1 /*
2  * Copyright 2008 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * Version 2 as published by the Free Software Foundation.
7  */
8 
9 #include <common.h>
10 #include <asm/fsl_ddr_sdram.h>
11 
12 #include "ddr.h"
13 
14 unsigned int
compute_cas_latency_ddr3(const dimm_params_t * dimm_params,common_timing_params_t * outpdimm,unsigned int number_of_dimms)15 compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
16 			 common_timing_params_t *outpdimm,
17 			 unsigned int number_of_dimms)
18 {
19 	unsigned int i;
20 	unsigned int tAAmin_ps = 0;
21 	unsigned int tCKmin_X_ps = 0;
22 	unsigned int common_caslat;
23 	unsigned int caslat_actual;
24 	unsigned int retry = 16;
25 	unsigned int tmp;
26 	const unsigned int mclk_ps = get_memory_clk_period_ps();
27 
28 	/* compute the common CAS latency supported between slots */
29 	tmp = dimm_params[0].caslat_X;
30 	for (i = 1; i < number_of_dimms; i++)
31 		 tmp &= dimm_params[i].caslat_X;
32 	common_caslat = tmp;
33 
34 	/* compute the max tAAmin tCKmin between slots */
35 	for (i = 0; i < number_of_dimms; i++) {
36 		tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps);
37 		tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
38 	}
39 	/* validate if the memory clk is in the range of dimms */
40 	if (mclk_ps < tCKmin_X_ps) {
41 		printf("The DIMM max tCKmin is %d ps,"
42 			"doesn't support the MCLK cycle %d ps\n",
43 			tCKmin_X_ps, mclk_ps);
44 		return 1;
45 	}
46 	/* determine the acutal cas latency */
47 	caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps;
48 	/* check if the dimms support the CAS latency */
49 	while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
50 		caslat_actual++;
51 		retry--;
52 	}
53 	/* once the caculation of caslat_actual is completed
54 	 * we must verify that this CAS latency value does not
55 	 * exceed tAAmax, which is 20 ns for all DDR3 speed grades
56 	 */
57 	if (caslat_actual * mclk_ps > 20000) {
58 		printf("The choosen cas latency %d is too large\n",
59 			caslat_actual);
60 		return 1;
61 	}
62 	outpdimm->lowest_common_SPD_caslat = caslat_actual;
63 
64 	return 0;
65 }
66 
67 /*
68  * compute_lowest_common_dimm_parameters()
69  *
70  * Determine the worst-case DIMM timing parameters from the set of DIMMs
71  * whose parameters have been computed into the array pointed to
72  * by dimm_params.
73  */
74 unsigned int
compute_lowest_common_dimm_parameters(const dimm_params_t * dimm_params,common_timing_params_t * outpdimm,unsigned int number_of_dimms)75 compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
76 				      common_timing_params_t *outpdimm,
77 				      unsigned int number_of_dimms)
78 {
79 	unsigned int i;
80 
81 	unsigned int tCKmin_X_ps = 0;
82 	unsigned int tCKmax_ps = 0xFFFFFFFF;
83 	unsigned int tCKmax_max_ps = 0;
84 	unsigned int tRCD_ps = 0;
85 	unsigned int tRP_ps = 0;
86 	unsigned int tRAS_ps = 0;
87 	unsigned int tWR_ps = 0;
88 	unsigned int tWTR_ps = 0;
89 	unsigned int tRFC_ps = 0;
90 	unsigned int tRRD_ps = 0;
91 	unsigned int tRC_ps = 0;
92 	unsigned int refresh_rate_ps = 0;
93 	unsigned int tIS_ps = 0;
94 	unsigned int tIH_ps = 0;
95 	unsigned int tDS_ps = 0;
96 	unsigned int tDH_ps = 0;
97 	unsigned int tRTP_ps = 0;
98 	unsigned int tDQSQ_max_ps = 0;
99 	unsigned int tQHS_ps = 0;
100 
101 	unsigned int temp1, temp2;
102 	unsigned int additive_latency = 0;
103 #if !defined(CONFIG_FSL_DDR3)
104 	const unsigned int mclk_ps = get_memory_clk_period_ps();
105 	unsigned int lowest_good_caslat;
106 	unsigned int not_ok;
107 
108 	debug("using mclk_ps = %u\n", mclk_ps);
109 #endif
110 
111 	temp1 = 0;
112 	for (i = 0; i < number_of_dimms; i++) {
113 		/*
114 		 * If there are no ranks on this DIMM,
115 		 * it probably doesn't exist, so skip it.
116 		 */
117 		if (dimm_params[i].n_ranks == 0) {
118 			temp1++;
119 			continue;
120 		}
121 
122 		/*
123 		 * Find minimum tCKmax_ps to find fastest slow speed,
124 		 * i.e., this is the slowest the whole system can go.
125 		 */
126 		tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps);
127 
128 		/* Either find maximum value to determine slowest
129 		 * speed, delay, time, period, etc */
130 		tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
131 		tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps);
132 		tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps);
133 		tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps);
134 		tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps);
135 		tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps);
136 		tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps);
137 		tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps);
138 		tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps);
139 		tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps);
140 		tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps);
141 		tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps);
142 		tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps);
143 		tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps);
144 		tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps);
145 		tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps);
146 		refresh_rate_ps = max(refresh_rate_ps,
147 				      dimm_params[i].refresh_rate_ps);
148 
149 		/*
150 		 * Find maximum tDQSQ_max_ps to find slowest.
151 		 *
152 		 * FIXME: is finding the slowest value the correct
153 		 * strategy for this parameter?
154 		 */
155 		tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps);
156 	}
157 
158 	outpdimm->ndimms_present = number_of_dimms - temp1;
159 
160 	if (temp1 == number_of_dimms) {
161 		debug("no dimms this memory controller\n");
162 		return 0;
163 	}
164 
165 	outpdimm->tCKmin_X_ps = tCKmin_X_ps;
166 	outpdimm->tCKmax_ps = tCKmax_ps;
167 	outpdimm->tCKmax_max_ps = tCKmax_max_ps;
168 	outpdimm->tRCD_ps = tRCD_ps;
169 	outpdimm->tRP_ps = tRP_ps;
170 	outpdimm->tRAS_ps = tRAS_ps;
171 	outpdimm->tWR_ps = tWR_ps;
172 	outpdimm->tWTR_ps = tWTR_ps;
173 	outpdimm->tRFC_ps = tRFC_ps;
174 	outpdimm->tRRD_ps = tRRD_ps;
175 	outpdimm->tRC_ps = tRC_ps;
176 	outpdimm->refresh_rate_ps = refresh_rate_ps;
177 	outpdimm->tIS_ps = tIS_ps;
178 	outpdimm->tIH_ps = tIH_ps;
179 	outpdimm->tDS_ps = tDS_ps;
180 	outpdimm->tDH_ps = tDH_ps;
181 	outpdimm->tRTP_ps = tRTP_ps;
182 	outpdimm->tDQSQ_max_ps = tDQSQ_max_ps;
183 	outpdimm->tQHS_ps = tQHS_ps;
184 
185 	/* Determine common burst length for all DIMMs. */
186 	temp1 = 0xff;
187 	for (i = 0; i < number_of_dimms; i++) {
188 		if (dimm_params[i].n_ranks) {
189 			temp1 &= dimm_params[i].burst_lengths_bitmask;
190 		}
191 	}
192 	outpdimm->all_DIMMs_burst_lengths_bitmask = temp1;
193 
194 	/* Determine if all DIMMs registered buffered. */
195 	temp1 = temp2 = 0;
196 	for (i = 0; i < number_of_dimms; i++) {
197 		if (dimm_params[i].n_ranks) {
198 			if (dimm_params[i].registered_dimm)
199 				temp1 = 1;
200 			if (!dimm_params[i].registered_dimm)
201 				temp2 = 1;
202 		}
203 	}
204 
205 	outpdimm->all_DIMMs_registered = 0;
206 	if (temp1 && !temp2) {
207 		outpdimm->all_DIMMs_registered = 1;
208 	}
209 
210 	outpdimm->all_DIMMs_unbuffered = 0;
211 	if (!temp1 && temp2) {
212 		outpdimm->all_DIMMs_unbuffered = 1;
213 	}
214 
215 	/* CHECKME: */
216 	if (!outpdimm->all_DIMMs_registered
217 	    && !outpdimm->all_DIMMs_unbuffered) {
218 		printf("ERROR:  Mix of registered buffered and unbuffered "
219 				"DIMMs detected!\n");
220 	}
221 
222 #if defined(CONFIG_FSL_DDR3)
223 	if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
224 		return 1;
225 #else
226 	/*
227 	 * Compute a CAS latency suitable for all DIMMs
228 	 *
229 	 * Strategy for SPD-defined latencies: compute only
230 	 * CAS latency defined by all DIMMs.
231 	 */
232 
233 	/*
234 	 * Step 1: find CAS latency common to all DIMMs using bitwise
235 	 * operation.
236 	 */
237 	temp1 = 0xFF;
238 	for (i = 0; i < number_of_dimms; i++) {
239 		if (dimm_params[i].n_ranks) {
240 			temp2 = 0;
241 			temp2 |= 1 << dimm_params[i].caslat_X;
242 			temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
243 			temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
244 			/*
245 			 * FIXME: If there was no entry for X-2 (X-1) in
246 			 * the SPD, then caslat_X_minus_2
247 			 * (caslat_X_minus_1) contains either 255 or
248 			 * 0xFFFFFFFF because that's what the glorious
249 			 * __ilog2 function returns for an input of 0.
250 			 * On 32-bit PowerPC, left shift counts with bit
251 			 * 26 set (that the value of 255 or 0xFFFFFFFF
252 			 * will have), cause the destination register to
253 			 * be 0.  That is why this works.
254 			 */
255 			temp1 &= temp2;
256 		}
257 	}
258 
259 	/*
260 	 * Step 2: check each common CAS latency against tCK of each
261 	 * DIMM's SPD.
262 	 */
263 	lowest_good_caslat = 0;
264 	temp2 = 0;
265 	while (temp1) {
266 		not_ok = 0;
267 		temp2 =  __ilog2(temp1);
268 		debug("checking common caslat = %u\n", temp2);
269 
270 		/* Check if this CAS latency will work on all DIMMs at tCK. */
271 		for (i = 0; i < number_of_dimms; i++) {
272 			if (!dimm_params[i].n_ranks) {
273 				continue;
274 			}
275 			if (dimm_params[i].caslat_X == temp2) {
276 				if (mclk_ps >= dimm_params[i].tCKmin_X_ps) {
277 					debug("CL = %u ok on DIMM %u at tCK=%u"
278 					    " ps with its tCKmin_X_ps of %u\n",
279 					       temp2, i, mclk_ps,
280 					       dimm_params[i].tCKmin_X_ps);
281 					continue;
282 				} else {
283 					not_ok++;
284 				}
285 			}
286 
287 			if (dimm_params[i].caslat_X_minus_1 == temp2) {
288 				unsigned int tCKmin_X_minus_1_ps
289 					= dimm_params[i].tCKmin_X_minus_1_ps;
290 				if (mclk_ps >= tCKmin_X_minus_1_ps) {
291 					debug("CL = %u ok on DIMM %u at "
292 						"tCK=%u ps with its "
293 						"tCKmin_X_minus_1_ps of %u\n",
294 					       temp2, i, mclk_ps,
295 					       tCKmin_X_minus_1_ps);
296 					continue;
297 				} else {
298 					not_ok++;
299 				}
300 			}
301 
302 			if (dimm_params[i].caslat_X_minus_2 == temp2) {
303 				unsigned int tCKmin_X_minus_2_ps
304 					= dimm_params[i].tCKmin_X_minus_2_ps;
305 				if (mclk_ps >= tCKmin_X_minus_2_ps) {
306 					debug("CL = %u ok on DIMM %u at "
307 						"tCK=%u ps with its "
308 						"tCKmin_X_minus_2_ps of %u\n",
309 					       temp2, i, mclk_ps,
310 					       tCKmin_X_minus_2_ps);
311 					continue;
312 				} else {
313 					not_ok++;
314 				}
315 			}
316 		}
317 
318 		if (!not_ok) {
319 			lowest_good_caslat = temp2;
320 		}
321 
322 		temp1 &= ~(1 << temp2);
323 	}
324 
325 	debug("lowest common SPD-defined CAS latency = %u\n",
326 	       lowest_good_caslat);
327 	outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
328 
329 
330 	/*
331 	 * Compute a common 'de-rated' CAS latency.
332 	 *
333 	 * The strategy here is to find the *highest* dereated cas latency
334 	 * with the assumption that all of the DIMMs will support a dereated
335 	 * CAS latency higher than or equal to their lowest dereated value.
336 	 */
337 	temp1 = 0;
338 	for (i = 0; i < number_of_dimms; i++) {
339 		temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
340 	}
341 	outpdimm->highest_common_derated_caslat = temp1;
342 	debug("highest common dereated CAS latency = %u\n", temp1);
343 #endif /* #if defined(CONFIG_FSL_DDR3) */
344 
345 	/* Determine if all DIMMs ECC capable. */
346 	temp1 = 1;
347 	for (i = 0; i < number_of_dimms; i++) {
348 		if (dimm_params[i].n_ranks && dimm_params[i].edc_config != 2) {
349 			temp1 = 0;
350 			break;
351 		}
352 	}
353 	if (temp1) {
354 		debug("all DIMMs ECC capable\n");
355 	} else {
356 		debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
357 	}
358 	outpdimm->all_DIMMs_ECC_capable = temp1;
359 
360 #ifndef CONFIG_FSL_DDR3
361 	/* FIXME: move to somewhere else to validate. */
362 	if (mclk_ps > tCKmax_max_ps) {
363 		printf("Warning: some of the installed DIMMs "
364 				"can not operate this slowly.\n");
365 		return 1;
366 	}
367 #endif
368 	/*
369 	 * Compute additive latency.
370 	 *
371 	 * For DDR1, additive latency should be 0.
372 	 *
373 	 * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
374 	 *	which comes from Trcd, and also note that:
375 	 *	    add_lat + caslat must be >= 4
376 	 *
377 	 * For DDR3, we use the AL=0
378 	 *
379 	 * When to use additive latency for DDR2:
380 	 *
381 	 * I. Because you are using CL=3 and need to do ODT on writes and
382 	 *    want functionality.
383 	 *    1. Are you going to use ODT? (Does your board not have
384 	 *      additional termination circuitry for DQ, DQS, DQS_,
385 	 *      DM, RDQS, RDQS_ for x4/x8 configs?)
386 	 *    2. If so, is your lowest supported CL going to be 3?
387 	 *    3. If so, then you must set AL=1 because
388 	 *
389 	 *       WL >= 3 for ODT on writes
390 	 *       RL = AL + CL
391 	 *       WL = RL - 1
392 	 *       ->
393 	 *       WL = AL + CL - 1
394 	 *       AL + CL - 1 >= 3
395 	 *       AL + CL >= 4
396 	 *  QED
397 	 *
398 	 *  RL >= 3 for ODT on reads
399 	 *  RL = AL + CL
400 	 *
401 	 *  Since CL aren't usually less than 2, AL=0 is a minimum,
402 	 *  so the WL-derived AL should be the  -- FIXME?
403 	 *
404 	 * II. Because you are using auto-precharge globally and want to
405 	 *     use additive latency (posted CAS) to get more bandwidth.
406 	 *     1. Are you going to use auto-precharge mode globally?
407 	 *
408 	 *        Use addtivie latency and compute AL to be 1 cycle less than
409 	 *        tRCD, i.e. the READ or WRITE command is in the cycle
410 	 *        immediately following the ACTIVATE command..
411 	 *
412 	 * III. Because you feel like it or want to do some sort of
413 	 *      degraded-performance experiment.
414 	 *     1.  Do you just want to use additive latency because you feel
415 	 *         like it?
416 	 *
417 	 * Validation:  AL is less than tRCD, and within the other
418 	 * read-to-precharge constraints.
419 	 */
420 
421 	additive_latency = 0;
422 
423 #if defined(CONFIG_FSL_DDR2)
424 	if (lowest_good_caslat < 4) {
425 		additive_latency = picos_to_mclk(tRCD_ps) - lowest_good_caslat;
426 		if (mclk_to_picos(additive_latency) > tRCD_ps) {
427 			additive_latency = picos_to_mclk(tRCD_ps);
428 			debug("setting additive_latency to %u because it was "
429 				" greater than tRCD_ps\n", additive_latency);
430 		}
431 	}
432 
433 #elif defined(CONFIG_FSL_DDR3)
434 	/*
435 	 * The system will not use the global auto-precharge mode.
436 	 * However, it uses the page mode, so we set AL=0
437 	 */
438 	additive_latency = 0;
439 #endif
440 
441 	/*
442 	 * Validate additive latency
443 	 * FIXME: move to somewhere else to validate
444 	 *
445 	 * AL <= tRCD(min)
446 	 */
447 	if (mclk_to_picos(additive_latency) > tRCD_ps) {
448 		printf("Error: invalid additive latency exceeds tRCD(min).\n");
449 		return 1;
450 	}
451 
452 	/*
453 	 * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
454 	 * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
455 	 * ADD_LAT (the register) must be set to a value less
456 	 * than ACTTORW if WL = 1, then AL must be set to 1
457 	 * RD_TO_PRE (the register) must be set to a minimum
458 	 * tRTP + AL if AL is nonzero
459 	 */
460 
461 	/*
462 	 * Additive latency will be applied only if the memctl option to
463 	 * use it.
464 	 */
465 	outpdimm->additive_latency = additive_latency;
466 
467 	return 0;
468 }
469