == ApInHltLoop) {
637         //
638         // Restore AP's volatile registers saved
639         //
640         RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
641       } else {
642         //
643         // The CPU driver might not flush TLB for APs on spot after updating
644         // page attributes. AP in mwait loop mode needs to take care of it when
645         // woken up.
646         //
647         CpuFlushTlb ();
648       }
649 
650       if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
651         Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
652         Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
653         if (Procedure != NULL) {
654           SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
655           //
656           // Enable source debugging on AP function
657           //
658           EnableDebugAgent ();
659           //
660           // Invoke AP function here
661           //
662           Procedure (Parameter);
663           CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
664           if (CpuMpData->SwitchBspFlag) {
665             //
666             // Re-get the processor number due to BSP/AP maybe exchange in AP function
667             //
668             GetProcessorNumber (CpuMpData, &ProcessorNumber);
669             CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
670             CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
671             ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
672             CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
673           } else {
674             if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||
675                 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {
676               if (CurrentApicMode != GetApicMode ()) {
677                 //
678                 // If APIC mode change happened during AP function execution,
679                 // we do not support APIC ID value changed.
680                 //
681                 ASSERT (FALSE);
682                 CpuDeadLoop ();
683               } else {
684                 //
685                 // Re-get the CPU APICID and Initial APICID if they are changed
686                 //
687                 CpuInfoInHob[ProcessorNumber].ApicId        = GetApicId ();
688                 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
689               }
690             }
691           }
692         }
693         SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
694       }
695     }
696 
697     //
698     // AP finished executing C code
699     //
700     InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
701     InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
702 
703     //
704     // Place AP is specified loop mode
705     //
706     if (CpuMpData->ApLoopMode == ApInHltLoop) {
707       //
708       // Save AP volatile registers
709       //
710       SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
711       //
712       // Place AP in HLT-loop
713       //
714       while (TRUE) {
715         DisableInterrupts ();
716         CpuSleep ();
717         CpuPause ();
718       }
719     }
720     while (TRUE) {
721       DisableInterrupts ();
722       if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
723         //
724         // Place AP in MWAIT-loop
725         //
726         AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
727         if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
728           //
729           // Check AP start-up signal again.
730           // If AP start-up signal is not set, place AP into
731           // the specified C-state
732           //
733           AsmMwait (CpuMpData->ApTargetCState << 4, 0);
734         }
735       } else if (CpuMpData->ApLoopMode == ApInRunLoop) {
736         //
737         // Place AP in Run-loop
738         //
739         CpuPause ();
740       } else {
741         ASSERT (FALSE);
742       }
743 
744       //
745       // If AP start-up signal is written, AP is waken up
746       // otherwise place AP in loop again
747       //
748       if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
749         break;
750       }
751     }
752   }
753 }
754 
755 /**
756   Wait for AP wakeup and write AP start-up signal till AP is waken up.
757 
758   @param[in] ApStartupSignalBuffer  Pointer to AP wakeup signal
759 **/
760 VOID
WaitApWakeup(IN volatile UINT32 * ApStartupSignalBuffer)761 WaitApWakeup (
762   IN volatile UINT32        *ApStartupSignalBuffer
763   )
764 {
765   //
766   // If AP is waken up, StartupApSignal should be cleared.
767   // Otherwise, write StartupApSignal again till AP waken up.
768   //
769   while (InterlockedCompareExchange32 (
770           (UINT32 *) ApStartupSignalBuffer,
771           WAKEUP_AP_SIGNAL,
772           WAKEUP_AP_SIGNAL
773           ) != 0) {
774     CpuPause ();
775   }
776 }
777 
778 /**
779   This function will fill the exchange info structure.
780 
781   @param[in] CpuMpData          Pointer to CPU MP Data
782 
783 **/
784 VOID
FillExchangeInfoData(IN CPU_MP_DATA * CpuMpData)785 FillExchangeInfoData (
786   IN CPU_MP_DATA               *CpuMpData
787   )
788 {
789   volatile MP_CPU_EXCHANGE_INFO    *ExchangeInfo;
790   UINTN                            Size;
791   IA32_SEGMENT_DESCRIPTOR          *Selector;
792 
793   ExchangeInfo                  = CpuMpData->MpCpuExchangeInfo;
794   ExchangeInfo->Lock            = 0;
795   ExchangeInfo->StackStart      = CpuMpData->Buffer;
796   ExchangeInfo->StackSize       = CpuMpData->CpuApStackSize;
797   ExchangeInfo->BufferStart     = CpuMpData->WakeupBuffer;
798   ExchangeInfo->ModeOffset      = CpuMpData->AddressMap.ModeEntryOffset;
799 
800   ExchangeInfo->CodeSegment     = AsmReadCs ();
801   ExchangeInfo->DataSegment     = AsmReadDs ();
802 
803   ExchangeInfo->Cr3             = AsmReadCr3 ();
804 
805   ExchangeInfo->CFunction       = (UINTN) ApWakeupFunction;
806   ExchangeInfo->ApIndex         = 0;
807   ExchangeInfo->NumApsExecuting = 0;
808   ExchangeInfo->InitFlag        = (UINTN) CpuMpData->InitFlag;
809   ExchangeInfo->CpuInfo         = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
810   ExchangeInfo->CpuMpData       = CpuMpData;
811 
812   ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
813 
814   ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
815 
816   //
817   // Get the BSP's data of GDT and IDT
818   //
819   AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
820   AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
821 
822   //
823   // Find a 32-bit code segment
824   //
825   Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
826   Size = ExchangeInfo->GdtrProfile.Limit + 1;
827   while (Size > 0) {
828     if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {
829       ExchangeInfo->ModeTransitionSegment =
830         (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
831       break;
832     }
833     Selector += 1;
834     Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);
835   }
836 
837   //
838   // Copy all 32-bit code and 64-bit code into memory with type of
839   // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
840   //
841   if (CpuMpData->WakeupBufferHigh != 0) {
842     Size = CpuMpData->AddressMap.RendezvousFunnelSize -
843            CpuMpData->AddressMap.ModeTransitionOffset;
844     CopyMem (
845       (VOID *)CpuMpData->WakeupBufferHigh,
846       CpuMpData->AddressMap.RendezvousFunnelAddress +
847       CpuMpData->AddressMap.ModeTransitionOffset,
848       Size
849       );
850 
851     ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;
852   } else {
853     ExchangeInfo->ModeTransitionMemory = (UINT32)
854       (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);
855   }
856 
857   ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
858                          (UINT32)ExchangeInfo->ModeOffset -
859                          (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
860   ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
861 }
862 
863 /**
864   Helper function that waits until the finished AP count reaches the specified
865   limit, or the specified timeout elapses (whichever comes first).
866 
867   @param[in] CpuMpData        Pointer to CPU MP Data.
868   @param[in] FinishedApLimit  The number of finished APs to wait for.
869   @param[in] TimeLimit        The number of microseconds to wait for.
870 **/
871 VOID
872 TimedWaitForApFinish (
873   IN CPU_MP_DATA               *CpuMpData,
874   IN UINT32                    FinishedApLimit,
875   IN UINT32                    TimeLimit
876   );
877 
878 /**
879   Get available system memory below 1MB by specified size.
880 
881   @param[in]  CpuMpData  The pointer to CPU MP Data structure.
882 **/
883 VOID
BackupAndPrepareWakeupBuffer(IN CPU_MP_DATA * CpuMpData)884 BackupAndPrepareWakeupBuffer(
885   IN CPU_MP_DATA              *CpuMpData
886   )
887 {
888   CopyMem (
889     (VOID *) CpuMpData->BackupBuffer,
890     (VOID *) CpuMpData->WakeupBuffer,
891     CpuMpData->BackupBufferSize
892     );
893   CopyMem (
894     (VOID *) CpuMpData->WakeupBuffer,
895     (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,
896     CpuMpData->AddressMap.RendezvousFunnelSize
897     );
898 }
899 
900 /**
901   Restore wakeup buffer data.
902 
903   @param[in]  CpuMpData  The pointer to CPU MP Data structure.
904 **/
905 VOID
RestoreWakeupBuffer(IN CPU_MP_DATA * CpuMpData)906 RestoreWakeupBuffer(
907   IN CPU_MP_DATA              *CpuMpData
908   )
909 {
910   CopyMem (
911     (VOID *) CpuMpData->WakeupBuffer,
912     (VOID *) CpuMpData->BackupBuffer,
913     CpuMpData->BackupBufferSize
914     );
915 }
916 
917 /**
918   Allocate reset vector buffer.
919 
920   @param[in, out]  CpuMpData  The pointer to CPU MP Data structure.
921 **/
922 VOID
AllocateResetVector(IN OUT CPU_MP_DATA * CpuMpData)923 AllocateResetVector (
924   IN OUT CPU_MP_DATA          *CpuMpData
925   )
926 {
927   UINTN           ApResetVectorSize;
928 
929   if (CpuMpData->WakeupBuffer == (UINTN) -1) {
930     ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +
931                           sizeof (MP_CPU_EXCHANGE_INFO);
932 
933     CpuMpData->WakeupBuffer      = GetWakeupBuffer (ApResetVectorSize);
934     CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)
935                     (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);
936     CpuMpData->WakeupBufferHigh  = GetModeTransitionBuffer (
937                                     CpuMpData->AddressMap.RendezvousFunnelSize -
938                                     CpuMpData->AddressMap.ModeTransitionOffset
939                                     );
940   }
941   BackupAndPrepareWakeupBuffer (CpuMpData);
942 }
943 
944 /**
945   Free AP reset vector buffer.
946 
947   @param[in]  CpuMpData  The pointer to CPU MP Data structure.
948 **/
949 VOID
FreeResetVector(IN CPU_MP_DATA * CpuMpData)950 FreeResetVector (
951   IN CPU_MP_DATA              *CpuMpData
952   )
953 {
954   RestoreWakeupBuffer (CpuMpData);
955 }
956 
957 /**
958   This function will be called by BSP to wakeup AP.
959 
960   @param[in] CpuMpData          Pointer to CPU MP Data
961   @param[in] Broadcast          TRUE:  Send broadcast IPI to all APs
962                                 FALSE: Send IPI to AP by ApicId
963   @param[in] ProcessorNumber    The handle number of specified processor
964   @param[in] Procedure          The function to be invoked by AP
965   @param[in] ProcedureArgument  The argument to be passed into AP function
966   @param[in] WakeUpDisabledAps  Whether need to wake up disabled APs in broadcast mode.
967 **/
968 VOID
WakeUpAP(IN CPU_MP_DATA * CpuMpData,IN BOOLEAN Broadcast,IN UINTN ProcessorNumber,IN EFI_AP_PROCEDURE Procedure,OPTIONAL IN VOID * ProcedureArgument,OPTIONAL IN BOOLEAN WakeUpDisabledAps)969 WakeUpAP (
970   IN CPU_MP_DATA               *CpuMpData,
971   IN BOOLEAN                   Broadcast,
972   IN UINTN                     ProcessorNumber,
973   IN EFI_AP_PROCEDURE          Procedure,              OPTIONAL
974   IN VOID                      *ProcedureArgument,     OPTIONAL
975   IN BOOLEAN                   WakeUpDisabledAps
976   )
977 {
978   volatile MP_CPU_EXCHANGE_INFO    *ExchangeInfo;
979   UINTN                            Index;
980   CPU_AP_DATA                      *CpuData;
981   BOOLEAN                          ResetVectorRequired;
982   CPU_INFO_IN_HOB                  *CpuInfoInHob;
983 
984   CpuMpData->FinishedCount = 0;
985   ResetVectorRequired = FALSE;
986 
987   if (CpuMpData->WakeUpByInitSipiSipi ||
988       CpuMpData->InitFlag   != ApInitDone) {
989     ResetVectorRequired = TRUE;
990     AllocateResetVector (CpuMpData);
991     FillExchangeInfoData (CpuMpData);
992     SaveLocalApicTimerSetting (CpuMpData);
993   }
994 
995   if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
996     //
997     // Get AP target C-state each time when waking up AP,
998     // for it maybe updated by platform again
999     //
1000     CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
1001   }
1002 
1003   ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
1004 
1005   if (Broadcast) {
1006     for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1007       if (Index != CpuMpData->BspNumber) {
1008         CpuData = &CpuMpData->CpuData[Index];
1009         //
1010         // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but
1011         // the AP procedure will be skipped for disabled AP because AP state
1012         // is not CpuStateReady.
1013         //
1014         if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {
1015           continue;
1016         }
1017 
1018         CpuData->ApFunction         = (UINTN) Procedure;
1019         CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1020         SetApState (CpuData, CpuStateReady);
1021         if (CpuMpData->InitFlag != ApInitConfig) {
1022           *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1023         }
1024       }
1025     }
1026     if (ResetVectorRequired) {
1027       //
1028       // Wakeup all APs
1029       //
1030       SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
1031     }
1032     if (CpuMpData->InitFlag == ApInitConfig) {
1033       //
1034       // Here support two methods to collect AP count through adjust
1035       // PcdCpuApInitTimeOutInMicroSeconds values.
1036       //
1037       // one way is set a value to just let the first AP to start the
1038       // initialization, then through the later while loop to wait all Aps
1039       // finsh the initialization.
1040       // The other way is set a value to let all APs finished the initialzation.
1041       // In this case, the later while loop is useless.
1042       //
1043       TimedWaitForApFinish (
1044         CpuMpData,
1045         PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
1046         PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
1047         );
1048 
1049       while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
1050         CpuPause();
1051       }
1052     } else {
1053       //
1054       // Wait all APs waken up if this is not the 1st broadcast of SIPI
1055       //
1056       for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1057         CpuData = &CpuMpData->CpuData[Index];
1058         if (Index != CpuMpData->BspNumber) {
1059           WaitApWakeup (CpuData->StartupApSignal);
1060         }
1061       }
1062     }
1063   } else {
1064     CpuData = &CpuMpData->CpuData[ProcessorNumber];
1065     CpuData->ApFunction         = (UINTN) Procedure;
1066     CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1067     SetApState (CpuData, CpuStateReady);
1068     //
1069     // Wakeup specified AP
1070     //
1071     ASSERT (CpuMpData->InitFlag != ApInitConfig);
1072     *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1073     if (ResetVectorRequired) {
1074       CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1075       SendInitSipiSipi (
1076         CpuInfoInHob[ProcessorNumber].ApicId,
1077         (UINT32) ExchangeInfo->BufferStart
1078         );
1079     }
1080     //
1081     // Wait specified AP waken up
1082     //
1083     WaitApWakeup (CpuData->StartupApSignal);
1084   }
1085 
1086   if (ResetVectorRequired) {
1087     FreeResetVector (CpuMpData);
1088   }
1089 
1090   //
1091   // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with
1092   // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by
1093   // S3SmmInitDone Ppi.
1094   //
1095   CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1096 }
1097 
1098 /**
1099   Calculate timeout value and return the current performance counter value.
1100 
1101   Calculate the number of performance counter ticks required for a timeout.
1102   If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1103   as infinity.
1104 
1105   @param[in]  TimeoutInMicroseconds   Timeout value in microseconds.
1106   @param[out] CurrentTime             Returns the current value of the performance counter.
1107 
1108   @return Expected time stamp counter for timeout.
1109           If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1110           as infinity.
1111 
1112 **/
1113 UINT64
CalculateTimeout(IN UINTN TimeoutInMicroseconds,OUT UINT64 * CurrentTime)1114 CalculateTimeout (
1115   IN  UINTN   TimeoutInMicroseconds,
1116   OUT UINT64  *CurrentTime
1117   )
1118 {
1119   UINT64 TimeoutInSeconds;
1120   UINT64 TimestampCounterFreq;
1121 
1122   //
1123   // Read the current value of the performance counter
1124   //
1125   *CurrentTime = GetPerformanceCounter ();
1126 
1127   //
1128   // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1129   // as infinity.
1130   //
1131   if (TimeoutInMicroseconds == 0) {
1132     return 0;
1133   }
1134 
1135   //
1136   // GetPerformanceCounterProperties () returns the timestamp counter's frequency
1137   // in Hz.
1138   //
1139   TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);
1140 
1141   //
1142   // Check the potential overflow before calculate the number of ticks for the timeout value.
1143   //
1144   if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
1145     //
1146     // Convert microseconds into seconds if direct multiplication overflows
1147     //
1148     TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
1149     //
1150     // Assertion if the final tick count exceeds MAX_UINT64
1151     //
1152     ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
1153     return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
1154   } else {
1155     //
1156     // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
1157     // it by 1,000,000, to get the number of ticks for the timeout value.
1158     //
1159     return DivU64x32 (
1160              MultU64x64 (
1161                TimestampCounterFreq,
1162                TimeoutInMicroseconds
1163                ),
1164              1000000
1165              );
1166   }
1167 }
1168 
1169 /**
1170   Checks whether timeout expires.
1171 
1172   Check whether the number of elapsed performance counter ticks required for
1173   a timeout condition has been reached.
1174   If Timeout is zero, which means infinity, return value is always FALSE.
1175 
1176   @param[in, out]  PreviousTime   On input,  the value of the performance counter
1177                                   when it was last read.
1178                                   On output, the current value of the performance
1179                                   counter
1180   @param[in]       TotalTime      The total amount of elapsed time in performance
1181                                   counter ticks.
1182   @param[in]       Timeout        The number of performance counter ticks required
1183                                   to reach a timeout condition.
1184 
1185   @retval TRUE                    A timeout condition has been reached.
1186   @retval FALSE                   A timeout condition has not been reached.
1187 
1188 **/
1189 BOOLEAN
CheckTimeout(IN OUT UINT64 * PreviousTime,IN UINT64 * TotalTime,IN UINT64 Timeout)1190 CheckTimeout (
1191   IN OUT UINT64  *PreviousTime,
1192   IN     UINT64  *TotalTime,
1193   IN     UINT64  Timeout
1194   )
1195 {
1196   UINT64  Start;
1197   UINT64  End;
1198   UINT64  CurrentTime;
1199   INT64   Delta;
1200   INT64   Cycle;
1201 
1202   if (Timeout == 0) {
1203     return FALSE;
1204   }
1205   GetPerformanceCounterProperties (&Start, &End);
1206   Cycle = End - Start;
1207   if (Cycle < 0) {
1208     Cycle = -Cycle;
1209   }
1210   Cycle++;
1211   CurrentTime = GetPerformanceCounter();
1212   Delta = (INT64) (CurrentTime - *PreviousTime);
1213   if (Start > End) {
1214     Delta = -Delta;
1215   }
1216   if (Delta < 0) {
1217     Delta += Cycle;
1218   }
1219   *TotalTime += Delta;
1220   *PreviousTime = CurrentTime;
1221   if (*TotalTime > Timeout) {
1222     return TRUE;
1223   }
1224   return FALSE;
1225 }
1226 
1227 /**
1228   Helper function that waits until the finished AP count reaches the specified
1229   limit, or the specified timeout elapses (whichever comes first).
1230 
1231   @param[in] CpuMpData        Pointer to CPU MP Data.
1232   @param[in] FinishedApLimit  The number of finished APs to wait for.
1233   @param[in] TimeLimit        The number of microseconds to wait for.
1234 **/
1235 VOID
TimedWaitForApFinish(IN CPU_MP_DATA * CpuMpData,IN UINT32 FinishedApLimit,IN UINT32 TimeLimit)1236 TimedWaitForApFinish (
1237   IN CPU_MP_DATA               *CpuMpData,
1238   IN UINT32                    FinishedApLimit,
1239   IN UINT32                    TimeLimit
1240   )
1241 {
1242   //
1243   // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
1244   // "infinity", so check for (TimeLimit == 0) explicitly.
1245   //
1246   if (TimeLimit == 0) {
1247     return;
1248   }
1249 
1250   CpuMpData->TotalTime = 0;
1251   CpuMpData->ExpectedTime = CalculateTimeout (
1252                               TimeLimit,
1253                               &CpuMpData->CurrentTime
1254                               );
1255   while (CpuMpData->FinishedCount < FinishedApLimit &&
1256          !CheckTimeout (
1257             &CpuMpData->CurrentTime,
1258             &CpuMpData->TotalTime,
1259             CpuMpData->ExpectedTime
1260             )) {
1261     CpuPause ();
1262   }
1263 
1264   if (CpuMpData->FinishedCount >= FinishedApLimit) {
1265     DEBUG ((
1266       DEBUG_VERBOSE,
1267       "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
1268       __FUNCTION__,
1269       FinishedApLimit,
1270       DivU64x64Remainder (
1271         MultU64x32 (CpuMpData->TotalTime, 1000000),
1272         GetPerformanceCounterProperties (NULL, NULL),
1273         NULL
1274         )
1275       ));
1276   }
1277 }
1278 
1279 /**
1280   Reset an AP to Idle state.
1281 
1282   Any task being executed by the AP will be aborted and the AP
1283   will be waiting for a new task in Wait-For-SIPI state.
1284 
1285   @param[in] ProcessorNumber  The handle number of processor.
1286 **/
1287 VOID
ResetProcessorToIdleState(IN UINTN ProcessorNumber)1288 ResetProcessorToIdleState (
1289   IN UINTN                     ProcessorNumber
1290   )
1291 {
1292   CPU_MP_DATA           *CpuMpData;
1293 
1294   CpuMpData = GetCpuMpData ();
1295 
1296   CpuMpData->InitFlag = ApInitReconfig;
1297   WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);
1298   while (CpuMpData->FinishedCount < 1) {
1299     CpuPause ();
1300   }
1301   CpuMpData->InitFlag = ApInitDone;
1302 
1303   SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
1304 }
1305 
1306 /**
1307   Searches for the next waiting AP.
1308 
1309   Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
1310 
1311   @param[out]  NextProcessorNumber  Pointer to the processor number of the next waiting AP.
1312 
1313   @retval EFI_SUCCESS          The next waiting AP has been found.
1314   @retval EFI_NOT_FOUND        No waiting AP exists.
1315 
1316 **/
1317 EFI_STATUS
GetNextWaitingProcessorNumber(OUT UINTN * NextProcessorNumber)1318 GetNextWaitingProcessorNumber (
1319   OUT UINTN                    *NextProcessorNumber
1320   )
1321 {
1322   UINTN           ProcessorNumber;
1323   CPU_MP_DATA     *CpuMpData;
1324 
1325   CpuMpData = GetCpuMpData ();
1326 
1327   for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1328     if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1329       *NextProcessorNumber = ProcessorNumber;
1330       return EFI_SUCCESS;
1331     }
1332   }
1333 
1334   return EFI_NOT_FOUND;
1335 }
1336 
1337 /** Checks status of specified AP.
1338 
1339   This function checks whether the specified AP has finished the task assigned
1340   by StartupThisAP(), and whether timeout expires.
1341 
1342   @param[in]  ProcessorNumber       The handle number of processor.
1343 
1344   @retval EFI_SUCCESS           Specified AP has finished task assigned by StartupThisAPs().
1345   @retval EFI_TIMEOUT           The timeout expires.
1346   @retval EFI_NOT_READY         Specified AP has not finished task and timeout has not expired.
1347 **/
1348 EFI_STATUS
CheckThisAP(IN UINTN ProcessorNumber)1349 CheckThisAP (
1350   IN UINTN        ProcessorNumber
1351   )
1352 {
1353   CPU_MP_DATA     *CpuMpData;
1354   CPU_AP_DATA     *CpuData;
1355 
1356   CpuMpData = GetCpuMpData ();
1357   CpuData   = &CpuMpData->CpuData[ProcessorNumber];
1358 
1359   //
1360   //  Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1361   //  Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1362   //  value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1363   //
1364   //
1365   // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
1366   //
1367   if (GetApState(CpuData) == CpuStateFinished) {
1368     if (CpuData->Finished != NULL) {
1369       *(CpuData->Finished) = TRUE;
1370     }
1371     SetApState (CpuData, CpuStateIdle);
1372     return EFI_SUCCESS;
1373   } else {
1374     //
1375     // If timeout expires for StartupThisAP(), report timeout.
1376     //
1377     if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
1378       if (CpuData->Finished != NULL) {
1379         *(CpuData->Finished) = FALSE;
1380       }
1381       //
1382       // Reset failed AP to idle state
1383       //
1384       ResetProcessorToIdleState (ProcessorNumber);
1385 
1386       return EFI_TIMEOUT;
1387     }
1388   }
1389   return EFI_NOT_READY;
1390 }
1391 
1392 /**
1393   Checks status of all APs.
1394 
1395   This function checks whether all APs have finished task assigned by StartupAllAPs(),
1396   and whether timeout expires.
1397 
1398   @retval EFI_SUCCESS           All APs have finished task assigned by StartupAllAPs().
1399   @retval EFI_TIMEOUT           The timeout expires.
1400   @retval EFI_NOT_READY         APs have not finished task and timeout has not expired.
1401 **/
1402 EFI_STATUS
CheckAllAPs(VOID)1403 CheckAllAPs (
1404   VOID
1405   )
1406 {
1407   UINTN           ProcessorNumber;
1408   UINTN           NextProcessorNumber;
1409   UINTN           ListIndex;
1410   EFI_STATUS      Status;
1411   CPU_MP_DATA     *CpuMpData;
1412   CPU_AP_DATA     *CpuData;
1413 
1414   CpuMpData = GetCpuMpData ();
1415 
1416   NextProcessorNumber = 0;
1417 
1418   //
1419   // Go through all APs that are responsible for the StartupAllAPs().
1420   //
1421   for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1422     if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
1423       continue;
1424     }
1425 
1426     CpuData = &CpuMpData->CpuData[ProcessorNumber];
1427     //
1428     // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1429     // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1430     // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1431     //
1432     if (GetApState(CpuData) == CpuStateFinished) {
1433       CpuMpData->RunningCount --;
1434       CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1435       SetApState(CpuData, CpuStateIdle);
1436 
1437       //
1438       // If in Single Thread mode, then search for the next waiting AP for execution.
1439       //
1440       if (CpuMpData->SingleThread) {
1441         Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
1442 
1443         if (!EFI_ERROR (Status)) {
1444           WakeUpAP (
1445             CpuMpData,
1446             FALSE,
1447             (UINT32) NextProcessorNumber,
1448             CpuMpData->Procedure,
1449             CpuMpData->ProcArguments,
1450             TRUE
1451             );
1452          }
1453       }
1454     }
1455   }
1456 
1457   //
1458   // If all APs finish, return EFI_SUCCESS.
1459   //
1460   if (CpuMpData->RunningCount == 0) {
1461     return EFI_SUCCESS;
1462   }
1463 
1464   //
1465   // If timeout expires, report timeout.
1466   //
1467   if (CheckTimeout (
1468        &CpuMpData->CurrentTime,
1469        &CpuMpData->TotalTime,
1470        CpuMpData->ExpectedTime)
1471        ) {
1472     //
1473     // If FailedCpuList is not NULL, record all failed APs in it.
1474     //
1475     if (CpuMpData->FailedCpuList != NULL) {
1476       *CpuMpData->FailedCpuList =
1477          AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));
1478       ASSERT (*CpuMpData->FailedCpuList != NULL);
1479     }
1480     ListIndex = 0;
1481 
1482     for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1483       //
1484       // Check whether this processor is responsible for StartupAllAPs().
1485       //
1486       if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1487         //
1488         // Reset failed APs to idle state
1489         //
1490         ResetProcessorToIdleState (ProcessorNumber);
1491         CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1492         if (CpuMpData->FailedCpuList != NULL) {
1493           (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
1494         }
1495       }
1496     }
1497     if (CpuMpData->FailedCpuList != NULL) {
1498       (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
1499     }
1500     return EFI_TIMEOUT;
1501   }
1502   return EFI_NOT_READY;
1503 }
1504 
1505 /**
1506   MP Initialize Library initialization.
1507 
1508   This service will allocate AP reset vector and wakeup all APs to do APs
1509   initialization.
1510 
1511   This service must be invoked before all other MP Initialize Library
1512   service are invoked.
1513 
1514   @retval  EFI_SUCCESS           MP initialization succeeds.
1515   @retval  Others                MP initialization fails.
1516 
1517 **/
1518 EFI_STATUS
1519 EFIAPI
MpInitLibInitialize(VOID)1520 MpInitLibInitialize (
1521   VOID
1522   )
1523 {
1524   CPU_MP_DATA              *OldCpuMpData;
1525   CPU_INFO_IN_HOB          *CpuInfoInHob;
1526   UINT32                   MaxLogicalProcessorNumber;
1527   UINT32                   ApStackSize;
1528   MP_ASSEMBLY_ADDRESS_MAP  AddressMap;
1529   CPU_VOLATILE_REGISTERS   VolatileRegisters;
1530   UINTN                    BufferSize;
1531   UINT32                   MonitorFilterSize;
1532   VOID                     *MpBuffer;
1533   UINTN                    Buffer;
1534   CPU_MP_DATA              *CpuMpData;
1535   UINT8                    ApLoopMode;
1536   UINT8                    *MonitorBuffer;
1537   UINTN                    Index;
1538   UINTN                    ApResetVectorSize;
1539   UINTN                    BackupBufferAddr;
1540   UINTN                    ApIdtBase;
1541   VOID                     *MicrocodePatchInRam;
1542 
1543   OldCpuMpData = GetCpuMpDataFromGuidedHob ();
1544   if (OldCpuMpData == NULL) {
1545     MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
1546   } else {
1547     MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
1548   }
1549   ASSERT (MaxLogicalProcessorNumber != 0);
1550 
1551   AsmGetAddressMap (&AddressMap);
1552   ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
1553   ApStackSize = PcdGet32(PcdCpuApStackSize);
1554   ApLoopMode  = GetApLoopMode (&MonitorFilterSize);
1555 
1556   //
1557   // Save BSP's Control registers for APs.
1558   //
1559   SaveVolatileRegisters (&VolatileRegisters);
1560 
1561   BufferSize  = ApStackSize * MaxLogicalProcessorNumber;
1562   BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
1563   BufferSize += ApResetVectorSize;
1564   BufferSize  = ALIGN_VALUE (BufferSize, 8);
1565   BufferSize += VolatileRegisters.Idtr.Limit + 1;
1566   BufferSize += sizeof (CPU_MP_DATA);
1567   BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
1568   MpBuffer    = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
1569   ASSERT (MpBuffer != NULL);
1570   ZeroMem (MpBuffer, BufferSize);
1571   Buffer = (UINTN) MpBuffer;
1572 
1573   //
1574   //  The layout of the Buffer is as below:
1575   //
1576   //    +--------------------+ <-- Buffer
1577   //        AP Stacks (N)
1578   //    +--------------------+ <-- MonitorBuffer
1579   //    AP Monitor Filters (N)
1580   //    +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
1581   //         Backup Buffer
1582   //    +--------------------+
1583   //           Padding
1584   //    +--------------------+ <-- ApIdtBase (8-byte boundary)
1585   //           AP IDT          All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.
1586   //    +--------------------+ <-- CpuMpData
1587   //         CPU_MP_DATA
1588   //    +--------------------+ <-- CpuMpData->CpuData
1589   //        CPU_AP_DATA (N)
1590   //    +--------------------+ <-- CpuMpData->CpuInfoInHob
1591   //      CPU_INFO_IN_HOB (N)
1592   //    +--------------------+
1593   //
1594   MonitorBuffer    = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
1595   BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
1596   ApIdtBase        = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);
1597   CpuMpData        = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
1598   CpuMpData->Buffer           = Buffer;
1599   CpuMpData->CpuApStackSize   = ApStackSize;
1600   CpuMpData->BackupBuffer     = BackupBufferAddr;
1601   CpuMpData->BackupBufferSize = ApResetVectorSize;
1602   CpuMpData->WakeupBuffer     = (UINTN) -1;
1603   CpuMpData->CpuCount         = 1;
1604   CpuMpData->BspNumber        = 0;
1605   CpuMpData->WaitEvent        = NULL;
1606   CpuMpData->SwitchBspFlag    = FALSE;
1607   CpuMpData->CpuData          = (CPU_AP_DATA *) (CpuMpData + 1);
1608   CpuMpData->CpuInfoInHob     = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
1609   CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);
1610   //
1611   // If platform has more than one CPU, relocate microcode to memory to reduce
1612   // loading microcode time.
1613   //
1614   MicrocodePatchInRam = NULL;
1615   if (MaxLogicalProcessorNumber > 1) {
1616     MicrocodePatchInRam = AllocatePages (
1617                             EFI_SIZE_TO_PAGES (
1618                               (UINTN)CpuMpData->MicrocodePatchRegionSize
1619                               )
1620                             );
1621   }
1622   if (MicrocodePatchInRam == NULL) {
1623     //
1624     // there is only one processor, or no microcode patch is available, or
1625     // memory allocation failed
1626     //
1627     CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);
1628   } else {
1629     //
1630     // there are multiple processors, and a microcode patch is available, and
1631     // memory allocation succeeded
1632     //
1633     CopyMem (
1634       MicrocodePatchInRam,
1635       (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),
1636       (UINTN)CpuMpData->MicrocodePatchRegionSize
1637       );
1638     CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;
1639   }
1640 
1641   InitializeSpinLock(&CpuMpData->MpLock);
1642 
1643   //
1644   // Make sure no memory usage outside of the allocated buffer.
1645   //
1646   ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
1647           Buffer + BufferSize);
1648 
1649   //
1650   // Duplicate BSP's IDT to APs.
1651   // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
1652   //
1653   CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
1654   VolatileRegisters.Idtr.Base = ApIdtBase;
1655   //
1656   // Don't pass BSP's TR to APs to avoid AP init failure.
1657   //
1658   VolatileRegisters.Tr = 0;
1659   CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
1660   //
1661   // Set BSP basic information
1662   //
1663   InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
1664   //
1665   // Save assembly code information
1666   //
1667   CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
1668   //
1669   // Finally set AP loop mode
1670   //
1671   CpuMpData->ApLoopMode = ApLoopMode;
1672   DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
1673 
1674   CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1675 
1676   //
1677   // Set up APs wakeup signal buffer
1678   //
1679   for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
1680     CpuMpData->CpuData[Index].StartupApSignal =
1681       (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
1682   }
1683   //
1684   // Load Microcode on BSP
1685   //
1686   MicrocodeDetect (CpuMpData, TRUE);
1687   //
1688   // Store BSP's MTRR setting
1689   //
1690   MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
1691   //
1692   // Enable the local APIC for Virtual Wire Mode.
1693   //
1694   ProgramVirtualWireMode ();
1695 
1696   if (OldCpuMpData == NULL) {
1697     if (MaxLogicalProcessorNumber > 1) {
1698       //
1699       // Wakeup all APs and calculate the processor count in system
1700       //
1701       CollectProcessorCount (CpuMpData);
1702     }
1703   } else {
1704     //
1705     // APs have been wakeup before, just get the CPU Information
1706     // from HOB
1707     //
1708     CpuMpData->CpuCount  = OldCpuMpData->CpuCount;
1709     CpuMpData->BspNumber = OldCpuMpData->BspNumber;
1710     CpuMpData->InitFlag  = ApInitReconfig;
1711     CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;
1712     CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1713     for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1714       InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
1715       if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {
1716         CpuMpData->X2ApicEnable = TRUE;
1717       }
1718       CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;
1719       CpuMpData->CpuData[Index].ApFunction = 0;
1720       CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));
1721     }
1722     if (MaxLogicalProcessorNumber > 1) {
1723       //
1724       // Wakeup APs to do some AP initialize sync
1725       //
1726       WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);
1727       //
1728       // Wait for all APs finished initialization
1729       //
1730       while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
1731         CpuPause ();
1732       }
1733       CpuMpData->InitFlag = ApInitDone;
1734       for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1735         SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
1736       }
1737     }
1738   }
1739 
1740   //
1741   // Initialize global data for MP support
1742   //
1743   InitMpGlobalData (CpuMpData);
1744 
1745   return EFI_SUCCESS;
1746 }
1747 
1748 /**
1749   Gets detailed MP-related information on the requested processor at the
1750   instant this call is made. This service may only be called from the BSP.
1751 
1752   @param[in]  ProcessorNumber       The handle number of processor.
1753   @param[out] ProcessorInfoBuffer   A pointer to the buffer where information for
1754                                     the requested processor is deposited.
1755   @param[out]  HealthData            Return processor health data.
1756 
1757   @retval EFI_SUCCESS             Processor information was returned.
1758   @retval EFI_DEVICE_ERROR        The calling processor is an AP.
1759   @retval EFI_INVALID_PARAMETER   ProcessorInfoBuffer is NULL.
1760   @retval EFI_NOT_FOUND           The processor with the handle specified by
1761                                   ProcessorNumber does not exist in the platform.
1762   @retval EFI_NOT_READY           MP Initialize Library is not initialized.
1763 
1764 **/
1765 EFI_STATUS
1766 EFIAPI
MpInitLibGetProcessorInfo(IN UINTN ProcessorNumber,OUT EFI_PROCESSOR_INFORMATION * ProcessorInfoBuffer,OUT EFI_HEALTH_FLAGS * HealthData OPTIONAL)1767 MpInitLibGetProcessorInfo (
1768   IN  UINTN                      ProcessorNumber,
1769   OUT EFI_PROCESSOR_INFORMATION  *ProcessorInfoBuffer,
1770   OUT EFI_HEALTH_FLAGS           *HealthData  OPTIONAL
1771   )
1772 {
1773   CPU_MP_DATA            *CpuMpData;
1774   UINTN                  CallerNumber;
1775   CPU_INFO_IN_HOB        *CpuInfoInHob;
1776 
1777   CpuMpData = GetCpuMpData ();
1778   CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1779 
1780   //
1781   // Check whether caller processor is BSP
1782   //
1783   MpInitLibWhoAmI (&CallerNumber);
1784   if (CallerNumber != CpuMpData->BspNumber) {
1785     return EFI_DEVICE_ERROR;
1786   }
1787 
1788   if (ProcessorInfoBuffer == NULL) {
1789     return EFI_INVALID_PARAMETER;
1790   }
1791 
1792   if (ProcessorNumber >= CpuMpData->CpuCount) {
1793     return EFI_NOT_FOUND;
1794   }
1795 
1796   ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;
1797   ProcessorInfoBuffer->StatusFlag  = 0;
1798   if (ProcessorNumber == CpuMpData->BspNumber) {
1799     ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
1800   }
1801   if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
1802     ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
1803   }
1804   if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
1805     ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
1806   } else {
1807     ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
1808   }
1809 
1810   //
1811   // Get processor location information
1812   //
1813   GetProcessorLocationByApicId (
1814     CpuInfoInHob[ProcessorNumber].ApicId,
1815     &ProcessorInfoBuffer->Location.Package,
1816     &ProcessorInfoBuffer->Location.Core,
1817     &ProcessorInfoBuffer->Location.Thread
1818     );
1819 
1820   if (HealthData != NULL) {
1821     HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
1822   }
1823 
1824   return EFI_SUCCESS;
1825 }
1826 
1827 /**
1828   Worker function to switch the requested AP to be the BSP from that point onward.
1829 
1830   @param[in] ProcessorNumber   The handle number of AP that is to become the new BSP.
1831   @param[in] EnableOldBSP      If TRUE, then the old BSP will be listed as an
1832                                enabled AP. Otherwise, it will be disabled.
1833 
1834   @retval EFI_SUCCESS          BSP successfully switched.
1835   @retval others               Failed to switch BSP.
1836 
1837 **/
1838 EFI_STATUS
SwitchBSPWorker(IN UINTN ProcessorNumber,IN BOOLEAN EnableOldBSP)1839 SwitchBSPWorker (
1840   IN UINTN                     ProcessorNumber,
1841   IN BOOLEAN                   EnableOldBSP
1842   )
1843 {
1844   CPU_MP_DATA                  *CpuMpData;
1845   UINTN                        CallerNumber;
1846   CPU_STATE                    State;
1847   MSR_IA32_APIC_BASE_REGISTER  ApicBaseMsr;
1848   BOOLEAN                      OldInterruptState;
1849   BOOLEAN                      OldTimerInterruptState;
1850 
1851   //
1852   // Save and Disable Local APIC timer interrupt
1853   //
1854   OldTimerInterruptState = GetApicTimerInterruptState ();
1855   DisableApicTimerInterrupt ();
1856   //
1857   // Before send both BSP and AP to a procedure to exchange their roles,
1858   // interrupt must be disabled. This is because during the exchange role
1859   // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
1860   // be corrupted, since interrupt return address will be pushed to stack
1861   // by hardware.
1862   //
1863   OldInterruptState = SaveAndDisableInterrupts ();
1864 
1865   //
1866   // Mask LINT0 & LINT1 for the old BSP
1867   //
1868   DisableLvtInterrupts ();
1869 
1870   CpuMpData = GetCpuMpData ();
1871 
1872   //
1873   // Check whether caller processor is BSP
1874   //
1875   MpInitLibWhoAmI (&CallerNumber);
1876   if (CallerNumber != CpuMpData->BspNumber) {
1877     return EFI_DEVICE_ERROR;
1878   }
1879 
1880   if (ProcessorNumber >= CpuMpData->CpuCount) {
1881     return EFI_NOT_FOUND;
1882   }
1883 
1884   //
1885   // Check whether specified AP is disabled
1886   //
1887   State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
1888   if (State == CpuStateDisabled) {
1889     return EFI_INVALID_PARAMETER;
1890   }
1891 
1892   //
1893   // Check whether ProcessorNumber specifies the current BSP
1894   //
1895   if (ProcessorNumber == CpuMpData->BspNumber) {
1896     return EFI_INVALID_PARAMETER;
1897   }
1898 
1899   //
1900   // Check whether specified AP is busy
1901   //
1902   if (State == CpuStateBusy) {
1903     return EFI_NOT_READY;
1904   }
1905 
1906   CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
1907   CpuMpData->APInfo.State  = CPU_SWITCH_STATE_IDLE;
1908   CpuMpData->SwitchBspFlag = TRUE;
1909   CpuMpData->NewBspNumber  = ProcessorNumber;
1910 
1911   //
1912   // Clear the BSP bit of MSR_IA32_APIC_BASE
1913   //
1914   ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1915   ApicBaseMsr.Bits.BSP = 0;
1916   AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1917 
1918   //
1919   // Need to wakeUp AP (future BSP).
1920   //
1921   WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);
1922 
1923   AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
1924 
1925   //
1926   // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
1927   //
1928   ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1929   ApicBaseMsr.Bits.BSP = 1;
1930   AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1931   ProgramVirtualWireMode ();
1932 
1933   //
1934   // Wait for old BSP finished AP task
1935   //
1936   while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {
1937     CpuPause ();
1938   }
1939 
1940   CpuMpData->SwitchBspFlag = FALSE;
1941   //
1942   // Set old BSP enable state
1943   //
1944   if (!EnableOldBSP) {
1945     SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
1946   } else {
1947     SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
1948   }
1949   //
1950   // Save new BSP number
1951   //
1952   CpuMpData->BspNumber = (UINT32) ProcessorNumber;
1953 
1954   //
1955   // Restore interrupt state.
1956   //
1957   SetInterruptState (OldInterruptState);
1958 
1959   if (OldTimerInterruptState) {
1960     EnableApicTimerInterrupt ();
1961   }
1962 
1963   return EFI_SUCCESS;
1964 }
1965 
1966 /**
1967   Worker function to let the caller enable or disable an AP from this point onward.
1968   This service may only be called from the BSP.
1969 
1970   @param[in] ProcessorNumber   The handle number of AP.
1971   @param[in] EnableAP          Specifies the new state for the processor for
1972                                enabled, FALSE for disabled.
1973   @param[in] HealthFlag        If not NULL, a pointer to a value that specifies
1974                                the new health status of the AP.
1975 
1976   @retval EFI_SUCCESS          The specified AP was enabled or disabled successfully.
1977   @retval others               Failed to Enable/Disable AP.
1978 
1979 **/
1980 EFI_STATUS
EnableDisableApWorker(IN UINTN ProcessorNumber,IN BOOLEAN EnableAP,IN UINT32 * HealthFlag OPTIONAL)1981 EnableDisableApWorker (
1982   IN  UINTN                     ProcessorNumber,
1983   IN  BOOLEAN                   EnableAP,
1984   IN  UINT32                    *HealthFlag OPTIONAL
1985   )
1986 {
1987   CPU_MP_DATA               *CpuMpData;
1988   UINTN                     CallerNumber;
1989 
1990   CpuMpData = GetCpuMpData ();
1991 
1992   //
1993   // Check whether caller processor is BSP
1994   //
1995   MpInitLibWhoAmI (&CallerNumber);
1996   if (CallerNumber != CpuMpData->BspNumber) {
1997     return EFI_DEVICE_ERROR;
1998   }
1999 
2000   if (ProcessorNumber == CpuMpData->BspNumber) {
2001     return EFI_INVALID_PARAMETER;
2002   }
2003 
2004   if (ProcessorNumber >= CpuMpData->CpuCount) {
2005     return EFI_NOT_FOUND;
2006   }
2007 
2008   if (!EnableAP) {
2009     SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
2010   } else {
2011     ResetProcessorToIdleState (ProcessorNumber);
2012   }
2013 
2014   if (HealthFlag != NULL) {
2015     CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
2016           (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
2017   }
2018 
2019   return EFI_SUCCESS;
2020 }
2021 
2022 /**
2023   This return the handle number for the calling processor.  This service may be
2024   called from the BSP and APs.
2025 
2026   @param[out] ProcessorNumber  Pointer to the handle number of AP.
2027                                The range is from 0 to the total number of
2028                                logical processors minus 1. The total number of
2029                                logical processors can be retrieved by
2030                                MpInitLibGetNumberOfProcessors().
2031 
2032   @retval EFI_SUCCESS             The current processor handle number was returned
2033                                   in ProcessorNumber.
2034   @retval EFI_INVALID_PARAMETER   ProcessorNumber is NULL.
2035   @retval EFI_NOT_READY           MP Initialize Library is not initialized.
2036 
2037 **/
2038 EFI_STATUS
2039 EFIAPI
MpInitLibWhoAmI(OUT UINTN * ProcessorNumber)2040 MpInitLibWhoAmI (
2041   OUT UINTN                    *ProcessorNumber
2042   )
2043 {
2044   CPU_MP_DATA           *CpuMpData;
2045 
2046   if (ProcessorNumber == NULL) {
2047     return EFI_INVALID_PARAMETER;
2048   }
2049 
2050   CpuMpData = GetCpuMpData ();
2051 
2052   return GetProcessorNumber (CpuMpData, ProcessorNumber);
2053 }
2054 
2055 /**
2056   Retrieves the number of logical processor in the platform and the number of
2057   those logical processors that are enabled on this boot. This service may only
2058   be called from the BSP.
2059 
2060   @param[out] NumberOfProcessors          Pointer to the total number of logical
2061                                           processors in the system, including the BSP
2062                                           and disabled APs.
2063   @param[out] NumberOfEnabledProcessors   Pointer to the number of enabled logical
2064                                           processors that exist in system, including
2065                                           the BSP.
2066 
2067   @retval EFI_SUCCESS             The number of logical processors and enabled
2068                                   logical processors was retrieved.
2069   @retval EFI_DEVICE_ERROR        The calling processor is an AP.
2070   @retval EFI_INVALID_PARAMETER   NumberOfProcessors is NULL and NumberOfEnabledProcessors
2071                                   is NULL.
2072   @retval EFI_NOT_READY           MP Initialize Library is not initialized.
2073 
2074 **/
2075 EFI_STATUS
2076 EFIAPI
MpInitLibGetNumberOfProcessors(OUT UINTN * NumberOfProcessors,OPTIONAL OUT UINTN * NumberOfEnabledProcessors OPTIONAL)2077 MpInitLibGetNumberOfProcessors (
2078   OUT UINTN                     *NumberOfProcessors,       OPTIONAL
2079   OUT UINTN                     *NumberOfEnabledProcessors OPTIONAL
2080   )
2081 {
2082   CPU_MP_DATA             *CpuMpData;
2083   UINTN                   CallerNumber;
2084   UINTN                   ProcessorNumber;
2085   UINTN                   EnabledProcessorNumber;
2086   UINTN                   Index;
2087 
2088   CpuMpData = GetCpuMpData ();
2089 
2090   if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
2091     return EFI_INVALID_PARAMETER;
2092   }
2093 
2094   //
2095   // Check whether caller processor is BSP
2096   //
2097   MpInitLibWhoAmI (&CallerNumber);
2098   if (CallerNumber != CpuMpData->BspNumber) {
2099     return EFI_DEVICE_ERROR;
2100   }
2101 
2102   ProcessorNumber        = CpuMpData->CpuCount;
2103   EnabledProcessorNumber = 0;
2104   for (Index = 0; Index < ProcessorNumber; Index++) {
2105     if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
2106       EnabledProcessorNumber ++;
2107     }
2108   }
2109 
2110   if (NumberOfProcessors != NULL) {
2111     *NumberOfProcessors = ProcessorNumber;
2112   }
2113   if (NumberOfEnabledProcessors != NULL) {
2114     *NumberOfEnabledProcessors = EnabledProcessorNumber;
2115   }
2116 
2117   return EFI_SUCCESS;
2118 }
2119 
2120 
2121 /**
2122   Worker function to execute a caller provided function on all enabled APs.
2123 
2124   @param[in]  Procedure               A pointer to the function to be run on
2125                                       enabled APs of the system.
2126   @param[in]  SingleThread            If TRUE, then all the enabled APs execute
2127                                       the function specified by Procedure one by
2128                                       one, in ascending order of processor handle
2129                                       number.  If FALSE, then all the enabled APs
2130                                       execute the function specified by Procedure
2131                                       simultaneously.
2132   @param[in]  WaitEvent               The event created by the caller with CreateEvent()
2133                                       service.
2134   @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
2135                                       APs to return from Procedure, either for
2136                                       blocking or non-blocking mode.
2137   @param[in]  ProcedureArgument       The parameter passed into Procedure for
2138                                       all APs.
2139   @param[out] FailedCpuList           If all APs finish successfully, then its
2140                                       content is set to NULL. If not all APs
2141                                       finish before timeout expires, then its
2142                                       content is set to address of the buffer
2143                                       holding handle numbers of the failed APs.
2144 
2145   @retval EFI_SUCCESS             In blocking mode, all APs have finished before
2146                                   the timeout expired.
2147   @retval EFI_SUCCESS             In non-blocking mode, function has been dispatched
2148                                   to all enabled APs.
2149   @retval others                  Failed to Startup all APs.
2150 
2151 **/
2152 EFI_STATUS
StartupAllAPsWorker(IN EFI_AP_PROCEDURE Procedure,IN BOOLEAN SingleThread,IN EFI_EVENT WaitEvent OPTIONAL,IN UINTN TimeoutInMicroseconds,IN VOID * ProcedureArgument OPTIONAL,OUT UINTN ** FailedCpuList OPTIONAL)2153 StartupAllAPsWorker (
2154   IN  EFI_AP_PROCEDURE          Procedure,
2155   IN  BOOLEAN                   SingleThread,
2156   IN  EFI_EVENT                 WaitEvent               OPTIONAL,
2157   IN  UINTN                     TimeoutInMicroseconds,
2158   IN  VOID                      *ProcedureArgument      OPTIONAL,
2159   OUT UINTN                     **FailedCpuList         OPTIONAL
2160   )
2161 {
2162   EFI_STATUS              Status;
2163   CPU_MP_DATA             *CpuMpData;
2164   UINTN                   ProcessorCount;
2165   UINTN                   ProcessorNumber;
2166   UINTN                   CallerNumber;
2167   CPU_AP_DATA             *CpuData;
2168   BOOLEAN                 HasEnabledAp;
2169   CPU_STATE               ApState;
2170 
2171   CpuMpData = GetCpuMpData ();
2172 
2173   if (FailedCpuList != NULL) {
2174     *FailedCpuList = NULL;
2175   }
2176 
2177   if (CpuMpData->CpuCount == 1) {
2178     return EFI_NOT_STARTED;
2179   }
2180 
2181   if (Procedure == NULL) {
2182     return EFI_INVALID_PARAMETER;
2183   }
2184 
2185   //
2186   // Check whether caller processor is BSP
2187   //
2188   MpInitLibWhoAmI (&CallerNumber);
2189   if (CallerNumber != CpuMpData->BspNumber) {
2190     return EFI_DEVICE_ERROR;
2191   }
2192 
2193   //
2194   // Update AP state
2195   //
2196   CheckAndUpdateApsStatus ();
2197 
2198   ProcessorCount = CpuMpData->CpuCount;
2199   HasEnabledAp   = FALSE;
2200   //
2201   // Check whether all enabled APs are idle.
2202   // If any enabled AP is not idle, return EFI_NOT_READY.
2203   //
2204   for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2205     CpuData = &CpuMpData->CpuData[ProcessorNumber];
2206     if (ProcessorNumber != CpuMpData->BspNumber) {
2207       ApState = GetApState (CpuData);
2208       if (ApState != CpuStateDisabled) {
2209         HasEnabledAp = TRUE;
2210         if (ApState != CpuStateIdle) {
2211           //
2212           // If any enabled APs are busy, return EFI_NOT_READY.
2213           //
2214           return EFI_NOT_READY;
2215         }
2216       }
2217     }
2218   }
2219 
2220   if (!HasEnabledAp) {
2221     //
2222     // If no enabled AP exists, return EFI_NOT_STARTED.
2223     //
2224     return EFI_NOT_STARTED;
2225   }
2226 
2227   CpuMpData->RunningCount = 0;
2228   for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2229     CpuData = &CpuMpData->CpuData[ProcessorNumber];
2230     CpuData->Waiting = FALSE;
2231     if (ProcessorNumber != CpuMpData->BspNumber) {
2232       if (CpuData->State == CpuStateIdle) {
2233         //
2234         // Mark this processor as responsible for current calling.
2235         //
2236         CpuData->Waiting = TRUE;
2237         CpuMpData->RunningCount++;
2238       }
2239     }
2240   }
2241 
2242   CpuMpData->Procedure     = Procedure;
2243   CpuMpData->ProcArguments = ProcedureArgument;
2244   CpuMpData->SingleThread  = SingleThread;
2245   CpuMpData->FinishedCount = 0;
2246   CpuMpData->FailedCpuList = FailedCpuList;
2247   CpuMpData->ExpectedTime  = CalculateTimeout (
2248                                TimeoutInMicroseconds,
2249                                &CpuMpData->CurrentTime
2250                                );
2251   CpuMpData->TotalTime     = 0;
2252   CpuMpData->WaitEvent     = WaitEvent;
2253 
2254   if (!SingleThread) {
2255     WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);
2256   } else {
2257     for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2258       if (ProcessorNumber == CallerNumber) {
2259         continue;
2260       }
2261       if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
2262         WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
2263         break;
2264       }
2265     }
2266   }
2267 
2268   Status = EFI_SUCCESS;
2269   if (WaitEvent == NULL) {
2270     do {
2271       Status = CheckAllAPs ();
2272     } while (Status == EFI_NOT_READY);
2273   }
2274 
2275   return Status;
2276 }
2277 
2278 /**
2279   Worker function to let the caller get one enabled AP to execute a caller-provided
2280   function.
2281 
2282   @param[in]  Procedure               A pointer to the function to be run on
2283                                       enabled APs of the system.
2284   @param[in]  ProcessorNumber         The handle number of the AP.
2285   @param[in]  WaitEvent               The event created by the caller with CreateEvent()
2286                                       service.
2287   @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
2288                                       APs to return from Procedure, either for
2289                                       blocking or non-blocking mode.
2290   @param[in]  ProcedureArgument       The parameter passed into Procedure for
2291                                       all APs.
2292   @param[out] Finished                If AP returns from Procedure before the
2293                                       timeout expires, its content is set to TRUE.
2294                                       Otherwise, the value is set to FALSE.
2295 
2296   @retval EFI_SUCCESS             In blocking mode, specified AP finished before
2297                                   the timeout expires.
2298   @retval others                  Failed to Startup AP.
2299 
2300 **/
2301 EFI_STATUS
StartupThisAPWorker(IN EFI_AP_PROCEDURE Procedure,IN UINTN ProcessorNumber,IN EFI_EVENT WaitEvent OPTIONAL,IN UINTN TimeoutInMicroseconds,IN VOID * ProcedureArgument OPTIONAL,OUT BOOLEAN * Finished OPTIONAL)2302 StartupThisAPWorker (
2303   IN  EFI_AP_PROCEDURE          Procedure,
2304   IN  UINTN                     ProcessorNumber,
2305   IN  EFI_EVENT                 WaitEvent               OPTIONAL,
2306   IN  UINTN                     TimeoutInMicroseconds,
2307   IN  VOID                      *ProcedureArgument      OPTIONAL,
2308   OUT BOOLEAN                   *Finished               OPTIONAL
2309   )
2310 {
2311   EFI_STATUS              Status;
2312   CPU_MP_DATA             *CpuMpData;
2313   CPU_AP_DATA             *CpuData;
2314   UINTN                   CallerNumber;
2315 
2316   CpuMpData = GetCpuMpData ();
2317 
2318   if (Finished != NULL) {
2319     *Finished = FALSE;
2320   }
2321 
2322   //
2323   // Check whether caller processor is BSP
2324   //
2325   MpInitLibWhoAmI (&CallerNumber);
2326   if (CallerNumber != CpuMpData->BspNumber) {
2327     return EFI_DEVICE_ERROR;
2328   }
2329 
2330   //
2331   // Check whether processor with the handle specified by ProcessorNumber exists
2332   //
2333   if (ProcessorNumber >= CpuMpData->CpuCount) {
2334     return EFI_NOT_FOUND;
2335   }
2336 
2337   //
2338   // Check whether specified processor is BSP
2339   //
2340   if (ProcessorNumber == CpuMpData->BspNumber) {
2341     return EFI_INVALID_PARAMETER;
2342   }
2343 
2344   //
2345   // Check parameter Procedure
2346   //
2347   if (Procedure == NULL) {
2348     return EFI_INVALID_PARAMETER;
2349   }
2350 
2351   //
2352   // Update AP state
2353   //
2354   CheckAndUpdateApsStatus ();
2355 
2356   //
2357   // Check whether specified AP is disabled
2358   //
2359   if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
2360     return EFI_INVALID_PARAMETER;
2361   }
2362 
2363   //
2364   // If WaitEvent is not NULL, execute in non-blocking mode.
2365   // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
2366   // CheckAPsStatus() will check completion and timeout periodically.
2367   //
2368   CpuData = &CpuMpData->CpuData[ProcessorNumber];
2369   CpuData->WaitEvent    = WaitEvent;
2370   CpuData->Finished     = Finished;
2371   CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
2372   CpuData->TotalTime    = 0;
2373 
2374   WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
2375 
2376   //
2377   // If WaitEvent is NULL, execute in blocking mode.
2378   // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
2379   //
2380   Status = EFI_SUCCESS;
2381   if (WaitEvent == NULL) {
2382     do {
2383       Status = CheckThisAP (ProcessorNumber);
2384     } while (Status == EFI_NOT_READY);
2385   }
2386 
2387   return Status;
2388 }
2389 
2390 /**
2391   Get pointer to CPU MP Data structure from GUIDed HOB.
2392 
2393   @return  The pointer to CPU MP Data structure.
2394 **/
2395 CPU_MP_DATA *
GetCpuMpDataFromGuidedHob(VOID)2396 GetCpuMpDataFromGuidedHob (
2397   VOID
2398   )
2399 {
2400   EFI_HOB_GUID_TYPE       *GuidHob;
2401   VOID                    *DataInHob;
2402   CPU_MP_DATA             *CpuMpData;
2403 
2404   CpuMpData = NULL;
2405   GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
2406   if (GuidHob != NULL) {
2407     DataInHob = GET_GUID_HOB_DATA (GuidHob);
2408     CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
2409   }
2410   return CpuMpData;
2411 }
2412 
2413