1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-machine-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 #ifdef CONFIG_TCG
33 #include "arm_ldst.h"
34 #include "exec/cpu_ldst.h"
35 #endif
36 
37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
38 
39 #ifndef CONFIG_USER_ONLY
40 
41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
42                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
43                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
44                                target_ulong *page_size_ptr,
45                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
46 #endif
47 
48 static void switch_mode(CPUARMState *env, int mode);
49 
vfp_gdb_get_reg(CPUARMState * env,uint8_t * buf,int reg)50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
51 {
52     int nregs;
53 
54     /* VFP data registers are always little-endian.  */
55     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
56     if (reg < nregs) {
57         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
58         return 8;
59     }
60     if (arm_feature(env, ARM_FEATURE_NEON)) {
61         /* Aliases for Q regs.  */
62         nregs += 16;
63         if (reg < nregs) {
64             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
65             stq_le_p(buf, q[0]);
66             stq_le_p(buf + 8, q[1]);
67             return 16;
68         }
69     }
70     switch (reg - nregs) {
71     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
72     case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
73     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
74     }
75     return 0;
76 }
77 
vfp_gdb_set_reg(CPUARMState * env,uint8_t * buf,int reg)78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
79 {
80     int nregs;
81 
82     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
83     if (reg < nregs) {
84         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
85         return 8;
86     }
87     if (arm_feature(env, ARM_FEATURE_NEON)) {
88         nregs += 16;
89         if (reg < nregs) {
90             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
91             q[0] = ldq_le_p(buf);
92             q[1] = ldq_le_p(buf + 8);
93             return 16;
94         }
95     }
96     switch (reg - nregs) {
97     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
98     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
99     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
100     }
101     return 0;
102 }
103 
aarch64_fpu_gdb_get_reg(CPUARMState * env,uint8_t * buf,int reg)104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
105 {
106     switch (reg) {
107     case 0 ... 31:
108         /* 128 bit FP register */
109         {
110             uint64_t *q = aa64_vfp_qreg(env, reg);
111             stq_le_p(buf, q[0]);
112             stq_le_p(buf + 8, q[1]);
113             return 16;
114         }
115     case 32:
116         /* FPSR */
117         stl_p(buf, vfp_get_fpsr(env));
118         return 4;
119     case 33:
120         /* FPCR */
121         stl_p(buf, vfp_get_fpcr(env));
122         return 4;
123     default:
124         return 0;
125     }
126 }
127 
aarch64_fpu_gdb_set_reg(CPUARMState * env,uint8_t * buf,int reg)128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129 {
130     switch (reg) {
131     case 0 ... 31:
132         /* 128 bit FP register */
133         {
134             uint64_t *q = aa64_vfp_qreg(env, reg);
135             q[0] = ldq_le_p(buf);
136             q[1] = ldq_le_p(buf + 8);
137             return 16;
138         }
139     case 32:
140         /* FPSR */
141         vfp_set_fpsr(env, ldl_p(buf));
142         return 4;
143     case 33:
144         /* FPCR */
145         vfp_set_fpcr(env, ldl_p(buf));
146         return 4;
147     default:
148         return 0;
149     }
150 }
151 
raw_read(CPUARMState * env,const ARMCPRegInfo * ri)152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
153 {
154     assert(ri->fieldoffset);
155     if (cpreg_field_is_64bit(ri)) {
156         return CPREG_FIELD64(env, ri);
157     } else {
158         return CPREG_FIELD32(env, ri);
159     }
160 }
161 
raw_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163                       uint64_t value)
164 {
165     assert(ri->fieldoffset);
166     if (cpreg_field_is_64bit(ri)) {
167         CPREG_FIELD64(env, ri) = value;
168     } else {
169         CPREG_FIELD32(env, ri) = value;
170     }
171 }
172 
raw_ptr(CPUARMState * env,const ARMCPRegInfo * ri)173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174 {
175     return (char *)env + ri->fieldoffset;
176 }
177 
read_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri)178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
179 {
180     /* Raw read of a coprocessor register (as needed for migration, etc). */
181     if (ri->type & ARM_CP_CONST) {
182         return ri->resetvalue;
183     } else if (ri->raw_readfn) {
184         return ri->raw_readfn(env, ri);
185     } else if (ri->readfn) {
186         return ri->readfn(env, ri);
187     } else {
188         return raw_read(env, ri);
189     }
190 }
191 
write_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t v)192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193                              uint64_t v)
194 {
195     /* Raw write of a coprocessor register (as needed for migration, etc).
196      * Note that constant registers are treated as write-ignored; the
197      * caller should check for success by whether a readback gives the
198      * value written.
199      */
200     if (ri->type & ARM_CP_CONST) {
201         return;
202     } else if (ri->raw_writefn) {
203         ri->raw_writefn(env, ri, v);
204     } else if (ri->writefn) {
205         ri->writefn(env, ri, v);
206     } else {
207         raw_write(env, ri, v);
208     }
209 }
210 
arm_gdb_get_sysreg(CPUARMState * env,uint8_t * buf,int reg)211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
212 {
213     ARMCPU *cpu = env_archcpu(env);
214     const ARMCPRegInfo *ri;
215     uint32_t key;
216 
217     key = cpu->dyn_xml.cpregs_keys[reg];
218     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
219     if (ri) {
220         if (cpreg_field_is_64bit(ri)) {
221             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
222         } else {
223             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
224         }
225     }
226     return 0;
227 }
228 
arm_gdb_set_sysreg(CPUARMState * env,uint8_t * buf,int reg)229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
230 {
231     return 0;
232 }
233 
raw_accessors_invalid(const ARMCPRegInfo * ri)234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
235 {
236    /* Return true if the regdef would cause an assertion if you called
237     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
238     * program bug for it not to have the NO_RAW flag).
239     * NB that returning false here doesn't necessarily mean that calling
240     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
241     * read/write access functions which are safe for raw use" from "has
242     * read/write access functions which have side effects but has forgotten
243     * to provide raw access functions".
244     * The tests here line up with the conditions in read/write_raw_cp_reg()
245     * and assertions in raw_read()/raw_write().
246     */
247     if ((ri->type & ARM_CP_CONST) ||
248         ri->fieldoffset ||
249         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
250         return false;
251     }
252     return true;
253 }
254 
write_cpustate_to_list(ARMCPU * cpu,bool kvm_sync)255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
256 {
257     /* Write the coprocessor state from cpu->env to the (index,value) list. */
258     int i;
259     bool ok = true;
260 
261     for (i = 0; i < cpu->cpreg_array_len; i++) {
262         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
263         const ARMCPRegInfo *ri;
264         uint64_t newval;
265 
266         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
267         if (!ri) {
268             ok = false;
269             continue;
270         }
271         if (ri->type & ARM_CP_NO_RAW) {
272             continue;
273         }
274 
275         newval = read_raw_cp_reg(&cpu->env, ri);
276         if (kvm_sync) {
277             /*
278              * Only sync if the previous list->cpustate sync succeeded.
279              * Rather than tracking the success/failure state for every
280              * item in the list, we just recheck "does the raw write we must
281              * have made in write_list_to_cpustate() read back OK" here.
282              */
283             uint64_t oldval = cpu->cpreg_values[i];
284 
285             if (oldval == newval) {
286                 continue;
287             }
288 
289             write_raw_cp_reg(&cpu->env, ri, oldval);
290             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
291                 continue;
292             }
293 
294             write_raw_cp_reg(&cpu->env, ri, newval);
295         }
296         cpu->cpreg_values[i] = newval;
297     }
298     return ok;
299 }
300 
write_list_to_cpustate(ARMCPU * cpu)301 bool write_list_to_cpustate(ARMCPU *cpu)
302 {
303     int i;
304     bool ok = true;
305 
306     for (i = 0; i < cpu->cpreg_array_len; i++) {
307         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
308         uint64_t v = cpu->cpreg_values[i];
309         const ARMCPRegInfo *ri;
310 
311         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
312         if (!ri) {
313             ok = false;
314             continue;
315         }
316         if (ri->type & ARM_CP_NO_RAW) {
317             continue;
318         }
319         /* Write value and confirm it reads back as written
320          * (to catch read-only registers and partially read-only
321          * registers where the incoming migration value doesn't match)
322          */
323         write_raw_cp_reg(&cpu->env, ri, v);
324         if (read_raw_cp_reg(&cpu->env, ri) != v) {
325             ok = false;
326         }
327     }
328     return ok;
329 }
330 
add_cpreg_to_list(gpointer key,gpointer opaque)331 static void add_cpreg_to_list(gpointer key, gpointer opaque)
332 {
333     ARMCPU *cpu = opaque;
334     uint64_t regidx;
335     const ARMCPRegInfo *ri;
336 
337     regidx = *(uint32_t *)key;
338     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
339 
340     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
341         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
342         /* The value array need not be initialized at this point */
343         cpu->cpreg_array_len++;
344     }
345 }
346 
count_cpreg(gpointer key,gpointer opaque)347 static void count_cpreg(gpointer key, gpointer opaque)
348 {
349     ARMCPU *cpu = opaque;
350     uint64_t regidx;
351     const ARMCPRegInfo *ri;
352 
353     regidx = *(uint32_t *)key;
354     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
355 
356     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
357         cpu->cpreg_array_len++;
358     }
359 }
360 
cpreg_key_compare(gconstpointer a,gconstpointer b)361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
362 {
363     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
364     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
365 
366     if (aidx > bidx) {
367         return 1;
368     }
369     if (aidx < bidx) {
370         return -1;
371     }
372     return 0;
373 }
374 
init_cpreg_list(ARMCPU * cpu)375 void init_cpreg_list(ARMCPU *cpu)
376 {
377     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
378      * Note that we require cpreg_tuples[] to be sorted by key ID.
379      */
380     GList *keys;
381     int arraylen;
382 
383     keys = g_hash_table_get_keys(cpu->cp_regs);
384     keys = g_list_sort(keys, cpreg_key_compare);
385 
386     cpu->cpreg_array_len = 0;
387 
388     g_list_foreach(keys, count_cpreg, cpu);
389 
390     arraylen = cpu->cpreg_array_len;
391     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
392     cpu->cpreg_values = g_new(uint64_t, arraylen);
393     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
394     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
395     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
396     cpu->cpreg_array_len = 0;
397 
398     g_list_foreach(keys, add_cpreg_to_list, cpu);
399 
400     assert(cpu->cpreg_array_len == arraylen);
401 
402     g_list_free(keys);
403 }
404 
405 /*
406  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
407  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
408  *
409  * access_el3_aa32ns: Used to check AArch32 register views.
410  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
411  */
access_el3_aa32ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)412 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
413                                         const ARMCPRegInfo *ri,
414                                         bool isread)
415 {
416     bool secure = arm_is_secure_below_el3(env);
417 
418     assert(!arm_el_is_aa64(env, 3));
419     if (secure) {
420         return CP_ACCESS_TRAP_UNCATEGORIZED;
421     }
422     return CP_ACCESS_OK;
423 }
424 
access_el3_aa32ns_aa64any(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
426                                                 const ARMCPRegInfo *ri,
427                                                 bool isread)
428 {
429     if (!arm_el_is_aa64(env, 3)) {
430         return access_el3_aa32ns(env, ri, isread);
431     }
432     return CP_ACCESS_OK;
433 }
434 
435 /* Some secure-only AArch32 registers trap to EL3 if used from
436  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
437  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
438  * We assume that the .access field is set to PL1_RW.
439  */
access_trap_aa32s_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
441                                             const ARMCPRegInfo *ri,
442                                             bool isread)
443 {
444     if (arm_current_el(env) == 3) {
445         return CP_ACCESS_OK;
446     }
447     if (arm_is_secure_below_el3(env)) {
448         return CP_ACCESS_TRAP_EL3;
449     }
450     /* This will be EL1 NS and EL2 NS, which just UNDEF */
451     return CP_ACCESS_TRAP_UNCATEGORIZED;
452 }
453 
454 /* Check for traps to "powerdown debug" registers, which are controlled
455  * by MDCR.TDOSA
456  */
access_tdosa(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
458                                    bool isread)
459 {
460     int el = arm_current_el(env);
461     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
462         (env->cp15.mdcr_el2 & MDCR_TDE) ||
463         (arm_hcr_el2_eff(env) & HCR_TGE);
464 
465     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
466         return CP_ACCESS_TRAP_EL2;
467     }
468     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
469         return CP_ACCESS_TRAP_EL3;
470     }
471     return CP_ACCESS_OK;
472 }
473 
474 /* Check for traps to "debug ROM" registers, which are controlled
475  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
476  */
access_tdra(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
478                                   bool isread)
479 {
480     int el = arm_current_el(env);
481     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
482         (env->cp15.mdcr_el2 & MDCR_TDE) ||
483         (arm_hcr_el2_eff(env) & HCR_TGE);
484 
485     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
486         return CP_ACCESS_TRAP_EL2;
487     }
488     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
489         return CP_ACCESS_TRAP_EL3;
490     }
491     return CP_ACCESS_OK;
492 }
493 
494 /* Check for traps to general debug registers, which are controlled
495  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
496  */
access_tda(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
498                                   bool isread)
499 {
500     int el = arm_current_el(env);
501     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
502         (env->cp15.mdcr_el2 & MDCR_TDE) ||
503         (arm_hcr_el2_eff(env) & HCR_TGE);
504 
505     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
506         return CP_ACCESS_TRAP_EL2;
507     }
508     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
509         return CP_ACCESS_TRAP_EL3;
510     }
511     return CP_ACCESS_OK;
512 }
513 
514 /* Check for traps to performance monitor registers, which are controlled
515  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
516  */
access_tpm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
518                                  bool isread)
519 {
520     int el = arm_current_el(env);
521 
522     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
523         && !arm_is_secure_below_el3(env)) {
524         return CP_ACCESS_TRAP_EL2;
525     }
526     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
527         return CP_ACCESS_TRAP_EL3;
528     }
529     return CP_ACCESS_OK;
530 }
531 
dacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
533 {
534     ARMCPU *cpu = env_archcpu(env);
535 
536     raw_write(env, ri, value);
537     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
538 }
539 
fcse_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
541 {
542     ARMCPU *cpu = env_archcpu(env);
543 
544     if (raw_read(env, ri) != value) {
545         /* Unlike real hardware the qemu TLB uses virtual addresses,
546          * not modified virtual addresses, so this causes a TLB flush.
547          */
548         tlb_flush(CPU(cpu));
549         raw_write(env, ri, value);
550     }
551 }
552 
contextidr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
554                              uint64_t value)
555 {
556     ARMCPU *cpu = env_archcpu(env);
557 
558     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
559         && !extended_addresses_enabled(env)) {
560         /* For VMSA (when not using the LPAE long descriptor page table
561          * format) this register includes the ASID, so do a TLB flush.
562          * For PMSA it is purely a process ID and no action is needed.
563          */
564         tlb_flush(CPU(cpu));
565     }
566     raw_write(env, ri, value);
567 }
568 
569 /* IS variants of TLB operations must affect all cores */
tlbiall_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
571                              uint64_t value)
572 {
573     CPUState *cs = env_cpu(env);
574 
575     tlb_flush_all_cpus_synced(cs);
576 }
577 
tlbiasid_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579                              uint64_t value)
580 {
581     CPUState *cs = env_cpu(env);
582 
583     tlb_flush_all_cpus_synced(cs);
584 }
585 
tlbimva_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
587                              uint64_t value)
588 {
589     CPUState *cs = env_cpu(env);
590 
591     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
592 }
593 
tlbimvaa_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595                              uint64_t value)
596 {
597     CPUState *cs = env_cpu(env);
598 
599     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
600 }
601 
602 /*
603  * Non-IS variants of TLB operations are upgraded to
604  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
605  * force broadcast of these operations.
606  */
tlb_force_broadcast(CPUARMState * env)607 static bool tlb_force_broadcast(CPUARMState *env)
608 {
609     return (env->cp15.hcr_el2 & HCR_FB) &&
610         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
611 }
612 
tlbiall_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
614                           uint64_t value)
615 {
616     /* Invalidate all (TLBIALL) */
617     ARMCPU *cpu = env_archcpu(env);
618 
619     if (tlb_force_broadcast(env)) {
620         tlbiall_is_write(env, NULL, value);
621         return;
622     }
623 
624     tlb_flush(CPU(cpu));
625 }
626 
tlbimva_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
628                           uint64_t value)
629 {
630     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
631     ARMCPU *cpu = env_archcpu(env);
632 
633     if (tlb_force_broadcast(env)) {
634         tlbimva_is_write(env, NULL, value);
635         return;
636     }
637 
638     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
639 }
640 
tlbiasid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
642                            uint64_t value)
643 {
644     /* Invalidate by ASID (TLBIASID) */
645     ARMCPU *cpu = env_archcpu(env);
646 
647     if (tlb_force_broadcast(env)) {
648         tlbiasid_is_write(env, NULL, value);
649         return;
650     }
651 
652     tlb_flush(CPU(cpu));
653 }
654 
tlbimvaa_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
656                            uint64_t value)
657 {
658     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
659     ARMCPU *cpu = env_archcpu(env);
660 
661     if (tlb_force_broadcast(env)) {
662         tlbimvaa_is_write(env, NULL, value);
663         return;
664     }
665 
666     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
667 }
668 
tlbiall_nsnh_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
670                                uint64_t value)
671 {
672     CPUState *cs = env_cpu(env);
673 
674     tlb_flush_by_mmuidx(cs,
675                         ARMMMUIdxBit_S12NSE1 |
676                         ARMMMUIdxBit_S12NSE0 |
677                         ARMMMUIdxBit_S2NS);
678 }
679 
tlbiall_nsnh_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
681                                   uint64_t value)
682 {
683     CPUState *cs = env_cpu(env);
684 
685     tlb_flush_by_mmuidx_all_cpus_synced(cs,
686                                         ARMMMUIdxBit_S12NSE1 |
687                                         ARMMMUIdxBit_S12NSE0 |
688                                         ARMMMUIdxBit_S2NS);
689 }
690 
tlbiipas2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
692                             uint64_t value)
693 {
694     /* Invalidate by IPA. This has to invalidate any structures that
695      * contain only stage 2 translation information, but does not need
696      * to apply to structures that contain combined stage 1 and stage 2
697      * translation information.
698      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
699      */
700     CPUState *cs = env_cpu(env);
701     uint64_t pageaddr;
702 
703     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
704         return;
705     }
706 
707     pageaddr = sextract64(value << 12, 0, 40);
708 
709     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
710 }
711 
tlbiipas2_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
713                                uint64_t value)
714 {
715     CPUState *cs = env_cpu(env);
716     uint64_t pageaddr;
717 
718     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
719         return;
720     }
721 
722     pageaddr = sextract64(value << 12, 0, 40);
723 
724     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
725                                              ARMMMUIdxBit_S2NS);
726 }
727 
tlbiall_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
729                               uint64_t value)
730 {
731     CPUState *cs = env_cpu(env);
732 
733     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
734 }
735 
tlbiall_hyp_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
737                                  uint64_t value)
738 {
739     CPUState *cs = env_cpu(env);
740 
741     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
742 }
743 
tlbimva_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
745                               uint64_t value)
746 {
747     CPUState *cs = env_cpu(env);
748     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
749 
750     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
751 }
752 
tlbimva_hyp_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
754                                  uint64_t value)
755 {
756     CPUState *cs = env_cpu(env);
757     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
758 
759     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
760                                              ARMMMUIdxBit_S1E2);
761 }
762 
763 static const ARMCPRegInfo cp_reginfo[] = {
764     /* Define the secure and non-secure FCSE identifier CP registers
765      * separately because there is no secure bank in V8 (no _EL3).  This allows
766      * the secure register to be properly reset and migrated. There is also no
767      * v8 EL1 version of the register so the non-secure instance stands alone.
768      */
769     { .name = "FCSEIDR",
770       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
771       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
772       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
773       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
774     { .name = "FCSEIDR_S",
775       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
776       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
777       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
778       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
779     /* Define the secure and non-secure context identifier CP registers
780      * separately because there is no secure bank in V8 (no _EL3).  This allows
781      * the secure register to be properly reset and migrated.  In the
782      * non-secure case, the 32-bit register will have reset and migration
783      * disabled during registration as it is handled by the 64-bit instance.
784      */
785     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
786       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
787       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
788       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
789       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
790     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
791       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
792       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
793       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
794       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
795     REGINFO_SENTINEL
796 };
797 
798 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
799     /* NB: Some of these registers exist in v8 but with more precise
800      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
801      */
802     /* MMU Domain access control / MPU write buffer control */
803     { .name = "DACR",
804       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
805       .access = PL1_RW, .resetvalue = 0,
806       .writefn = dacr_write, .raw_writefn = raw_write,
807       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
808                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
809     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
810      * For v6 and v5, these mappings are overly broad.
811      */
812     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
813       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
815       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
817       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
818     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
819       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
820     /* Cache maintenance ops; some of this space may be overridden later. */
821     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
822       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
823       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
824     REGINFO_SENTINEL
825 };
826 
827 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
828     /* Not all pre-v6 cores implemented this WFI, so this is slightly
829      * over-broad.
830      */
831     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
832       .access = PL1_W, .type = ARM_CP_WFI },
833     REGINFO_SENTINEL
834 };
835 
836 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
837     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
838      * is UNPREDICTABLE; we choose to NOP as most implementations do).
839      */
840     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
841       .access = PL1_W, .type = ARM_CP_WFI },
842     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
843      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
844      * OMAPCP will override this space.
845      */
846     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
847       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
848       .resetvalue = 0 },
849     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
850       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
851       .resetvalue = 0 },
852     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
853     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
854       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
855       .resetvalue = 0 },
856     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
857      * implementing it as RAZ means the "debug architecture version" bits
858      * will read as a reserved value, which should cause Linux to not try
859      * to use the debug hardware.
860      */
861     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
862       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
863     /* MMU TLB control. Note that the wildcarding means we cover not just
864      * the unified TLB ops but also the dside/iside/inner-shareable variants.
865      */
866     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
867       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
868       .type = ARM_CP_NO_RAW },
869     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
870       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
871       .type = ARM_CP_NO_RAW },
872     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
873       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
874       .type = ARM_CP_NO_RAW },
875     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
876       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
877       .type = ARM_CP_NO_RAW },
878     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
879       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
880     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
881       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
882     REGINFO_SENTINEL
883 };
884 
cpacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
886                         uint64_t value)
887 {
888     uint32_t mask = 0;
889 
890     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
891     if (!arm_feature(env, ARM_FEATURE_V8)) {
892         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
893          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
894          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
895          */
896         if (arm_feature(env, ARM_FEATURE_VFP)) {
897             /* VFP coprocessor: cp10 & cp11 [23:20] */
898             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
899 
900             if (!arm_feature(env, ARM_FEATURE_NEON)) {
901                 /* ASEDIS [31] bit is RAO/WI */
902                 value |= (1 << 31);
903             }
904 
905             /* VFPv3 and upwards with NEON implement 32 double precision
906              * registers (D0-D31).
907              */
908             if (!arm_feature(env, ARM_FEATURE_NEON) ||
909                     !arm_feature(env, ARM_FEATURE_VFP3)) {
910                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
911                 value |= (1 << 30);
912             }
913         }
914         value &= mask;
915     }
916 
917     /*
918      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
919      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
920      */
921     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
922         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
923         value &= ~(0xf << 20);
924         value |= env->cp15.cpacr_el1 & (0xf << 20);
925     }
926 
927     env->cp15.cpacr_el1 = value;
928 }
929 
cpacr_read(CPUARMState * env,const ARMCPRegInfo * ri)930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
931 {
932     /*
933      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
934      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
935      */
936     uint64_t value = env->cp15.cpacr_el1;
937 
938     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
939         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
940         value &= ~(0xf << 20);
941     }
942     return value;
943 }
944 
945 
cpacr_reset(CPUARMState * env,const ARMCPRegInfo * ri)946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
947 {
948     /* Call cpacr_write() so that we reset with the correct RAO bits set
949      * for our CPU features.
950      */
951     cpacr_write(env, ri, 0);
952 }
953 
cpacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
955                                    bool isread)
956 {
957     if (arm_feature(env, ARM_FEATURE_V8)) {
958         /* Check if CPACR accesses are to be trapped to EL2 */
959         if (arm_current_el(env) == 1 &&
960             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
961             return CP_ACCESS_TRAP_EL2;
962         /* Check if CPACR accesses are to be trapped to EL3 */
963         } else if (arm_current_el(env) < 3 &&
964                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
965             return CP_ACCESS_TRAP_EL3;
966         }
967     }
968 
969     return CP_ACCESS_OK;
970 }
971 
cptr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
973                                   bool isread)
974 {
975     /* Check if CPTR accesses are set to trap to EL3 */
976     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
977         return CP_ACCESS_TRAP_EL3;
978     }
979 
980     return CP_ACCESS_OK;
981 }
982 
983 static const ARMCPRegInfo v6_cp_reginfo[] = {
984     /* prefetch by MVA in v6, NOP in v7 */
985     { .name = "MVA_prefetch",
986       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
987       .access = PL1_W, .type = ARM_CP_NOP },
988     /* We need to break the TB after ISB to execute self-modifying code
989      * correctly and also to take any pending interrupts immediately.
990      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
991      */
992     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
993       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
994     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
995       .access = PL0_W, .type = ARM_CP_NOP },
996     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
997       .access = PL0_W, .type = ARM_CP_NOP },
998     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
999       .access = PL1_RW,
1000       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1001                              offsetof(CPUARMState, cp15.ifar_ns) },
1002       .resetvalue = 0, },
1003     /* Watchpoint Fault Address Register : should actually only be present
1004      * for 1136, 1176, 11MPCore.
1005      */
1006     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1007       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1008     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1009       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1010       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1011       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1012     REGINFO_SENTINEL
1013 };
1014 
1015 /* Definitions for the PMU registers */
1016 #define PMCRN_MASK  0xf800
1017 #define PMCRN_SHIFT 11
1018 #define PMCRLC  0x40
1019 #define PMCRDP  0x20
1020 #define PMCRX   0x10
1021 #define PMCRD   0x8
1022 #define PMCRC   0x4
1023 #define PMCRP   0x2
1024 #define PMCRE   0x1
1025 
1026 #define PMXEVTYPER_P          0x80000000
1027 #define PMXEVTYPER_U          0x40000000
1028 #define PMXEVTYPER_NSK        0x20000000
1029 #define PMXEVTYPER_NSU        0x10000000
1030 #define PMXEVTYPER_NSH        0x08000000
1031 #define PMXEVTYPER_M          0x04000000
1032 #define PMXEVTYPER_MT         0x02000000
1033 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1034 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1035                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1036                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1037                                PMXEVTYPER_EVTCOUNT)
1038 
1039 #define PMCCFILTR             0xf8000000
1040 #define PMCCFILTR_M           PMXEVTYPER_M
1041 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1042 
pmu_num_counters(CPUARMState * env)1043 static inline uint32_t pmu_num_counters(CPUARMState *env)
1044 {
1045   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1046 }
1047 
1048 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
pmu_counter_mask(CPUARMState * env)1049 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1050 {
1051   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1052 }
1053 
1054 typedef struct pm_event {
1055     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1056     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1057     bool (*supported)(CPUARMState *);
1058     /*
1059      * Retrieve the current count of the underlying event. The programmed
1060      * counters hold a difference from the return value from this function
1061      */
1062     uint64_t (*get_count)(CPUARMState *);
1063     /*
1064      * Return how many nanoseconds it will take (at a minimum) for count events
1065      * to occur. A negative value indicates the counter will never overflow, or
1066      * that the counter has otherwise arranged for the overflow bit to be set
1067      * and the PMU interrupt to be raised on overflow.
1068      */
1069     int64_t (*ns_per_count)(uint64_t);
1070 } pm_event;
1071 
event_always_supported(CPUARMState * env)1072 static bool event_always_supported(CPUARMState *env)
1073 {
1074     return true;
1075 }
1076 
swinc_get_count(CPUARMState * env)1077 static uint64_t swinc_get_count(CPUARMState *env)
1078 {
1079     /*
1080      * SW_INCR events are written directly to the pmevcntr's by writes to
1081      * PMSWINC, so there is no underlying count maintained by the PMU itself
1082      */
1083     return 0;
1084 }
1085 
swinc_ns_per(uint64_t ignored)1086 static int64_t swinc_ns_per(uint64_t ignored)
1087 {
1088     return -1;
1089 }
1090 
1091 /*
1092  * Return the underlying cycle count for the PMU cycle counters. If we're in
1093  * usermode, simply return 0.
1094  */
cycles_get_count(CPUARMState * env)1095 static uint64_t cycles_get_count(CPUARMState *env)
1096 {
1097 #ifndef CONFIG_USER_ONLY
1098     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1099                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1100 #else
1101     return cpu_get_host_ticks();
1102 #endif
1103 }
1104 
1105 #ifndef CONFIG_USER_ONLY
cycles_ns_per(uint64_t cycles)1106 static int64_t cycles_ns_per(uint64_t cycles)
1107 {
1108     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1109 }
1110 
instructions_supported(CPUARMState * env)1111 static bool instructions_supported(CPUARMState *env)
1112 {
1113     return use_icount == 1 /* Precise instruction counting */;
1114 }
1115 
instructions_get_count(CPUARMState * env)1116 static uint64_t instructions_get_count(CPUARMState *env)
1117 {
1118     return (uint64_t)cpu_get_icount_raw();
1119 }
1120 
instructions_ns_per(uint64_t icount)1121 static int64_t instructions_ns_per(uint64_t icount)
1122 {
1123     return cpu_icount_to_ns((int64_t)icount);
1124 }
1125 #endif
1126 
1127 static const pm_event pm_events[] = {
1128     { .number = 0x000, /* SW_INCR */
1129       .supported = event_always_supported,
1130       .get_count = swinc_get_count,
1131       .ns_per_count = swinc_ns_per,
1132     },
1133 #ifndef CONFIG_USER_ONLY
1134     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1135       .supported = instructions_supported,
1136       .get_count = instructions_get_count,
1137       .ns_per_count = instructions_ns_per,
1138     },
1139     { .number = 0x011, /* CPU_CYCLES, Cycle */
1140       .supported = event_always_supported,
1141       .get_count = cycles_get_count,
1142       .ns_per_count = cycles_ns_per,
1143     }
1144 #endif
1145 };
1146 
1147 /*
1148  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1149  * events (i.e. the statistical profiling extension), this implementation
1150  * should first be updated to something sparse instead of the current
1151  * supported_event_map[] array.
1152  */
1153 #define MAX_EVENT_ID 0x11
1154 #define UNSUPPORTED_EVENT UINT16_MAX
1155 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1156 
1157 /*
1158  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1159  * of ARM event numbers to indices in our pm_events array.
1160  *
1161  * Note: Events in the 0x40XX range are not currently supported.
1162  */
pmu_init(ARMCPU * cpu)1163 void pmu_init(ARMCPU *cpu)
1164 {
1165     unsigned int i;
1166 
1167     /*
1168      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1169      * events to them
1170      */
1171     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1172         supported_event_map[i] = UNSUPPORTED_EVENT;
1173     }
1174     cpu->pmceid0 = 0;
1175     cpu->pmceid1 = 0;
1176 
1177     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1178         const pm_event *cnt = &pm_events[i];
1179         assert(cnt->number <= MAX_EVENT_ID);
1180         /* We do not currently support events in the 0x40xx range */
1181         assert(cnt->number <= 0x3f);
1182 
1183         if (cnt->supported(&cpu->env)) {
1184             supported_event_map[cnt->number] = i;
1185             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1186             if (cnt->number & 0x20) {
1187                 cpu->pmceid1 |= event_mask;
1188             } else {
1189                 cpu->pmceid0 |= event_mask;
1190             }
1191         }
1192     }
1193 }
1194 
1195 /*
1196  * Check at runtime whether a PMU event is supported for the current machine
1197  */
event_supported(uint16_t number)1198 static bool event_supported(uint16_t number)
1199 {
1200     if (number > MAX_EVENT_ID) {
1201         return false;
1202     }
1203     return supported_event_map[number] != UNSUPPORTED_EVENT;
1204 }
1205 
pmreg_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1206 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1207                                    bool isread)
1208 {
1209     /* Performance monitor registers user accessibility is controlled
1210      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1211      * trapping to EL2 or EL3 for other accesses.
1212      */
1213     int el = arm_current_el(env);
1214 
1215     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1216         return CP_ACCESS_TRAP;
1217     }
1218     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1219         && !arm_is_secure_below_el3(env)) {
1220         return CP_ACCESS_TRAP_EL2;
1221     }
1222     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1223         return CP_ACCESS_TRAP_EL3;
1224     }
1225 
1226     return CP_ACCESS_OK;
1227 }
1228 
pmreg_access_xevcntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1229 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1230                                            const ARMCPRegInfo *ri,
1231                                            bool isread)
1232 {
1233     /* ER: event counter read trap control */
1234     if (arm_feature(env, ARM_FEATURE_V8)
1235         && arm_current_el(env) == 0
1236         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1237         && isread) {
1238         return CP_ACCESS_OK;
1239     }
1240 
1241     return pmreg_access(env, ri, isread);
1242 }
1243 
pmreg_access_swinc(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1244 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1245                                          const ARMCPRegInfo *ri,
1246                                          bool isread)
1247 {
1248     /* SW: software increment write trap control */
1249     if (arm_feature(env, ARM_FEATURE_V8)
1250         && arm_current_el(env) == 0
1251         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1252         && !isread) {
1253         return CP_ACCESS_OK;
1254     }
1255 
1256     return pmreg_access(env, ri, isread);
1257 }
1258 
pmreg_access_selr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1259 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1260                                         const ARMCPRegInfo *ri,
1261                                         bool isread)
1262 {
1263     /* ER: event counter read trap control */
1264     if (arm_feature(env, ARM_FEATURE_V8)
1265         && arm_current_el(env) == 0
1266         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1267         return CP_ACCESS_OK;
1268     }
1269 
1270     return pmreg_access(env, ri, isread);
1271 }
1272 
pmreg_access_ccntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1273 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1274                                          const ARMCPRegInfo *ri,
1275                                          bool isread)
1276 {
1277     /* CR: cycle counter read trap control */
1278     if (arm_feature(env, ARM_FEATURE_V8)
1279         && arm_current_el(env) == 0
1280         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1281         && isread) {
1282         return CP_ACCESS_OK;
1283     }
1284 
1285     return pmreg_access(env, ri, isread);
1286 }
1287 
1288 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1289  * the current EL, security state, and register configuration.
1290  */
pmu_counter_enabled(CPUARMState * env,uint8_t counter)1291 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1292 {
1293     uint64_t filter;
1294     bool e, p, u, nsk, nsu, nsh, m;
1295     bool enabled, prohibited, filtered;
1296     bool secure = arm_is_secure(env);
1297     int el = arm_current_el(env);
1298     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1299 
1300     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1301         return false;
1302     }
1303 
1304     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1305             (counter < hpmn || counter == 31)) {
1306         e = env->cp15.c9_pmcr & PMCRE;
1307     } else {
1308         e = env->cp15.mdcr_el2 & MDCR_HPME;
1309     }
1310     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1311 
1312     if (!secure) {
1313         if (el == 2 && (counter < hpmn || counter == 31)) {
1314             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1315         } else {
1316             prohibited = false;
1317         }
1318     } else {
1319         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1320            (env->cp15.mdcr_el3 & MDCR_SPME);
1321     }
1322 
1323     if (prohibited && counter == 31) {
1324         prohibited = env->cp15.c9_pmcr & PMCRDP;
1325     }
1326 
1327     if (counter == 31) {
1328         filter = env->cp15.pmccfiltr_el0;
1329     } else {
1330         filter = env->cp15.c14_pmevtyper[counter];
1331     }
1332 
1333     p   = filter & PMXEVTYPER_P;
1334     u   = filter & PMXEVTYPER_U;
1335     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1336     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1337     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1338     m   = arm_el_is_aa64(env, 1) &&
1339               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1340 
1341     if (el == 0) {
1342         filtered = secure ? u : u != nsu;
1343     } else if (el == 1) {
1344         filtered = secure ? p : p != nsk;
1345     } else if (el == 2) {
1346         filtered = !nsh;
1347     } else { /* EL3 */
1348         filtered = m != p;
1349     }
1350 
1351     if (counter != 31) {
1352         /*
1353          * If not checking PMCCNTR, ensure the counter is setup to an event we
1354          * support
1355          */
1356         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1357         if (!event_supported(event)) {
1358             return false;
1359         }
1360     }
1361 
1362     return enabled && !prohibited && !filtered;
1363 }
1364 
pmu_update_irq(CPUARMState * env)1365 static void pmu_update_irq(CPUARMState *env)
1366 {
1367     ARMCPU *cpu = env_archcpu(env);
1368     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1369             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1370 }
1371 
1372 /*
1373  * Ensure c15_ccnt is the guest-visible count so that operations such as
1374  * enabling/disabling the counter or filtering, modifying the count itself,
1375  * etc. can be done logically. This is essentially a no-op if the counter is
1376  * not enabled at the time of the call.
1377  */
pmccntr_op_start(CPUARMState * env)1378 static void pmccntr_op_start(CPUARMState *env)
1379 {
1380     uint64_t cycles = cycles_get_count(env);
1381 
1382     if (pmu_counter_enabled(env, 31)) {
1383         uint64_t eff_cycles = cycles;
1384         if (env->cp15.c9_pmcr & PMCRD) {
1385             /* Increment once every 64 processor clock cycles */
1386             eff_cycles /= 64;
1387         }
1388 
1389         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1390 
1391         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1392                                  1ull << 63 : 1ull << 31;
1393         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1394             env->cp15.c9_pmovsr |= (1 << 31);
1395             pmu_update_irq(env);
1396         }
1397 
1398         env->cp15.c15_ccnt = new_pmccntr;
1399     }
1400     env->cp15.c15_ccnt_delta = cycles;
1401 }
1402 
1403 /*
1404  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1405  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1406  * pmccntr_op_start.
1407  */
pmccntr_op_finish(CPUARMState * env)1408 static void pmccntr_op_finish(CPUARMState *env)
1409 {
1410     if (pmu_counter_enabled(env, 31)) {
1411 #ifndef CONFIG_USER_ONLY
1412         /* Calculate when the counter will next overflow */
1413         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1414         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1415             remaining_cycles = (uint32_t)remaining_cycles;
1416         }
1417         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1418 
1419         if (overflow_in > 0) {
1420             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1421                 overflow_in;
1422             ARMCPU *cpu = env_archcpu(env);
1423             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1424         }
1425 #endif
1426 
1427         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1428         if (env->cp15.c9_pmcr & PMCRD) {
1429             /* Increment once every 64 processor clock cycles */
1430             prev_cycles /= 64;
1431         }
1432         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1433     }
1434 }
1435 
pmevcntr_op_start(CPUARMState * env,uint8_t counter)1436 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1437 {
1438 
1439     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1440     uint64_t count = 0;
1441     if (event_supported(event)) {
1442         uint16_t event_idx = supported_event_map[event];
1443         count = pm_events[event_idx].get_count(env);
1444     }
1445 
1446     if (pmu_counter_enabled(env, counter)) {
1447         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1448 
1449         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1450             env->cp15.c9_pmovsr |= (1 << counter);
1451             pmu_update_irq(env);
1452         }
1453         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1454     }
1455     env->cp15.c14_pmevcntr_delta[counter] = count;
1456 }
1457 
pmevcntr_op_finish(CPUARMState * env,uint8_t counter)1458 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1459 {
1460     if (pmu_counter_enabled(env, counter)) {
1461 #ifndef CONFIG_USER_ONLY
1462         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1463         uint16_t event_idx = supported_event_map[event];
1464         uint64_t delta = UINT32_MAX -
1465             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1466         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1467 
1468         if (overflow_in > 0) {
1469             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1470                 overflow_in;
1471             ARMCPU *cpu = env_archcpu(env);
1472             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1473         }
1474 #endif
1475 
1476         env->cp15.c14_pmevcntr_delta[counter] -=
1477             env->cp15.c14_pmevcntr[counter];
1478     }
1479 }
1480 
pmu_op_start(CPUARMState * env)1481 void pmu_op_start(CPUARMState *env)
1482 {
1483     unsigned int i;
1484     pmccntr_op_start(env);
1485     for (i = 0; i < pmu_num_counters(env); i++) {
1486         pmevcntr_op_start(env, i);
1487     }
1488 }
1489 
pmu_op_finish(CPUARMState * env)1490 void pmu_op_finish(CPUARMState *env)
1491 {
1492     unsigned int i;
1493     pmccntr_op_finish(env);
1494     for (i = 0; i < pmu_num_counters(env); i++) {
1495         pmevcntr_op_finish(env, i);
1496     }
1497 }
1498 
pmu_pre_el_change(ARMCPU * cpu,void * ignored)1499 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1500 {
1501     pmu_op_start(&cpu->env);
1502 }
1503 
pmu_post_el_change(ARMCPU * cpu,void * ignored)1504 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1505 {
1506     pmu_op_finish(&cpu->env);
1507 }
1508 
arm_pmu_timer_cb(void * opaque)1509 void arm_pmu_timer_cb(void *opaque)
1510 {
1511     ARMCPU *cpu = opaque;
1512 
1513     /*
1514      * Update all the counter values based on the current underlying counts,
1515      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1516      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1517      * counter may expire.
1518      */
1519     pmu_op_start(&cpu->env);
1520     pmu_op_finish(&cpu->env);
1521 }
1522 
pmcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1523 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524                        uint64_t value)
1525 {
1526     pmu_op_start(env);
1527 
1528     if (value & PMCRC) {
1529         /* The counter has been reset */
1530         env->cp15.c15_ccnt = 0;
1531     }
1532 
1533     if (value & PMCRP) {
1534         unsigned int i;
1535         for (i = 0; i < pmu_num_counters(env); i++) {
1536             env->cp15.c14_pmevcntr[i] = 0;
1537         }
1538     }
1539 
1540     /* only the DP, X, D and E bits are writable */
1541     env->cp15.c9_pmcr &= ~0x39;
1542     env->cp15.c9_pmcr |= (value & 0x39);
1543 
1544     pmu_op_finish(env);
1545 }
1546 
pmswinc_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1547 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1548                           uint64_t value)
1549 {
1550     unsigned int i;
1551     for (i = 0; i < pmu_num_counters(env); i++) {
1552         /* Increment a counter's count iff: */
1553         if ((value & (1 << i)) && /* counter's bit is set */
1554                 /* counter is enabled and not filtered */
1555                 pmu_counter_enabled(env, i) &&
1556                 /* counter is SW_INCR */
1557                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1558             pmevcntr_op_start(env, i);
1559 
1560             /*
1561              * Detect if this write causes an overflow since we can't predict
1562              * PMSWINC overflows like we can for other events
1563              */
1564             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1565 
1566             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1567                 env->cp15.c9_pmovsr |= (1 << i);
1568                 pmu_update_irq(env);
1569             }
1570 
1571             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1572 
1573             pmevcntr_op_finish(env, i);
1574         }
1575     }
1576 }
1577 
pmccntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1578 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1579 {
1580     uint64_t ret;
1581     pmccntr_op_start(env);
1582     ret = env->cp15.c15_ccnt;
1583     pmccntr_op_finish(env);
1584     return ret;
1585 }
1586 
pmselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1587 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1588                          uint64_t value)
1589 {
1590     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1591      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1592      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1593      * accessed.
1594      */
1595     env->cp15.c9_pmselr = value & 0x1f;
1596 }
1597 
pmccntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1598 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1599                         uint64_t value)
1600 {
1601     pmccntr_op_start(env);
1602     env->cp15.c15_ccnt = value;
1603     pmccntr_op_finish(env);
1604 }
1605 
pmccntr_write32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1606 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1607                             uint64_t value)
1608 {
1609     uint64_t cur_val = pmccntr_read(env, NULL);
1610 
1611     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1612 }
1613 
pmccfiltr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1614 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1615                             uint64_t value)
1616 {
1617     pmccntr_op_start(env);
1618     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1619     pmccntr_op_finish(env);
1620 }
1621 
pmccfiltr_write_a32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1622 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1623                             uint64_t value)
1624 {
1625     pmccntr_op_start(env);
1626     /* M is not accessible from AArch32 */
1627     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1628         (value & PMCCFILTR);
1629     pmccntr_op_finish(env);
1630 }
1631 
pmccfiltr_read_a32(CPUARMState * env,const ARMCPRegInfo * ri)1632 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1633 {
1634     /* M is not visible in AArch32 */
1635     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1636 }
1637 
pmcntenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1638 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1639                             uint64_t value)
1640 {
1641     value &= pmu_counter_mask(env);
1642     env->cp15.c9_pmcnten |= value;
1643 }
1644 
pmcntenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1645 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1646                              uint64_t value)
1647 {
1648     value &= pmu_counter_mask(env);
1649     env->cp15.c9_pmcnten &= ~value;
1650 }
1651 
pmovsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1652 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1653                          uint64_t value)
1654 {
1655     value &= pmu_counter_mask(env);
1656     env->cp15.c9_pmovsr &= ~value;
1657     pmu_update_irq(env);
1658 }
1659 
pmovsset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1660 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1661                          uint64_t value)
1662 {
1663     value &= pmu_counter_mask(env);
1664     env->cp15.c9_pmovsr |= value;
1665     pmu_update_irq(env);
1666 }
1667 
pmevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,const uint8_t counter)1668 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1669                              uint64_t value, const uint8_t counter)
1670 {
1671     if (counter == 31) {
1672         pmccfiltr_write(env, ri, value);
1673     } else if (counter < pmu_num_counters(env)) {
1674         pmevcntr_op_start(env, counter);
1675 
1676         /*
1677          * If this counter's event type is changing, store the current
1678          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1679          * pmevcntr_op_finish has the correct baseline when it converts back to
1680          * a delta.
1681          */
1682         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1683             PMXEVTYPER_EVTCOUNT;
1684         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1685         if (old_event != new_event) {
1686             uint64_t count = 0;
1687             if (event_supported(new_event)) {
1688                 uint16_t event_idx = supported_event_map[new_event];
1689                 count = pm_events[event_idx].get_count(env);
1690             }
1691             env->cp15.c14_pmevcntr_delta[counter] = count;
1692         }
1693 
1694         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1695         pmevcntr_op_finish(env, counter);
1696     }
1697     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1698      * PMSELR value is equal to or greater than the number of implemented
1699      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1700      */
1701 }
1702 
pmevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri,const uint8_t counter)1703 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1704                                const uint8_t counter)
1705 {
1706     if (counter == 31) {
1707         return env->cp15.pmccfiltr_el0;
1708     } else if (counter < pmu_num_counters(env)) {
1709         return env->cp15.c14_pmevtyper[counter];
1710     } else {
1711       /*
1712        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1713        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1714        */
1715         return 0;
1716     }
1717 }
1718 
pmevtyper_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1719 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1720                               uint64_t value)
1721 {
1722     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1723     pmevtyper_write(env, ri, value, counter);
1724 }
1725 
pmevtyper_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1726 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1727                                uint64_t value)
1728 {
1729     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1730     env->cp15.c14_pmevtyper[counter] = value;
1731 
1732     /*
1733      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1734      * pmu_op_finish calls when loading saved state for a migration. Because
1735      * we're potentially updating the type of event here, the value written to
1736      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1737      * different counter type. Therefore, we need to set this value to the
1738      * current count for the counter type we're writing so that pmu_op_finish
1739      * has the correct count for its calculation.
1740      */
1741     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1742     if (event_supported(event)) {
1743         uint16_t event_idx = supported_event_map[event];
1744         env->cp15.c14_pmevcntr_delta[counter] =
1745             pm_events[event_idx].get_count(env);
1746     }
1747 }
1748 
pmevtyper_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1749 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1750 {
1751     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1752     return pmevtyper_read(env, ri, counter);
1753 }
1754 
pmxevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1755 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756                              uint64_t value)
1757 {
1758     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1759 }
1760 
pmxevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri)1761 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1762 {
1763     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1764 }
1765 
pmevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,uint8_t counter)1766 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1767                              uint64_t value, uint8_t counter)
1768 {
1769     if (counter < pmu_num_counters(env)) {
1770         pmevcntr_op_start(env, counter);
1771         env->cp15.c14_pmevcntr[counter] = value;
1772         pmevcntr_op_finish(env, counter);
1773     }
1774     /*
1775      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1776      * are CONSTRAINED UNPREDICTABLE.
1777      */
1778 }
1779 
pmevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri,uint8_t counter)1780 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1781                               uint8_t counter)
1782 {
1783     if (counter < pmu_num_counters(env)) {
1784         uint64_t ret;
1785         pmevcntr_op_start(env, counter);
1786         ret = env->cp15.c14_pmevcntr[counter];
1787         pmevcntr_op_finish(env, counter);
1788         return ret;
1789     } else {
1790       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1791        * are CONSTRAINED UNPREDICTABLE. */
1792         return 0;
1793     }
1794 }
1795 
pmevcntr_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1796 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1797                              uint64_t value)
1798 {
1799     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1800     pmevcntr_write(env, ri, value, counter);
1801 }
1802 
pmevcntr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1803 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1804 {
1805     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1806     return pmevcntr_read(env, ri, counter);
1807 }
1808 
pmevcntr_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1809 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1810                              uint64_t value)
1811 {
1812     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1813     assert(counter < pmu_num_counters(env));
1814     env->cp15.c14_pmevcntr[counter] = value;
1815     pmevcntr_write(env, ri, value, counter);
1816 }
1817 
pmevcntr_rawread(CPUARMState * env,const ARMCPRegInfo * ri)1818 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1819 {
1820     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1821     assert(counter < pmu_num_counters(env));
1822     return env->cp15.c14_pmevcntr[counter];
1823 }
1824 
pmxevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1825 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1826                              uint64_t value)
1827 {
1828     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1829 }
1830 
pmxevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1831 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1832 {
1833     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1834 }
1835 
pmuserenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1836 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1837                             uint64_t value)
1838 {
1839     if (arm_feature(env, ARM_FEATURE_V8)) {
1840         env->cp15.c9_pmuserenr = value & 0xf;
1841     } else {
1842         env->cp15.c9_pmuserenr = value & 1;
1843     }
1844 }
1845 
pmintenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1846 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847                              uint64_t value)
1848 {
1849     /* We have no event counters so only the C bit can be changed */
1850     value &= pmu_counter_mask(env);
1851     env->cp15.c9_pminten |= value;
1852     pmu_update_irq(env);
1853 }
1854 
pmintenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1855 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1856                              uint64_t value)
1857 {
1858     value &= pmu_counter_mask(env);
1859     env->cp15.c9_pminten &= ~value;
1860     pmu_update_irq(env);
1861 }
1862 
vbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1863 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1864                        uint64_t value)
1865 {
1866     /* Note that even though the AArch64 view of this register has bits
1867      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1868      * architectural requirements for bits which are RES0 only in some
1869      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1870      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1871      */
1872     raw_write(env, ri, value & ~0x1FULL);
1873 }
1874 
scr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1875 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1876 {
1877     /* Begin with base v8.0 state.  */
1878     uint32_t valid_mask = 0x3fff;
1879     ARMCPU *cpu = env_archcpu(env);
1880 
1881     if (arm_el_is_aa64(env, 3)) {
1882         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1883         valid_mask &= ~SCR_NET;
1884     } else {
1885         valid_mask &= ~(SCR_RW | SCR_ST);
1886     }
1887 
1888     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1889         valid_mask &= ~SCR_HCE;
1890 
1891         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1892          * supported if EL2 exists. The bit is UNK/SBZP when
1893          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1894          * when EL2 is unavailable.
1895          * On ARMv8, this bit is always available.
1896          */
1897         if (arm_feature(env, ARM_FEATURE_V7) &&
1898             !arm_feature(env, ARM_FEATURE_V8)) {
1899             valid_mask &= ~SCR_SMD;
1900         }
1901     }
1902     if (cpu_isar_feature(aa64_lor, cpu)) {
1903         valid_mask |= SCR_TLOR;
1904     }
1905     if (cpu_isar_feature(aa64_pauth, cpu)) {
1906         valid_mask |= SCR_API | SCR_APK;
1907     }
1908 
1909     /* Clear all-context RES0 bits.  */
1910     value &= valid_mask;
1911     raw_write(env, ri, value);
1912 }
1913 
ccsidr_read(CPUARMState * env,const ARMCPRegInfo * ri)1914 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1915 {
1916     ARMCPU *cpu = env_archcpu(env);
1917 
1918     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1919      * bank
1920      */
1921     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1922                                         ri->secure & ARM_CP_SECSTATE_S);
1923 
1924     return cpu->ccsidr[index];
1925 }
1926 
csselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1927 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1928                          uint64_t value)
1929 {
1930     raw_write(env, ri, value & 0xf);
1931 }
1932 
isr_read(CPUARMState * env,const ARMCPRegInfo * ri)1933 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1934 {
1935     CPUState *cs = env_cpu(env);
1936     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1937     uint64_t ret = 0;
1938     bool allow_virt = (arm_current_el(env) == 1 &&
1939                        (!arm_is_secure_below_el3(env) ||
1940                         (env->cp15.scr_el3 & SCR_EEL2)));
1941 
1942     if (allow_virt && (hcr_el2 & HCR_IMO)) {
1943         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1944             ret |= CPSR_I;
1945         }
1946     } else {
1947         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1948             ret |= CPSR_I;
1949         }
1950     }
1951 
1952     if (allow_virt && (hcr_el2 & HCR_FMO)) {
1953         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1954             ret |= CPSR_F;
1955         }
1956     } else {
1957         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1958             ret |= CPSR_F;
1959         }
1960     }
1961 
1962     /* External aborts are not possible in QEMU so A bit is always clear */
1963     return ret;
1964 }
1965 
1966 static const ARMCPRegInfo v7_cp_reginfo[] = {
1967     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1968     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1969       .access = PL1_W, .type = ARM_CP_NOP },
1970     /* Performance monitors are implementation defined in v7,
1971      * but with an ARM recommended set of registers, which we
1972      * follow.
1973      *
1974      * Performance registers fall into three categories:
1975      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1976      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1977      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1978      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1979      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1980      */
1981     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1982       .access = PL0_RW, .type = ARM_CP_ALIAS,
1983       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1984       .writefn = pmcntenset_write,
1985       .accessfn = pmreg_access,
1986       .raw_writefn = raw_write },
1987     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1988       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1989       .access = PL0_RW, .accessfn = pmreg_access,
1990       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1991       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1992     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1993       .access = PL0_RW,
1994       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1995       .accessfn = pmreg_access,
1996       .writefn = pmcntenclr_write,
1997       .type = ARM_CP_ALIAS },
1998     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1999       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2000       .access = PL0_RW, .accessfn = pmreg_access,
2001       .type = ARM_CP_ALIAS,
2002       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2003       .writefn = pmcntenclr_write },
2004     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2005       .access = PL0_RW, .type = ARM_CP_IO,
2006       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2007       .accessfn = pmreg_access,
2008       .writefn = pmovsr_write,
2009       .raw_writefn = raw_write },
2010     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2011       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2012       .access = PL0_RW, .accessfn = pmreg_access,
2013       .type = ARM_CP_ALIAS | ARM_CP_IO,
2014       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2015       .writefn = pmovsr_write,
2016       .raw_writefn = raw_write },
2017     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2018       .access = PL0_W, .accessfn = pmreg_access_swinc,
2019       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2020       .writefn = pmswinc_write },
2021     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2022       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2023       .access = PL0_W, .accessfn = pmreg_access_swinc,
2024       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2025       .writefn = pmswinc_write },
2026     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2027       .access = PL0_RW, .type = ARM_CP_ALIAS,
2028       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2029       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2030       .raw_writefn = raw_write},
2031     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2032       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2033       .access = PL0_RW, .accessfn = pmreg_access_selr,
2034       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2035       .writefn = pmselr_write, .raw_writefn = raw_write, },
2036     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2037       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2038       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2039       .accessfn = pmreg_access_ccntr },
2040     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2041       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2042       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2043       .type = ARM_CP_IO,
2044       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2045       .readfn = pmccntr_read, .writefn = pmccntr_write,
2046       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2047     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2048       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2049       .access = PL0_RW, .accessfn = pmreg_access,
2050       .type = ARM_CP_ALIAS | ARM_CP_IO,
2051       .resetvalue = 0, },
2052     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2053       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2054       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2055       .access = PL0_RW, .accessfn = pmreg_access,
2056       .type = ARM_CP_IO,
2057       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2058       .resetvalue = 0, },
2059     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2060       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2061       .accessfn = pmreg_access,
2062       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2063     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2064       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2065       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2066       .accessfn = pmreg_access,
2067       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2068     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2069       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2070       .accessfn = pmreg_access_xevcntr,
2071       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2072     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2073       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2074       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2075       .accessfn = pmreg_access_xevcntr,
2076       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2077     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2078       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2079       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2080       .resetvalue = 0,
2081       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2082     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2083       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2084       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2085       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2086       .resetvalue = 0,
2087       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2088     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2089       .access = PL1_RW, .accessfn = access_tpm,
2090       .type = ARM_CP_ALIAS | ARM_CP_IO,
2091       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2092       .resetvalue = 0,
2093       .writefn = pmintenset_write, .raw_writefn = raw_write },
2094     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2095       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2096       .access = PL1_RW, .accessfn = access_tpm,
2097       .type = ARM_CP_IO,
2098       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2099       .writefn = pmintenset_write, .raw_writefn = raw_write,
2100       .resetvalue = 0x0 },
2101     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2102       .access = PL1_RW, .accessfn = access_tpm,
2103       .type = ARM_CP_ALIAS | ARM_CP_IO,
2104       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2105       .writefn = pmintenclr_write, },
2106     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2107       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2108       .access = PL1_RW, .accessfn = access_tpm,
2109       .type = ARM_CP_ALIAS | ARM_CP_IO,
2110       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2111       .writefn = pmintenclr_write },
2112     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2113       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2114       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2115     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2116       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2117       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2118       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2119                              offsetof(CPUARMState, cp15.csselr_ns) } },
2120     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2121      * just RAZ for all cores:
2122      */
2123     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2124       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2125       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2126     /* Auxiliary fault status registers: these also are IMPDEF, and we
2127      * choose to RAZ/WI for all cores.
2128      */
2129     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2130       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2131       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2132     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2133       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2134       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2135     /* MAIR can just read-as-written because we don't implement caches
2136      * and so don't need to care about memory attributes.
2137      */
2138     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2139       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2140       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2141       .resetvalue = 0 },
2142     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2143       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2144       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2145       .resetvalue = 0 },
2146     /* For non-long-descriptor page tables these are PRRR and NMRR;
2147      * regardless they still act as reads-as-written for QEMU.
2148      */
2149      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2150       * allows them to assign the correct fieldoffset based on the endianness
2151       * handled in the field definitions.
2152       */
2153     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2154       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2155       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2156                              offsetof(CPUARMState, cp15.mair0_ns) },
2157       .resetfn = arm_cp_reset_ignore },
2158     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2159       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2160       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2161                              offsetof(CPUARMState, cp15.mair1_ns) },
2162       .resetfn = arm_cp_reset_ignore },
2163     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2164       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2165       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2166     /* 32 bit ITLB invalidates */
2167     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2168       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2169     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2170       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2171     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2172       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2173     /* 32 bit DTLB invalidates */
2174     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2175       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2176     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2177       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2178     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2179       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2180     /* 32 bit TLB invalidates */
2181     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2182       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2183     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2184       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2185     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2186       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2187     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2188       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2189     REGINFO_SENTINEL
2190 };
2191 
2192 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2193     /* 32 bit TLB invalidates, Inner Shareable */
2194     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2195       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2196     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2197       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2198     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2199       .type = ARM_CP_NO_RAW, .access = PL1_W,
2200       .writefn = tlbiasid_is_write },
2201     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2202       .type = ARM_CP_NO_RAW, .access = PL1_W,
2203       .writefn = tlbimvaa_is_write },
2204     REGINFO_SENTINEL
2205 };
2206 
2207 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2208     /* PMOVSSET is not implemented in v7 before v7ve */
2209     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2210       .access = PL0_RW, .accessfn = pmreg_access,
2211       .type = ARM_CP_ALIAS | ARM_CP_IO,
2212       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2213       .writefn = pmovsset_write,
2214       .raw_writefn = raw_write },
2215     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2216       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2217       .access = PL0_RW, .accessfn = pmreg_access,
2218       .type = ARM_CP_ALIAS | ARM_CP_IO,
2219       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2220       .writefn = pmovsset_write,
2221       .raw_writefn = raw_write },
2222     REGINFO_SENTINEL
2223 };
2224 
teecr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2225 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2226                         uint64_t value)
2227 {
2228     value &= 1;
2229     env->teecr = value;
2230 }
2231 
teehbr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2232 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2233                                     bool isread)
2234 {
2235     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2236         return CP_ACCESS_TRAP;
2237     }
2238     return CP_ACCESS_OK;
2239 }
2240 
2241 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2242     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2243       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2244       .resetvalue = 0,
2245       .writefn = teecr_write },
2246     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2247       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2248       .accessfn = teehbr_access, .resetvalue = 0 },
2249     REGINFO_SENTINEL
2250 };
2251 
2252 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2253     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2254       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2255       .access = PL0_RW,
2256       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2257     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2258       .access = PL0_RW,
2259       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2260                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2261       .resetfn = arm_cp_reset_ignore },
2262     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2263       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2264       .access = PL0_R|PL1_W,
2265       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2266       .resetvalue = 0},
2267     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2268       .access = PL0_R|PL1_W,
2269       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2270                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2271       .resetfn = arm_cp_reset_ignore },
2272     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2273       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2274       .access = PL1_RW,
2275       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2276     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2277       .access = PL1_RW,
2278       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2279                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2280       .resetvalue = 0 },
2281     REGINFO_SENTINEL
2282 };
2283 
2284 #ifndef CONFIG_USER_ONLY
2285 
gt_cntfrq_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2286 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2287                                        bool isread)
2288 {
2289     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2290      * Writable only at the highest implemented exception level.
2291      */
2292     int el = arm_current_el(env);
2293 
2294     switch (el) {
2295     case 0:
2296         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2297             return CP_ACCESS_TRAP;
2298         }
2299         break;
2300     case 1:
2301         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2302             arm_is_secure_below_el3(env)) {
2303             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2304             return CP_ACCESS_TRAP_UNCATEGORIZED;
2305         }
2306         break;
2307     case 2:
2308     case 3:
2309         break;
2310     }
2311 
2312     if (!isread && el < arm_highest_el(env)) {
2313         return CP_ACCESS_TRAP_UNCATEGORIZED;
2314     }
2315 
2316     return CP_ACCESS_OK;
2317 }
2318 
gt_counter_access(CPUARMState * env,int timeridx,bool isread)2319 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2320                                         bool isread)
2321 {
2322     unsigned int cur_el = arm_current_el(env);
2323     bool secure = arm_is_secure(env);
2324 
2325     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2326     if (cur_el == 0 &&
2327         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2328         return CP_ACCESS_TRAP;
2329     }
2330 
2331     if (arm_feature(env, ARM_FEATURE_EL2) &&
2332         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2333         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2334         return CP_ACCESS_TRAP_EL2;
2335     }
2336     return CP_ACCESS_OK;
2337 }
2338 
gt_timer_access(CPUARMState * env,int timeridx,bool isread)2339 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2340                                       bool isread)
2341 {
2342     unsigned int cur_el = arm_current_el(env);
2343     bool secure = arm_is_secure(env);
2344 
2345     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2346      * EL0[PV]TEN is zero.
2347      */
2348     if (cur_el == 0 &&
2349         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2350         return CP_ACCESS_TRAP;
2351     }
2352 
2353     if (arm_feature(env, ARM_FEATURE_EL2) &&
2354         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2355         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2356         return CP_ACCESS_TRAP_EL2;
2357     }
2358     return CP_ACCESS_OK;
2359 }
2360 
gt_pct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2361 static CPAccessResult gt_pct_access(CPUARMState *env,
2362                                     const ARMCPRegInfo *ri,
2363                                     bool isread)
2364 {
2365     return gt_counter_access(env, GTIMER_PHYS, isread);
2366 }
2367 
gt_vct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2368 static CPAccessResult gt_vct_access(CPUARMState *env,
2369                                     const ARMCPRegInfo *ri,
2370                                     bool isread)
2371 {
2372     return gt_counter_access(env, GTIMER_VIRT, isread);
2373 }
2374 
gt_ptimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2375 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2376                                        bool isread)
2377 {
2378     return gt_timer_access(env, GTIMER_PHYS, isread);
2379 }
2380 
gt_vtimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2381 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2382                                        bool isread)
2383 {
2384     return gt_timer_access(env, GTIMER_VIRT, isread);
2385 }
2386 
gt_stimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2387 static CPAccessResult gt_stimer_access(CPUARMState *env,
2388                                        const ARMCPRegInfo *ri,
2389                                        bool isread)
2390 {
2391     /* The AArch64 register view of the secure physical timer is
2392      * always accessible from EL3, and configurably accessible from
2393      * Secure EL1.
2394      */
2395     switch (arm_current_el(env)) {
2396     case 1:
2397         if (!arm_is_secure(env)) {
2398             return CP_ACCESS_TRAP;
2399         }
2400         if (!(env->cp15.scr_el3 & SCR_ST)) {
2401             return CP_ACCESS_TRAP_EL3;
2402         }
2403         return CP_ACCESS_OK;
2404     case 0:
2405     case 2:
2406         return CP_ACCESS_TRAP;
2407     case 3:
2408         return CP_ACCESS_OK;
2409     default:
2410         g_assert_not_reached();
2411     }
2412 }
2413 
gt_get_countervalue(CPUARMState * env)2414 static uint64_t gt_get_countervalue(CPUARMState *env)
2415 {
2416     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2417 }
2418 
gt_recalc_timer(ARMCPU * cpu,int timeridx)2419 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2420 {
2421     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2422 
2423     if (gt->ctl & 1) {
2424         /* Timer enabled: calculate and set current ISTATUS, irq, and
2425          * reset timer to when ISTATUS next has to change
2426          */
2427         uint64_t offset = timeridx == GTIMER_VIRT ?
2428                                       cpu->env.cp15.cntvoff_el2 : 0;
2429         uint64_t count = gt_get_countervalue(&cpu->env);
2430         /* Note that this must be unsigned 64 bit arithmetic: */
2431         int istatus = count - offset >= gt->cval;
2432         uint64_t nexttick;
2433         int irqstate;
2434 
2435         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2436 
2437         irqstate = (istatus && !(gt->ctl & 2));
2438         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2439 
2440         if (istatus) {
2441             /* Next transition is when count rolls back over to zero */
2442             nexttick = UINT64_MAX;
2443         } else {
2444             /* Next transition is when we hit cval */
2445             nexttick = gt->cval + offset;
2446         }
2447         /* Note that the desired next expiry time might be beyond the
2448          * signed-64-bit range of a QEMUTimer -- in this case we just
2449          * set the timer for as far in the future as possible. When the
2450          * timer expires we will reset the timer for any remaining period.
2451          */
2452         if (nexttick > INT64_MAX / GTIMER_SCALE) {
2453             nexttick = INT64_MAX / GTIMER_SCALE;
2454         }
2455         timer_mod(cpu->gt_timer[timeridx], nexttick);
2456         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2457     } else {
2458         /* Timer disabled: ISTATUS and timer output always clear */
2459         gt->ctl &= ~4;
2460         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2461         timer_del(cpu->gt_timer[timeridx]);
2462         trace_arm_gt_recalc_disabled(timeridx);
2463     }
2464 }
2465 
gt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2466 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2467                            int timeridx)
2468 {
2469     ARMCPU *cpu = env_archcpu(env);
2470 
2471     timer_del(cpu->gt_timer[timeridx]);
2472 }
2473 
gt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2474 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2475 {
2476     return gt_get_countervalue(env);
2477 }
2478 
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2479 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2480 {
2481     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2482 }
2483 
gt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2484 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2485                           int timeridx,
2486                           uint64_t value)
2487 {
2488     trace_arm_gt_cval_write(timeridx, value);
2489     env->cp15.c14_timer[timeridx].cval = value;
2490     gt_recalc_timer(env_archcpu(env), timeridx);
2491 }
2492 
gt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2493 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2494                              int timeridx)
2495 {
2496     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2497 
2498     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2499                       (gt_get_countervalue(env) - offset));
2500 }
2501 
gt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2502 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503                           int timeridx,
2504                           uint64_t value)
2505 {
2506     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2507 
2508     trace_arm_gt_tval_write(timeridx, value);
2509     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2510                                          sextract64(value, 0, 32);
2511     gt_recalc_timer(env_archcpu(env), timeridx);
2512 }
2513 
gt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2514 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2515                          int timeridx,
2516                          uint64_t value)
2517 {
2518     ARMCPU *cpu = env_archcpu(env);
2519     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2520 
2521     trace_arm_gt_ctl_write(timeridx, value);
2522     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2523     if ((oldval ^ value) & 1) {
2524         /* Enable toggled */
2525         gt_recalc_timer(cpu, timeridx);
2526     } else if ((oldval ^ value) & 2) {
2527         /* IMASK toggled: don't need to recalculate,
2528          * just set the interrupt line based on ISTATUS
2529          */
2530         int irqstate = (oldval & 4) && !(value & 2);
2531 
2532         trace_arm_gt_imask_toggle(timeridx, irqstate);
2533         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2534     }
2535 }
2536 
gt_phys_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2537 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2538 {
2539     gt_timer_reset(env, ri, GTIMER_PHYS);
2540 }
2541 
gt_phys_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2542 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2543                                uint64_t value)
2544 {
2545     gt_cval_write(env, ri, GTIMER_PHYS, value);
2546 }
2547 
gt_phys_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2548 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2549 {
2550     return gt_tval_read(env, ri, GTIMER_PHYS);
2551 }
2552 
gt_phys_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2553 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2554                                uint64_t value)
2555 {
2556     gt_tval_write(env, ri, GTIMER_PHYS, value);
2557 }
2558 
gt_phys_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2559 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2560                               uint64_t value)
2561 {
2562     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2563 }
2564 
gt_virt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2565 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2566 {
2567     gt_timer_reset(env, ri, GTIMER_VIRT);
2568 }
2569 
gt_virt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2570 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2571                                uint64_t value)
2572 {
2573     gt_cval_write(env, ri, GTIMER_VIRT, value);
2574 }
2575 
gt_virt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2576 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2577 {
2578     return gt_tval_read(env, ri, GTIMER_VIRT);
2579 }
2580 
gt_virt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2581 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2582                                uint64_t value)
2583 {
2584     gt_tval_write(env, ri, GTIMER_VIRT, value);
2585 }
2586 
gt_virt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2587 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2588                               uint64_t value)
2589 {
2590     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2591 }
2592 
gt_cntvoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2593 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2594                               uint64_t value)
2595 {
2596     ARMCPU *cpu = env_archcpu(env);
2597 
2598     trace_arm_gt_cntvoff_write(value);
2599     raw_write(env, ri, value);
2600     gt_recalc_timer(cpu, GTIMER_VIRT);
2601 }
2602 
gt_hyp_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2603 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2604 {
2605     gt_timer_reset(env, ri, GTIMER_HYP);
2606 }
2607 
gt_hyp_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2608 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2609                               uint64_t value)
2610 {
2611     gt_cval_write(env, ri, GTIMER_HYP, value);
2612 }
2613 
gt_hyp_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2614 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2615 {
2616     return gt_tval_read(env, ri, GTIMER_HYP);
2617 }
2618 
gt_hyp_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2619 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2620                               uint64_t value)
2621 {
2622     gt_tval_write(env, ri, GTIMER_HYP, value);
2623 }
2624 
gt_hyp_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2625 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2626                               uint64_t value)
2627 {
2628     gt_ctl_write(env, ri, GTIMER_HYP, value);
2629 }
2630 
gt_sec_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2631 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2632 {
2633     gt_timer_reset(env, ri, GTIMER_SEC);
2634 }
2635 
gt_sec_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2636 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2637                               uint64_t value)
2638 {
2639     gt_cval_write(env, ri, GTIMER_SEC, value);
2640 }
2641 
gt_sec_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2642 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2643 {
2644     return gt_tval_read(env, ri, GTIMER_SEC);
2645 }
2646 
gt_sec_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2647 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2648                               uint64_t value)
2649 {
2650     gt_tval_write(env, ri, GTIMER_SEC, value);
2651 }
2652 
gt_sec_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2653 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2654                               uint64_t value)
2655 {
2656     gt_ctl_write(env, ri, GTIMER_SEC, value);
2657 }
2658 
arm_gt_ptimer_cb(void * opaque)2659 void arm_gt_ptimer_cb(void *opaque)
2660 {
2661     ARMCPU *cpu = opaque;
2662 
2663     gt_recalc_timer(cpu, GTIMER_PHYS);
2664 }
2665 
arm_gt_vtimer_cb(void * opaque)2666 void arm_gt_vtimer_cb(void *opaque)
2667 {
2668     ARMCPU *cpu = opaque;
2669 
2670     gt_recalc_timer(cpu, GTIMER_VIRT);
2671 }
2672 
arm_gt_htimer_cb(void * opaque)2673 void arm_gt_htimer_cb(void *opaque)
2674 {
2675     ARMCPU *cpu = opaque;
2676 
2677     gt_recalc_timer(cpu, GTIMER_HYP);
2678 }
2679 
arm_gt_stimer_cb(void * opaque)2680 void arm_gt_stimer_cb(void *opaque)
2681 {
2682     ARMCPU *cpu = opaque;
2683 
2684     gt_recalc_timer(cpu, GTIMER_SEC);
2685 }
2686 
2687 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2688     /* Note that CNTFRQ is purely reads-as-written for the benefit
2689      * of software; writing it doesn't actually change the timer frequency.
2690      * Our reset value matches the fixed frequency we implement the timer at.
2691      */
2692     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2693       .type = ARM_CP_ALIAS,
2694       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2695       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2696     },
2697     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2698       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2699       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2700       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2701       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2702     },
2703     /* overall control: mostly access permissions */
2704     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2705       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2706       .access = PL1_RW,
2707       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2708       .resetvalue = 0,
2709     },
2710     /* per-timer control */
2711     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2712       .secure = ARM_CP_SECSTATE_NS,
2713       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2714       .accessfn = gt_ptimer_access,
2715       .fieldoffset = offsetoflow32(CPUARMState,
2716                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2717       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2718     },
2719     { .name = "CNTP_CTL_S",
2720       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2721       .secure = ARM_CP_SECSTATE_S,
2722       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2723       .accessfn = gt_ptimer_access,
2724       .fieldoffset = offsetoflow32(CPUARMState,
2725                                    cp15.c14_timer[GTIMER_SEC].ctl),
2726       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2727     },
2728     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2729       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2730       .type = ARM_CP_IO, .access = PL0_RW,
2731       .accessfn = gt_ptimer_access,
2732       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2733       .resetvalue = 0,
2734       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2735     },
2736     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2737       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2738       .accessfn = gt_vtimer_access,
2739       .fieldoffset = offsetoflow32(CPUARMState,
2740                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2741       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2742     },
2743     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2744       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2745       .type = ARM_CP_IO, .access = PL0_RW,
2746       .accessfn = gt_vtimer_access,
2747       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2748       .resetvalue = 0,
2749       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2750     },
2751     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2752     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2753       .secure = ARM_CP_SECSTATE_NS,
2754       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2755       .accessfn = gt_ptimer_access,
2756       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2757     },
2758     { .name = "CNTP_TVAL_S",
2759       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2760       .secure = ARM_CP_SECSTATE_S,
2761       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2762       .accessfn = gt_ptimer_access,
2763       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2764     },
2765     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2766       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2767       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2768       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2769       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2770     },
2771     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2772       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2773       .accessfn = gt_vtimer_access,
2774       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2775     },
2776     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2777       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2778       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2779       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2780       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2781     },
2782     /* The counter itself */
2783     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2784       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2785       .accessfn = gt_pct_access,
2786       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2787     },
2788     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2789       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2790       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2791       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2792     },
2793     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2794       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2795       .accessfn = gt_vct_access,
2796       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2797     },
2798     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2799       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2800       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2801       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2802     },
2803     /* Comparison value, indicating when the timer goes off */
2804     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2805       .secure = ARM_CP_SECSTATE_NS,
2806       .access = PL0_RW,
2807       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2808       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2809       .accessfn = gt_ptimer_access,
2810       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2811     },
2812     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2813       .secure = ARM_CP_SECSTATE_S,
2814       .access = PL0_RW,
2815       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2816       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2817       .accessfn = gt_ptimer_access,
2818       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2819     },
2820     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2821       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2822       .access = PL0_RW,
2823       .type = ARM_CP_IO,
2824       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2825       .resetvalue = 0, .accessfn = gt_ptimer_access,
2826       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2827     },
2828     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2829       .access = PL0_RW,
2830       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2831       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2832       .accessfn = gt_vtimer_access,
2833       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2834     },
2835     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2836       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2837       .access = PL0_RW,
2838       .type = ARM_CP_IO,
2839       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2840       .resetvalue = 0, .accessfn = gt_vtimer_access,
2841       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2842     },
2843     /* Secure timer -- this is actually restricted to only EL3
2844      * and configurably Secure-EL1 via the accessfn.
2845      */
2846     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2847       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2848       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2849       .accessfn = gt_stimer_access,
2850       .readfn = gt_sec_tval_read,
2851       .writefn = gt_sec_tval_write,
2852       .resetfn = gt_sec_timer_reset,
2853     },
2854     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2855       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2856       .type = ARM_CP_IO, .access = PL1_RW,
2857       .accessfn = gt_stimer_access,
2858       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2859       .resetvalue = 0,
2860       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2861     },
2862     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2863       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2864       .type = ARM_CP_IO, .access = PL1_RW,
2865       .accessfn = gt_stimer_access,
2866       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2867       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2868     },
2869     REGINFO_SENTINEL
2870 };
2871 
2872 #else
2873 
2874 /* In user-mode most of the generic timer registers are inaccessible
2875  * however modern kernels (4.12+) allow access to cntvct_el0
2876  */
2877 
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2878 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2879 {
2880     /* Currently we have no support for QEMUTimer in linux-user so we
2881      * can't call gt_get_countervalue(env), instead we directly
2882      * call the lower level functions.
2883      */
2884     return cpu_get_clock() / GTIMER_SCALE;
2885 }
2886 
2887 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2888     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2889       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2890       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2891       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2892       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2893     },
2894     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2895       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2896       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2897       .readfn = gt_virt_cnt_read,
2898     },
2899     REGINFO_SENTINEL
2900 };
2901 
2902 #endif
2903 
par_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2904 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2905 {
2906     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2907         raw_write(env, ri, value);
2908     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2909         raw_write(env, ri, value & 0xfffff6ff);
2910     } else {
2911         raw_write(env, ri, value & 0xfffff1ff);
2912     }
2913 }
2914 
2915 #ifndef CONFIG_USER_ONLY
2916 /* get_phys_addr() isn't present for user-mode-only targets */
2917 
ats_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2918 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2919                                  bool isread)
2920 {
2921     if (ri->opc2 & 4) {
2922         /* The ATS12NSO* operations must trap to EL3 if executed in
2923          * Secure EL1 (which can only happen if EL3 is AArch64).
2924          * They are simply UNDEF if executed from NS EL1.
2925          * They function normally from EL2 or EL3.
2926          */
2927         if (arm_current_el(env) == 1) {
2928             if (arm_is_secure_below_el3(env)) {
2929                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2930             }
2931             return CP_ACCESS_TRAP_UNCATEGORIZED;
2932         }
2933     }
2934     return CP_ACCESS_OK;
2935 }
2936 
do_ats_write(CPUARMState * env,uint64_t value,MMUAccessType access_type,ARMMMUIdx mmu_idx)2937 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2938                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2939 {
2940     hwaddr phys_addr;
2941     target_ulong page_size;
2942     int prot;
2943     bool ret;
2944     uint64_t par64;
2945     bool format64 = false;
2946     MemTxAttrs attrs = {};
2947     ARMMMUFaultInfo fi = {};
2948     ARMCacheAttrs cacheattrs = {};
2949 
2950     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2951                         &prot, &page_size, &fi, &cacheattrs);
2952 
2953     if (ret) {
2954         /*
2955          * Some kinds of translation fault must cause exceptions rather
2956          * than being reported in the PAR.
2957          */
2958         int current_el = arm_current_el(env);
2959         int target_el;
2960         uint32_t syn, fsr, fsc;
2961         bool take_exc = false;
2962 
2963         if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
2964             && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) {
2965             /*
2966              * Synchronous stage 2 fault on an access made as part of the
2967              * translation table walk for AT S1E0* or AT S1E1* insn
2968              * executed from NS EL1. If this is a synchronous external abort
2969              * and SCR_EL3.EA == 1, then we take a synchronous external abort
2970              * to EL3. Otherwise the fault is taken as an exception to EL2,
2971              * and HPFAR_EL2 holds the faulting IPA.
2972              */
2973             if (fi.type == ARMFault_SyncExternalOnWalk &&
2974                 (env->cp15.scr_el3 & SCR_EA)) {
2975                 target_el = 3;
2976             } else {
2977                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
2978                 target_el = 2;
2979             }
2980             take_exc = true;
2981         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
2982             /*
2983              * Synchronous external aborts during a translation table walk
2984              * are taken as Data Abort exceptions.
2985              */
2986             if (fi.stage2) {
2987                 if (current_el == 3) {
2988                     target_el = 3;
2989                 } else {
2990                     target_el = 2;
2991                 }
2992             } else {
2993                 target_el = exception_target_el(env);
2994             }
2995             take_exc = true;
2996         }
2997 
2998         if (take_exc) {
2999             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3000             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3001                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3002                 fsr = arm_fi_to_lfsc(&fi);
3003                 fsc = extract32(fsr, 0, 6);
3004             } else {
3005                 fsr = arm_fi_to_sfsc(&fi);
3006                 fsc = 0x3f;
3007             }
3008             /*
3009              * Report exception with ESR indicating a fault due to a
3010              * translation table walk for a cache maintenance instruction.
3011              */
3012             syn = syn_data_abort_no_iss(current_el == target_el,
3013                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3014             env->exception.vaddress = value;
3015             env->exception.fsr = fsr;
3016             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3017         }
3018     }
3019 
3020     if (is_a64(env)) {
3021         format64 = true;
3022     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3023         /*
3024          * ATS1Cxx:
3025          * * TTBCR.EAE determines whether the result is returned using the
3026          *   32-bit or the 64-bit PAR format
3027          * * Instructions executed in Hyp mode always use the 64bit format
3028          *
3029          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3030          * * The Non-secure TTBCR.EAE bit is set to 1
3031          * * The implementation includes EL2, and the value of HCR.VM is 1
3032          *
3033          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3034          *
3035          * ATS1Hx always uses the 64bit format.
3036          */
3037         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3038 
3039         if (arm_feature(env, ARM_FEATURE_EL2)) {
3040             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
3041                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3042             } else {
3043                 format64 |= arm_current_el(env) == 2;
3044             }
3045         }
3046     }
3047 
3048     if (format64) {
3049         /* Create a 64-bit PAR */
3050         par64 = (1 << 11); /* LPAE bit always set */
3051         if (!ret) {
3052             par64 |= phys_addr & ~0xfffULL;
3053             if (!attrs.secure) {
3054                 par64 |= (1 << 9); /* NS */
3055             }
3056             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3057             par64 |= cacheattrs.shareability << 7; /* SH */
3058         } else {
3059             uint32_t fsr = arm_fi_to_lfsc(&fi);
3060 
3061             par64 |= 1; /* F */
3062             par64 |= (fsr & 0x3f) << 1; /* FS */
3063             if (fi.stage2) {
3064                 par64 |= (1 << 9); /* S */
3065             }
3066             if (fi.s1ptw) {
3067                 par64 |= (1 << 8); /* PTW */
3068             }
3069         }
3070     } else {
3071         /* fsr is a DFSR/IFSR value for the short descriptor
3072          * translation table format (with WnR always clear).
3073          * Convert it to a 32-bit PAR.
3074          */
3075         if (!ret) {
3076             /* We do not set any attribute bits in the PAR */
3077             if (page_size == (1 << 24)
3078                 && arm_feature(env, ARM_FEATURE_V7)) {
3079                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3080             } else {
3081                 par64 = phys_addr & 0xfffff000;
3082             }
3083             if (!attrs.secure) {
3084                 par64 |= (1 << 9); /* NS */
3085             }
3086         } else {
3087             uint32_t fsr = arm_fi_to_sfsc(&fi);
3088 
3089             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3090                     ((fsr & 0xf) << 1) | 1;
3091         }
3092     }
3093     return par64;
3094 }
3095 
ats_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3096 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3097 {
3098     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3099     uint64_t par64;
3100     ARMMMUIdx mmu_idx;
3101     int el = arm_current_el(env);
3102     bool secure = arm_is_secure_below_el3(env);
3103 
3104     switch (ri->opc2 & 6) {
3105     case 0:
3106         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3107         switch (el) {
3108         case 3:
3109             mmu_idx = ARMMMUIdx_S1E3;
3110             break;
3111         case 2:
3112             mmu_idx = ARMMMUIdx_S1NSE1;
3113             break;
3114         case 1:
3115             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3116             break;
3117         default:
3118             g_assert_not_reached();
3119         }
3120         break;
3121     case 2:
3122         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3123         switch (el) {
3124         case 3:
3125             mmu_idx = ARMMMUIdx_S1SE0;
3126             break;
3127         case 2:
3128             mmu_idx = ARMMMUIdx_S1NSE0;
3129             break;
3130         case 1:
3131             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3132             break;
3133         default:
3134             g_assert_not_reached();
3135         }
3136         break;
3137     case 4:
3138         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3139         mmu_idx = ARMMMUIdx_S12NSE1;
3140         break;
3141     case 6:
3142         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3143         mmu_idx = ARMMMUIdx_S12NSE0;
3144         break;
3145     default:
3146         g_assert_not_reached();
3147     }
3148 
3149     par64 = do_ats_write(env, value, access_type, mmu_idx);
3150 
3151     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3152 }
3153 
ats1h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3154 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3155                         uint64_t value)
3156 {
3157     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3158     uint64_t par64;
3159 
3160     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3161 
3162     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3163 }
3164 
at_s1e2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3165 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3166                                      bool isread)
3167 {
3168     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3169         return CP_ACCESS_TRAP;
3170     }
3171     return CP_ACCESS_OK;
3172 }
3173 
ats_write64(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3174 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3175                         uint64_t value)
3176 {
3177     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3178     ARMMMUIdx mmu_idx;
3179     int secure = arm_is_secure_below_el3(env);
3180 
3181     switch (ri->opc2 & 6) {
3182     case 0:
3183         switch (ri->opc1) {
3184         case 0: /* AT S1E1R, AT S1E1W */
3185             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3186             break;
3187         case 4: /* AT S1E2R, AT S1E2W */
3188             mmu_idx = ARMMMUIdx_S1E2;
3189             break;
3190         case 6: /* AT S1E3R, AT S1E3W */
3191             mmu_idx = ARMMMUIdx_S1E3;
3192             break;
3193         default:
3194             g_assert_not_reached();
3195         }
3196         break;
3197     case 2: /* AT S1E0R, AT S1E0W */
3198         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3199         break;
3200     case 4: /* AT S12E1R, AT S12E1W */
3201         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3202         break;
3203     case 6: /* AT S12E0R, AT S12E0W */
3204         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3205         break;
3206     default:
3207         g_assert_not_reached();
3208     }
3209 
3210     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3211 }
3212 #endif
3213 
3214 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3215     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3216       .access = PL1_RW, .resetvalue = 0,
3217       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3218                              offsetoflow32(CPUARMState, cp15.par_ns) },
3219       .writefn = par_write },
3220 #ifndef CONFIG_USER_ONLY
3221     /* This underdecoding is safe because the reginfo is NO_RAW. */
3222     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3223       .access = PL1_W, .accessfn = ats_access,
3224       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3225 #endif
3226     REGINFO_SENTINEL
3227 };
3228 
3229 /* Return basic MPU access permission bits.  */
simple_mpu_ap_bits(uint32_t val)3230 static uint32_t simple_mpu_ap_bits(uint32_t val)
3231 {
3232     uint32_t ret;
3233     uint32_t mask;
3234     int i;
3235     ret = 0;
3236     mask = 3;
3237     for (i = 0; i < 16; i += 2) {
3238         ret |= (val >> i) & mask;
3239         mask <<= 2;
3240     }
3241     return ret;
3242 }
3243 
3244 /* Pad basic MPU access permission bits to extended format.  */
extended_mpu_ap_bits(uint32_t val)3245 static uint32_t extended_mpu_ap_bits(uint32_t val)
3246 {
3247     uint32_t ret;
3248     uint32_t mask;
3249     int i;
3250     ret = 0;
3251     mask = 3;
3252     for (i = 0; i < 16; i += 2) {
3253         ret |= (val & mask) << i;
3254         mask <<= 2;
3255     }
3256     return ret;
3257 }
3258 
pmsav5_data_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3259 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3260                                  uint64_t value)
3261 {
3262     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3263 }
3264 
pmsav5_data_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)3265 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3266 {
3267     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3268 }
3269 
pmsav5_insn_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3270 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3271                                  uint64_t value)
3272 {
3273     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3274 }
3275 
pmsav5_insn_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)3276 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3277 {
3278     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3279 }
3280 
pmsav7_read(CPUARMState * env,const ARMCPRegInfo * ri)3281 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3282 {
3283     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3284 
3285     if (!u32p) {
3286         return 0;
3287     }
3288 
3289     u32p += env->pmsav7.rnr[M_REG_NS];
3290     return *u32p;
3291 }
3292 
pmsav7_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3293 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3294                          uint64_t value)
3295 {
3296     ARMCPU *cpu = env_archcpu(env);
3297     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3298 
3299     if (!u32p) {
3300         return;
3301     }
3302 
3303     u32p += env->pmsav7.rnr[M_REG_NS];
3304     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3305     *u32p = value;
3306 }
3307 
pmsav7_rgnr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3308 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3309                               uint64_t value)
3310 {
3311     ARMCPU *cpu = env_archcpu(env);
3312     uint32_t nrgs = cpu->pmsav7_dregion;
3313 
3314     if (value >= nrgs) {
3315         qemu_log_mask(LOG_GUEST_ERROR,
3316                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3317                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3318         return;
3319     }
3320 
3321     raw_write(env, ri, value);
3322 }
3323 
3324 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3325     /* Reset for all these registers is handled in arm_cpu_reset(),
3326      * because the PMSAv7 is also used by M-profile CPUs, which do
3327      * not register cpregs but still need the state to be reset.
3328      */
3329     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3330       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3331       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3332       .readfn = pmsav7_read, .writefn = pmsav7_write,
3333       .resetfn = arm_cp_reset_ignore },
3334     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3335       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3336       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3337       .readfn = pmsav7_read, .writefn = pmsav7_write,
3338       .resetfn = arm_cp_reset_ignore },
3339     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3340       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3341       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3342       .readfn = pmsav7_read, .writefn = pmsav7_write,
3343       .resetfn = arm_cp_reset_ignore },
3344     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3345       .access = PL1_RW,
3346       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3347       .writefn = pmsav7_rgnr_write,
3348       .resetfn = arm_cp_reset_ignore },
3349     REGINFO_SENTINEL
3350 };
3351 
3352 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3353     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3354       .access = PL1_RW, .type = ARM_CP_ALIAS,
3355       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3356       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3357     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3358       .access = PL1_RW, .type = ARM_CP_ALIAS,
3359       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3360       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3361     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3362       .access = PL1_RW,
3363       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3364       .resetvalue = 0, },
3365     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3366       .access = PL1_RW,
3367       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3368       .resetvalue = 0, },
3369     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3370       .access = PL1_RW,
3371       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3372     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3373       .access = PL1_RW,
3374       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3375     /* Protection region base and size registers */
3376     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3377       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3378       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3379     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3380       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3381       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3382     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3383       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3384       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3385     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3386       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3387       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3388     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3389       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3390       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3391     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3392       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3393       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3394     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3395       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3396       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3397     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3398       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3399       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3400     REGINFO_SENTINEL
3401 };
3402 
vmsa_ttbcr_raw_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3403 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3404                                  uint64_t value)
3405 {
3406     TCR *tcr = raw_ptr(env, ri);
3407     int maskshift = extract32(value, 0, 3);
3408 
3409     if (!arm_feature(env, ARM_FEATURE_V8)) {
3410         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3411             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3412              * using Long-desciptor translation table format */
3413             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3414         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3415             /* In an implementation that includes the Security Extensions
3416              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3417              * Short-descriptor translation table format.
3418              */
3419             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3420         } else {
3421             value &= TTBCR_N;
3422         }
3423     }
3424 
3425     /* Update the masks corresponding to the TCR bank being written
3426      * Note that we always calculate mask and base_mask, but
3427      * they are only used for short-descriptor tables (ie if EAE is 0);
3428      * for long-descriptor tables the TCR fields are used differently
3429      * and the mask and base_mask values are meaningless.
3430      */
3431     tcr->raw_tcr = value;
3432     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3433     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3434 }
3435 
vmsa_ttbcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3436 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3437                              uint64_t value)
3438 {
3439     ARMCPU *cpu = env_archcpu(env);
3440     TCR *tcr = raw_ptr(env, ri);
3441 
3442     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3443         /* With LPAE the TTBCR could result in a change of ASID
3444          * via the TTBCR.A1 bit, so do a TLB flush.
3445          */
3446         tlb_flush(CPU(cpu));
3447     }
3448     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3449     value = deposit64(tcr->raw_tcr, 0, 32, value);
3450     vmsa_ttbcr_raw_write(env, ri, value);
3451 }
3452 
vmsa_ttbcr_reset(CPUARMState * env,const ARMCPRegInfo * ri)3453 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3454 {
3455     TCR *tcr = raw_ptr(env, ri);
3456 
3457     /* Reset both the TCR as well as the masks corresponding to the bank of
3458      * the TCR being reset.
3459      */
3460     tcr->raw_tcr = 0;
3461     tcr->mask = 0;
3462     tcr->base_mask = 0xffffc000u;
3463 }
3464 
vmsa_tcr_el1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3465 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3466                                uint64_t value)
3467 {
3468     ARMCPU *cpu = env_archcpu(env);
3469     TCR *tcr = raw_ptr(env, ri);
3470 
3471     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3472     tlb_flush(CPU(cpu));
3473     tcr->raw_tcr = value;
3474 }
3475 
vmsa_ttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3476 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3477                             uint64_t value)
3478 {
3479     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3480     if (cpreg_field_is_64bit(ri) &&
3481         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3482         ARMCPU *cpu = env_archcpu(env);
3483         tlb_flush(CPU(cpu));
3484     }
3485     raw_write(env, ri, value);
3486 }
3487 
vttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3488 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3489                         uint64_t value)
3490 {
3491     ARMCPU *cpu = env_archcpu(env);
3492     CPUState *cs = CPU(cpu);
3493 
3494     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
3495     if (raw_read(env, ri) != value) {
3496         tlb_flush_by_mmuidx(cs,
3497                             ARMMMUIdxBit_S12NSE1 |
3498                             ARMMMUIdxBit_S12NSE0 |
3499                             ARMMMUIdxBit_S2NS);
3500         raw_write(env, ri, value);
3501     }
3502 }
3503 
3504 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3505     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3506       .access = PL1_RW, .type = ARM_CP_ALIAS,
3507       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3508                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3509     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3510       .access = PL1_RW, .resetvalue = 0,
3511       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3512                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3513     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3514       .access = PL1_RW, .resetvalue = 0,
3515       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3516                              offsetof(CPUARMState, cp15.dfar_ns) } },
3517     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3518       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3519       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3520       .resetvalue = 0, },
3521     REGINFO_SENTINEL
3522 };
3523 
3524 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3525     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3526       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3527       .access = PL1_RW,
3528       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3529     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3530       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3531       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3532       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3533                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3534     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3535       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3536       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3537       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3538                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3539     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3540       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3541       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3542       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3543       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3544     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3545       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3546       .raw_writefn = vmsa_ttbcr_raw_write,
3547       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3548                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3549     REGINFO_SENTINEL
3550 };
3551 
3552 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3553  * qemu tlbs nor adjusting cached masks.
3554  */
3555 static const ARMCPRegInfo ttbcr2_reginfo = {
3556     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3557     .access = PL1_RW, .type = ARM_CP_ALIAS,
3558     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3559                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3560 };
3561 
omap_ticonfig_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3562 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3563                                 uint64_t value)
3564 {
3565     env->cp15.c15_ticonfig = value & 0xe7;
3566     /* The OS_TYPE bit in this register changes the reported CPUID! */
3567     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3568         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3569 }
3570 
omap_threadid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3571 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3572                                 uint64_t value)
3573 {
3574     env->cp15.c15_threadid = value & 0xffff;
3575 }
3576 
omap_wfi_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3577 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3578                            uint64_t value)
3579 {
3580     /* Wait-for-interrupt (deprecated) */
3581     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3582 }
3583 
omap_cachemaint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3584 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3585                                   uint64_t value)
3586 {
3587     /* On OMAP there are registers indicating the max/min index of dcache lines
3588      * containing a dirty line; cache flush operations have to reset these.
3589      */
3590     env->cp15.c15_i_max = 0x000;
3591     env->cp15.c15_i_min = 0xff0;
3592 }
3593 
3594 static const ARMCPRegInfo omap_cp_reginfo[] = {
3595     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3596       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3597       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3598       .resetvalue = 0, },
3599     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3600       .access = PL1_RW, .type = ARM_CP_NOP },
3601     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3602       .access = PL1_RW,
3603       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3604       .writefn = omap_ticonfig_write },
3605     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3606       .access = PL1_RW,
3607       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3608     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3609       .access = PL1_RW, .resetvalue = 0xff0,
3610       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3611     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3612       .access = PL1_RW,
3613       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3614       .writefn = omap_threadid_write },
3615     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3616       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3617       .type = ARM_CP_NO_RAW,
3618       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3619     /* TODO: Peripheral port remap register:
3620      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3621      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3622      * when MMU is off.
3623      */
3624     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3625       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3626       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3627       .writefn = omap_cachemaint_write },
3628     { .name = "C9", .cp = 15, .crn = 9,
3629       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3630       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3631     REGINFO_SENTINEL
3632 };
3633 
xscale_cpar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3634 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3635                               uint64_t value)
3636 {
3637     env->cp15.c15_cpar = value & 0x3fff;
3638 }
3639 
3640 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3641     { .name = "XSCALE_CPAR",
3642       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3643       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3644       .writefn = xscale_cpar_write, },
3645     { .name = "XSCALE_AUXCR",
3646       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3647       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3648       .resetvalue = 0, },
3649     /* XScale specific cache-lockdown: since we have no cache we NOP these
3650      * and hope the guest does not really rely on cache behaviour.
3651      */
3652     { .name = "XSCALE_LOCK_ICACHE_LINE",
3653       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3654       .access = PL1_W, .type = ARM_CP_NOP },
3655     { .name = "XSCALE_UNLOCK_ICACHE",
3656       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3657       .access = PL1_W, .type = ARM_CP_NOP },
3658     { .name = "XSCALE_DCACHE_LOCK",
3659       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3660       .access = PL1_RW, .type = ARM_CP_NOP },
3661     { .name = "XSCALE_UNLOCK_DCACHE",
3662       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3663       .access = PL1_W, .type = ARM_CP_NOP },
3664     REGINFO_SENTINEL
3665 };
3666 
3667 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3668     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3669      * implementation of this implementation-defined space.
3670      * Ideally this should eventually disappear in favour of actually
3671      * implementing the correct behaviour for all cores.
3672      */
3673     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3674       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3675       .access = PL1_RW,
3676       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3677       .resetvalue = 0 },
3678     REGINFO_SENTINEL
3679 };
3680 
3681 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3682     /* Cache status: RAZ because we have no cache so it's always clean */
3683     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3684       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3685       .resetvalue = 0 },
3686     REGINFO_SENTINEL
3687 };
3688 
3689 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3690     /* We never have a a block transfer operation in progress */
3691     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3692       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3693       .resetvalue = 0 },
3694     /* The cache ops themselves: these all NOP for QEMU */
3695     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3696       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3697     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3698       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3699     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3700       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3701     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3702       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3703     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3704       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3705     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3706       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3707     REGINFO_SENTINEL
3708 };
3709 
3710 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3711     /* The cache test-and-clean instructions always return (1 << 30)
3712      * to indicate that there are no dirty cache lines.
3713      */
3714     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3715       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3716       .resetvalue = (1 << 30) },
3717     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3718       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3719       .resetvalue = (1 << 30) },
3720     REGINFO_SENTINEL
3721 };
3722 
3723 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3724     /* Ignore ReadBuffer accesses */
3725     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3726       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3727       .access = PL1_RW, .resetvalue = 0,
3728       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3729     REGINFO_SENTINEL
3730 };
3731 
midr_read(CPUARMState * env,const ARMCPRegInfo * ri)3732 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3733 {
3734     ARMCPU *cpu = env_archcpu(env);
3735     unsigned int cur_el = arm_current_el(env);
3736     bool secure = arm_is_secure(env);
3737 
3738     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3739         return env->cp15.vpidr_el2;
3740     }
3741     return raw_read(env, ri);
3742 }
3743 
mpidr_read_val(CPUARMState * env)3744 static uint64_t mpidr_read_val(CPUARMState *env)
3745 {
3746     ARMCPU *cpu = env_archcpu(env);
3747     uint64_t mpidr = cpu->mp_affinity;
3748 
3749     if (arm_feature(env, ARM_FEATURE_V7MP)) {
3750         mpidr |= (1U << 31);
3751         /* Cores which are uniprocessor (non-coherent)
3752          * but still implement the MP extensions set
3753          * bit 30. (For instance, Cortex-R5).
3754          */
3755         if (cpu->mp_is_up) {
3756             mpidr |= (1u << 30);
3757         }
3758     }
3759     return mpidr;
3760 }
3761 
mpidr_read(CPUARMState * env,const ARMCPRegInfo * ri)3762 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3763 {
3764     unsigned int cur_el = arm_current_el(env);
3765     bool secure = arm_is_secure(env);
3766 
3767     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3768         return env->cp15.vmpidr_el2;
3769     }
3770     return mpidr_read_val(env);
3771 }
3772 
3773 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3774     /* NOP AMAIR0/1 */
3775     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3776       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3777       .access = PL1_RW, .type = ARM_CP_CONST,
3778       .resetvalue = 0 },
3779     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3780     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3781       .access = PL1_RW, .type = ARM_CP_CONST,
3782       .resetvalue = 0 },
3783     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3784       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3785       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3786                              offsetof(CPUARMState, cp15.par_ns)} },
3787     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3788       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3789       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3790                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3791       .writefn = vmsa_ttbr_write, },
3792     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3793       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3794       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3795                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3796       .writefn = vmsa_ttbr_write, },
3797     REGINFO_SENTINEL
3798 };
3799 
aa64_fpcr_read(CPUARMState * env,const ARMCPRegInfo * ri)3800 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3801 {
3802     return vfp_get_fpcr(env);
3803 }
3804 
aa64_fpcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3805 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3806                             uint64_t value)
3807 {
3808     vfp_set_fpcr(env, value);
3809 }
3810 
aa64_fpsr_read(CPUARMState * env,const ARMCPRegInfo * ri)3811 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3812 {
3813     return vfp_get_fpsr(env);
3814 }
3815 
aa64_fpsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3816 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3817                             uint64_t value)
3818 {
3819     vfp_set_fpsr(env, value);
3820 }
3821 
aa64_daif_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3822 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3823                                        bool isread)
3824 {
3825     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3826         return CP_ACCESS_TRAP;
3827     }
3828     return CP_ACCESS_OK;
3829 }
3830 
aa64_daif_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3831 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3832                             uint64_t value)
3833 {
3834     env->daif = value & PSTATE_DAIF;
3835 }
3836 
aa64_cacheop_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3837 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3838                                           const ARMCPRegInfo *ri,
3839                                           bool isread)
3840 {
3841     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3842      * SCTLR_EL1.UCI is set.
3843      */
3844     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3845         return CP_ACCESS_TRAP;
3846     }
3847     return CP_ACCESS_OK;
3848 }
3849 
3850 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3851  * Page D4-1736 (DDI0487A.b)
3852  */
3853 
tlbi_aa64_vmalle1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3854 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3855                                       uint64_t value)
3856 {
3857     CPUState *cs = env_cpu(env);
3858     bool sec = arm_is_secure_below_el3(env);
3859 
3860     if (sec) {
3861         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3862                                             ARMMMUIdxBit_S1SE1 |
3863                                             ARMMMUIdxBit_S1SE0);
3864     } else {
3865         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3866                                             ARMMMUIdxBit_S12NSE1 |
3867                                             ARMMMUIdxBit_S12NSE0);
3868     }
3869 }
3870 
tlbi_aa64_vmalle1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3871 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3872                                     uint64_t value)
3873 {
3874     CPUState *cs = env_cpu(env);
3875 
3876     if (tlb_force_broadcast(env)) {
3877         tlbi_aa64_vmalle1is_write(env, NULL, value);
3878         return;
3879     }
3880 
3881     if (arm_is_secure_below_el3(env)) {
3882         tlb_flush_by_mmuidx(cs,
3883                             ARMMMUIdxBit_S1SE1 |
3884                             ARMMMUIdxBit_S1SE0);
3885     } else {
3886         tlb_flush_by_mmuidx(cs,
3887                             ARMMMUIdxBit_S12NSE1 |
3888                             ARMMMUIdxBit_S12NSE0);
3889     }
3890 }
3891 
tlbi_aa64_alle1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3892 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893                                   uint64_t value)
3894 {
3895     /* Note that the 'ALL' scope must invalidate both stage 1 and
3896      * stage 2 translations, whereas most other scopes only invalidate
3897      * stage 1 translations.
3898      */
3899     ARMCPU *cpu = env_archcpu(env);
3900     CPUState *cs = CPU(cpu);
3901 
3902     if (arm_is_secure_below_el3(env)) {
3903         tlb_flush_by_mmuidx(cs,
3904                             ARMMMUIdxBit_S1SE1 |
3905                             ARMMMUIdxBit_S1SE0);
3906     } else {
3907         if (arm_feature(env, ARM_FEATURE_EL2)) {
3908             tlb_flush_by_mmuidx(cs,
3909                                 ARMMMUIdxBit_S12NSE1 |
3910                                 ARMMMUIdxBit_S12NSE0 |
3911                                 ARMMMUIdxBit_S2NS);
3912         } else {
3913             tlb_flush_by_mmuidx(cs,
3914                                 ARMMMUIdxBit_S12NSE1 |
3915                                 ARMMMUIdxBit_S12NSE0);
3916         }
3917     }
3918 }
3919 
tlbi_aa64_alle2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3920 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3921                                   uint64_t value)
3922 {
3923     ARMCPU *cpu = env_archcpu(env);
3924     CPUState *cs = CPU(cpu);
3925 
3926     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3927 }
3928 
tlbi_aa64_alle3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3929 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3930                                   uint64_t value)
3931 {
3932     ARMCPU *cpu = env_archcpu(env);
3933     CPUState *cs = CPU(cpu);
3934 
3935     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3936 }
3937 
tlbi_aa64_alle1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3938 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3939                                     uint64_t value)
3940 {
3941     /* Note that the 'ALL' scope must invalidate both stage 1 and
3942      * stage 2 translations, whereas most other scopes only invalidate
3943      * stage 1 translations.
3944      */
3945     CPUState *cs = env_cpu(env);
3946     bool sec = arm_is_secure_below_el3(env);
3947     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3948 
3949     if (sec) {
3950         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3951                                             ARMMMUIdxBit_S1SE1 |
3952                                             ARMMMUIdxBit_S1SE0);
3953     } else if (has_el2) {
3954         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3955                                             ARMMMUIdxBit_S12NSE1 |
3956                                             ARMMMUIdxBit_S12NSE0 |
3957                                             ARMMMUIdxBit_S2NS);
3958     } else {
3959           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3960                                               ARMMMUIdxBit_S12NSE1 |
3961                                               ARMMMUIdxBit_S12NSE0);
3962     }
3963 }
3964 
tlbi_aa64_alle2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3965 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3966                                     uint64_t value)
3967 {
3968     CPUState *cs = env_cpu(env);
3969 
3970     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3971 }
3972 
tlbi_aa64_alle3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3973 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3974                                     uint64_t value)
3975 {
3976     CPUState *cs = env_cpu(env);
3977 
3978     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3979 }
3980 
tlbi_aa64_vae2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3981 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3982                                  uint64_t value)
3983 {
3984     /* Invalidate by VA, EL2
3985      * Currently handles both VAE2 and VALE2, since we don't support
3986      * flush-last-level-only.
3987      */
3988     ARMCPU *cpu = env_archcpu(env);
3989     CPUState *cs = CPU(cpu);
3990     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3991 
3992     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3993 }
3994 
tlbi_aa64_vae3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3995 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3996                                  uint64_t value)
3997 {
3998     /* Invalidate by VA, EL3
3999      * Currently handles both VAE3 and VALE3, since we don't support
4000      * flush-last-level-only.
4001      */
4002     ARMCPU *cpu = env_archcpu(env);
4003     CPUState *cs = CPU(cpu);
4004     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4005 
4006     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
4007 }
4008 
tlbi_aa64_vae1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4009 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4010                                    uint64_t value)
4011 {
4012     ARMCPU *cpu = env_archcpu(env);
4013     CPUState *cs = CPU(cpu);
4014     bool sec = arm_is_secure_below_el3(env);
4015     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4016 
4017     if (sec) {
4018         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4019                                                  ARMMMUIdxBit_S1SE1 |
4020                                                  ARMMMUIdxBit_S1SE0);
4021     } else {
4022         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4023                                                  ARMMMUIdxBit_S12NSE1 |
4024                                                  ARMMMUIdxBit_S12NSE0);
4025     }
4026 }
4027 
tlbi_aa64_vae1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4028 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4029                                  uint64_t value)
4030 {
4031     /* Invalidate by VA, EL1&0 (AArch64 version).
4032      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4033      * since we don't support flush-for-specific-ASID-only or
4034      * flush-last-level-only.
4035      */
4036     ARMCPU *cpu = env_archcpu(env);
4037     CPUState *cs = CPU(cpu);
4038     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4039 
4040     if (tlb_force_broadcast(env)) {
4041         tlbi_aa64_vae1is_write(env, NULL, value);
4042         return;
4043     }
4044 
4045     if (arm_is_secure_below_el3(env)) {
4046         tlb_flush_page_by_mmuidx(cs, pageaddr,
4047                                  ARMMMUIdxBit_S1SE1 |
4048                                  ARMMMUIdxBit_S1SE0);
4049     } else {
4050         tlb_flush_page_by_mmuidx(cs, pageaddr,
4051                                  ARMMMUIdxBit_S12NSE1 |
4052                                  ARMMMUIdxBit_S12NSE0);
4053     }
4054 }
4055 
tlbi_aa64_vae2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4056 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4057                                    uint64_t value)
4058 {
4059     CPUState *cs = env_cpu(env);
4060     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4061 
4062     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4063                                              ARMMMUIdxBit_S1E2);
4064 }
4065 
tlbi_aa64_vae3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4066 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4067                                    uint64_t value)
4068 {
4069     CPUState *cs = env_cpu(env);
4070     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4071 
4072     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4073                                              ARMMMUIdxBit_S1E3);
4074 }
4075 
tlbi_aa64_ipas2e1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4076 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4077                                     uint64_t value)
4078 {
4079     /* Invalidate by IPA. This has to invalidate any structures that
4080      * contain only stage 2 translation information, but does not need
4081      * to apply to structures that contain combined stage 1 and stage 2
4082      * translation information.
4083      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4084      */
4085     ARMCPU *cpu = env_archcpu(env);
4086     CPUState *cs = CPU(cpu);
4087     uint64_t pageaddr;
4088 
4089     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4090         return;
4091     }
4092 
4093     pageaddr = sextract64(value << 12, 0, 48);
4094 
4095     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4096 }
4097 
tlbi_aa64_ipas2e1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4098 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4099                                       uint64_t value)
4100 {
4101     CPUState *cs = env_cpu(env);
4102     uint64_t pageaddr;
4103 
4104     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4105         return;
4106     }
4107 
4108     pageaddr = sextract64(value << 12, 0, 48);
4109 
4110     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4111                                              ARMMMUIdxBit_S2NS);
4112 }
4113 
aa64_zva_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4114 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4115                                       bool isread)
4116 {
4117     /* We don't implement EL2, so the only control on DC ZVA is the
4118      * bit in the SCTLR which can prohibit access for EL0.
4119      */
4120     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4121         return CP_ACCESS_TRAP;
4122     }
4123     return CP_ACCESS_OK;
4124 }
4125 
aa64_dczid_read(CPUARMState * env,const ARMCPRegInfo * ri)4126 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4127 {
4128     ARMCPU *cpu = env_archcpu(env);
4129     int dzp_bit = 1 << 4;
4130 
4131     /* DZP indicates whether DC ZVA access is allowed */
4132     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4133         dzp_bit = 0;
4134     }
4135     return cpu->dcz_blocksize | dzp_bit;
4136 }
4137 
sp_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4138 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4139                                     bool isread)
4140 {
4141     if (!(env->pstate & PSTATE_SP)) {
4142         /* Access to SP_EL0 is undefined if it's being used as
4143          * the stack pointer.
4144          */
4145         return CP_ACCESS_TRAP_UNCATEGORIZED;
4146     }
4147     return CP_ACCESS_OK;
4148 }
4149 
spsel_read(CPUARMState * env,const ARMCPRegInfo * ri)4150 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4151 {
4152     return env->pstate & PSTATE_SP;
4153 }
4154 
spsel_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)4155 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4156 {
4157     update_spsel(env, val);
4158 }
4159 
sctlr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4160 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4161                         uint64_t value)
4162 {
4163     ARMCPU *cpu = env_archcpu(env);
4164 
4165     if (raw_read(env, ri) == value) {
4166         /* Skip the TLB flush if nothing actually changed; Linux likes
4167          * to do a lot of pointless SCTLR writes.
4168          */
4169         return;
4170     }
4171 
4172     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4173         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4174         value &= ~SCTLR_M;
4175     }
4176 
4177     raw_write(env, ri, value);
4178     /* ??? Lots of these bits are not implemented.  */
4179     /* This may enable/disable the MMU, so do a TLB flush.  */
4180     tlb_flush(CPU(cpu));
4181 
4182     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4183         /*
4184          * Normally we would always end the TB on an SCTLR write; see the
4185          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4186          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4187          * of hflags from the translator, so do it here.
4188          */
4189         arm_rebuild_hflags(env);
4190     }
4191 }
4192 
fpexc32_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4193 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4194                                      bool isread)
4195 {
4196     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4197         return CP_ACCESS_TRAP_FP_EL2;
4198     }
4199     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4200         return CP_ACCESS_TRAP_FP_EL3;
4201     }
4202     return CP_ACCESS_OK;
4203 }
4204 
sdcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4205 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4206                        uint64_t value)
4207 {
4208     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4209 }
4210 
4211 static const ARMCPRegInfo v8_cp_reginfo[] = {
4212     /* Minimal set of EL0-visible registers. This will need to be expanded
4213      * significantly for system emulation of AArch64 CPUs.
4214      */
4215     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4216       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4217       .access = PL0_RW, .type = ARM_CP_NZCV },
4218     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4219       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4220       .type = ARM_CP_NO_RAW,
4221       .access = PL0_RW, .accessfn = aa64_daif_access,
4222       .fieldoffset = offsetof(CPUARMState, daif),
4223       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4224     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4225       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4226       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4227       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4228     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4229       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4230       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4231       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4232     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4233       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4234       .access = PL0_R, .type = ARM_CP_NO_RAW,
4235       .readfn = aa64_dczid_read },
4236     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4237       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4238       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4239 #ifndef CONFIG_USER_ONLY
4240       /* Avoid overhead of an access check that always passes in user-mode */
4241       .accessfn = aa64_zva_access,
4242 #endif
4243     },
4244     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4245       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4246       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4247     /* Cache ops: all NOPs since we don't emulate caches */
4248     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4249       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4250       .access = PL1_W, .type = ARM_CP_NOP },
4251     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4252       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4253       .access = PL1_W, .type = ARM_CP_NOP },
4254     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4255       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4256       .access = PL0_W, .type = ARM_CP_NOP,
4257       .accessfn = aa64_cacheop_access },
4258     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4259       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4260       .access = PL1_W, .type = ARM_CP_NOP },
4261     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4262       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4263       .access = PL1_W, .type = ARM_CP_NOP },
4264     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4265       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4266       .access = PL0_W, .type = ARM_CP_NOP,
4267       .accessfn = aa64_cacheop_access },
4268     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4269       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4270       .access = PL1_W, .type = ARM_CP_NOP },
4271     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4272       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4273       .access = PL0_W, .type = ARM_CP_NOP,
4274       .accessfn = aa64_cacheop_access },
4275     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4276       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4277       .access = PL0_W, .type = ARM_CP_NOP,
4278       .accessfn = aa64_cacheop_access },
4279     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4280       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4281       .access = PL1_W, .type = ARM_CP_NOP },
4282     /* TLBI operations */
4283     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4284       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4285       .access = PL1_W, .type = ARM_CP_NO_RAW,
4286       .writefn = tlbi_aa64_vmalle1is_write },
4287     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4288       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4289       .access = PL1_W, .type = ARM_CP_NO_RAW,
4290       .writefn = tlbi_aa64_vae1is_write },
4291     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4292       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4293       .access = PL1_W, .type = ARM_CP_NO_RAW,
4294       .writefn = tlbi_aa64_vmalle1is_write },
4295     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4296       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4297       .access = PL1_W, .type = ARM_CP_NO_RAW,
4298       .writefn = tlbi_aa64_vae1is_write },
4299     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4300       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4301       .access = PL1_W, .type = ARM_CP_NO_RAW,
4302       .writefn = tlbi_aa64_vae1is_write },
4303     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4304       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4305       .access = PL1_W, .type = ARM_CP_NO_RAW,
4306       .writefn = tlbi_aa64_vae1is_write },
4307     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4308       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4309       .access = PL1_W, .type = ARM_CP_NO_RAW,
4310       .writefn = tlbi_aa64_vmalle1_write },
4311     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4312       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4313       .access = PL1_W, .type = ARM_CP_NO_RAW,
4314       .writefn = tlbi_aa64_vae1_write },
4315     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4316       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4317       .access = PL1_W, .type = ARM_CP_NO_RAW,
4318       .writefn = tlbi_aa64_vmalle1_write },
4319     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4320       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4321       .access = PL1_W, .type = ARM_CP_NO_RAW,
4322       .writefn = tlbi_aa64_vae1_write },
4323     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4324       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4325       .access = PL1_W, .type = ARM_CP_NO_RAW,
4326       .writefn = tlbi_aa64_vae1_write },
4327     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4328       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4329       .access = PL1_W, .type = ARM_CP_NO_RAW,
4330       .writefn = tlbi_aa64_vae1_write },
4331     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4332       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4333       .access = PL2_W, .type = ARM_CP_NO_RAW,
4334       .writefn = tlbi_aa64_ipas2e1is_write },
4335     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4336       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4337       .access = PL2_W, .type = ARM_CP_NO_RAW,
4338       .writefn = tlbi_aa64_ipas2e1is_write },
4339     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4340       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4341       .access = PL2_W, .type = ARM_CP_NO_RAW,
4342       .writefn = tlbi_aa64_alle1is_write },
4343     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4344       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4345       .access = PL2_W, .type = ARM_CP_NO_RAW,
4346       .writefn = tlbi_aa64_alle1is_write },
4347     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4348       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4349       .access = PL2_W, .type = ARM_CP_NO_RAW,
4350       .writefn = tlbi_aa64_ipas2e1_write },
4351     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4352       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4353       .access = PL2_W, .type = ARM_CP_NO_RAW,
4354       .writefn = tlbi_aa64_ipas2e1_write },
4355     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4356       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4357       .access = PL2_W, .type = ARM_CP_NO_RAW,
4358       .writefn = tlbi_aa64_alle1_write },
4359     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4360       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4361       .access = PL2_W, .type = ARM_CP_NO_RAW,
4362       .writefn = tlbi_aa64_alle1is_write },
4363 #ifndef CONFIG_USER_ONLY
4364     /* 64 bit address translation operations */
4365     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4366       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4367       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4368       .writefn = ats_write64 },
4369     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4370       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4371       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4372       .writefn = ats_write64 },
4373     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4374       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4375       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4376       .writefn = ats_write64 },
4377     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4378       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4379       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4380       .writefn = ats_write64 },
4381     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4382       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4383       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4384       .writefn = ats_write64 },
4385     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4386       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4387       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4388       .writefn = ats_write64 },
4389     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4390       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4391       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4392       .writefn = ats_write64 },
4393     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4394       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4395       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4396       .writefn = ats_write64 },
4397     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4398     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4399       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4400       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4401       .writefn = ats_write64 },
4402     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4403       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4404       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4405       .writefn = ats_write64 },
4406     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4407       .type = ARM_CP_ALIAS,
4408       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4409       .access = PL1_RW, .resetvalue = 0,
4410       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4411       .writefn = par_write },
4412 #endif
4413     /* TLB invalidate last level of translation table walk */
4414     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4415       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4416     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4417       .type = ARM_CP_NO_RAW, .access = PL1_W,
4418       .writefn = tlbimvaa_is_write },
4419     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4420       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4421     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4422       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4423     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4424       .type = ARM_CP_NO_RAW, .access = PL2_W,
4425       .writefn = tlbimva_hyp_write },
4426     { .name = "TLBIMVALHIS",
4427       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4428       .type = ARM_CP_NO_RAW, .access = PL2_W,
4429       .writefn = tlbimva_hyp_is_write },
4430     { .name = "TLBIIPAS2",
4431       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4432       .type = ARM_CP_NO_RAW, .access = PL2_W,
4433       .writefn = tlbiipas2_write },
4434     { .name = "TLBIIPAS2IS",
4435       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4436       .type = ARM_CP_NO_RAW, .access = PL2_W,
4437       .writefn = tlbiipas2_is_write },
4438     { .name = "TLBIIPAS2L",
4439       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4440       .type = ARM_CP_NO_RAW, .access = PL2_W,
4441       .writefn = tlbiipas2_write },
4442     { .name = "TLBIIPAS2LIS",
4443       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4444       .type = ARM_CP_NO_RAW, .access = PL2_W,
4445       .writefn = tlbiipas2_is_write },
4446     /* 32 bit cache operations */
4447     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4448       .type = ARM_CP_NOP, .access = PL1_W },
4449     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4450       .type = ARM_CP_NOP, .access = PL1_W },
4451     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4452       .type = ARM_CP_NOP, .access = PL1_W },
4453     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4454       .type = ARM_CP_NOP, .access = PL1_W },
4455     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4456       .type = ARM_CP_NOP, .access = PL1_W },
4457     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4458       .type = ARM_CP_NOP, .access = PL1_W },
4459     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4460       .type = ARM_CP_NOP, .access = PL1_W },
4461     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4462       .type = ARM_CP_NOP, .access = PL1_W },
4463     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4464       .type = ARM_CP_NOP, .access = PL1_W },
4465     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4466       .type = ARM_CP_NOP, .access = PL1_W },
4467     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4468       .type = ARM_CP_NOP, .access = PL1_W },
4469     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4470       .type = ARM_CP_NOP, .access = PL1_W },
4471     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4472       .type = ARM_CP_NOP, .access = PL1_W },
4473     /* MMU Domain access control / MPU write buffer control */
4474     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4475       .access = PL1_RW, .resetvalue = 0,
4476       .writefn = dacr_write, .raw_writefn = raw_write,
4477       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4478                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4479     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4480       .type = ARM_CP_ALIAS,
4481       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4482       .access = PL1_RW,
4483       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4484     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4485       .type = ARM_CP_ALIAS,
4486       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4487       .access = PL1_RW,
4488       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4489     /* We rely on the access checks not allowing the guest to write to the
4490      * state field when SPSel indicates that it's being used as the stack
4491      * pointer.
4492      */
4493     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4494       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4495       .access = PL1_RW, .accessfn = sp_el0_access,
4496       .type = ARM_CP_ALIAS,
4497       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4498     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4499       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4500       .access = PL2_RW, .type = ARM_CP_ALIAS,
4501       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4502     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4503       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4504       .type = ARM_CP_NO_RAW,
4505       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4506     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4507       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4508       .type = ARM_CP_ALIAS,
4509       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4510       .access = PL2_RW, .accessfn = fpexc32_access },
4511     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4512       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4513       .access = PL2_RW, .resetvalue = 0,
4514       .writefn = dacr_write, .raw_writefn = raw_write,
4515       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4516     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4517       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4518       .access = PL2_RW, .resetvalue = 0,
4519       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4520     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4521       .type = ARM_CP_ALIAS,
4522       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4523       .access = PL2_RW,
4524       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4525     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4526       .type = ARM_CP_ALIAS,
4527       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4528       .access = PL2_RW,
4529       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4530     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4531       .type = ARM_CP_ALIAS,
4532       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4533       .access = PL2_RW,
4534       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4535     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4536       .type = ARM_CP_ALIAS,
4537       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4538       .access = PL2_RW,
4539       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4540     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4541       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4542       .resetvalue = 0,
4543       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4544     { .name = "SDCR", .type = ARM_CP_ALIAS,
4545       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4546       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4547       .writefn = sdcr_write,
4548       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4549     REGINFO_SENTINEL
4550 };
4551 
4552 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
4553 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4554     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4555       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4556       .access = PL2_RW,
4557       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4558     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4559       .type = ARM_CP_NO_RAW,
4560       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4561       .access = PL2_RW,
4562       .type = ARM_CP_CONST, .resetvalue = 0 },
4563     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4564       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4565       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4566     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4567       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4568       .access = PL2_RW,
4569       .type = ARM_CP_CONST, .resetvalue = 0 },
4570     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4571       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4572       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4573     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4574       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4575       .access = PL2_RW, .type = ARM_CP_CONST,
4576       .resetvalue = 0 },
4577     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4578       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4579       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4580     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4581       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4582       .access = PL2_RW, .type = ARM_CP_CONST,
4583       .resetvalue = 0 },
4584     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4585       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4586       .access = PL2_RW, .type = ARM_CP_CONST,
4587       .resetvalue = 0 },
4588     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4589       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4590       .access = PL2_RW, .type = ARM_CP_CONST,
4591       .resetvalue = 0 },
4592     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4593       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4594       .access = PL2_RW, .type = ARM_CP_CONST,
4595       .resetvalue = 0 },
4596     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4597       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4598       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4599     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4600       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4601       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4602       .type = ARM_CP_CONST, .resetvalue = 0 },
4603     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4604       .cp = 15, .opc1 = 6, .crm = 2,
4605       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4606       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4607     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4608       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4609       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4610     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4611       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4612       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4613     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4614       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4615       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4616     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4617       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4618       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4619     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4620       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4621       .resetvalue = 0 },
4622     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4623       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4624       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4625     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4626       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4627       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4628     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4629       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4630       .resetvalue = 0 },
4631     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4632       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4633       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4634     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4635       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4636       .resetvalue = 0 },
4637     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4638       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4639       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4640     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4641       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4642       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4643     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4644       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4645       .access = PL2_RW, .accessfn = access_tda,
4646       .type = ARM_CP_CONST, .resetvalue = 0 },
4647     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4648       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4649       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4650       .type = ARM_CP_CONST, .resetvalue = 0 },
4651     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4652       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4653       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4654     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4655       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4656       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4657     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4658       .type = ARM_CP_CONST,
4659       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4660       .access = PL2_RW, .resetvalue = 0 },
4661     REGINFO_SENTINEL
4662 };
4663 
4664 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4665 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4666     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4667       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4668       .access = PL2_RW,
4669       .type = ARM_CP_CONST, .resetvalue = 0 },
4670     REGINFO_SENTINEL
4671 };
4672 
hcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4673 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4674 {
4675     ARMCPU *cpu = env_archcpu(env);
4676     uint64_t valid_mask = HCR_MASK;
4677 
4678     if (arm_feature(env, ARM_FEATURE_EL3)) {
4679         valid_mask &= ~HCR_HCD;
4680     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4681         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4682          * However, if we're using the SMC PSCI conduit then QEMU is
4683          * effectively acting like EL3 firmware and so the guest at
4684          * EL2 should retain the ability to prevent EL1 from being
4685          * able to make SMC calls into the ersatz firmware, so in
4686          * that case HCR.TSC should be read/write.
4687          */
4688         valid_mask &= ~HCR_TSC;
4689     }
4690     if (cpu_isar_feature(aa64_lor, cpu)) {
4691         valid_mask |= HCR_TLOR;
4692     }
4693     if (cpu_isar_feature(aa64_pauth, cpu)) {
4694         valid_mask |= HCR_API | HCR_APK;
4695     }
4696 
4697     /* Clear RES0 bits.  */
4698     value &= valid_mask;
4699 
4700     /* These bits change the MMU setup:
4701      * HCR_VM enables stage 2 translation
4702      * HCR_PTW forbids certain page-table setups
4703      * HCR_DC Disables stage1 and enables stage2 translation
4704      */
4705     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4706         tlb_flush(CPU(cpu));
4707     }
4708     env->cp15.hcr_el2 = value;
4709 
4710     /*
4711      * Updates to VI and VF require us to update the status of
4712      * virtual interrupts, which are the logical OR of these bits
4713      * and the state of the input lines from the GIC. (This requires
4714      * that we have the iothread lock, which is done by marking the
4715      * reginfo structs as ARM_CP_IO.)
4716      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4717      * possible for it to be taken immediately, because VIRQ and
4718      * VFIQ are masked unless running at EL0 or EL1, and HCR
4719      * can only be written at EL2.
4720      */
4721     g_assert(qemu_mutex_iothread_locked());
4722     arm_cpu_update_virq(cpu);
4723     arm_cpu_update_vfiq(cpu);
4724 }
4725 
hcr_writehigh(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4726 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4727                           uint64_t value)
4728 {
4729     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4730     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4731     hcr_write(env, NULL, value);
4732 }
4733 
hcr_writelow(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4734 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4735                          uint64_t value)
4736 {
4737     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4738     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4739     hcr_write(env, NULL, value);
4740 }
4741 
4742 /*
4743  * Return the effective value of HCR_EL2.
4744  * Bits that are not included here:
4745  * RW       (read from SCR_EL3.RW as needed)
4746  */
arm_hcr_el2_eff(CPUARMState * env)4747 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4748 {
4749     uint64_t ret = env->cp15.hcr_el2;
4750 
4751     if (arm_is_secure_below_el3(env)) {
4752         /*
4753          * "This register has no effect if EL2 is not enabled in the
4754          * current Security state".  This is ARMv8.4-SecEL2 speak for
4755          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4756          *
4757          * Prior to that, the language was "In an implementation that
4758          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4759          * as if this field is 0 for all purposes other than a direct
4760          * read or write access of HCR_EL2".  With lots of enumeration
4761          * on a per-field basis.  In current QEMU, this is condition
4762          * is arm_is_secure_below_el3.
4763          *
4764          * Since the v8.4 language applies to the entire register, and
4765          * appears to be backward compatible, use that.
4766          */
4767         ret = 0;
4768     } else if (ret & HCR_TGE) {
4769         /* These bits are up-to-date as of ARMv8.4.  */
4770         if (ret & HCR_E2H) {
4771             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4772                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4773                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4774                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4775         } else {
4776             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4777         }
4778         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4779                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4780                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4781                  HCR_TLOR);
4782     }
4783 
4784     return ret;
4785 }
4786 
cptr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4787 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4788                            uint64_t value)
4789 {
4790     /*
4791      * For A-profile AArch32 EL3, if NSACR.CP10
4792      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4793      */
4794     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4795         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4796         value &= ~(0x3 << 10);
4797         value |= env->cp15.cptr_el[2] & (0x3 << 10);
4798     }
4799     env->cp15.cptr_el[2] = value;
4800 }
4801 
cptr_el2_read(CPUARMState * env,const ARMCPRegInfo * ri)4802 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4803 {
4804     /*
4805      * For A-profile AArch32 EL3, if NSACR.CP10
4806      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4807      */
4808     uint64_t value = env->cp15.cptr_el[2];
4809 
4810     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4811         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4812         value |= 0x3 << 10;
4813     }
4814     return value;
4815 }
4816 
4817 static const ARMCPRegInfo el2_cp_reginfo[] = {
4818     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4819       .type = ARM_CP_IO,
4820       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4821       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4822       .writefn = hcr_write },
4823     { .name = "HCR", .state = ARM_CP_STATE_AA32,
4824       .type = ARM_CP_ALIAS | ARM_CP_IO,
4825       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4826       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4827       .writefn = hcr_writelow },
4828     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4829       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4830       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4831     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4832       .type = ARM_CP_ALIAS,
4833       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4834       .access = PL2_RW,
4835       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4836     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4837       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4838       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4839     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4840       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4841       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4842     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4843       .type = ARM_CP_ALIAS,
4844       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4845       .access = PL2_RW,
4846       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4847     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4848       .type = ARM_CP_ALIAS,
4849       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4850       .access = PL2_RW,
4851       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4852     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4853       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4854       .access = PL2_RW, .writefn = vbar_write,
4855       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4856       .resetvalue = 0 },
4857     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4858       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4859       .access = PL3_RW, .type = ARM_CP_ALIAS,
4860       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4861     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4862       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4863       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4864       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4865       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
4866     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4867       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4868       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4869       .resetvalue = 0 },
4870     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4871       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4872       .access = PL2_RW, .type = ARM_CP_ALIAS,
4873       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4874     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4875       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4876       .access = PL2_RW, .type = ARM_CP_CONST,
4877       .resetvalue = 0 },
4878     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4879     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4880       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4881       .access = PL2_RW, .type = ARM_CP_CONST,
4882       .resetvalue = 0 },
4883     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4884       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4885       .access = PL2_RW, .type = ARM_CP_CONST,
4886       .resetvalue = 0 },
4887     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4888       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4889       .access = PL2_RW, .type = ARM_CP_CONST,
4890       .resetvalue = 0 },
4891     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4892       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4893       .access = PL2_RW,
4894       /* no .writefn needed as this can't cause an ASID change;
4895        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4896        */
4897       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4898     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4899       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4900       .type = ARM_CP_ALIAS,
4901       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4902       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4903     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4904       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4905       .access = PL2_RW,
4906       /* no .writefn needed as this can't cause an ASID change;
4907        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4908        */
4909       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4910     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4911       .cp = 15, .opc1 = 6, .crm = 2,
4912       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4913       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4914       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4915       .writefn = vttbr_write },
4916     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4917       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4918       .access = PL2_RW, .writefn = vttbr_write,
4919       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4920     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4921       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4922       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4923       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4924     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4925       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4926       .access = PL2_RW, .resetvalue = 0,
4927       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4928     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4929       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4930       .access = PL2_RW, .resetvalue = 0,
4931       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4932     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4933       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4934       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4935     { .name = "TLBIALLNSNH",
4936       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4937       .type = ARM_CP_NO_RAW, .access = PL2_W,
4938       .writefn = tlbiall_nsnh_write },
4939     { .name = "TLBIALLNSNHIS",
4940       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4941       .type = ARM_CP_NO_RAW, .access = PL2_W,
4942       .writefn = tlbiall_nsnh_is_write },
4943     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4944       .type = ARM_CP_NO_RAW, .access = PL2_W,
4945       .writefn = tlbiall_hyp_write },
4946     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4947       .type = ARM_CP_NO_RAW, .access = PL2_W,
4948       .writefn = tlbiall_hyp_is_write },
4949     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4950       .type = ARM_CP_NO_RAW, .access = PL2_W,
4951       .writefn = tlbimva_hyp_write },
4952     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4953       .type = ARM_CP_NO_RAW, .access = PL2_W,
4954       .writefn = tlbimva_hyp_is_write },
4955     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4956       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4957       .type = ARM_CP_NO_RAW, .access = PL2_W,
4958       .writefn = tlbi_aa64_alle2_write },
4959     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4960       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4961       .type = ARM_CP_NO_RAW, .access = PL2_W,
4962       .writefn = tlbi_aa64_vae2_write },
4963     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4964       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4965       .access = PL2_W, .type = ARM_CP_NO_RAW,
4966       .writefn = tlbi_aa64_vae2_write },
4967     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4968       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4969       .access = PL2_W, .type = ARM_CP_NO_RAW,
4970       .writefn = tlbi_aa64_alle2is_write },
4971     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4972       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4973       .type = ARM_CP_NO_RAW, .access = PL2_W,
4974       .writefn = tlbi_aa64_vae2is_write },
4975     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4976       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4977       .access = PL2_W, .type = ARM_CP_NO_RAW,
4978       .writefn = tlbi_aa64_vae2is_write },
4979 #ifndef CONFIG_USER_ONLY
4980     /* Unlike the other EL2-related AT operations, these must
4981      * UNDEF from EL3 if EL2 is not implemented, which is why we
4982      * define them here rather than with the rest of the AT ops.
4983      */
4984     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4985       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4986       .access = PL2_W, .accessfn = at_s1e2_access,
4987       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
4988     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4989       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4990       .access = PL2_W, .accessfn = at_s1e2_access,
4991       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
4992     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4993      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4994      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4995      * to behave as if SCR.NS was 1.
4996      */
4997     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4998       .access = PL2_W,
4999       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5000     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5001       .access = PL2_W,
5002       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5003     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5004       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5005       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5006        * reset values as IMPDEF. We choose to reset to 3 to comply with
5007        * both ARMv7 and ARMv8.
5008        */
5009       .access = PL2_RW, .resetvalue = 3,
5010       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5011     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5012       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5013       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5014       .writefn = gt_cntvoff_write,
5015       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5016     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5017       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5018       .writefn = gt_cntvoff_write,
5019       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5020     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5021       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5022       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5023       .type = ARM_CP_IO, .access = PL2_RW,
5024       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5025     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5026       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5027       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5028       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5029     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5030       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5031       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5032       .resetfn = gt_hyp_timer_reset,
5033       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5034     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5035       .type = ARM_CP_IO,
5036       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5037       .access = PL2_RW,
5038       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5039       .resetvalue = 0,
5040       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5041 #endif
5042     /* The only field of MDCR_EL2 that has a defined architectural reset value
5043      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5044      * don't implement any PMU event counters, so using zero as a reset
5045      * value for MDCR_EL2 is okay
5046      */
5047     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5048       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5049       .access = PL2_RW, .resetvalue = 0,
5050       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5051     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5052       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5053       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5054       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5055     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5056       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5057       .access = PL2_RW,
5058       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5059     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5060       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5061       .access = PL2_RW,
5062       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5063     REGINFO_SENTINEL
5064 };
5065 
5066 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5067     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5068       .type = ARM_CP_ALIAS | ARM_CP_IO,
5069       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5070       .access = PL2_RW,
5071       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5072       .writefn = hcr_writehigh },
5073     REGINFO_SENTINEL
5074 };
5075 
nsacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5076 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5077                                    bool isread)
5078 {
5079     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5080      * At Secure EL1 it traps to EL3.
5081      */
5082     if (arm_current_el(env) == 3) {
5083         return CP_ACCESS_OK;
5084     }
5085     if (arm_is_secure_below_el3(env)) {
5086         return CP_ACCESS_TRAP_EL3;
5087     }
5088     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5089     if (isread) {
5090         return CP_ACCESS_OK;
5091     }
5092     return CP_ACCESS_TRAP_UNCATEGORIZED;
5093 }
5094 
5095 static const ARMCPRegInfo el3_cp_reginfo[] = {
5096     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5097       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5098       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5099       .resetvalue = 0, .writefn = scr_write },
5100     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5101       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5102       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5103       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5104       .writefn = scr_write },
5105     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5106       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5107       .access = PL3_RW, .resetvalue = 0,
5108       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5109     { .name = "SDER",
5110       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5111       .access = PL3_RW, .resetvalue = 0,
5112       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5113     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5114       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5115       .writefn = vbar_write, .resetvalue = 0,
5116       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5117     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5118       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5119       .access = PL3_RW, .resetvalue = 0,
5120       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5121     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5122       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5123       .access = PL3_RW,
5124       /* no .writefn needed as this can't cause an ASID change;
5125        * we must provide a .raw_writefn and .resetfn because we handle
5126        * reset and migration for the AArch32 TTBCR(S), which might be
5127        * using mask and base_mask.
5128        */
5129       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5130       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5131     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5132       .type = ARM_CP_ALIAS,
5133       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5134       .access = PL3_RW,
5135       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5136     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5137       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5138       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5139     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5140       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5141       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5142     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5143       .type = ARM_CP_ALIAS,
5144       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5145       .access = PL3_RW,
5146       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5147     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5148       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5149       .access = PL3_RW, .writefn = vbar_write,
5150       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5151       .resetvalue = 0 },
5152     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5153       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5154       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5155       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5156     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5157       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5158       .access = PL3_RW, .resetvalue = 0,
5159       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5160     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5161       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5162       .access = PL3_RW, .type = ARM_CP_CONST,
5163       .resetvalue = 0 },
5164     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5165       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5166       .access = PL3_RW, .type = ARM_CP_CONST,
5167       .resetvalue = 0 },
5168     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5169       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5170       .access = PL3_RW, .type = ARM_CP_CONST,
5171       .resetvalue = 0 },
5172     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5173       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5174       .access = PL3_W, .type = ARM_CP_NO_RAW,
5175       .writefn = tlbi_aa64_alle3is_write },
5176     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5177       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5178       .access = PL3_W, .type = ARM_CP_NO_RAW,
5179       .writefn = tlbi_aa64_vae3is_write },
5180     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5181       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5182       .access = PL3_W, .type = ARM_CP_NO_RAW,
5183       .writefn = tlbi_aa64_vae3is_write },
5184     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5185       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5186       .access = PL3_W, .type = ARM_CP_NO_RAW,
5187       .writefn = tlbi_aa64_alle3_write },
5188     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5189       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5190       .access = PL3_W, .type = ARM_CP_NO_RAW,
5191       .writefn = tlbi_aa64_vae3_write },
5192     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5193       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5194       .access = PL3_W, .type = ARM_CP_NO_RAW,
5195       .writefn = tlbi_aa64_vae3_write },
5196     REGINFO_SENTINEL
5197 };
5198 
ctr_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5199 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5200                                      bool isread)
5201 {
5202     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5203      * but the AArch32 CTR has its own reginfo struct)
5204      */
5205     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5206         return CP_ACCESS_TRAP;
5207     }
5208     return CP_ACCESS_OK;
5209 }
5210 
oslar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5211 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5212                         uint64_t value)
5213 {
5214     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5215      * read via a bit in OSLSR_EL1.
5216      */
5217     int oslock;
5218 
5219     if (ri->state == ARM_CP_STATE_AA32) {
5220         oslock = (value == 0xC5ACCE55);
5221     } else {
5222         oslock = value & 1;
5223     }
5224 
5225     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5226 }
5227 
5228 static const ARMCPRegInfo debug_cp_reginfo[] = {
5229     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5230      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5231      * unlike DBGDRAR it is never accessible from EL0.
5232      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5233      * accessor.
5234      */
5235     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5236       .access = PL0_R, .accessfn = access_tdra,
5237       .type = ARM_CP_CONST, .resetvalue = 0 },
5238     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5239       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5240       .access = PL1_R, .accessfn = access_tdra,
5241       .type = ARM_CP_CONST, .resetvalue = 0 },
5242     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5243       .access = PL0_R, .accessfn = access_tdra,
5244       .type = ARM_CP_CONST, .resetvalue = 0 },
5245     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5246     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5247       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5248       .access = PL1_RW, .accessfn = access_tda,
5249       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5250       .resetvalue = 0 },
5251     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5252      * We don't implement the configurable EL0 access.
5253      */
5254     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5255       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5256       .type = ARM_CP_ALIAS,
5257       .access = PL1_R, .accessfn = access_tda,
5258       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5259     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5260       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5261       .access = PL1_W, .type = ARM_CP_NO_RAW,
5262       .accessfn = access_tdosa,
5263       .writefn = oslar_write },
5264     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5265       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5266       .access = PL1_R, .resetvalue = 10,
5267       .accessfn = access_tdosa,
5268       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5269     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5270     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5271       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5272       .access = PL1_RW, .accessfn = access_tdosa,
5273       .type = ARM_CP_NOP },
5274     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5275      * implement vector catch debug events yet.
5276      */
5277     { .name = "DBGVCR",
5278       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5279       .access = PL1_RW, .accessfn = access_tda,
5280       .type = ARM_CP_NOP },
5281     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5282      * to save and restore a 32-bit guest's DBGVCR)
5283      */
5284     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5285       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5286       .access = PL2_RW, .accessfn = access_tda,
5287       .type = ARM_CP_NOP },
5288     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5289      * Channel but Linux may try to access this register. The 32-bit
5290      * alias is DBGDCCINT.
5291      */
5292     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5293       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5294       .access = PL1_RW, .accessfn = access_tda,
5295       .type = ARM_CP_NOP },
5296     REGINFO_SENTINEL
5297 };
5298 
5299 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5300     /* 64 bit access versions of the (dummy) debug registers */
5301     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5302       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5303     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5304       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5305     REGINFO_SENTINEL
5306 };
5307 
5308 /* Return the exception level to which exceptions should be taken
5309  * via SVEAccessTrap.  If an exception should be routed through
5310  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5311  * take care of raising that exception.
5312  * C.f. the ARM pseudocode function CheckSVEEnabled.
5313  */
sve_exception_el(CPUARMState * env,int el)5314 int sve_exception_el(CPUARMState *env, int el)
5315 {
5316 #ifndef CONFIG_USER_ONLY
5317     if (el <= 1) {
5318         bool disabled = false;
5319 
5320         /* The CPACR.ZEN controls traps to EL1:
5321          * 0, 2 : trap EL0 and EL1 accesses
5322          * 1    : trap only EL0 accesses
5323          * 3    : trap no accesses
5324          */
5325         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5326             disabled = true;
5327         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5328             disabled = el == 0;
5329         }
5330         if (disabled) {
5331             /* route_to_el2 */
5332             return (arm_feature(env, ARM_FEATURE_EL2)
5333                     && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5334         }
5335 
5336         /* Check CPACR.FPEN.  */
5337         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5338             disabled = true;
5339         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5340             disabled = el == 0;
5341         }
5342         if (disabled) {
5343             return 0;
5344         }
5345     }
5346 
5347     /* CPTR_EL2.  Since TZ and TFP are positive,
5348      * they will be zero when EL2 is not present.
5349      */
5350     if (el <= 2 && !arm_is_secure_below_el3(env)) {
5351         if (env->cp15.cptr_el[2] & CPTR_TZ) {
5352             return 2;
5353         }
5354         if (env->cp15.cptr_el[2] & CPTR_TFP) {
5355             return 0;
5356         }
5357     }
5358 
5359     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
5360     if (arm_feature(env, ARM_FEATURE_EL3)
5361         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5362         return 3;
5363     }
5364 #endif
5365     return 0;
5366 }
5367 
sve_zcr_get_valid_len(ARMCPU * cpu,uint32_t start_len)5368 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
5369 {
5370     uint32_t end_len;
5371 
5372     end_len = start_len &= 0xf;
5373     if (!test_bit(start_len, cpu->sve_vq_map)) {
5374         end_len = find_last_bit(cpu->sve_vq_map, start_len);
5375         assert(end_len < start_len);
5376     }
5377     return end_len;
5378 }
5379 
5380 /*
5381  * Given that SVE is enabled, return the vector length for EL.
5382  */
sve_zcr_len_for_el(CPUARMState * env,int el)5383 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5384 {
5385     ARMCPU *cpu = env_archcpu(env);
5386     uint32_t zcr_len = cpu->sve_max_vq - 1;
5387 
5388     if (el <= 1) {
5389         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5390     }
5391     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5392         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5393     }
5394     if (arm_feature(env, ARM_FEATURE_EL3)) {
5395         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5396     }
5397 
5398     return sve_zcr_get_valid_len(cpu, zcr_len);
5399 }
5400 
zcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5401 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5402                       uint64_t value)
5403 {
5404     int cur_el = arm_current_el(env);
5405     int old_len = sve_zcr_len_for_el(env, cur_el);
5406     int new_len;
5407 
5408     /* Bits other than [3:0] are RAZ/WI.  */
5409     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5410     raw_write(env, ri, value & 0xf);
5411 
5412     /*
5413      * Because we arrived here, we know both FP and SVE are enabled;
5414      * otherwise we would have trapped access to the ZCR_ELn register.
5415      */
5416     new_len = sve_zcr_len_for_el(env, cur_el);
5417     if (new_len < old_len) {
5418         aarch64_sve_narrow_vq(env, new_len + 1);
5419     }
5420 }
5421 
5422 static const ARMCPRegInfo zcr_el1_reginfo = {
5423     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5424     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5425     .access = PL1_RW, .type = ARM_CP_SVE,
5426     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5427     .writefn = zcr_write, .raw_writefn = raw_write
5428 };
5429 
5430 static const ARMCPRegInfo zcr_el2_reginfo = {
5431     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5432     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5433     .access = PL2_RW, .type = ARM_CP_SVE,
5434     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5435     .writefn = zcr_write, .raw_writefn = raw_write
5436 };
5437 
5438 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5439     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5440     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5441     .access = PL2_RW, .type = ARM_CP_SVE,
5442     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5443 };
5444 
5445 static const ARMCPRegInfo zcr_el3_reginfo = {
5446     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5447     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5448     .access = PL3_RW, .type = ARM_CP_SVE,
5449     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5450     .writefn = zcr_write, .raw_writefn = raw_write
5451 };
5452 
hw_watchpoint_update(ARMCPU * cpu,int n)5453 void hw_watchpoint_update(ARMCPU *cpu, int n)
5454 {
5455     CPUARMState *env = &cpu->env;
5456     vaddr len = 0;
5457     vaddr wvr = env->cp15.dbgwvr[n];
5458     uint64_t wcr = env->cp15.dbgwcr[n];
5459     int mask;
5460     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5461 
5462     if (env->cpu_watchpoint[n]) {
5463         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5464         env->cpu_watchpoint[n] = NULL;
5465     }
5466 
5467     if (!extract64(wcr, 0, 1)) {
5468         /* E bit clear : watchpoint disabled */
5469         return;
5470     }
5471 
5472     switch (extract64(wcr, 3, 2)) {
5473     case 0:
5474         /* LSC 00 is reserved and must behave as if the wp is disabled */
5475         return;
5476     case 1:
5477         flags |= BP_MEM_READ;
5478         break;
5479     case 2:
5480         flags |= BP_MEM_WRITE;
5481         break;
5482     case 3:
5483         flags |= BP_MEM_ACCESS;
5484         break;
5485     }
5486 
5487     /* Attempts to use both MASK and BAS fields simultaneously are
5488      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5489      * thus generating a watchpoint for every byte in the masked region.
5490      */
5491     mask = extract64(wcr, 24, 4);
5492     if (mask == 1 || mask == 2) {
5493         /* Reserved values of MASK; we must act as if the mask value was
5494          * some non-reserved value, or as if the watchpoint were disabled.
5495          * We choose the latter.
5496          */
5497         return;
5498     } else if (mask) {
5499         /* Watchpoint covers an aligned area up to 2GB in size */
5500         len = 1ULL << mask;
5501         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5502          * whether the watchpoint fires when the unmasked bits match; we opt
5503          * to generate the exceptions.
5504          */
5505         wvr &= ~(len - 1);
5506     } else {
5507         /* Watchpoint covers bytes defined by the byte address select bits */
5508         int bas = extract64(wcr, 5, 8);
5509         int basstart;
5510 
5511         if (bas == 0) {
5512             /* This must act as if the watchpoint is disabled */
5513             return;
5514         }
5515 
5516         if (extract64(wvr, 2, 1)) {
5517             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5518              * ignored, and BAS[3:0] define which bytes to watch.
5519              */
5520             bas &= 0xf;
5521         }
5522         /* The BAS bits are supposed to be programmed to indicate a contiguous
5523          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5524          * we fire for each byte in the word/doubleword addressed by the WVR.
5525          * We choose to ignore any non-zero bits after the first range of 1s.
5526          */
5527         basstart = ctz32(bas);
5528         len = cto32(bas >> basstart);
5529         wvr += basstart;
5530     }
5531 
5532     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5533                           &env->cpu_watchpoint[n]);
5534 }
5535 
hw_watchpoint_update_all(ARMCPU * cpu)5536 void hw_watchpoint_update_all(ARMCPU *cpu)
5537 {
5538     int i;
5539     CPUARMState *env = &cpu->env;
5540 
5541     /* Completely clear out existing QEMU watchpoints and our array, to
5542      * avoid possible stale entries following migration load.
5543      */
5544     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5545     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5546 
5547     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5548         hw_watchpoint_update(cpu, i);
5549     }
5550 }
5551 
dbgwvr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5552 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5553                          uint64_t value)
5554 {
5555     ARMCPU *cpu = env_archcpu(env);
5556     int i = ri->crm;
5557 
5558     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5559      * register reads and behaves as if values written are sign extended.
5560      * Bits [1:0] are RES0.
5561      */
5562     value = sextract64(value, 0, 49) & ~3ULL;
5563 
5564     raw_write(env, ri, value);
5565     hw_watchpoint_update(cpu, i);
5566 }
5567 
dbgwcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5568 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5569                          uint64_t value)
5570 {
5571     ARMCPU *cpu = env_archcpu(env);
5572     int i = ri->crm;
5573 
5574     raw_write(env, ri, value);
5575     hw_watchpoint_update(cpu, i);
5576 }
5577 
hw_breakpoint_update(ARMCPU * cpu,int n)5578 void hw_breakpoint_update(ARMCPU *cpu, int n)
5579 {
5580     CPUARMState *env = &cpu->env;
5581     uint64_t bvr = env->cp15.dbgbvr[n];
5582     uint64_t bcr = env->cp15.dbgbcr[n];
5583     vaddr addr;
5584     int bt;
5585     int flags = BP_CPU;
5586 
5587     if (env->cpu_breakpoint[n]) {
5588         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5589         env->cpu_breakpoint[n] = NULL;
5590     }
5591 
5592     if (!extract64(bcr, 0, 1)) {
5593         /* E bit clear : watchpoint disabled */
5594         return;
5595     }
5596 
5597     bt = extract64(bcr, 20, 4);
5598 
5599     switch (bt) {
5600     case 4: /* unlinked address mismatch (reserved if AArch64) */
5601     case 5: /* linked address mismatch (reserved if AArch64) */
5602         qemu_log_mask(LOG_UNIMP,
5603                       "arm: address mismatch breakpoint types not implemented\n");
5604         return;
5605     case 0: /* unlinked address match */
5606     case 1: /* linked address match */
5607     {
5608         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5609          * we behave as if the register was sign extended. Bits [1:0] are
5610          * RES0. The BAS field is used to allow setting breakpoints on 16
5611          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5612          * a bp will fire if the addresses covered by the bp and the addresses
5613          * covered by the insn overlap but the insn doesn't start at the
5614          * start of the bp address range. We choose to require the insn and
5615          * the bp to have the same address. The constraints on writing to
5616          * BAS enforced in dbgbcr_write mean we have only four cases:
5617          *  0b0000  => no breakpoint
5618          *  0b0011  => breakpoint on addr
5619          *  0b1100  => breakpoint on addr + 2
5620          *  0b1111  => breakpoint on addr
5621          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5622          */
5623         int bas = extract64(bcr, 5, 4);
5624         addr = sextract64(bvr, 0, 49) & ~3ULL;
5625         if (bas == 0) {
5626             return;
5627         }
5628         if (bas == 0xc) {
5629             addr += 2;
5630         }
5631         break;
5632     }
5633     case 2: /* unlinked context ID match */
5634     case 8: /* unlinked VMID match (reserved if no EL2) */
5635     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5636         qemu_log_mask(LOG_UNIMP,
5637                       "arm: unlinked context breakpoint types not implemented\n");
5638         return;
5639     case 9: /* linked VMID match (reserved if no EL2) */
5640     case 11: /* linked context ID and VMID match (reserved if no EL2) */
5641     case 3: /* linked context ID match */
5642     default:
5643         /* We must generate no events for Linked context matches (unless
5644          * they are linked to by some other bp/wp, which is handled in
5645          * updates for the linking bp/wp). We choose to also generate no events
5646          * for reserved values.
5647          */
5648         return;
5649     }
5650 
5651     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5652 }
5653 
hw_breakpoint_update_all(ARMCPU * cpu)5654 void hw_breakpoint_update_all(ARMCPU *cpu)
5655 {
5656     int i;
5657     CPUARMState *env = &cpu->env;
5658 
5659     /* Completely clear out existing QEMU breakpoints and our array, to
5660      * avoid possible stale entries following migration load.
5661      */
5662     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5663     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5664 
5665     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5666         hw_breakpoint_update(cpu, i);
5667     }
5668 }
5669 
dbgbvr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5670 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5671                          uint64_t value)
5672 {
5673     ARMCPU *cpu = env_archcpu(env);
5674     int i = ri->crm;
5675 
5676     raw_write(env, ri, value);
5677     hw_breakpoint_update(cpu, i);
5678 }
5679 
dbgbcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5680 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5681                          uint64_t value)
5682 {
5683     ARMCPU *cpu = env_archcpu(env);
5684     int i = ri->crm;
5685 
5686     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5687      * copy of BAS[0].
5688      */
5689     value = deposit64(value, 6, 1, extract64(value, 5, 1));
5690     value = deposit64(value, 8, 1, extract64(value, 7, 1));
5691 
5692     raw_write(env, ri, value);
5693     hw_breakpoint_update(cpu, i);
5694 }
5695 
define_debug_regs(ARMCPU * cpu)5696 static void define_debug_regs(ARMCPU *cpu)
5697 {
5698     /* Define v7 and v8 architectural debug registers.
5699      * These are just dummy implementations for now.
5700      */
5701     int i;
5702     int wrps, brps, ctx_cmps;
5703     ARMCPRegInfo dbgdidr = {
5704         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5705         .access = PL0_R, .accessfn = access_tda,
5706         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5707     };
5708 
5709     /* Note that all these register fields hold "number of Xs minus 1". */
5710     brps = extract32(cpu->dbgdidr, 24, 4);
5711     wrps = extract32(cpu->dbgdidr, 28, 4);
5712     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5713 
5714     assert(ctx_cmps <= brps);
5715 
5716     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5717      * of the debug registers such as number of breakpoints;
5718      * check that if they both exist then they agree.
5719      */
5720     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5721         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5722         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5723         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5724     }
5725 
5726     define_one_arm_cp_reg(cpu, &dbgdidr);
5727     define_arm_cp_regs(cpu, debug_cp_reginfo);
5728 
5729     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5730         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5731     }
5732 
5733     for (i = 0; i < brps + 1; i++) {
5734         ARMCPRegInfo dbgregs[] = {
5735             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5736               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5737               .access = PL1_RW, .accessfn = access_tda,
5738               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5739               .writefn = dbgbvr_write, .raw_writefn = raw_write
5740             },
5741             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5742               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5743               .access = PL1_RW, .accessfn = access_tda,
5744               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5745               .writefn = dbgbcr_write, .raw_writefn = raw_write
5746             },
5747             REGINFO_SENTINEL
5748         };
5749         define_arm_cp_regs(cpu, dbgregs);
5750     }
5751 
5752     for (i = 0; i < wrps + 1; i++) {
5753         ARMCPRegInfo dbgregs[] = {
5754             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5755               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5756               .access = PL1_RW, .accessfn = access_tda,
5757               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5758               .writefn = dbgwvr_write, .raw_writefn = raw_write
5759             },
5760             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5761               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5762               .access = PL1_RW, .accessfn = access_tda,
5763               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5764               .writefn = dbgwcr_write, .raw_writefn = raw_write
5765             },
5766             REGINFO_SENTINEL
5767         };
5768         define_arm_cp_regs(cpu, dbgregs);
5769     }
5770 }
5771 
5772 /* We don't know until after realize whether there's a GICv3
5773  * attached, and that is what registers the gicv3 sysregs.
5774  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5775  * at runtime.
5776  */
id_pfr1_read(CPUARMState * env,const ARMCPRegInfo * ri)5777 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5778 {
5779     ARMCPU *cpu = env_archcpu(env);
5780     uint64_t pfr1 = cpu->id_pfr1;
5781 
5782     if (env->gicv3state) {
5783         pfr1 |= 1 << 28;
5784     }
5785     return pfr1;
5786 }
5787 
id_aa64pfr0_read(CPUARMState * env,const ARMCPRegInfo * ri)5788 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5789 {
5790     ARMCPU *cpu = env_archcpu(env);
5791     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5792 
5793     if (env->gicv3state) {
5794         pfr0 |= 1 << 24;
5795     }
5796     return pfr0;
5797 }
5798 
5799 /* Shared logic between LORID and the rest of the LOR* registers.
5800  * Secure state has already been delt with.
5801  */
access_lor_ns(CPUARMState * env)5802 static CPAccessResult access_lor_ns(CPUARMState *env)
5803 {
5804     int el = arm_current_el(env);
5805 
5806     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5807         return CP_ACCESS_TRAP_EL2;
5808     }
5809     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5810         return CP_ACCESS_TRAP_EL3;
5811     }
5812     return CP_ACCESS_OK;
5813 }
5814 
access_lorid(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5815 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5816                                    bool isread)
5817 {
5818     if (arm_is_secure_below_el3(env)) {
5819         /* Access ok in secure mode.  */
5820         return CP_ACCESS_OK;
5821     }
5822     return access_lor_ns(env);
5823 }
5824 
access_lor_other(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5825 static CPAccessResult access_lor_other(CPUARMState *env,
5826                                        const ARMCPRegInfo *ri, bool isread)
5827 {
5828     if (arm_is_secure_below_el3(env)) {
5829         /* Access denied in secure mode.  */
5830         return CP_ACCESS_TRAP;
5831     }
5832     return access_lor_ns(env);
5833 }
5834 
5835 #ifdef TARGET_AARCH64
access_pauth(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5836 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5837                                    bool isread)
5838 {
5839     int el = arm_current_el(env);
5840 
5841     if (el < 2 &&
5842         arm_feature(env, ARM_FEATURE_EL2) &&
5843         !(arm_hcr_el2_eff(env) & HCR_APK)) {
5844         return CP_ACCESS_TRAP_EL2;
5845     }
5846     if (el < 3 &&
5847         arm_feature(env, ARM_FEATURE_EL3) &&
5848         !(env->cp15.scr_el3 & SCR_APK)) {
5849         return CP_ACCESS_TRAP_EL3;
5850     }
5851     return CP_ACCESS_OK;
5852 }
5853 
5854 static const ARMCPRegInfo pauth_reginfo[] = {
5855     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5856       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5857       .access = PL1_RW, .accessfn = access_pauth,
5858       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5859     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5860       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5861       .access = PL1_RW, .accessfn = access_pauth,
5862       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5863     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5864       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5865       .access = PL1_RW, .accessfn = access_pauth,
5866       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5867     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5868       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5869       .access = PL1_RW, .accessfn = access_pauth,
5870       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5871     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5872       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5873       .access = PL1_RW, .accessfn = access_pauth,
5874       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5875     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5876       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5877       .access = PL1_RW, .accessfn = access_pauth,
5878       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5879     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5880       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5881       .access = PL1_RW, .accessfn = access_pauth,
5882       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5883     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5884       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5885       .access = PL1_RW, .accessfn = access_pauth,
5886       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5887     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5888       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5889       .access = PL1_RW, .accessfn = access_pauth,
5890       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5891     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5892       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5893       .access = PL1_RW, .accessfn = access_pauth,
5894       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5895     REGINFO_SENTINEL
5896 };
5897 
rndr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)5898 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5899 {
5900     Error *err = NULL;
5901     uint64_t ret;
5902 
5903     /* Success sets NZCV = 0000.  */
5904     env->NF = env->CF = env->VF = 0, env->ZF = 1;
5905 
5906     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5907         /*
5908          * ??? Failed, for unknown reasons in the crypto subsystem.
5909          * The best we can do is log the reason and return the
5910          * timed-out indication to the guest.  There is no reason
5911          * we know to expect this failure to be transitory, so the
5912          * guest may well hang retrying the operation.
5913          */
5914         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5915                       ri->name, error_get_pretty(err));
5916         error_free(err);
5917 
5918         env->ZF = 0; /* NZCF = 0100 */
5919         return 0;
5920     }
5921     return ret;
5922 }
5923 
5924 /* We do not support re-seeding, so the two registers operate the same.  */
5925 static const ARMCPRegInfo rndr_reginfo[] = {
5926     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5927       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5928       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5929       .access = PL0_R, .readfn = rndr_readfn },
5930     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5931       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5932       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5933       .access = PL0_R, .readfn = rndr_readfn },
5934     REGINFO_SENTINEL
5935 };
5936 #endif
5937 
access_predinv(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5938 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5939                                      bool isread)
5940 {
5941     int el = arm_current_el(env);
5942 
5943     if (el == 0) {
5944         uint64_t sctlr = arm_sctlr(env, el);
5945         if (!(sctlr & SCTLR_EnRCTX)) {
5946             return CP_ACCESS_TRAP;
5947         }
5948     } else if (el == 1) {
5949         uint64_t hcr = arm_hcr_el2_eff(env);
5950         if (hcr & HCR_NV) {
5951             return CP_ACCESS_TRAP_EL2;
5952         }
5953     }
5954     return CP_ACCESS_OK;
5955 }
5956 
5957 static const ARMCPRegInfo predinv_reginfo[] = {
5958     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5959       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5960       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5961     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5962       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5963       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5964     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5965       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5966       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5967     /*
5968      * Note the AArch32 opcodes have a different OPC1.
5969      */
5970     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5971       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5972       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5973     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5974       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5975       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5976     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5977       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5978       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5979     REGINFO_SENTINEL
5980 };
5981 
access_aa64_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5982 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
5983                                        bool isread)
5984 {
5985     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
5986         return CP_ACCESS_TRAP_EL2;
5987     }
5988 
5989     return CP_ACCESS_OK;
5990 }
5991 
access_aa32_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5992 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
5993                                        bool isread)
5994 {
5995     if (arm_feature(env, ARM_FEATURE_V8)) {
5996         return access_aa64_tid3(env, ri, isread);
5997     }
5998 
5999     return CP_ACCESS_OK;
6000 }
6001 
register_cp_regs_for_features(ARMCPU * cpu)6002 void register_cp_regs_for_features(ARMCPU *cpu)
6003 {
6004     /* Register all the coprocessor registers based on feature bits */
6005     CPUARMState *env = &cpu->env;
6006     if (arm_feature(env, ARM_FEATURE_M)) {
6007         /* M profile has no coprocessor registers */
6008         return;
6009     }
6010 
6011     define_arm_cp_regs(cpu, cp_reginfo);
6012     if (!arm_feature(env, ARM_FEATURE_V8)) {
6013         /* Must go early as it is full of wildcards that may be
6014          * overridden by later definitions.
6015          */
6016         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
6017     }
6018 
6019     if (arm_feature(env, ARM_FEATURE_V6)) {
6020         /* The ID registers all have impdef reset values */
6021         ARMCPRegInfo v6_idregs[] = {
6022             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
6023               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6024               .access = PL1_R, .type = ARM_CP_CONST,
6025               .accessfn = access_aa32_tid3,
6026               .resetvalue = cpu->id_pfr0 },
6027             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
6028              * the value of the GIC field until after we define these regs.
6029              */
6030             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
6031               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
6032               .access = PL1_R, .type = ARM_CP_NO_RAW,
6033               .accessfn = access_aa32_tid3,
6034               .readfn = id_pfr1_read,
6035               .writefn = arm_cp_write_ignore },
6036             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
6037               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
6038               .access = PL1_R, .type = ARM_CP_CONST,
6039               .accessfn = access_aa32_tid3,
6040               .resetvalue = cpu->id_dfr0 },
6041             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
6042               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
6043               .access = PL1_R, .type = ARM_CP_CONST,
6044               .accessfn = access_aa32_tid3,
6045               .resetvalue = cpu->id_afr0 },
6046             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
6047               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
6048               .access = PL1_R, .type = ARM_CP_CONST,
6049               .accessfn = access_aa32_tid3,
6050               .resetvalue = cpu->id_mmfr0 },
6051             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
6052               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
6053               .access = PL1_R, .type = ARM_CP_CONST,
6054               .accessfn = access_aa32_tid3,
6055               .resetvalue = cpu->id_mmfr1 },
6056             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
6057               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
6058               .access = PL1_R, .type = ARM_CP_CONST,
6059               .accessfn = access_aa32_tid3,
6060               .resetvalue = cpu->id_mmfr2 },
6061             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
6062               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
6063               .access = PL1_R, .type = ARM_CP_CONST,
6064               .accessfn = access_aa32_tid3,
6065               .resetvalue = cpu->id_mmfr3 },
6066             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
6067               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6068               .access = PL1_R, .type = ARM_CP_CONST,
6069               .accessfn = access_aa32_tid3,
6070               .resetvalue = cpu->isar.id_isar0 },
6071             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
6072               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
6073               .access = PL1_R, .type = ARM_CP_CONST,
6074               .accessfn = access_aa32_tid3,
6075               .resetvalue = cpu->isar.id_isar1 },
6076             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
6077               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6078               .access = PL1_R, .type = ARM_CP_CONST,
6079               .accessfn = access_aa32_tid3,
6080               .resetvalue = cpu->isar.id_isar2 },
6081             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
6082               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
6083               .access = PL1_R, .type = ARM_CP_CONST,
6084               .accessfn = access_aa32_tid3,
6085               .resetvalue = cpu->isar.id_isar3 },
6086             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
6087               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
6088               .access = PL1_R, .type = ARM_CP_CONST,
6089               .accessfn = access_aa32_tid3,
6090               .resetvalue = cpu->isar.id_isar4 },
6091             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
6092               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
6093               .access = PL1_R, .type = ARM_CP_CONST,
6094               .accessfn = access_aa32_tid3,
6095               .resetvalue = cpu->isar.id_isar5 },
6096             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
6097               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
6098               .access = PL1_R, .type = ARM_CP_CONST,
6099               .accessfn = access_aa32_tid3,
6100               .resetvalue = cpu->id_mmfr4 },
6101             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
6102               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
6103               .access = PL1_R, .type = ARM_CP_CONST,
6104               .accessfn = access_aa32_tid3,
6105               .resetvalue = cpu->isar.id_isar6 },
6106             REGINFO_SENTINEL
6107         };
6108         define_arm_cp_regs(cpu, v6_idregs);
6109         define_arm_cp_regs(cpu, v6_cp_reginfo);
6110     } else {
6111         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
6112     }
6113     if (arm_feature(env, ARM_FEATURE_V6K)) {
6114         define_arm_cp_regs(cpu, v6k_cp_reginfo);
6115     }
6116     if (arm_feature(env, ARM_FEATURE_V7MP) &&
6117         !arm_feature(env, ARM_FEATURE_PMSA)) {
6118         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
6119     }
6120     if (arm_feature(env, ARM_FEATURE_V7VE)) {
6121         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
6122     }
6123     if (arm_feature(env, ARM_FEATURE_V7)) {
6124         /* v7 performance monitor control register: same implementor
6125          * field as main ID register, and we implement four counters in
6126          * addition to the cycle count register.
6127          */
6128         unsigned int i, pmcrn = 4;
6129         ARMCPRegInfo pmcr = {
6130             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6131             .access = PL0_RW,
6132             .type = ARM_CP_IO | ARM_CP_ALIAS,
6133             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6134             .accessfn = pmreg_access, .writefn = pmcr_write,
6135             .raw_writefn = raw_write,
6136         };
6137         ARMCPRegInfo pmcr64 = {
6138             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6139             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6140             .access = PL0_RW, .accessfn = pmreg_access,
6141             .type = ARM_CP_IO,
6142             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6143             .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
6144             .writefn = pmcr_write, .raw_writefn = raw_write,
6145         };
6146         define_one_arm_cp_reg(cpu, &pmcr);
6147         define_one_arm_cp_reg(cpu, &pmcr64);
6148         for (i = 0; i < pmcrn; i++) {
6149             char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6150             char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6151             char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6152             char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6153             ARMCPRegInfo pmev_regs[] = {
6154                 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6155                   .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6156                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6157                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6158                   .accessfn = pmreg_access },
6159                 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6160                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6161                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6162                   .type = ARM_CP_IO,
6163                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6164                   .raw_readfn = pmevcntr_rawread,
6165                   .raw_writefn = pmevcntr_rawwrite },
6166                 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6167                   .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6168                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6169                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6170                   .accessfn = pmreg_access },
6171                 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6172                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6173                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6174                   .type = ARM_CP_IO,
6175                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6176                   .raw_writefn = pmevtyper_rawwrite },
6177                 REGINFO_SENTINEL
6178             };
6179             define_arm_cp_regs(cpu, pmev_regs);
6180             g_free(pmevcntr_name);
6181             g_free(pmevcntr_el0_name);
6182             g_free(pmevtyper_name);
6183             g_free(pmevtyper_el0_name);
6184         }
6185         ARMCPRegInfo clidr = {
6186             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6187             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6188             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
6189         };
6190         define_one_arm_cp_reg(cpu, &clidr);
6191         define_arm_cp_regs(cpu, v7_cp_reginfo);
6192         define_debug_regs(cpu);
6193     } else {
6194         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6195     }
6196     if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6197             FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6198         ARMCPRegInfo v81_pmu_regs[] = {
6199             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6200               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6201               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6202               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6203             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6204               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6205               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6206               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6207             REGINFO_SENTINEL
6208         };
6209         define_arm_cp_regs(cpu, v81_pmu_regs);
6210     }
6211     if (arm_feature(env, ARM_FEATURE_V8)) {
6212         /* AArch64 ID registers, which all have impdef reset values.
6213          * Note that within the ID register ranges the unused slots
6214          * must all RAZ, not UNDEF; future architecture versions may
6215          * define new registers here.
6216          */
6217         ARMCPRegInfo v8_idregs[] = {
6218             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6219              * know the right value for the GIC field until after we
6220              * define these regs.
6221              */
6222             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6223               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6224               .access = PL1_R, .type = ARM_CP_NO_RAW,
6225               .accessfn = access_aa64_tid3,
6226               .readfn = id_aa64pfr0_read,
6227               .writefn = arm_cp_write_ignore },
6228             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6229               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6230               .access = PL1_R, .type = ARM_CP_CONST,
6231               .accessfn = access_aa64_tid3,
6232               .resetvalue = cpu->isar.id_aa64pfr1},
6233             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6234               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6235               .access = PL1_R, .type = ARM_CP_CONST,
6236               .accessfn = access_aa64_tid3,
6237               .resetvalue = 0 },
6238             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6239               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6240               .access = PL1_R, .type = ARM_CP_CONST,
6241               .accessfn = access_aa64_tid3,
6242               .resetvalue = 0 },
6243             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6244               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6245               .access = PL1_R, .type = ARM_CP_CONST,
6246               .accessfn = access_aa64_tid3,
6247               /* At present, only SVEver == 0 is defined anyway.  */
6248               .resetvalue = 0 },
6249             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6250               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6251               .access = PL1_R, .type = ARM_CP_CONST,
6252               .accessfn = access_aa64_tid3,
6253               .resetvalue = 0 },
6254             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6255               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6256               .access = PL1_R, .type = ARM_CP_CONST,
6257               .accessfn = access_aa64_tid3,
6258               .resetvalue = 0 },
6259             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6260               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6261               .access = PL1_R, .type = ARM_CP_CONST,
6262               .accessfn = access_aa64_tid3,
6263               .resetvalue = 0 },
6264             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6265               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6266               .access = PL1_R, .type = ARM_CP_CONST,
6267               .accessfn = access_aa64_tid3,
6268               .resetvalue = cpu->id_aa64dfr0 },
6269             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6270               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6271               .access = PL1_R, .type = ARM_CP_CONST,
6272               .accessfn = access_aa64_tid3,
6273               .resetvalue = cpu->id_aa64dfr1 },
6274             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6275               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6276               .access = PL1_R, .type = ARM_CP_CONST,
6277               .accessfn = access_aa64_tid3,
6278               .resetvalue = 0 },
6279             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6280               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6281               .access = PL1_R, .type = ARM_CP_CONST,
6282               .accessfn = access_aa64_tid3,
6283               .resetvalue = 0 },
6284             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6285               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6286               .access = PL1_R, .type = ARM_CP_CONST,
6287               .accessfn = access_aa64_tid3,
6288               .resetvalue = cpu->id_aa64afr0 },
6289             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6290               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6291               .access = PL1_R, .type = ARM_CP_CONST,
6292               .accessfn = access_aa64_tid3,
6293               .resetvalue = cpu->id_aa64afr1 },
6294             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6295               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6296               .access = PL1_R, .type = ARM_CP_CONST,
6297               .accessfn = access_aa64_tid3,
6298               .resetvalue = 0 },
6299             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6300               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6301               .access = PL1_R, .type = ARM_CP_CONST,
6302               .accessfn = access_aa64_tid3,
6303               .resetvalue = 0 },
6304             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6305               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6306               .access = PL1_R, .type = ARM_CP_CONST,
6307               .accessfn = access_aa64_tid3,
6308               .resetvalue = cpu->isar.id_aa64isar0 },
6309             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6310               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6311               .access = PL1_R, .type = ARM_CP_CONST,
6312               .accessfn = access_aa64_tid3,
6313               .resetvalue = cpu->isar.id_aa64isar1 },
6314             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6315               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6316               .access = PL1_R, .type = ARM_CP_CONST,
6317               .accessfn = access_aa64_tid3,
6318               .resetvalue = 0 },
6319             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6320               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6321               .access = PL1_R, .type = ARM_CP_CONST,
6322               .accessfn = access_aa64_tid3,
6323               .resetvalue = 0 },
6324             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6325               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6326               .access = PL1_R, .type = ARM_CP_CONST,
6327               .accessfn = access_aa64_tid3,
6328               .resetvalue = 0 },
6329             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6330               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6331               .access = PL1_R, .type = ARM_CP_CONST,
6332               .accessfn = access_aa64_tid3,
6333               .resetvalue = 0 },
6334             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6335               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6336               .access = PL1_R, .type = ARM_CP_CONST,
6337               .accessfn = access_aa64_tid3,
6338               .resetvalue = 0 },
6339             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6340               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6341               .access = PL1_R, .type = ARM_CP_CONST,
6342               .accessfn = access_aa64_tid3,
6343               .resetvalue = 0 },
6344             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6345               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6346               .access = PL1_R, .type = ARM_CP_CONST,
6347               .accessfn = access_aa64_tid3,
6348               .resetvalue = cpu->isar.id_aa64mmfr0 },
6349             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6350               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6351               .access = PL1_R, .type = ARM_CP_CONST,
6352               .accessfn = access_aa64_tid3,
6353               .resetvalue = cpu->isar.id_aa64mmfr1 },
6354             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6355               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6356               .access = PL1_R, .type = ARM_CP_CONST,
6357               .accessfn = access_aa64_tid3,
6358               .resetvalue = 0 },
6359             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6360               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6361               .access = PL1_R, .type = ARM_CP_CONST,
6362               .accessfn = access_aa64_tid3,
6363               .resetvalue = 0 },
6364             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6365               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6366               .access = PL1_R, .type = ARM_CP_CONST,
6367               .accessfn = access_aa64_tid3,
6368               .resetvalue = 0 },
6369             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6370               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6371               .access = PL1_R, .type = ARM_CP_CONST,
6372               .accessfn = access_aa64_tid3,
6373               .resetvalue = 0 },
6374             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6375               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6376               .access = PL1_R, .type = ARM_CP_CONST,
6377               .accessfn = access_aa64_tid3,
6378               .resetvalue = 0 },
6379             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6380               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6381               .access = PL1_R, .type = ARM_CP_CONST,
6382               .accessfn = access_aa64_tid3,
6383               .resetvalue = 0 },
6384             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6385               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6386               .access = PL1_R, .type = ARM_CP_CONST,
6387               .accessfn = access_aa64_tid3,
6388               .resetvalue = cpu->isar.mvfr0 },
6389             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6390               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6391               .access = PL1_R, .type = ARM_CP_CONST,
6392               .accessfn = access_aa64_tid3,
6393               .resetvalue = cpu->isar.mvfr1 },
6394             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6395               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6396               .access = PL1_R, .type = ARM_CP_CONST,
6397               .accessfn = access_aa64_tid3,
6398               .resetvalue = cpu->isar.mvfr2 },
6399             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6400               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6401               .access = PL1_R, .type = ARM_CP_CONST,
6402               .accessfn = access_aa64_tid3,
6403               .resetvalue = 0 },
6404             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6405               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6406               .access = PL1_R, .type = ARM_CP_CONST,
6407               .accessfn = access_aa64_tid3,
6408               .resetvalue = 0 },
6409             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6410               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6411               .access = PL1_R, .type = ARM_CP_CONST,
6412               .accessfn = access_aa64_tid3,
6413               .resetvalue = 0 },
6414             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6415               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6416               .access = PL1_R, .type = ARM_CP_CONST,
6417               .accessfn = access_aa64_tid3,
6418               .resetvalue = 0 },
6419             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6420               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6421               .access = PL1_R, .type = ARM_CP_CONST,
6422               .accessfn = access_aa64_tid3,
6423               .resetvalue = 0 },
6424             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6425               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6426               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6427               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6428             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6429               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6430               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6431               .resetvalue = cpu->pmceid0 },
6432             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6433               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6434               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6435               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6436             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6437               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6438               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6439               .resetvalue = cpu->pmceid1 },
6440             REGINFO_SENTINEL
6441         };
6442 #ifdef CONFIG_USER_ONLY
6443         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6444             { .name = "ID_AA64PFR0_EL1",
6445               .exported_bits = 0x000f000f00ff0000,
6446               .fixed_bits    = 0x0000000000000011 },
6447             { .name = "ID_AA64PFR1_EL1",
6448               .exported_bits = 0x00000000000000f0 },
6449             { .name = "ID_AA64PFR*_EL1_RESERVED",
6450               .is_glob = true                     },
6451             { .name = "ID_AA64ZFR0_EL1"           },
6452             { .name = "ID_AA64MMFR0_EL1",
6453               .fixed_bits    = 0x00000000ff000000 },
6454             { .name = "ID_AA64MMFR1_EL1"          },
6455             { .name = "ID_AA64MMFR*_EL1_RESERVED",
6456               .is_glob = true                     },
6457             { .name = "ID_AA64DFR0_EL1",
6458               .fixed_bits    = 0x0000000000000006 },
6459             { .name = "ID_AA64DFR1_EL1"           },
6460             { .name = "ID_AA64DFR*_EL1_RESERVED",
6461               .is_glob = true                     },
6462             { .name = "ID_AA64AFR*",
6463               .is_glob = true                     },
6464             { .name = "ID_AA64ISAR0_EL1",
6465               .exported_bits = 0x00fffffff0fffff0 },
6466             { .name = "ID_AA64ISAR1_EL1",
6467               .exported_bits = 0x000000f0ffffffff },
6468             { .name = "ID_AA64ISAR*_EL1_RESERVED",
6469               .is_glob = true                     },
6470             REGUSERINFO_SENTINEL
6471         };
6472         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6473 #endif
6474         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6475         if (!arm_feature(env, ARM_FEATURE_EL3) &&
6476             !arm_feature(env, ARM_FEATURE_EL2)) {
6477             ARMCPRegInfo rvbar = {
6478                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6479                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6480                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6481             };
6482             define_one_arm_cp_reg(cpu, &rvbar);
6483         }
6484         define_arm_cp_regs(cpu, v8_idregs);
6485         define_arm_cp_regs(cpu, v8_cp_reginfo);
6486     }
6487     if (arm_feature(env, ARM_FEATURE_EL2)) {
6488         uint64_t vmpidr_def = mpidr_read_val(env);
6489         ARMCPRegInfo vpidr_regs[] = {
6490             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6491               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6492               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6493               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6494               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6495             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6496               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6497               .access = PL2_RW, .resetvalue = cpu->midr,
6498               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6499             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6500               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6501               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6502               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6503               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6504             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6505               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6506               .access = PL2_RW,
6507               .resetvalue = vmpidr_def,
6508               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6509             REGINFO_SENTINEL
6510         };
6511         define_arm_cp_regs(cpu, vpidr_regs);
6512         define_arm_cp_regs(cpu, el2_cp_reginfo);
6513         if (arm_feature(env, ARM_FEATURE_V8)) {
6514             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6515         }
6516         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6517         if (!arm_feature(env, ARM_FEATURE_EL3)) {
6518             ARMCPRegInfo rvbar = {
6519                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6520                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6521                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6522             };
6523             define_one_arm_cp_reg(cpu, &rvbar);
6524         }
6525     } else {
6526         /* If EL2 is missing but higher ELs are enabled, we need to
6527          * register the no_el2 reginfos.
6528          */
6529         if (arm_feature(env, ARM_FEATURE_EL3)) {
6530             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6531              * of MIDR_EL1 and MPIDR_EL1.
6532              */
6533             ARMCPRegInfo vpidr_regs[] = {
6534                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6535                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6536                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6537                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6538                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6539                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6540                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6541                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6542                   .type = ARM_CP_NO_RAW,
6543                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6544                 REGINFO_SENTINEL
6545             };
6546             define_arm_cp_regs(cpu, vpidr_regs);
6547             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6548             if (arm_feature(env, ARM_FEATURE_V8)) {
6549                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6550             }
6551         }
6552     }
6553     if (arm_feature(env, ARM_FEATURE_EL3)) {
6554         define_arm_cp_regs(cpu, el3_cp_reginfo);
6555         ARMCPRegInfo el3_regs[] = {
6556             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6557               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6558               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6559             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6560               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6561               .access = PL3_RW,
6562               .raw_writefn = raw_write, .writefn = sctlr_write,
6563               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6564               .resetvalue = cpu->reset_sctlr },
6565             REGINFO_SENTINEL
6566         };
6567 
6568         define_arm_cp_regs(cpu, el3_regs);
6569     }
6570     /* The behaviour of NSACR is sufficiently various that we don't
6571      * try to describe it in a single reginfo:
6572      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
6573      *     reads as constant 0xc00 from NS EL1 and NS EL2
6574      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6575      *  if v7 without EL3, register doesn't exist
6576      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6577      */
6578     if (arm_feature(env, ARM_FEATURE_EL3)) {
6579         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6580             ARMCPRegInfo nsacr = {
6581                 .name = "NSACR", .type = ARM_CP_CONST,
6582                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6583                 .access = PL1_RW, .accessfn = nsacr_access,
6584                 .resetvalue = 0xc00
6585             };
6586             define_one_arm_cp_reg(cpu, &nsacr);
6587         } else {
6588             ARMCPRegInfo nsacr = {
6589                 .name = "NSACR",
6590                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6591                 .access = PL3_RW | PL1_R,
6592                 .resetvalue = 0,
6593                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6594             };
6595             define_one_arm_cp_reg(cpu, &nsacr);
6596         }
6597     } else {
6598         if (arm_feature(env, ARM_FEATURE_V8)) {
6599             ARMCPRegInfo nsacr = {
6600                 .name = "NSACR", .type = ARM_CP_CONST,
6601                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6602                 .access = PL1_R,
6603                 .resetvalue = 0xc00
6604             };
6605             define_one_arm_cp_reg(cpu, &nsacr);
6606         }
6607     }
6608 
6609     if (arm_feature(env, ARM_FEATURE_PMSA)) {
6610         if (arm_feature(env, ARM_FEATURE_V6)) {
6611             /* PMSAv6 not implemented */
6612             assert(arm_feature(env, ARM_FEATURE_V7));
6613             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6614             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6615         } else {
6616             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6617         }
6618     } else {
6619         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6620         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6621         /* TTCBR2 is introduced with ARMv8.2-A32HPD.  */
6622         if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6623             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6624         }
6625     }
6626     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6627         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6628     }
6629     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6630         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6631     }
6632     if (arm_feature(env, ARM_FEATURE_VAPA)) {
6633         define_arm_cp_regs(cpu, vapa_cp_reginfo);
6634     }
6635     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6636         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6637     }
6638     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6639         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6640     }
6641     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6642         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6643     }
6644     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6645         define_arm_cp_regs(cpu, omap_cp_reginfo);
6646     }
6647     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6648         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6649     }
6650     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6651         define_arm_cp_regs(cpu, xscale_cp_reginfo);
6652     }
6653     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6654         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6655     }
6656     if (arm_feature(env, ARM_FEATURE_LPAE)) {
6657         define_arm_cp_regs(cpu, lpae_cp_reginfo);
6658     }
6659     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6660      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6661      * be read-only (ie write causes UNDEF exception).
6662      */
6663     {
6664         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6665             /* Pre-v8 MIDR space.
6666              * Note that the MIDR isn't a simple constant register because
6667              * of the TI925 behaviour where writes to another register can
6668              * cause the MIDR value to change.
6669              *
6670              * Unimplemented registers in the c15 0 0 0 space default to
6671              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6672              * and friends override accordingly.
6673              */
6674             { .name = "MIDR",
6675               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6676               .access = PL1_R, .resetvalue = cpu->midr,
6677               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6678               .readfn = midr_read,
6679               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6680               .type = ARM_CP_OVERRIDE },
6681             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6682             { .name = "DUMMY",
6683               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6684               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6685             { .name = "DUMMY",
6686               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6687               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6688             { .name = "DUMMY",
6689               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6690               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6691             { .name = "DUMMY",
6692               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6693               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6694             { .name = "DUMMY",
6695               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6696               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6697             REGINFO_SENTINEL
6698         };
6699         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6700             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6701               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6702               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6703               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6704               .readfn = midr_read },
6705             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6706             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6707               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6708               .access = PL1_R, .resetvalue = cpu->midr },
6709             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6710               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6711               .access = PL1_R, .resetvalue = cpu->midr },
6712             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6713               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6714               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6715             REGINFO_SENTINEL
6716         };
6717         ARMCPRegInfo id_cp_reginfo[] = {
6718             /* These are common to v8 and pre-v8 */
6719             { .name = "CTR",
6720               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6721               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6722             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6723               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6724               .access = PL0_R, .accessfn = ctr_el0_access,
6725               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6726             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6727             { .name = "TCMTR",
6728               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6729               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6730             REGINFO_SENTINEL
6731         };
6732         /* TLBTR is specific to VMSA */
6733         ARMCPRegInfo id_tlbtr_reginfo = {
6734               .name = "TLBTR",
6735               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6736               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6737         };
6738         /* MPUIR is specific to PMSA V6+ */
6739         ARMCPRegInfo id_mpuir_reginfo = {
6740               .name = "MPUIR",
6741               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6742               .access = PL1_R, .type = ARM_CP_CONST,
6743               .resetvalue = cpu->pmsav7_dregion << 8
6744         };
6745         ARMCPRegInfo crn0_wi_reginfo = {
6746             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6747             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6748             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6749         };
6750 #ifdef CONFIG_USER_ONLY
6751         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6752             { .name = "MIDR_EL1",
6753               .exported_bits = 0x00000000ffffffff },
6754             { .name = "REVIDR_EL1"                },
6755             REGUSERINFO_SENTINEL
6756         };
6757         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6758 #endif
6759         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6760             arm_feature(env, ARM_FEATURE_STRONGARM)) {
6761             ARMCPRegInfo *r;
6762             /* Register the blanket "writes ignored" value first to cover the
6763              * whole space. Then update the specific ID registers to allow write
6764              * access, so that they ignore writes rather than causing them to
6765              * UNDEF.
6766              */
6767             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6768             for (r = id_pre_v8_midr_cp_reginfo;
6769                  r->type != ARM_CP_SENTINEL; r++) {
6770                 r->access = PL1_RW;
6771             }
6772             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6773                 r->access = PL1_RW;
6774             }
6775             id_mpuir_reginfo.access = PL1_RW;
6776             id_tlbtr_reginfo.access = PL1_RW;
6777         }
6778         if (arm_feature(env, ARM_FEATURE_V8)) {
6779             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6780         } else {
6781             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6782         }
6783         define_arm_cp_regs(cpu, id_cp_reginfo);
6784         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6785             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6786         } else if (arm_feature(env, ARM_FEATURE_V7)) {
6787             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6788         }
6789     }
6790 
6791     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6792         ARMCPRegInfo mpidr_cp_reginfo[] = {
6793             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6794               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6795               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6796             REGINFO_SENTINEL
6797         };
6798 #ifdef CONFIG_USER_ONLY
6799         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6800             { .name = "MPIDR_EL1",
6801               .fixed_bits = 0x0000000080000000 },
6802             REGUSERINFO_SENTINEL
6803         };
6804         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6805 #endif
6806         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6807     }
6808 
6809     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6810         ARMCPRegInfo auxcr_reginfo[] = {
6811             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6812               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6813               .access = PL1_RW, .type = ARM_CP_CONST,
6814               .resetvalue = cpu->reset_auxcr },
6815             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6816               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6817               .access = PL2_RW, .type = ARM_CP_CONST,
6818               .resetvalue = 0 },
6819             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6820               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6821               .access = PL3_RW, .type = ARM_CP_CONST,
6822               .resetvalue = 0 },
6823             REGINFO_SENTINEL
6824         };
6825         define_arm_cp_regs(cpu, auxcr_reginfo);
6826         if (arm_feature(env, ARM_FEATURE_V8)) {
6827             /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6828             ARMCPRegInfo hactlr2_reginfo = {
6829                 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6830                 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6831                 .access = PL2_RW, .type = ARM_CP_CONST,
6832                 .resetvalue = 0
6833             };
6834             define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6835         }
6836     }
6837 
6838     if (arm_feature(env, ARM_FEATURE_CBAR)) {
6839         /*
6840          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
6841          * There are two flavours:
6842          *  (1) older 32-bit only cores have a simple 32-bit CBAR
6843          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
6844          *      32-bit register visible to AArch32 at a different encoding
6845          *      to the "flavour 1" register and with the bits rearranged to
6846          *      be able to squash a 64-bit address into the 32-bit view.
6847          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
6848          * in future if we support AArch32-only configs of some of the
6849          * AArch64 cores we might need to add a specific feature flag
6850          * to indicate cores with "flavour 2" CBAR.
6851          */
6852         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6853             /* 32 bit view is [31:18] 0...0 [43:32]. */
6854             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6855                 | extract64(cpu->reset_cbar, 32, 12);
6856             ARMCPRegInfo cbar_reginfo[] = {
6857                 { .name = "CBAR",
6858                   .type = ARM_CP_CONST,
6859                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
6860                   .access = PL1_R, .resetvalue = cbar32 },
6861                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6862                   .type = ARM_CP_CONST,
6863                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6864                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
6865                 REGINFO_SENTINEL
6866             };
6867             /* We don't implement a r/w 64 bit CBAR currently */
6868             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6869             define_arm_cp_regs(cpu, cbar_reginfo);
6870         } else {
6871             ARMCPRegInfo cbar = {
6872                 .name = "CBAR",
6873                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6874                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6875                 .fieldoffset = offsetof(CPUARMState,
6876                                         cp15.c15_config_base_address)
6877             };
6878             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6879                 cbar.access = PL1_R;
6880                 cbar.fieldoffset = 0;
6881                 cbar.type = ARM_CP_CONST;
6882             }
6883             define_one_arm_cp_reg(cpu, &cbar);
6884         }
6885     }
6886 
6887     if (arm_feature(env, ARM_FEATURE_VBAR)) {
6888         ARMCPRegInfo vbar_cp_reginfo[] = {
6889             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6890               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6891               .access = PL1_RW, .writefn = vbar_write,
6892               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6893                                      offsetof(CPUARMState, cp15.vbar_ns) },
6894               .resetvalue = 0 },
6895             REGINFO_SENTINEL
6896         };
6897         define_arm_cp_regs(cpu, vbar_cp_reginfo);
6898     }
6899 
6900     /* Generic registers whose values depend on the implementation */
6901     {
6902         ARMCPRegInfo sctlr = {
6903             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6904             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6905             .access = PL1_RW,
6906             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6907                                    offsetof(CPUARMState, cp15.sctlr_ns) },
6908             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6909             .raw_writefn = raw_write,
6910         };
6911         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6912             /* Normally we would always end the TB on an SCTLR write, but Linux
6913              * arch/arm/mach-pxa/sleep.S expects two instructions following
6914              * an MMU enable to execute from cache.  Imitate this behaviour.
6915              */
6916             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6917         }
6918         define_one_arm_cp_reg(cpu, &sctlr);
6919     }
6920 
6921     if (cpu_isar_feature(aa64_lor, cpu)) {
6922         /*
6923          * A trivial implementation of ARMv8.1-LOR leaves all of these
6924          * registers fixed at 0, which indicates that there are zero
6925          * supported Limited Ordering regions.
6926          */
6927         static const ARMCPRegInfo lor_reginfo[] = {
6928             { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6929               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6930               .access = PL1_RW, .accessfn = access_lor_other,
6931               .type = ARM_CP_CONST, .resetvalue = 0 },
6932             { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6933               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6934               .access = PL1_RW, .accessfn = access_lor_other,
6935               .type = ARM_CP_CONST, .resetvalue = 0 },
6936             { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6937               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6938               .access = PL1_RW, .accessfn = access_lor_other,
6939               .type = ARM_CP_CONST, .resetvalue = 0 },
6940             { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6941               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6942               .access = PL1_RW, .accessfn = access_lor_other,
6943               .type = ARM_CP_CONST, .resetvalue = 0 },
6944             { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6945               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6946               .access = PL1_R, .accessfn = access_lorid,
6947               .type = ARM_CP_CONST, .resetvalue = 0 },
6948             REGINFO_SENTINEL
6949         };
6950         define_arm_cp_regs(cpu, lor_reginfo);
6951     }
6952 
6953     if (cpu_isar_feature(aa64_sve, cpu)) {
6954         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6955         if (arm_feature(env, ARM_FEATURE_EL2)) {
6956             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6957         } else {
6958             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6959         }
6960         if (arm_feature(env, ARM_FEATURE_EL3)) {
6961             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6962         }
6963     }
6964 
6965 #ifdef TARGET_AARCH64
6966     if (cpu_isar_feature(aa64_pauth, cpu)) {
6967         define_arm_cp_regs(cpu, pauth_reginfo);
6968     }
6969     if (cpu_isar_feature(aa64_rndr, cpu)) {
6970         define_arm_cp_regs(cpu, rndr_reginfo);
6971     }
6972 #endif
6973 
6974     /*
6975      * While all v8.0 cpus support aarch64, QEMU does have configurations
6976      * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6977      * which will set ID_ISAR6.
6978      */
6979     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6980         ? cpu_isar_feature(aa64_predinv, cpu)
6981         : cpu_isar_feature(aa32_predinv, cpu)) {
6982         define_arm_cp_regs(cpu, predinv_reginfo);
6983     }
6984 }
6985 
arm_cpu_register_gdb_regs_for_features(ARMCPU * cpu)6986 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6987 {
6988     CPUState *cs = CPU(cpu);
6989     CPUARMState *env = &cpu->env;
6990 
6991     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6992         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6993                                  aarch64_fpu_gdb_set_reg,
6994                                  34, "aarch64-fpu.xml", 0);
6995     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6996         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6997                                  51, "arm-neon.xml", 0);
6998     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6999         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7000                                  35, "arm-vfp3.xml", 0);
7001     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
7002         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7003                                  19, "arm-vfp.xml", 0);
7004     }
7005     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
7006                              arm_gen_dynamic_xml(cs),
7007                              "system-registers.xml", 0);
7008 }
7009 
7010 /* Sort alphabetically by type name, except for "any". */
arm_cpu_list_compare(gconstpointer a,gconstpointer b)7011 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
7012 {
7013     ObjectClass *class_a = (ObjectClass *)a;
7014     ObjectClass *class_b = (ObjectClass *)b;
7015     const char *name_a, *name_b;
7016 
7017     name_a = object_class_get_name(class_a);
7018     name_b = object_class_get_name(class_b);
7019     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
7020         return 1;
7021     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
7022         return -1;
7023     } else {
7024         return strcmp(name_a, name_b);
7025     }
7026 }
7027 
arm_cpu_list_entry(gpointer data,gpointer user_data)7028 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
7029 {
7030     ObjectClass *oc = data;
7031     const char *typename;
7032     char *name;
7033 
7034     typename = object_class_get_name(oc);
7035     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
7036     qemu_printf("  %s\n", name);
7037     g_free(name);
7038 }
7039 
arm_cpu_list(void)7040 void arm_cpu_list(void)
7041 {
7042     GSList *list;
7043 
7044     list = object_class_get_list(TYPE_ARM_CPU, false);
7045     list = g_slist_sort(list, arm_cpu_list_compare);
7046     qemu_printf("Available CPUs:\n");
7047     g_slist_foreach(list, arm_cpu_list_entry, NULL);
7048     g_slist_free(list);
7049 }
7050 
arm_cpu_add_definition(gpointer data,gpointer user_data)7051 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
7052 {
7053     ObjectClass *oc = data;
7054     CpuDefinitionInfoList **cpu_list = user_data;
7055     CpuDefinitionInfoList *entry;
7056     CpuDefinitionInfo *info;
7057     const char *typename;
7058 
7059     typename = object_class_get_name(oc);
7060     info = g_malloc0(sizeof(*info));
7061     info->name = g_strndup(typename,
7062                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
7063     info->q_typename = g_strdup(typename);
7064 
7065     entry = g_malloc0(sizeof(*entry));
7066     entry->value = info;
7067     entry->next = *cpu_list;
7068     *cpu_list = entry;
7069 }
7070 
qmp_query_cpu_definitions(Error ** errp)7071 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
7072 {
7073     CpuDefinitionInfoList *cpu_list = NULL;
7074     GSList *list;
7075 
7076     list = object_class_get_list(TYPE_ARM_CPU, false);
7077     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
7078     g_slist_free(list);
7079 
7080     return cpu_list;
7081 }
7082 
add_cpreg_to_hashtable(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque,int state,int secstate,int crm,int opc1,int opc2,const char * name)7083 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
7084                                    void *opaque, int state, int secstate,
7085                                    int crm, int opc1, int opc2,
7086                                    const char *name)
7087 {
7088     /* Private utility function for define_one_arm_cp_reg_with_opaque():
7089      * add a single reginfo struct to the hash table.
7090      */
7091     uint32_t *key = g_new(uint32_t, 1);
7092     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
7093     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
7094     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
7095 
7096     r2->name = g_strdup(name);
7097     /* Reset the secure state to the specific incoming state.  This is
7098      * necessary as the register may have been defined with both states.
7099      */
7100     r2->secure = secstate;
7101 
7102     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7103         /* Register is banked (using both entries in array).
7104          * Overwriting fieldoffset as the array is only used to define
7105          * banked registers but later only fieldoffset is used.
7106          */
7107         r2->fieldoffset = r->bank_fieldoffsets[ns];
7108     }
7109 
7110     if (state == ARM_CP_STATE_AA32) {
7111         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7112             /* If the register is banked then we don't need to migrate or
7113              * reset the 32-bit instance in certain cases:
7114              *
7115              * 1) If the register has both 32-bit and 64-bit instances then we
7116              *    can count on the 64-bit instance taking care of the
7117              *    non-secure bank.
7118              * 2) If ARMv8 is enabled then we can count on a 64-bit version
7119              *    taking care of the secure bank.  This requires that separate
7120              *    32 and 64-bit definitions are provided.
7121              */
7122             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
7123                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7124                 r2->type |= ARM_CP_ALIAS;
7125             }
7126         } else if ((secstate != r->secure) && !ns) {
7127             /* The register is not banked so we only want to allow migration of
7128              * the non-secure instance.
7129              */
7130             r2->type |= ARM_CP_ALIAS;
7131         }
7132 
7133         if (r->state == ARM_CP_STATE_BOTH) {
7134             /* We assume it is a cp15 register if the .cp field is left unset.
7135              */
7136             if (r2->cp == 0) {
7137                 r2->cp = 15;
7138             }
7139 
7140 #ifdef HOST_WORDS_BIGENDIAN
7141             if (r2->fieldoffset) {
7142                 r2->fieldoffset += sizeof(uint32_t);
7143             }
7144 #endif
7145         }
7146     }
7147     if (state == ARM_CP_STATE_AA64) {
7148         /* To allow abbreviation of ARMCPRegInfo
7149          * definitions, we treat cp == 0 as equivalent to
7150          * the value for "standard guest-visible sysreg".
7151          * STATE_BOTH definitions are also always "standard
7152          * sysreg" in their AArch64 view (the .cp value may
7153          * be non-zero for the benefit of the AArch32 view).
7154          */
7155         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
7156             r2->cp = CP_REG_ARM64_SYSREG_CP;
7157         }
7158         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
7159                                   r2->opc0, opc1, opc2);
7160     } else {
7161         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
7162     }
7163     if (opaque) {
7164         r2->opaque = opaque;
7165     }
7166     /* reginfo passed to helpers is correct for the actual access,
7167      * and is never ARM_CP_STATE_BOTH:
7168      */
7169     r2->state = state;
7170     /* Make sure reginfo passed to helpers for wildcarded regs
7171      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
7172      */
7173     r2->crm = crm;
7174     r2->opc1 = opc1;
7175     r2->opc2 = opc2;
7176     /* By convention, for wildcarded registers only the first
7177      * entry is used for migration; the others are marked as
7178      * ALIAS so we don't try to transfer the register
7179      * multiple times. Special registers (ie NOP/WFI) are
7180      * never migratable and not even raw-accessible.
7181      */
7182     if ((r->type & ARM_CP_SPECIAL)) {
7183         r2->type |= ARM_CP_NO_RAW;
7184     }
7185     if (((r->crm == CP_ANY) && crm != 0) ||
7186         ((r->opc1 == CP_ANY) && opc1 != 0) ||
7187         ((r->opc2 == CP_ANY) && opc2 != 0)) {
7188         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
7189     }
7190 
7191     /* Check that raw accesses are either forbidden or handled. Note that
7192      * we can't assert this earlier because the setup of fieldoffset for
7193      * banked registers has to be done first.
7194      */
7195     if (!(r2->type & ARM_CP_NO_RAW)) {
7196         assert(!raw_accessors_invalid(r2));
7197     }
7198 
7199     /* Overriding of an existing definition must be explicitly
7200      * requested.
7201      */
7202     if (!(r->type & ARM_CP_OVERRIDE)) {
7203         ARMCPRegInfo *oldreg;
7204         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7205         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7206             fprintf(stderr, "Register redefined: cp=%d %d bit "
7207                     "crn=%d crm=%d opc1=%d opc2=%d, "
7208                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7209                     r2->crn, r2->crm, r2->opc1, r2->opc2,
7210                     oldreg->name, r2->name);
7211             g_assert_not_reached();
7212         }
7213     }
7214     g_hash_table_insert(cpu->cp_regs, key, r2);
7215 }
7216 
7217 
define_one_arm_cp_reg_with_opaque(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque)7218 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7219                                        const ARMCPRegInfo *r, void *opaque)
7220 {
7221     /* Define implementations of coprocessor registers.
7222      * We store these in a hashtable because typically
7223      * there are less than 150 registers in a space which
7224      * is 16*16*16*8*8 = 262144 in size.
7225      * Wildcarding is supported for the crm, opc1 and opc2 fields.
7226      * If a register is defined twice then the second definition is
7227      * used, so this can be used to define some generic registers and
7228      * then override them with implementation specific variations.
7229      * At least one of the original and the second definition should
7230      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7231      * against accidental use.
7232      *
7233      * The state field defines whether the register is to be
7234      * visible in the AArch32 or AArch64 execution state. If the
7235      * state is set to ARM_CP_STATE_BOTH then we synthesise a
7236      * reginfo structure for the AArch32 view, which sees the lower
7237      * 32 bits of the 64 bit register.
7238      *
7239      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7240      * be wildcarded. AArch64 registers are always considered to be 64
7241      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7242      * the register, if any.
7243      */
7244     int crm, opc1, opc2, state;
7245     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7246     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7247     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7248     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7249     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7250     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7251     /* 64 bit registers have only CRm and Opc1 fields */
7252     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7253     /* op0 only exists in the AArch64 encodings */
7254     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7255     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7256     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7257     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7258      * encodes a minimum access level for the register. We roll this
7259      * runtime check into our general permission check code, so check
7260      * here that the reginfo's specified permissions are strict enough
7261      * to encompass the generic architectural permission check.
7262      */
7263     if (r->state != ARM_CP_STATE_AA32) {
7264         int mask = 0;
7265         switch (r->opc1) {
7266         case 0:
7267             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7268             mask = PL0U_R | PL1_RW;
7269             break;
7270         case 1: case 2:
7271             /* min_EL EL1 */
7272             mask = PL1_RW;
7273             break;
7274         case 3:
7275             /* min_EL EL0 */
7276             mask = PL0_RW;
7277             break;
7278         case 4:
7279             /* min_EL EL2 */
7280             mask = PL2_RW;
7281             break;
7282         case 5:
7283             /* unallocated encoding, so not possible */
7284             assert(false);
7285             break;
7286         case 6:
7287             /* min_EL EL3 */
7288             mask = PL3_RW;
7289             break;
7290         case 7:
7291             /* min_EL EL1, secure mode only (we don't check the latter) */
7292             mask = PL1_RW;
7293             break;
7294         default:
7295             /* broken reginfo with out-of-range opc1 */
7296             assert(false);
7297             break;
7298         }
7299         /* assert our permissions are not too lax (stricter is fine) */
7300         assert((r->access & ~mask) == 0);
7301     }
7302 
7303     /* Check that the register definition has enough info to handle
7304      * reads and writes if they are permitted.
7305      */
7306     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7307         if (r->access & PL3_R) {
7308             assert((r->fieldoffset ||
7309                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7310                    r->readfn);
7311         }
7312         if (r->access & PL3_W) {
7313             assert((r->fieldoffset ||
7314                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7315                    r->writefn);
7316         }
7317     }
7318     /* Bad type field probably means missing sentinel at end of reg list */
7319     assert(cptype_valid(r->type));
7320     for (crm = crmmin; crm <= crmmax; crm++) {
7321         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7322             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7323                 for (state = ARM_CP_STATE_AA32;
7324                      state <= ARM_CP_STATE_AA64; state++) {
7325                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7326                         continue;
7327                     }
7328                     if (state == ARM_CP_STATE_AA32) {
7329                         /* Under AArch32 CP registers can be common
7330                          * (same for secure and non-secure world) or banked.
7331                          */
7332                         char *name;
7333 
7334                         switch (r->secure) {
7335                         case ARM_CP_SECSTATE_S:
7336                         case ARM_CP_SECSTATE_NS:
7337                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7338                                                    r->secure, crm, opc1, opc2,
7339                                                    r->name);
7340                             break;
7341                         default:
7342                             name = g_strdup_printf("%s_S", r->name);
7343                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7344                                                    ARM_CP_SECSTATE_S,
7345                                                    crm, opc1, opc2, name);
7346                             g_free(name);
7347                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7348                                                    ARM_CP_SECSTATE_NS,
7349                                                    crm, opc1, opc2, r->name);
7350                             break;
7351                         }
7352                     } else {
7353                         /* AArch64 registers get mapped to non-secure instance
7354                          * of AArch32 */
7355                         add_cpreg_to_hashtable(cpu, r, opaque, state,
7356                                                ARM_CP_SECSTATE_NS,
7357                                                crm, opc1, opc2, r->name);
7358                     }
7359                 }
7360             }
7361         }
7362     }
7363 }
7364 
define_arm_cp_regs_with_opaque(ARMCPU * cpu,const ARMCPRegInfo * regs,void * opaque)7365 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7366                                     const ARMCPRegInfo *regs, void *opaque)
7367 {
7368     /* Define a whole list of registers */
7369     const ARMCPRegInfo *r;
7370     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7371         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7372     }
7373 }
7374 
7375 /*
7376  * Modify ARMCPRegInfo for access from userspace.
7377  *
7378  * This is a data driven modification directed by
7379  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7380  * user-space cannot alter any values and dynamic values pertaining to
7381  * execution state are hidden from user space view anyway.
7382  */
modify_arm_cp_regs(ARMCPRegInfo * regs,const ARMCPRegUserSpaceInfo * mods)7383 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7384 {
7385     const ARMCPRegUserSpaceInfo *m;
7386     ARMCPRegInfo *r;
7387 
7388     for (m = mods; m->name; m++) {
7389         GPatternSpec *pat = NULL;
7390         if (m->is_glob) {
7391             pat = g_pattern_spec_new(m->name);
7392         }
7393         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7394             if (pat && g_pattern_match_string(pat, r->name)) {
7395                 r->type = ARM_CP_CONST;
7396                 r->access = PL0U_R;
7397                 r->resetvalue = 0;
7398                 /* continue */
7399             } else if (strcmp(r->name, m->name) == 0) {
7400                 r->type = ARM_CP_CONST;
7401                 r->access = PL0U_R;
7402                 r->resetvalue &= m->exported_bits;
7403                 r->resetvalue |= m->fixed_bits;
7404                 break;
7405             }
7406         }
7407         if (pat) {
7408             g_pattern_spec_free(pat);
7409         }
7410     }
7411 }
7412 
get_arm_cp_reginfo(GHashTable * cpregs,uint32_t encoded_cp)7413 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7414 {
7415     return g_hash_table_lookup(cpregs, &encoded_cp);
7416 }
7417 
arm_cp_write_ignore(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7418 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7419                          uint64_t value)
7420 {
7421     /* Helper coprocessor write function for write-ignore registers */
7422 }
7423 
arm_cp_read_zero(CPUARMState * env,const ARMCPRegInfo * ri)7424 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7425 {
7426     /* Helper coprocessor write function for read-as-zero registers */
7427     return 0;
7428 }
7429 
arm_cp_reset_ignore(CPUARMState * env,const ARMCPRegInfo * opaque)7430 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7431 {
7432     /* Helper coprocessor reset function for do-nothing-on-reset registers */
7433 }
7434 
bad_mode_switch(CPUARMState * env,int mode,CPSRWriteType write_type)7435 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7436 {
7437     /* Return true if it is not valid for us to switch to
7438      * this CPU mode (ie all the UNPREDICTABLE cases in
7439      * the ARM ARM CPSRWriteByInstr pseudocode).
7440      */
7441 
7442     /* Changes to or from Hyp via MSR and CPS are illegal. */
7443     if (write_type == CPSRWriteByInstr &&
7444         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7445          mode == ARM_CPU_MODE_HYP)) {
7446         return 1;
7447     }
7448 
7449     switch (mode) {
7450     case ARM_CPU_MODE_USR:
7451         return 0;
7452     case ARM_CPU_MODE_SYS:
7453     case ARM_CPU_MODE_SVC:
7454     case ARM_CPU_MODE_ABT:
7455     case ARM_CPU_MODE_UND:
7456     case ARM_CPU_MODE_IRQ:
7457     case ARM_CPU_MODE_FIQ:
7458         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7459          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7460          */
7461         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7462          * and CPS are treated as illegal mode changes.
7463          */
7464         if (write_type == CPSRWriteByInstr &&
7465             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7466             (arm_hcr_el2_eff(env) & HCR_TGE)) {
7467             return 1;
7468         }
7469         return 0;
7470     case ARM_CPU_MODE_HYP:
7471         return !arm_feature(env, ARM_FEATURE_EL2)
7472             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7473     case ARM_CPU_MODE_MON:
7474         return arm_current_el(env) < 3;
7475     default:
7476         return 1;
7477     }
7478 }
7479 
cpsr_read(CPUARMState * env)7480 uint32_t cpsr_read(CPUARMState *env)
7481 {
7482     int ZF;
7483     ZF = (env->ZF == 0);
7484     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7485         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7486         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7487         | ((env->condexec_bits & 0xfc) << 8)
7488         | (env->GE << 16) | (env->daif & CPSR_AIF);
7489 }
7490 
cpsr_write(CPUARMState * env,uint32_t val,uint32_t mask,CPSRWriteType write_type)7491 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7492                 CPSRWriteType write_type)
7493 {
7494     uint32_t changed_daif;
7495 
7496     if (mask & CPSR_NZCV) {
7497         env->ZF = (~val) & CPSR_Z;
7498         env->NF = val;
7499         env->CF = (val >> 29) & 1;
7500         env->VF = (val << 3) & 0x80000000;
7501     }
7502     if (mask & CPSR_Q)
7503         env->QF = ((val & CPSR_Q) != 0);
7504     if (mask & CPSR_T)
7505         env->thumb = ((val & CPSR_T) != 0);
7506     if (mask & CPSR_IT_0_1) {
7507         env->condexec_bits &= ~3;
7508         env->condexec_bits |= (val >> 25) & 3;
7509     }
7510     if (mask & CPSR_IT_2_7) {
7511         env->condexec_bits &= 3;
7512         env->condexec_bits |= (val >> 8) & 0xfc;
7513     }
7514     if (mask & CPSR_GE) {
7515         env->GE = (val >> 16) & 0xf;
7516     }
7517 
7518     /* In a V7 implementation that includes the security extensions but does
7519      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7520      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7521      * bits respectively.
7522      *
7523      * In a V8 implementation, it is permitted for privileged software to
7524      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7525      */
7526     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7527         arm_feature(env, ARM_FEATURE_EL3) &&
7528         !arm_feature(env, ARM_FEATURE_EL2) &&
7529         !arm_is_secure(env)) {
7530 
7531         changed_daif = (env->daif ^ val) & mask;
7532 
7533         if (changed_daif & CPSR_A) {
7534             /* Check to see if we are allowed to change the masking of async
7535              * abort exceptions from a non-secure state.
7536              */
7537             if (!(env->cp15.scr_el3 & SCR_AW)) {
7538                 qemu_log_mask(LOG_GUEST_ERROR,
7539                               "Ignoring attempt to switch CPSR_A flag from "
7540                               "non-secure world with SCR.AW bit clear\n");
7541                 mask &= ~CPSR_A;
7542             }
7543         }
7544 
7545         if (changed_daif & CPSR_F) {
7546             /* Check to see if we are allowed to change the masking of FIQ
7547              * exceptions from a non-secure state.
7548              */
7549             if (!(env->cp15.scr_el3 & SCR_FW)) {
7550                 qemu_log_mask(LOG_GUEST_ERROR,
7551                               "Ignoring attempt to switch CPSR_F flag from "
7552                               "non-secure world with SCR.FW bit clear\n");
7553                 mask &= ~CPSR_F;
7554             }
7555 
7556             /* Check whether non-maskable FIQ (NMFI) support is enabled.
7557              * If this bit is set software is not allowed to mask
7558              * FIQs, but is allowed to set CPSR_F to 0.
7559              */
7560             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7561                 (val & CPSR_F)) {
7562                 qemu_log_mask(LOG_GUEST_ERROR,
7563                               "Ignoring attempt to enable CPSR_F flag "
7564                               "(non-maskable FIQ [NMFI] support enabled)\n");
7565                 mask &= ~CPSR_F;
7566             }
7567         }
7568     }
7569 
7570     env->daif &= ~(CPSR_AIF & mask);
7571     env->daif |= val & CPSR_AIF & mask;
7572 
7573     if (write_type != CPSRWriteRaw &&
7574         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7575         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7576             /* Note that we can only get here in USR mode if this is a
7577              * gdb stub write; for this case we follow the architectural
7578              * behaviour for guest writes in USR mode of ignoring an attempt
7579              * to switch mode. (Those are caught by translate.c for writes
7580              * triggered by guest instructions.)
7581              */
7582             mask &= ~CPSR_M;
7583         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7584             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7585              * v7, and has defined behaviour in v8:
7586              *  + leave CPSR.M untouched
7587              *  + allow changes to the other CPSR fields
7588              *  + set PSTATE.IL
7589              * For user changes via the GDB stub, we don't set PSTATE.IL,
7590              * as this would be unnecessarily harsh for a user error.
7591              */
7592             mask &= ~CPSR_M;
7593             if (write_type != CPSRWriteByGDBStub &&
7594                 arm_feature(env, ARM_FEATURE_V8)) {
7595                 mask |= CPSR_IL;
7596                 val |= CPSR_IL;
7597             }
7598             qemu_log_mask(LOG_GUEST_ERROR,
7599                           "Illegal AArch32 mode switch attempt from %s to %s\n",
7600                           aarch32_mode_name(env->uncached_cpsr),
7601                           aarch32_mode_name(val));
7602         } else {
7603             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7604                           write_type == CPSRWriteExceptionReturn ?
7605                           "Exception return from AArch32" :
7606                           "AArch32 mode switch from",
7607                           aarch32_mode_name(env->uncached_cpsr),
7608                           aarch32_mode_name(val), env->regs[15]);
7609             switch_mode(env, val & CPSR_M);
7610         }
7611     }
7612     mask &= ~CACHED_CPSR_BITS;
7613     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7614 }
7615 
7616 /* Sign/zero extend */
HELPER(sxtb16)7617 uint32_t HELPER(sxtb16)(uint32_t x)
7618 {
7619     uint32_t res;
7620     res = (uint16_t)(int8_t)x;
7621     res |= (uint32_t)(int8_t)(x >> 16) << 16;
7622     return res;
7623 }
7624 
HELPER(uxtb16)7625 uint32_t HELPER(uxtb16)(uint32_t x)
7626 {
7627     uint32_t res;
7628     res = (uint16_t)(uint8_t)x;
7629     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7630     return res;
7631 }
7632 
HELPER(sdiv)7633 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7634 {
7635     if (den == 0)
7636       return 0;
7637     if (num == INT_MIN && den == -1)
7638       return INT_MIN;
7639     return num / den;
7640 }
7641 
HELPER(udiv)7642 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7643 {
7644     if (den == 0)
7645       return 0;
7646     return num / den;
7647 }
7648 
HELPER(rbit)7649 uint32_t HELPER(rbit)(uint32_t x)
7650 {
7651     return revbit32(x);
7652 }
7653 
7654 #ifdef CONFIG_USER_ONLY
7655 
switch_mode(CPUARMState * env,int mode)7656 static void switch_mode(CPUARMState *env, int mode)
7657 {
7658     ARMCPU *cpu = env_archcpu(env);
7659 
7660     if (mode != ARM_CPU_MODE_USR) {
7661         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7662     }
7663 }
7664 
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)7665 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7666                                  uint32_t cur_el, bool secure)
7667 {
7668     return 1;
7669 }
7670 
aarch64_sync_64_to_32(CPUARMState * env)7671 void aarch64_sync_64_to_32(CPUARMState *env)
7672 {
7673     g_assert_not_reached();
7674 }
7675 
7676 #else
7677 
switch_mode(CPUARMState * env,int mode)7678 static void switch_mode(CPUARMState *env, int mode)
7679 {
7680     int old_mode;
7681     int i;
7682 
7683     old_mode = env->uncached_cpsr & CPSR_M;
7684     if (mode == old_mode)
7685         return;
7686 
7687     if (old_mode == ARM_CPU_MODE_FIQ) {
7688         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7689         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7690     } else if (mode == ARM_CPU_MODE_FIQ) {
7691         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7692         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7693     }
7694 
7695     i = bank_number(old_mode);
7696     env->banked_r13[i] = env->regs[13];
7697     env->banked_spsr[i] = env->spsr;
7698 
7699     i = bank_number(mode);
7700     env->regs[13] = env->banked_r13[i];
7701     env->spsr = env->banked_spsr[i];
7702 
7703     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7704     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7705 }
7706 
7707 /* Physical Interrupt Target EL Lookup Table
7708  *
7709  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7710  *
7711  * The below multi-dimensional table is used for looking up the target
7712  * exception level given numerous condition criteria.  Specifically, the
7713  * target EL is based on SCR and HCR routing controls as well as the
7714  * currently executing EL and secure state.
7715  *
7716  *    Dimensions:
7717  *    target_el_table[2][2][2][2][2][4]
7718  *                    |  |  |  |  |  +--- Current EL
7719  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
7720  *                    |  |  |  +--------- HCR mask override
7721  *                    |  |  +------------ SCR exec state control
7722  *                    |  +--------------- SCR mask override
7723  *                    +------------------ 32-bit(0)/64-bit(1) EL3
7724  *
7725  *    The table values are as such:
7726  *    0-3 = EL0-EL3
7727  *     -1 = Cannot occur
7728  *
7729  * The ARM ARM target EL table includes entries indicating that an "exception
7730  * is not taken".  The two cases where this is applicable are:
7731  *    1) An exception is taken from EL3 but the SCR does not have the exception
7732  *    routed to EL3.
7733  *    2) An exception is taken from EL2 but the HCR does not have the exception
7734  *    routed to EL2.
7735  * In these two cases, the below table contain a target of EL1.  This value is
7736  * returned as it is expected that the consumer of the table data will check
7737  * for "target EL >= current EL" to ensure the exception is not taken.
7738  *
7739  *            SCR     HCR
7740  *         64  EA     AMO                 From
7741  *        BIT IRQ     IMO      Non-secure         Secure
7742  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
7743  */
7744 static const int8_t target_el_table[2][2][2][2][2][4] = {
7745     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7746        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
7747       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7748        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
7749      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7750        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
7751       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7752        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
7753     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
7754        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
7755       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
7756        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
7757      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7758        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
7759       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7760        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
7761 };
7762 
7763 /*
7764  * Determine the target EL for physical exceptions
7765  */
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)7766 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7767                                  uint32_t cur_el, bool secure)
7768 {
7769     CPUARMState *env = cs->env_ptr;
7770     bool rw;
7771     bool scr;
7772     bool hcr;
7773     int target_el;
7774     /* Is the highest EL AArch64? */
7775     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7776     uint64_t hcr_el2;
7777 
7778     if (arm_feature(env, ARM_FEATURE_EL3)) {
7779         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7780     } else {
7781         /* Either EL2 is the highest EL (and so the EL2 register width
7782          * is given by is64); or there is no EL2 or EL3, in which case
7783          * the value of 'rw' does not affect the table lookup anyway.
7784          */
7785         rw = is64;
7786     }
7787 
7788     hcr_el2 = arm_hcr_el2_eff(env);
7789     switch (excp_idx) {
7790     case EXCP_IRQ:
7791         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7792         hcr = hcr_el2 & HCR_IMO;
7793         break;
7794     case EXCP_FIQ:
7795         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7796         hcr = hcr_el2 & HCR_FMO;
7797         break;
7798     default:
7799         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7800         hcr = hcr_el2 & HCR_AMO;
7801         break;
7802     };
7803 
7804     /* Perform a table-lookup for the target EL given the current state */
7805     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7806 
7807     assert(target_el > 0);
7808 
7809     return target_el;
7810 }
7811 
arm_log_exception(int idx)7812 void arm_log_exception(int idx)
7813 {
7814     if (qemu_loglevel_mask(CPU_LOG_INT)) {
7815         const char *exc = NULL;
7816         static const char * const excnames[] = {
7817             [EXCP_UDEF] = "Undefined Instruction",
7818             [EXCP_SWI] = "SVC",
7819             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7820             [EXCP_DATA_ABORT] = "Data Abort",
7821             [EXCP_IRQ] = "IRQ",
7822             [EXCP_FIQ] = "FIQ",
7823             [EXCP_BKPT] = "Breakpoint",
7824             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7825             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7826             [EXCP_HVC] = "Hypervisor Call",
7827             [EXCP_HYP_TRAP] = "Hypervisor Trap",
7828             [EXCP_SMC] = "Secure Monitor Call",
7829             [EXCP_VIRQ] = "Virtual IRQ",
7830             [EXCP_VFIQ] = "Virtual FIQ",
7831             [EXCP_SEMIHOST] = "Semihosting call",
7832             [EXCP_NOCP] = "v7M NOCP UsageFault",
7833             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7834             [EXCP_STKOF] = "v8M STKOF UsageFault",
7835             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
7836             [EXCP_LSERR] = "v8M LSERR UsageFault",
7837             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
7838         };
7839 
7840         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7841             exc = excnames[idx];
7842         }
7843         if (!exc) {
7844             exc = "unknown";
7845         }
7846         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7847     }
7848 }
7849 
7850 /*
7851  * Function used to synchronize QEMU's AArch64 register set with AArch32
7852  * register set.  This is necessary when switching between AArch32 and AArch64
7853  * execution state.
7854  */
aarch64_sync_32_to_64(CPUARMState * env)7855 void aarch64_sync_32_to_64(CPUARMState *env)
7856 {
7857     int i;
7858     uint32_t mode = env->uncached_cpsr & CPSR_M;
7859 
7860     /* We can blanket copy R[0:7] to X[0:7] */
7861     for (i = 0; i < 8; i++) {
7862         env->xregs[i] = env->regs[i];
7863     }
7864 
7865     /*
7866      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7867      * Otherwise, they come from the banked user regs.
7868      */
7869     if (mode == ARM_CPU_MODE_FIQ) {
7870         for (i = 8; i < 13; i++) {
7871             env->xregs[i] = env->usr_regs[i - 8];
7872         }
7873     } else {
7874         for (i = 8; i < 13; i++) {
7875             env->xregs[i] = env->regs[i];
7876         }
7877     }
7878 
7879     /*
7880      * Registers x13-x23 are the various mode SP and FP registers. Registers
7881      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7882      * from the mode banked register.
7883      */
7884     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7885         env->xregs[13] = env->regs[13];
7886         env->xregs[14] = env->regs[14];
7887     } else {
7888         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7889         /* HYP is an exception in that it is copied from r14 */
7890         if (mode == ARM_CPU_MODE_HYP) {
7891             env->xregs[14] = env->regs[14];
7892         } else {
7893             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
7894         }
7895     }
7896 
7897     if (mode == ARM_CPU_MODE_HYP) {
7898         env->xregs[15] = env->regs[13];
7899     } else {
7900         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7901     }
7902 
7903     if (mode == ARM_CPU_MODE_IRQ) {
7904         env->xregs[16] = env->regs[14];
7905         env->xregs[17] = env->regs[13];
7906     } else {
7907         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
7908         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7909     }
7910 
7911     if (mode == ARM_CPU_MODE_SVC) {
7912         env->xregs[18] = env->regs[14];
7913         env->xregs[19] = env->regs[13];
7914     } else {
7915         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
7916         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7917     }
7918 
7919     if (mode == ARM_CPU_MODE_ABT) {
7920         env->xregs[20] = env->regs[14];
7921         env->xregs[21] = env->regs[13];
7922     } else {
7923         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
7924         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7925     }
7926 
7927     if (mode == ARM_CPU_MODE_UND) {
7928         env->xregs[22] = env->regs[14];
7929         env->xregs[23] = env->regs[13];
7930     } else {
7931         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
7932         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7933     }
7934 
7935     /*
7936      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7937      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7938      * FIQ bank for r8-r14.
7939      */
7940     if (mode == ARM_CPU_MODE_FIQ) {
7941         for (i = 24; i < 31; i++) {
7942             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7943         }
7944     } else {
7945         for (i = 24; i < 29; i++) {
7946             env->xregs[i] = env->fiq_regs[i - 24];
7947         }
7948         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7949         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
7950     }
7951 
7952     env->pc = env->regs[15];
7953 }
7954 
7955 /*
7956  * Function used to synchronize QEMU's AArch32 register set with AArch64
7957  * register set.  This is necessary when switching between AArch32 and AArch64
7958  * execution state.
7959  */
aarch64_sync_64_to_32(CPUARMState * env)7960 void aarch64_sync_64_to_32(CPUARMState *env)
7961 {
7962     int i;
7963     uint32_t mode = env->uncached_cpsr & CPSR_M;
7964 
7965     /* We can blanket copy X[0:7] to R[0:7] */
7966     for (i = 0; i < 8; i++) {
7967         env->regs[i] = env->xregs[i];
7968     }
7969 
7970     /*
7971      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7972      * Otherwise, we copy x8-x12 into the banked user regs.
7973      */
7974     if (mode == ARM_CPU_MODE_FIQ) {
7975         for (i = 8; i < 13; i++) {
7976             env->usr_regs[i - 8] = env->xregs[i];
7977         }
7978     } else {
7979         for (i = 8; i < 13; i++) {
7980             env->regs[i] = env->xregs[i];
7981         }
7982     }
7983 
7984     /*
7985      * Registers r13 & r14 depend on the current mode.
7986      * If we are in a given mode, we copy the corresponding x registers to r13
7987      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7988      * for the mode.
7989      */
7990     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7991         env->regs[13] = env->xregs[13];
7992         env->regs[14] = env->xregs[14];
7993     } else {
7994         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7995 
7996         /*
7997          * HYP is an exception in that it does not have its own banked r14 but
7998          * shares the USR r14
7999          */
8000         if (mode == ARM_CPU_MODE_HYP) {
8001             env->regs[14] = env->xregs[14];
8002         } else {
8003             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8004         }
8005     }
8006 
8007     if (mode == ARM_CPU_MODE_HYP) {
8008         env->regs[13] = env->xregs[15];
8009     } else {
8010         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8011     }
8012 
8013     if (mode == ARM_CPU_MODE_IRQ) {
8014         env->regs[14] = env->xregs[16];
8015         env->regs[13] = env->xregs[17];
8016     } else {
8017         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8018         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8019     }
8020 
8021     if (mode == ARM_CPU_MODE_SVC) {
8022         env->regs[14] = env->xregs[18];
8023         env->regs[13] = env->xregs[19];
8024     } else {
8025         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8026         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8027     }
8028 
8029     if (mode == ARM_CPU_MODE_ABT) {
8030         env->regs[14] = env->xregs[20];
8031         env->regs[13] = env->xregs[21];
8032     } else {
8033         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8034         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8035     }
8036 
8037     if (mode == ARM_CPU_MODE_UND) {
8038         env->regs[14] = env->xregs[22];
8039         env->regs[13] = env->xregs[23];
8040     } else {
8041         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8042         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8043     }
8044 
8045     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8046      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
8047      * FIQ bank for r8-r14.
8048      */
8049     if (mode == ARM_CPU_MODE_FIQ) {
8050         for (i = 24; i < 31; i++) {
8051             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
8052         }
8053     } else {
8054         for (i = 24; i < 29; i++) {
8055             env->fiq_regs[i - 24] = env->xregs[i];
8056         }
8057         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8058         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8059     }
8060 
8061     env->regs[15] = env->pc;
8062 }
8063 
take_aarch32_exception(CPUARMState * env,int new_mode,uint32_t mask,uint32_t offset,uint32_t newpc)8064 static void take_aarch32_exception(CPUARMState *env, int new_mode,
8065                                    uint32_t mask, uint32_t offset,
8066                                    uint32_t newpc)
8067 {
8068     /* Change the CPU state so as to actually take the exception. */
8069     switch_mode(env, new_mode);
8070     /*
8071      * For exceptions taken to AArch32 we must clear the SS bit in both
8072      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8073      */
8074     env->uncached_cpsr &= ~PSTATE_SS;
8075     env->spsr = cpsr_read(env);
8076     /* Clear IT bits.  */
8077     env->condexec_bits = 0;
8078     /* Switch to the new mode, and to the correct instruction set.  */
8079     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8080     /* Set new mode endianness */
8081     env->uncached_cpsr &= ~CPSR_E;
8082     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8083         env->uncached_cpsr |= CPSR_E;
8084     }
8085     /* J and IL must always be cleared for exception entry */
8086     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8087     env->daif |= mask;
8088 
8089     if (new_mode == ARM_CPU_MODE_HYP) {
8090         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8091         env->elr_el[2] = env->regs[15];
8092     } else {
8093         /*
8094          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8095          * and we should just guard the thumb mode on V4
8096          */
8097         if (arm_feature(env, ARM_FEATURE_V4T)) {
8098             env->thumb =
8099                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8100         }
8101         env->regs[14] = env->regs[15] + offset;
8102     }
8103     env->regs[15] = newpc;
8104     arm_rebuild_hflags(env);
8105 }
8106 
arm_cpu_do_interrupt_aarch32_hyp(CPUState * cs)8107 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8108 {
8109     /*
8110      * Handle exception entry to Hyp mode; this is sufficiently
8111      * different to entry to other AArch32 modes that we handle it
8112      * separately here.
8113      *
8114      * The vector table entry used is always the 0x14 Hyp mode entry point,
8115      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8116      * The offset applied to the preferred return address is always zero
8117      * (see DDI0487C.a section G1.12.3).
8118      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8119      */
8120     uint32_t addr, mask;
8121     ARMCPU *cpu = ARM_CPU(cs);
8122     CPUARMState *env = &cpu->env;
8123 
8124     switch (cs->exception_index) {
8125     case EXCP_UDEF:
8126         addr = 0x04;
8127         break;
8128     case EXCP_SWI:
8129         addr = 0x14;
8130         break;
8131     case EXCP_BKPT:
8132         /* Fall through to prefetch abort.  */
8133     case EXCP_PREFETCH_ABORT:
8134         env->cp15.ifar_s = env->exception.vaddress;
8135         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8136                       (uint32_t)env->exception.vaddress);
8137         addr = 0x0c;
8138         break;
8139     case EXCP_DATA_ABORT:
8140         env->cp15.dfar_s = env->exception.vaddress;
8141         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8142                       (uint32_t)env->exception.vaddress);
8143         addr = 0x10;
8144         break;
8145     case EXCP_IRQ:
8146         addr = 0x18;
8147         break;
8148     case EXCP_FIQ:
8149         addr = 0x1c;
8150         break;
8151     case EXCP_HVC:
8152         addr = 0x08;
8153         break;
8154     case EXCP_HYP_TRAP:
8155         addr = 0x14;
8156         break;
8157     default:
8158         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8159     }
8160 
8161     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8162         if (!arm_feature(env, ARM_FEATURE_V8)) {
8163             /*
8164              * QEMU syndrome values are v8-style. v7 has the IL bit
8165              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8166              * If this is a v7 CPU, squash the IL bit in those cases.
8167              */
8168             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8169                 (cs->exception_index == EXCP_DATA_ABORT &&
8170                  !(env->exception.syndrome & ARM_EL_ISV)) ||
8171                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8172                 env->exception.syndrome &= ~ARM_EL_IL;
8173             }
8174         }
8175         env->cp15.esr_el[2] = env->exception.syndrome;
8176     }
8177 
8178     if (arm_current_el(env) != 2 && addr < 0x14) {
8179         addr = 0x14;
8180     }
8181 
8182     mask = 0;
8183     if (!(env->cp15.scr_el3 & SCR_EA)) {
8184         mask |= CPSR_A;
8185     }
8186     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8187         mask |= CPSR_I;
8188     }
8189     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8190         mask |= CPSR_F;
8191     }
8192 
8193     addr += env->cp15.hvbar;
8194 
8195     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8196 }
8197 
arm_cpu_do_interrupt_aarch32(CPUState * cs)8198 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8199 {
8200     ARMCPU *cpu = ARM_CPU(cs);
8201     CPUARMState *env = &cpu->env;
8202     uint32_t addr;
8203     uint32_t mask;
8204     int new_mode;
8205     uint32_t offset;
8206     uint32_t moe;
8207 
8208     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8209     switch (syn_get_ec(env->exception.syndrome)) {
8210     case EC_BREAKPOINT:
8211     case EC_BREAKPOINT_SAME_EL:
8212         moe = 1;
8213         break;
8214     case EC_WATCHPOINT:
8215     case EC_WATCHPOINT_SAME_EL:
8216         moe = 10;
8217         break;
8218     case EC_AA32_BKPT:
8219         moe = 3;
8220         break;
8221     case EC_VECTORCATCH:
8222         moe = 5;
8223         break;
8224     default:
8225         moe = 0;
8226         break;
8227     }
8228 
8229     if (moe) {
8230         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8231     }
8232 
8233     if (env->exception.target_el == 2) {
8234         arm_cpu_do_interrupt_aarch32_hyp(cs);
8235         return;
8236     }
8237 
8238     switch (cs->exception_index) {
8239     case EXCP_UDEF:
8240         new_mode = ARM_CPU_MODE_UND;
8241         addr = 0x04;
8242         mask = CPSR_I;
8243         if (env->thumb)
8244             offset = 2;
8245         else
8246             offset = 4;
8247         break;
8248     case EXCP_SWI:
8249         new_mode = ARM_CPU_MODE_SVC;
8250         addr = 0x08;
8251         mask = CPSR_I;
8252         /* The PC already points to the next instruction.  */
8253         offset = 0;
8254         break;
8255     case EXCP_BKPT:
8256         /* Fall through to prefetch abort.  */
8257     case EXCP_PREFETCH_ABORT:
8258         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8259         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8260         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8261                       env->exception.fsr, (uint32_t)env->exception.vaddress);
8262         new_mode = ARM_CPU_MODE_ABT;
8263         addr = 0x0c;
8264         mask = CPSR_A | CPSR_I;
8265         offset = 4;
8266         break;
8267     case EXCP_DATA_ABORT:
8268         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8269         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8270         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8271                       env->exception.fsr,
8272                       (uint32_t)env->exception.vaddress);
8273         new_mode = ARM_CPU_MODE_ABT;
8274         addr = 0x10;
8275         mask = CPSR_A | CPSR_I;
8276         offset = 8;
8277         break;
8278     case EXCP_IRQ:
8279         new_mode = ARM_CPU_MODE_IRQ;
8280         addr = 0x18;
8281         /* Disable IRQ and imprecise data aborts.  */
8282         mask = CPSR_A | CPSR_I;
8283         offset = 4;
8284         if (env->cp15.scr_el3 & SCR_IRQ) {
8285             /* IRQ routed to monitor mode */
8286             new_mode = ARM_CPU_MODE_MON;
8287             mask |= CPSR_F;
8288         }
8289         break;
8290     case EXCP_FIQ:
8291         new_mode = ARM_CPU_MODE_FIQ;
8292         addr = 0x1c;
8293         /* Disable FIQ, IRQ and imprecise data aborts.  */
8294         mask = CPSR_A | CPSR_I | CPSR_F;
8295         if (env->cp15.scr_el3 & SCR_FIQ) {
8296             /* FIQ routed to monitor mode */
8297             new_mode = ARM_CPU_MODE_MON;
8298         }
8299         offset = 4;
8300         break;
8301     case EXCP_VIRQ:
8302         new_mode = ARM_CPU_MODE_IRQ;
8303         addr = 0x18;
8304         /* Disable IRQ and imprecise data aborts.  */
8305         mask = CPSR_A | CPSR_I;
8306         offset = 4;
8307         break;
8308     case EXCP_VFIQ:
8309         new_mode = ARM_CPU_MODE_FIQ;
8310         addr = 0x1c;
8311         /* Disable FIQ, IRQ and imprecise data aborts.  */
8312         mask = CPSR_A | CPSR_I | CPSR_F;
8313         offset = 4;
8314         break;
8315     case EXCP_SMC:
8316         new_mode = ARM_CPU_MODE_MON;
8317         addr = 0x08;
8318         mask = CPSR_A | CPSR_I | CPSR_F;
8319         offset = 0;
8320         break;
8321     default:
8322         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8323         return; /* Never happens.  Keep compiler happy.  */
8324     }
8325 
8326     if (new_mode == ARM_CPU_MODE_MON) {
8327         addr += env->cp15.mvbar;
8328     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8329         /* High vectors. When enabled, base address cannot be remapped. */
8330         addr += 0xffff0000;
8331     } else {
8332         /* ARM v7 architectures provide a vector base address register to remap
8333          * the interrupt vector table.
8334          * This register is only followed in non-monitor mode, and is banked.
8335          * Note: only bits 31:5 are valid.
8336          */
8337         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8338     }
8339 
8340     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8341         env->cp15.scr_el3 &= ~SCR_NS;
8342     }
8343 
8344     take_aarch32_exception(env, new_mode, mask, offset, addr);
8345 }
8346 
8347 /* Handle exception entry to a target EL which is using AArch64 */
arm_cpu_do_interrupt_aarch64(CPUState * cs)8348 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8349 {
8350     ARMCPU *cpu = ARM_CPU(cs);
8351     CPUARMState *env = &cpu->env;
8352     unsigned int new_el = env->exception.target_el;
8353     target_ulong addr = env->cp15.vbar_el[new_el];
8354     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8355     unsigned int cur_el = arm_current_el(env);
8356 
8357     /*
8358      * Note that new_el can never be 0.  If cur_el is 0, then
8359      * el0_a64 is is_a64(), else el0_a64 is ignored.
8360      */
8361     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8362 
8363     if (cur_el < new_el) {
8364         /* Entry vector offset depends on whether the implemented EL
8365          * immediately lower than the target level is using AArch32 or AArch64
8366          */
8367         bool is_aa64;
8368 
8369         switch (new_el) {
8370         case 3:
8371             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8372             break;
8373         case 2:
8374             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8375             break;
8376         case 1:
8377             is_aa64 = is_a64(env);
8378             break;
8379         default:
8380             g_assert_not_reached();
8381         }
8382 
8383         if (is_aa64) {
8384             addr += 0x400;
8385         } else {
8386             addr += 0x600;
8387         }
8388     } else if (pstate_read(env) & PSTATE_SP) {
8389         addr += 0x200;
8390     }
8391 
8392     switch (cs->exception_index) {
8393     case EXCP_PREFETCH_ABORT:
8394     case EXCP_DATA_ABORT:
8395         env->cp15.far_el[new_el] = env->exception.vaddress;
8396         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8397                       env->cp15.far_el[new_el]);
8398         /* fall through */
8399     case EXCP_BKPT:
8400     case EXCP_UDEF:
8401     case EXCP_SWI:
8402     case EXCP_HVC:
8403     case EXCP_HYP_TRAP:
8404     case EXCP_SMC:
8405         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8406             /*
8407              * QEMU internal FP/SIMD syndromes from AArch32 include the
8408              * TA and coproc fields which are only exposed if the exception
8409              * is taken to AArch32 Hyp mode. Mask them out to get a valid
8410              * AArch64 format syndrome.
8411              */
8412             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8413         }
8414         env->cp15.esr_el[new_el] = env->exception.syndrome;
8415         break;
8416     case EXCP_IRQ:
8417     case EXCP_VIRQ:
8418         addr += 0x80;
8419         break;
8420     case EXCP_FIQ:
8421     case EXCP_VFIQ:
8422         addr += 0x100;
8423         break;
8424     case EXCP_SEMIHOST:
8425         qemu_log_mask(CPU_LOG_INT,
8426                       "...handling as semihosting call 0x%" PRIx64 "\n",
8427                       env->xregs[0]);
8428         env->xregs[0] = do_arm_semihosting(env);
8429         return;
8430     default:
8431         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8432     }
8433 
8434     if (is_a64(env)) {
8435         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8436         aarch64_save_sp(env, arm_current_el(env));
8437         env->elr_el[new_el] = env->pc;
8438     } else {
8439         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8440         env->elr_el[new_el] = env->regs[15];
8441 
8442         aarch64_sync_32_to_64(env);
8443 
8444         env->condexec_bits = 0;
8445     }
8446     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8447                   env->elr_el[new_el]);
8448 
8449     pstate_write(env, PSTATE_DAIF | new_mode);
8450     env->aarch64 = 1;
8451     aarch64_restore_sp(env, new_el);
8452     helper_rebuild_hflags_a64(env, new_el);
8453 
8454     env->pc = addr;
8455 
8456     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8457                   new_el, env->pc, pstate_read(env));
8458 }
8459 
8460 /*
8461  * Do semihosting call and set the appropriate return value. All the
8462  * permission and validity checks have been done at translate time.
8463  *
8464  * We only see semihosting exceptions in TCG only as they are not
8465  * trapped to the hypervisor in KVM.
8466  */
8467 #ifdef CONFIG_TCG
handle_semihosting(CPUState * cs)8468 static void handle_semihosting(CPUState *cs)
8469 {
8470     ARMCPU *cpu = ARM_CPU(cs);
8471     CPUARMState *env = &cpu->env;
8472 
8473     if (is_a64(env)) {
8474         qemu_log_mask(CPU_LOG_INT,
8475                       "...handling as semihosting call 0x%" PRIx64 "\n",
8476                       env->xregs[0]);
8477         env->xregs[0] = do_arm_semihosting(env);
8478     } else {
8479         qemu_log_mask(CPU_LOG_INT,
8480                       "...handling as semihosting call 0x%x\n",
8481                       env->regs[0]);
8482         env->regs[0] = do_arm_semihosting(env);
8483     }
8484 }
8485 #endif
8486 
8487 /* Handle a CPU exception for A and R profile CPUs.
8488  * Do any appropriate logging, handle PSCI calls, and then hand off
8489  * to the AArch64-entry or AArch32-entry function depending on the
8490  * target exception level's register width.
8491  */
arm_cpu_do_interrupt(CPUState * cs)8492 void arm_cpu_do_interrupt(CPUState *cs)
8493 {
8494     ARMCPU *cpu = ARM_CPU(cs);
8495     CPUARMState *env = &cpu->env;
8496     unsigned int new_el = env->exception.target_el;
8497 
8498     assert(!arm_feature(env, ARM_FEATURE_M));
8499 
8500     arm_log_exception(cs->exception_index);
8501     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8502                   new_el);
8503     if (qemu_loglevel_mask(CPU_LOG_INT)
8504         && !excp_is_internal(cs->exception_index)) {
8505         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8506                       syn_get_ec(env->exception.syndrome),
8507                       env->exception.syndrome);
8508     }
8509 
8510     if (arm_is_psci_call(cpu, cs->exception_index)) {
8511         arm_handle_psci_call(cpu);
8512         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8513         return;
8514     }
8515 
8516     /*
8517      * Semihosting semantics depend on the register width of the code
8518      * that caused the exception, not the target exception level, so
8519      * must be handled here.
8520      */
8521 #ifdef CONFIG_TCG
8522     if (cs->exception_index == EXCP_SEMIHOST) {
8523         handle_semihosting(cs);
8524         return;
8525     }
8526 #endif
8527 
8528     /* Hooks may change global state so BQL should be held, also the
8529      * BQL needs to be held for any modification of
8530      * cs->interrupt_request.
8531      */
8532     g_assert(qemu_mutex_iothread_locked());
8533 
8534     arm_call_pre_el_change_hook(cpu);
8535 
8536     assert(!excp_is_internal(cs->exception_index));
8537     if (arm_el_is_aa64(env, new_el)) {
8538         arm_cpu_do_interrupt_aarch64(cs);
8539     } else {
8540         arm_cpu_do_interrupt_aarch32(cs);
8541     }
8542 
8543     arm_call_el_change_hook(cpu);
8544 
8545     if (!kvm_enabled()) {
8546         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8547     }
8548 }
8549 #endif /* !CONFIG_USER_ONLY */
8550 
8551 /* Return the exception level which controls this address translation regime */
regime_el(CPUARMState * env,ARMMMUIdx mmu_idx)8552 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8553 {
8554     switch (mmu_idx) {
8555     case ARMMMUIdx_S2NS:
8556     case ARMMMUIdx_S1E2:
8557         return 2;
8558     case ARMMMUIdx_S1E3:
8559         return 3;
8560     case ARMMMUIdx_S1SE0:
8561         return arm_el_is_aa64(env, 3) ? 1 : 3;
8562     case ARMMMUIdx_S1SE1:
8563     case ARMMMUIdx_S1NSE0:
8564     case ARMMMUIdx_S1NSE1:
8565     case ARMMMUIdx_MPrivNegPri:
8566     case ARMMMUIdx_MUserNegPri:
8567     case ARMMMUIdx_MPriv:
8568     case ARMMMUIdx_MUser:
8569     case ARMMMUIdx_MSPrivNegPri:
8570     case ARMMMUIdx_MSUserNegPri:
8571     case ARMMMUIdx_MSPriv:
8572     case ARMMMUIdx_MSUser:
8573         return 1;
8574     default:
8575         g_assert_not_reached();
8576     }
8577 }
8578 
8579 #ifndef CONFIG_USER_ONLY
8580 
8581 /* Return the SCTLR value which controls this address translation regime */
regime_sctlr(CPUARMState * env,ARMMMUIdx mmu_idx)8582 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8583 {
8584     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8585 }
8586 
8587 /* Return true if the specified stage of address translation is disabled */
regime_translation_disabled(CPUARMState * env,ARMMMUIdx mmu_idx)8588 static inline bool regime_translation_disabled(CPUARMState *env,
8589                                                ARMMMUIdx mmu_idx)
8590 {
8591     if (arm_feature(env, ARM_FEATURE_M)) {
8592         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8593                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8594         case R_V7M_MPU_CTRL_ENABLE_MASK:
8595             /* Enabled, but not for HardFault and NMI */
8596             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8597         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8598             /* Enabled for all cases */
8599             return false;
8600         case 0:
8601         default:
8602             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8603              * we warned about that in armv7m_nvic.c when the guest set it.
8604              */
8605             return true;
8606         }
8607     }
8608 
8609     if (mmu_idx == ARMMMUIdx_S2NS) {
8610         /* HCR.DC means HCR.VM behaves as 1 */
8611         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8612     }
8613 
8614     if (env->cp15.hcr_el2 & HCR_TGE) {
8615         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8616         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8617             return true;
8618         }
8619     }
8620 
8621     if ((env->cp15.hcr_el2 & HCR_DC) &&
8622         (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8623         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8624         return true;
8625     }
8626 
8627     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8628 }
8629 
regime_translation_big_endian(CPUARMState * env,ARMMMUIdx mmu_idx)8630 static inline bool regime_translation_big_endian(CPUARMState *env,
8631                                                  ARMMMUIdx mmu_idx)
8632 {
8633     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8634 }
8635 
8636 /* Return the TTBR associated with this translation regime */
regime_ttbr(CPUARMState * env,ARMMMUIdx mmu_idx,int ttbrn)8637 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8638                                    int ttbrn)
8639 {
8640     if (mmu_idx == ARMMMUIdx_S2NS) {
8641         return env->cp15.vttbr_el2;
8642     }
8643     if (ttbrn == 0) {
8644         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8645     } else {
8646         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8647     }
8648 }
8649 
8650 #endif /* !CONFIG_USER_ONLY */
8651 
8652 /* Return the TCR controlling this translation regime */
regime_tcr(CPUARMState * env,ARMMMUIdx mmu_idx)8653 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8654 {
8655     if (mmu_idx == ARMMMUIdx_S2NS) {
8656         return &env->cp15.vtcr_el2;
8657     }
8658     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8659 }
8660 
8661 /* Convert a possible stage1+2 MMU index into the appropriate
8662  * stage 1 MMU index
8663  */
stage_1_mmu_idx(ARMMMUIdx mmu_idx)8664 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8665 {
8666     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8667         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8668     }
8669     return mmu_idx;
8670 }
8671 
8672 /* Return true if the translation regime is using LPAE format page tables */
regime_using_lpae_format(CPUARMState * env,ARMMMUIdx mmu_idx)8673 static inline bool regime_using_lpae_format(CPUARMState *env,
8674                                             ARMMMUIdx mmu_idx)
8675 {
8676     int el = regime_el(env, mmu_idx);
8677     if (el == 2 || arm_el_is_aa64(env, el)) {
8678         return true;
8679     }
8680     if (arm_feature(env, ARM_FEATURE_LPAE)
8681         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8682         return true;
8683     }
8684     return false;
8685 }
8686 
8687 /* Returns true if the stage 1 translation regime is using LPAE format page
8688  * tables. Used when raising alignment exceptions, whose FSR changes depending
8689  * on whether the long or short descriptor format is in use. */
arm_s1_regime_using_lpae_format(CPUARMState * env,ARMMMUIdx mmu_idx)8690 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8691 {
8692     mmu_idx = stage_1_mmu_idx(mmu_idx);
8693 
8694     return regime_using_lpae_format(env, mmu_idx);
8695 }
8696 
8697 #ifndef CONFIG_USER_ONLY
regime_is_user(CPUARMState * env,ARMMMUIdx mmu_idx)8698 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8699 {
8700     switch (mmu_idx) {
8701     case ARMMMUIdx_S1SE0:
8702     case ARMMMUIdx_S1NSE0:
8703     case ARMMMUIdx_MUser:
8704     case ARMMMUIdx_MSUser:
8705     case ARMMMUIdx_MUserNegPri:
8706     case ARMMMUIdx_MSUserNegPri:
8707         return true;
8708     default:
8709         return false;
8710     case ARMMMUIdx_S12NSE0:
8711     case ARMMMUIdx_S12NSE1:
8712         g_assert_not_reached();
8713     }
8714 }
8715 
8716 /* Translate section/page access permissions to page
8717  * R/W protection flags
8718  *
8719  * @env:         CPUARMState
8720  * @mmu_idx:     MMU index indicating required translation regime
8721  * @ap:          The 3-bit access permissions (AP[2:0])
8722  * @domain_prot: The 2-bit domain access permissions
8723  */
ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap,int domain_prot)8724 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8725                                 int ap, int domain_prot)
8726 {
8727     bool is_user = regime_is_user(env, mmu_idx);
8728 
8729     if (domain_prot == 3) {
8730         return PAGE_READ | PAGE_WRITE;
8731     }
8732 
8733     switch (ap) {
8734     case 0:
8735         if (arm_feature(env, ARM_FEATURE_V7)) {
8736             return 0;
8737         }
8738         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8739         case SCTLR_S:
8740             return is_user ? 0 : PAGE_READ;
8741         case SCTLR_R:
8742             return PAGE_READ;
8743         default:
8744             return 0;
8745         }
8746     case 1:
8747         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8748     case 2:
8749         if (is_user) {
8750             return PAGE_READ;
8751         } else {
8752             return PAGE_READ | PAGE_WRITE;
8753         }
8754     case 3:
8755         return PAGE_READ | PAGE_WRITE;
8756     case 4: /* Reserved.  */
8757         return 0;
8758     case 5:
8759         return is_user ? 0 : PAGE_READ;
8760     case 6:
8761         return PAGE_READ;
8762     case 7:
8763         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8764             return 0;
8765         }
8766         return PAGE_READ;
8767     default:
8768         g_assert_not_reached();
8769     }
8770 }
8771 
8772 /* Translate section/page access permissions to page
8773  * R/W protection flags.
8774  *
8775  * @ap:      The 2-bit simple AP (AP[2:1])
8776  * @is_user: TRUE if accessing from PL0
8777  */
simple_ap_to_rw_prot_is_user(int ap,bool is_user)8778 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8779 {
8780     switch (ap) {
8781     case 0:
8782         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8783     case 1:
8784         return PAGE_READ | PAGE_WRITE;
8785     case 2:
8786         return is_user ? 0 : PAGE_READ;
8787     case 3:
8788         return PAGE_READ;
8789     default:
8790         g_assert_not_reached();
8791     }
8792 }
8793 
8794 static inline int
simple_ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap)8795 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8796 {
8797     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8798 }
8799 
8800 /* Translate S2 section/page access permissions to protection flags
8801  *
8802  * @env:     CPUARMState
8803  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8804  * @xn:      XN (execute-never) bit
8805  */
get_S2prot(CPUARMState * env,int s2ap,int xn)8806 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8807 {
8808     int prot = 0;
8809 
8810     if (s2ap & 1) {
8811         prot |= PAGE_READ;
8812     }
8813     if (s2ap & 2) {
8814         prot |= PAGE_WRITE;
8815     }
8816     if (!xn) {
8817         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8818             prot |= PAGE_EXEC;
8819         }
8820     }
8821     return prot;
8822 }
8823 
8824 /* Translate section/page access permissions to protection flags
8825  *
8826  * @env:     CPUARMState
8827  * @mmu_idx: MMU index indicating required translation regime
8828  * @is_aa64: TRUE if AArch64
8829  * @ap:      The 2-bit simple AP (AP[2:1])
8830  * @ns:      NS (non-secure) bit
8831  * @xn:      XN (execute-never) bit
8832  * @pxn:     PXN (privileged execute-never) bit
8833  */
get_S1prot(CPUARMState * env,ARMMMUIdx mmu_idx,bool is_aa64,int ap,int ns,int xn,int pxn)8834 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8835                       int ap, int ns, int xn, int pxn)
8836 {
8837     bool is_user = regime_is_user(env, mmu_idx);
8838     int prot_rw, user_rw;
8839     bool have_wxn;
8840     int wxn = 0;
8841 
8842     assert(mmu_idx != ARMMMUIdx_S2NS);
8843 
8844     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8845     if (is_user) {
8846         prot_rw = user_rw;
8847     } else {
8848         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8849     }
8850 
8851     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8852         return prot_rw;
8853     }
8854 
8855     /* TODO have_wxn should be replaced with
8856      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8857      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8858      * compatible processors have EL2, which is required for [U]WXN.
8859      */
8860     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8861 
8862     if (have_wxn) {
8863         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8864     }
8865 
8866     if (is_aa64) {
8867         switch (regime_el(env, mmu_idx)) {
8868         case 1:
8869             if (!is_user) {
8870                 xn = pxn || (user_rw & PAGE_WRITE);
8871             }
8872             break;
8873         case 2:
8874         case 3:
8875             break;
8876         }
8877     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8878         switch (regime_el(env, mmu_idx)) {
8879         case 1:
8880         case 3:
8881             if (is_user) {
8882                 xn = xn || !(user_rw & PAGE_READ);
8883             } else {
8884                 int uwxn = 0;
8885                 if (have_wxn) {
8886                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8887                 }
8888                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8889                      (uwxn && (user_rw & PAGE_WRITE));
8890             }
8891             break;
8892         case 2:
8893             break;
8894         }
8895     } else {
8896         xn = wxn = 0;
8897     }
8898 
8899     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8900         return prot_rw;
8901     }
8902     return prot_rw | PAGE_EXEC;
8903 }
8904 
get_level1_table_address(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t * table,uint32_t address)8905 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8906                                      uint32_t *table, uint32_t address)
8907 {
8908     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8909     TCR *tcr = regime_tcr(env, mmu_idx);
8910 
8911     if (address & tcr->mask) {
8912         if (tcr->raw_tcr & TTBCR_PD1) {
8913             /* Translation table walk disabled for TTBR1 */
8914             return false;
8915         }
8916         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8917     } else {
8918         if (tcr->raw_tcr & TTBCR_PD0) {
8919             /* Translation table walk disabled for TTBR0 */
8920             return false;
8921         }
8922         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8923     }
8924     *table |= (address >> 18) & 0x3ffc;
8925     return true;
8926 }
8927 
8928 /* Translate a S1 pagetable walk through S2 if needed.  */
S1_ptw_translate(CPUARMState * env,ARMMMUIdx mmu_idx,hwaddr addr,MemTxAttrs txattrs,ARMMMUFaultInfo * fi)8929 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8930                                hwaddr addr, MemTxAttrs txattrs,
8931                                ARMMMUFaultInfo *fi)
8932 {
8933     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8934         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8935         target_ulong s2size;
8936         hwaddr s2pa;
8937         int s2prot;
8938         int ret;
8939         ARMCacheAttrs cacheattrs = {};
8940         ARMCacheAttrs *pcacheattrs = NULL;
8941 
8942         if (env->cp15.hcr_el2 & HCR_PTW) {
8943             /*
8944              * PTW means we must fault if this S1 walk touches S2 Device
8945              * memory; otherwise we don't care about the attributes and can
8946              * save the S2 translation the effort of computing them.
8947              */
8948             pcacheattrs = &cacheattrs;
8949         }
8950 
8951         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8952                                  &txattrs, &s2prot, &s2size, fi, pcacheattrs);
8953         if (ret) {
8954             assert(fi->type != ARMFault_None);
8955             fi->s2addr = addr;
8956             fi->stage2 = true;
8957             fi->s1ptw = true;
8958             return ~0;
8959         }
8960         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
8961             /* Access was to Device memory: generate Permission fault */
8962             fi->type = ARMFault_Permission;
8963             fi->s2addr = addr;
8964             fi->stage2 = true;
8965             fi->s1ptw = true;
8966             return ~0;
8967         }
8968         addr = s2pa;
8969     }
8970     return addr;
8971 }
8972 
8973 /* All loads done in the course of a page table walk go through here. */
arm_ldl_ptw(CPUState * cs,hwaddr addr,bool is_secure,ARMMMUIdx mmu_idx,ARMMMUFaultInfo * fi)8974 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8975                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8976 {
8977     ARMCPU *cpu = ARM_CPU(cs);
8978     CPUARMState *env = &cpu->env;
8979     MemTxAttrs attrs = {};
8980     MemTxResult result = MEMTX_OK;
8981     AddressSpace *as;
8982     uint32_t data;
8983 
8984     attrs.secure = is_secure;
8985     as = arm_addressspace(cs, attrs);
8986     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8987     if (fi->s1ptw) {
8988         return 0;
8989     }
8990     if (regime_translation_big_endian(env, mmu_idx)) {
8991         data = address_space_ldl_be(as, addr, attrs, &result);
8992     } else {
8993         data = address_space_ldl_le(as, addr, attrs, &result);
8994     }
8995     if (result == MEMTX_OK) {
8996         return data;
8997     }
8998     fi->type = ARMFault_SyncExternalOnWalk;
8999     fi->ea = arm_extabort_type(result);
9000     return 0;
9001 }
9002 
arm_ldq_ptw(CPUState * cs,hwaddr addr,bool is_secure,ARMMMUIdx mmu_idx,ARMMMUFaultInfo * fi)9003 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9004                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9005 {
9006     ARMCPU *cpu = ARM_CPU(cs);
9007     CPUARMState *env = &cpu->env;
9008     MemTxAttrs attrs = {};
9009     MemTxResult result = MEMTX_OK;
9010     AddressSpace *as;
9011     uint64_t data;
9012 
9013     attrs.secure = is_secure;
9014     as = arm_addressspace(cs, attrs);
9015     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9016     if (fi->s1ptw) {
9017         return 0;
9018     }
9019     if (regime_translation_big_endian(env, mmu_idx)) {
9020         data = address_space_ldq_be(as, addr, attrs, &result);
9021     } else {
9022         data = address_space_ldq_le(as, addr, attrs, &result);
9023     }
9024     if (result == MEMTX_OK) {
9025         return data;
9026     }
9027     fi->type = ARMFault_SyncExternalOnWalk;
9028     fi->ea = arm_extabort_type(result);
9029     return 0;
9030 }
9031 
get_phys_addr_v5(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,hwaddr * phys_ptr,int * prot,target_ulong * page_size,ARMMMUFaultInfo * fi)9032 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
9033                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
9034                              hwaddr *phys_ptr, int *prot,
9035                              target_ulong *page_size,
9036                              ARMMMUFaultInfo *fi)
9037 {
9038     CPUState *cs = env_cpu(env);
9039     int level = 1;
9040     uint32_t table;
9041     uint32_t desc;
9042     int type;
9043     int ap;
9044     int domain = 0;
9045     int domain_prot;
9046     hwaddr phys_addr;
9047     uint32_t dacr;
9048 
9049     /* Pagetable walk.  */
9050     /* Lookup l1 descriptor.  */
9051     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9052         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9053         fi->type = ARMFault_Translation;
9054         goto do_fault;
9055     }
9056     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9057                        mmu_idx, fi);
9058     if (fi->type != ARMFault_None) {
9059         goto do_fault;
9060     }
9061     type = (desc & 3);
9062     domain = (desc >> 5) & 0x0f;
9063     if (regime_el(env, mmu_idx) == 1) {
9064         dacr = env->cp15.dacr_ns;
9065     } else {
9066         dacr = env->cp15.dacr_s;
9067     }
9068     domain_prot = (dacr >> (domain * 2)) & 3;
9069     if (type == 0) {
9070         /* Section translation fault.  */
9071         fi->type = ARMFault_Translation;
9072         goto do_fault;
9073     }
9074     if (type != 2) {
9075         level = 2;
9076     }
9077     if (domain_prot == 0 || domain_prot == 2) {
9078         fi->type = ARMFault_Domain;
9079         goto do_fault;
9080     }
9081     if (type == 2) {
9082         /* 1Mb section.  */
9083         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9084         ap = (desc >> 10) & 3;
9085         *page_size = 1024 * 1024;
9086     } else {
9087         /* Lookup l2 entry.  */
9088         if (type == 1) {
9089             /* Coarse pagetable.  */
9090             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9091         } else {
9092             /* Fine pagetable.  */
9093             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9094         }
9095         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9096                            mmu_idx, fi);
9097         if (fi->type != ARMFault_None) {
9098             goto do_fault;
9099         }
9100         switch (desc & 3) {
9101         case 0: /* Page translation fault.  */
9102             fi->type = ARMFault_Translation;
9103             goto do_fault;
9104         case 1: /* 64k page.  */
9105             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9106             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9107             *page_size = 0x10000;
9108             break;
9109         case 2: /* 4k page.  */
9110             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9111             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9112             *page_size = 0x1000;
9113             break;
9114         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9115             if (type == 1) {
9116                 /* ARMv6/XScale extended small page format */
9117                 if (arm_feature(env, ARM_FEATURE_XSCALE)
9118                     || arm_feature(env, ARM_FEATURE_V6)) {
9119                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9120                     *page_size = 0x1000;
9121                 } else {
9122                     /* UNPREDICTABLE in ARMv5; we choose to take a
9123                      * page translation fault.
9124                      */
9125                     fi->type = ARMFault_Translation;
9126                     goto do_fault;
9127                 }
9128             } else {
9129                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9130                 *page_size = 0x400;
9131             }
9132             ap = (desc >> 4) & 3;
9133             break;
9134         default:
9135             /* Never happens, but compiler isn't smart enough to tell.  */
9136             abort();
9137         }
9138     }
9139     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9140     *prot |= *prot ? PAGE_EXEC : 0;
9141     if (!(*prot & (1 << access_type))) {
9142         /* Access permission fault.  */
9143         fi->type = ARMFault_Permission;
9144         goto do_fault;
9145     }
9146     *phys_ptr = phys_addr;
9147     return false;
9148 do_fault:
9149     fi->domain = domain;
9150     fi->level = level;
9151     return true;
9152 }
9153 
get_phys_addr_v6(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,hwaddr * phys_ptr,MemTxAttrs * attrs,int * prot,target_ulong * page_size,ARMMMUFaultInfo * fi)9154 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9155                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
9156                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9157                              target_ulong *page_size, ARMMMUFaultInfo *fi)
9158 {
9159     CPUState *cs = env_cpu(env);
9160     int level = 1;
9161     uint32_t table;
9162     uint32_t desc;
9163     uint32_t xn;
9164     uint32_t pxn = 0;
9165     int type;
9166     int ap;
9167     int domain = 0;
9168     int domain_prot;
9169     hwaddr phys_addr;
9170     uint32_t dacr;
9171     bool ns;
9172 
9173     /* Pagetable walk.  */
9174     /* Lookup l1 descriptor.  */
9175     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9176         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9177         fi->type = ARMFault_Translation;
9178         goto do_fault;
9179     }
9180     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9181                        mmu_idx, fi);
9182     if (fi->type != ARMFault_None) {
9183         goto do_fault;
9184     }
9185     type = (desc & 3);
9186     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9187         /* Section translation fault, or attempt to use the encoding
9188          * which is Reserved on implementations without PXN.
9189          */
9190         fi->type = ARMFault_Translation;
9191         goto do_fault;
9192     }
9193     if ((type == 1) || !(desc & (1 << 18))) {
9194         /* Page or Section.  */
9195         domain = (desc >> 5) & 0x0f;
9196     }
9197     if (regime_el(env, mmu_idx) == 1) {
9198         dacr = env->cp15.dacr_ns;
9199     } else {
9200         dacr = env->cp15.dacr_s;
9201     }
9202     if (type == 1) {
9203         level = 2;
9204     }
9205     domain_prot = (dacr >> (domain * 2)) & 3;
9206     if (domain_prot == 0 || domain_prot == 2) {
9207         /* Section or Page domain fault */
9208         fi->type = ARMFault_Domain;
9209         goto do_fault;
9210     }
9211     if (type != 1) {
9212         if (desc & (1 << 18)) {
9213             /* Supersection.  */
9214             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9215             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9216             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9217             *page_size = 0x1000000;
9218         } else {
9219             /* Section.  */
9220             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9221             *page_size = 0x100000;
9222         }
9223         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9224         xn = desc & (1 << 4);
9225         pxn = desc & 1;
9226         ns = extract32(desc, 19, 1);
9227     } else {
9228         if (arm_feature(env, ARM_FEATURE_PXN)) {
9229             pxn = (desc >> 2) & 1;
9230         }
9231         ns = extract32(desc, 3, 1);
9232         /* Lookup l2 entry.  */
9233         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9234         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9235                            mmu_idx, fi);
9236         if (fi->type != ARMFault_None) {
9237             goto do_fault;
9238         }
9239         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9240         switch (desc & 3) {
9241         case 0: /* Page translation fault.  */
9242             fi->type = ARMFault_Translation;
9243             goto do_fault;
9244         case 1: /* 64k page.  */
9245             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9246             xn = desc & (1 << 15);
9247             *page_size = 0x10000;
9248             break;
9249         case 2: case 3: /* 4k page.  */
9250             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9251             xn = desc & 1;
9252             *page_size = 0x1000;
9253             break;
9254         default:
9255             /* Never happens, but compiler isn't smart enough to tell.  */
9256             abort();
9257         }
9258     }
9259     if (domain_prot == 3) {
9260         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9261     } else {
9262         if (pxn && !regime_is_user(env, mmu_idx)) {
9263             xn = 1;
9264         }
9265         if (xn && access_type == MMU_INST_FETCH) {
9266             fi->type = ARMFault_Permission;
9267             goto do_fault;
9268         }
9269 
9270         if (arm_feature(env, ARM_FEATURE_V6K) &&
9271                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9272             /* The simplified model uses AP[0] as an access control bit.  */
9273             if ((ap & 1) == 0) {
9274                 /* Access flag fault.  */
9275                 fi->type = ARMFault_AccessFlag;
9276                 goto do_fault;
9277             }
9278             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9279         } else {
9280             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9281         }
9282         if (*prot && !xn) {
9283             *prot |= PAGE_EXEC;
9284         }
9285         if (!(*prot & (1 << access_type))) {
9286             /* Access permission fault.  */
9287             fi->type = ARMFault_Permission;
9288             goto do_fault;
9289         }
9290     }
9291     if (ns) {
9292         /* The NS bit will (as required by the architecture) have no effect if
9293          * the CPU doesn't support TZ or this is a non-secure translation
9294          * regime, because the attribute will already be non-secure.
9295          */
9296         attrs->secure = false;
9297     }
9298     *phys_ptr = phys_addr;
9299     return false;
9300 do_fault:
9301     fi->domain = domain;
9302     fi->level = level;
9303     return true;
9304 }
9305 
9306 /*
9307  * check_s2_mmu_setup
9308  * @cpu:        ARMCPU
9309  * @is_aa64:    True if the translation regime is in AArch64 state
9310  * @startlevel: Suggested starting level
9311  * @inputsize:  Bitsize of IPAs
9312  * @stride:     Page-table stride (See the ARM ARM)
9313  *
9314  * Returns true if the suggested S2 translation parameters are OK and
9315  * false otherwise.
9316  */
check_s2_mmu_setup(ARMCPU * cpu,bool is_aa64,int level,int inputsize,int stride)9317 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9318                                int inputsize, int stride)
9319 {
9320     const int grainsize = stride + 3;
9321     int startsizecheck;
9322 
9323     /* Negative levels are never allowed.  */
9324     if (level < 0) {
9325         return false;
9326     }
9327 
9328     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9329     if (startsizecheck < 1 || startsizecheck > stride + 4) {
9330         return false;
9331     }
9332 
9333     if (is_aa64) {
9334         CPUARMState *env = &cpu->env;
9335         unsigned int pamax = arm_pamax(cpu);
9336 
9337         switch (stride) {
9338         case 13: /* 64KB Pages.  */
9339             if (level == 0 || (level == 1 && pamax <= 42)) {
9340                 return false;
9341             }
9342             break;
9343         case 11: /* 16KB Pages.  */
9344             if (level == 0 || (level == 1 && pamax <= 40)) {
9345                 return false;
9346             }
9347             break;
9348         case 9: /* 4KB Pages.  */
9349             if (level == 0 && pamax <= 42) {
9350                 return false;
9351             }
9352             break;
9353         default:
9354             g_assert_not_reached();
9355         }
9356 
9357         /* Inputsize checks.  */
9358         if (inputsize > pamax &&
9359             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9360             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
9361             return false;
9362         }
9363     } else {
9364         /* AArch32 only supports 4KB pages. Assert on that.  */
9365         assert(stride == 9);
9366 
9367         if (level == 0) {
9368             return false;
9369         }
9370     }
9371     return true;
9372 }
9373 
9374 /* Translate from the 4-bit stage 2 representation of
9375  * memory attributes (without cache-allocation hints) to
9376  * the 8-bit representation of the stage 1 MAIR registers
9377  * (which includes allocation hints).
9378  *
9379  * ref: shared/translation/attrs/S2AttrDecode()
9380  *      .../S2ConvertAttrsHints()
9381  */
convert_stage2_attrs(CPUARMState * env,uint8_t s2attrs)9382 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9383 {
9384     uint8_t hiattr = extract32(s2attrs, 2, 2);
9385     uint8_t loattr = extract32(s2attrs, 0, 2);
9386     uint8_t hihint = 0, lohint = 0;
9387 
9388     if (hiattr != 0) { /* normal memory */
9389         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9390             hiattr = loattr = 1; /* non-cacheable */
9391         } else {
9392             if (hiattr != 1) { /* Write-through or write-back */
9393                 hihint = 3; /* RW allocate */
9394             }
9395             if (loattr != 1) { /* Write-through or write-back */
9396                 lohint = 3; /* RW allocate */
9397             }
9398         }
9399     }
9400 
9401     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9402 }
9403 #endif /* !CONFIG_USER_ONLY */
9404 
aa64_va_parameters_both(CPUARMState * env,uint64_t va,ARMMMUIdx mmu_idx)9405 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
9406                                         ARMMMUIdx mmu_idx)
9407 {
9408     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9409     uint32_t el = regime_el(env, mmu_idx);
9410     bool tbi, tbid, epd, hpd, using16k, using64k;
9411     int select, tsz;
9412 
9413     /*
9414      * Bit 55 is always between the two regions, and is canonical for
9415      * determining if address tagging is enabled.
9416      */
9417     select = extract64(va, 55, 1);
9418 
9419     if (el > 1) {
9420         tsz = extract32(tcr, 0, 6);
9421         using64k = extract32(tcr, 14, 1);
9422         using16k = extract32(tcr, 15, 1);
9423         if (mmu_idx == ARMMMUIdx_S2NS) {
9424             /* VTCR_EL2 */
9425             tbi = tbid = hpd = false;
9426         } else {
9427             tbi = extract32(tcr, 20, 1);
9428             hpd = extract32(tcr, 24, 1);
9429             tbid = extract32(tcr, 29, 1);
9430         }
9431         epd = false;
9432     } else if (!select) {
9433         tsz = extract32(tcr, 0, 6);
9434         epd = extract32(tcr, 7, 1);
9435         using64k = extract32(tcr, 14, 1);
9436         using16k = extract32(tcr, 15, 1);
9437         tbi = extract64(tcr, 37, 1);
9438         hpd = extract64(tcr, 41, 1);
9439         tbid = extract64(tcr, 51, 1);
9440     } else {
9441         int tg = extract32(tcr, 30, 2);
9442         using16k = tg == 1;
9443         using64k = tg == 3;
9444         tsz = extract32(tcr, 16, 6);
9445         epd = extract32(tcr, 23, 1);
9446         tbi = extract64(tcr, 38, 1);
9447         hpd = extract64(tcr, 42, 1);
9448         tbid = extract64(tcr, 52, 1);
9449     }
9450     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
9451     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
9452 
9453     return (ARMVAParameters) {
9454         .tsz = tsz,
9455         .select = select,
9456         .tbi = tbi,
9457         .tbid = tbid,
9458         .epd = epd,
9459         .hpd = hpd,
9460         .using16k = using16k,
9461         .using64k = using64k,
9462     };
9463 }
9464 
aa64_va_parameters(CPUARMState * env,uint64_t va,ARMMMUIdx mmu_idx,bool data)9465 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
9466                                    ARMMMUIdx mmu_idx, bool data)
9467 {
9468     ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
9469 
9470     /* Present TBI as a composite with TBID.  */
9471     ret.tbi &= (data || !ret.tbid);
9472     return ret;
9473 }
9474 
9475 #ifndef CONFIG_USER_ONLY
aa32_va_parameters(CPUARMState * env,uint32_t va,ARMMMUIdx mmu_idx)9476 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
9477                                           ARMMMUIdx mmu_idx)
9478 {
9479     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9480     uint32_t el = regime_el(env, mmu_idx);
9481     int select, tsz;
9482     bool epd, hpd;
9483 
9484     if (mmu_idx == ARMMMUIdx_S2NS) {
9485         /* VTCR */
9486         bool sext = extract32(tcr, 4, 1);
9487         bool sign = extract32(tcr, 3, 1);
9488 
9489         /*
9490          * If the sign-extend bit is not the same as t0sz[3], the result
9491          * is unpredictable. Flag this as a guest error.
9492          */
9493         if (sign != sext) {
9494             qemu_log_mask(LOG_GUEST_ERROR,
9495                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9496         }
9497         tsz = sextract32(tcr, 0, 4) + 8;
9498         select = 0;
9499         hpd = false;
9500         epd = false;
9501     } else if (el == 2) {
9502         /* HTCR */
9503         tsz = extract32(tcr, 0, 3);
9504         select = 0;
9505         hpd = extract64(tcr, 24, 1);
9506         epd = false;
9507     } else {
9508         int t0sz = extract32(tcr, 0, 3);
9509         int t1sz = extract32(tcr, 16, 3);
9510 
9511         if (t1sz == 0) {
9512             select = va > (0xffffffffu >> t0sz);
9513         } else {
9514             /* Note that we will detect errors later.  */
9515             select = va >= ~(0xffffffffu >> t1sz);
9516         }
9517         if (!select) {
9518             tsz = t0sz;
9519             epd = extract32(tcr, 7, 1);
9520             hpd = extract64(tcr, 41, 1);
9521         } else {
9522             tsz = t1sz;
9523             epd = extract32(tcr, 23, 1);
9524             hpd = extract64(tcr, 42, 1);
9525         }
9526         /* For aarch32, hpd0 is not enabled without t2e as well.  */
9527         hpd &= extract32(tcr, 6, 1);
9528     }
9529 
9530     return (ARMVAParameters) {
9531         .tsz = tsz,
9532         .select = select,
9533         .epd = epd,
9534         .hpd = hpd,
9535     };
9536 }
9537 
get_phys_addr_lpae(CPUARMState * env,target_ulong address,MMUAccessType access_type,ARMMMUIdx mmu_idx,hwaddr * phys_ptr,MemTxAttrs * txattrs,int * prot,target_ulong * page_size_ptr,ARMMMUFaultInfo * fi,ARMCacheAttrs * cacheattrs)9538 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9539                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
9540                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9541                                target_ulong *page_size_ptr,
9542                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9543 {
9544     ARMCPU *cpu = env_archcpu(env);
9545     CPUState *cs = CPU(cpu);
9546     /* Read an LPAE long-descriptor translation table. */
9547     ARMFaultType fault_type = ARMFault_Translation;
9548     uint32_t level;
9549     ARMVAParameters param;
9550     uint64_t ttbr;
9551     hwaddr descaddr, indexmask, indexmask_grainsize;
9552     uint32_t tableattrs;
9553     target_ulong page_size;
9554     uint32_t attrs;
9555     int32_t stride;
9556     int addrsize, inputsize;
9557     TCR *tcr = regime_tcr(env, mmu_idx);
9558     int ap, ns, xn, pxn;
9559     uint32_t el = regime_el(env, mmu_idx);
9560     bool ttbr1_valid;
9561     uint64_t descaddrmask;
9562     bool aarch64 = arm_el_is_aa64(env, el);
9563     bool guarded = false;
9564 
9565     /* TODO:
9566      * This code does not handle the different format TCR for VTCR_EL2.
9567      * This code also does not support shareability levels.
9568      * Attribute and permission bit handling should also be checked when adding
9569      * support for those page table walks.
9570      */
9571     if (aarch64) {
9572         param = aa64_va_parameters(env, address, mmu_idx,
9573                                    access_type != MMU_INST_FETCH);
9574         level = 0;
9575         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9576          * invalid.
9577          */
9578         ttbr1_valid = (el < 2);
9579         addrsize = 64 - 8 * param.tbi;
9580         inputsize = 64 - param.tsz;
9581     } else {
9582         param = aa32_va_parameters(env, address, mmu_idx);
9583         level = 1;
9584         /* There is no TTBR1 for EL2 */
9585         ttbr1_valid = (el != 2);
9586         addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
9587         inputsize = addrsize - param.tsz;
9588     }
9589 
9590     /*
9591      * We determined the region when collecting the parameters, but we
9592      * have not yet validated that the address is valid for the region.
9593      * Extract the top bits and verify that they all match select.
9594      *
9595      * For aa32, if inputsize == addrsize, then we have selected the
9596      * region by exclusion in aa32_va_parameters and there is no more
9597      * validation to do here.
9598      */
9599     if (inputsize < addrsize) {
9600         target_ulong top_bits = sextract64(address, inputsize,
9601                                            addrsize - inputsize);
9602         if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
9603             /* The gap between the two regions is a Translation fault */
9604             fault_type = ARMFault_Translation;
9605             goto do_fault;
9606         }
9607     }
9608 
9609     if (param.using64k) {
9610         stride = 13;
9611     } else if (param.using16k) {
9612         stride = 11;
9613     } else {
9614         stride = 9;
9615     }
9616 
9617     /* Note that QEMU ignores shareability and cacheability attributes,
9618      * so we don't need to do anything with the SH, ORGN, IRGN fields
9619      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
9620      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9621      * implement any ASID-like capability so we can ignore it (instead
9622      * we will always flush the TLB any time the ASID is changed).
9623      */
9624     ttbr = regime_ttbr(env, mmu_idx, param.select);
9625 
9626     /* Here we should have set up all the parameters for the translation:
9627      * inputsize, ttbr, epd, stride, tbi
9628      */
9629 
9630     if (param.epd) {
9631         /* Translation table walk disabled => Translation fault on TLB miss
9632          * Note: This is always 0 on 64-bit EL2 and EL3.
9633          */
9634         goto do_fault;
9635     }
9636 
9637     if (mmu_idx != ARMMMUIdx_S2NS) {
9638         /* The starting level depends on the virtual address size (which can
9639          * be up to 48 bits) and the translation granule size. It indicates
9640          * the number of strides (stride bits at a time) needed to
9641          * consume the bits of the input address. In the pseudocode this is:
9642          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
9643          * where their 'inputsize' is our 'inputsize', 'grainsize' is
9644          * our 'stride + 3' and 'stride' is our 'stride'.
9645          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9646          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9647          * = 4 - (inputsize - 4) / stride;
9648          */
9649         level = 4 - (inputsize - 4) / stride;
9650     } else {
9651         /* For stage 2 translations the starting level is specified by the
9652          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9653          */
9654         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9655         uint32_t startlevel;
9656         bool ok;
9657 
9658         if (!aarch64 || stride == 9) {
9659             /* AArch32 or 4KB pages */
9660             startlevel = 2 - sl0;
9661         } else {
9662             /* 16KB or 64KB pages */
9663             startlevel = 3 - sl0;
9664         }
9665 
9666         /* Check that the starting level is valid. */
9667         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9668                                 inputsize, stride);
9669         if (!ok) {
9670             fault_type = ARMFault_Translation;
9671             goto do_fault;
9672         }
9673         level = startlevel;
9674     }
9675 
9676     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9677     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9678 
9679     /* Now we can extract the actual base address from the TTBR */
9680     descaddr = extract64(ttbr, 0, 48);
9681     descaddr &= ~indexmask;
9682 
9683     /* The address field in the descriptor goes up to bit 39 for ARMv7
9684      * but up to bit 47 for ARMv8, but we use the descaddrmask
9685      * up to bit 39 for AArch32, because we don't need other bits in that case
9686      * to construct next descriptor address (anyway they should be all zeroes).
9687      */
9688     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9689                    ~indexmask_grainsize;
9690 
9691     /* Secure accesses start with the page table in secure memory and
9692      * can be downgraded to non-secure at any step. Non-secure accesses
9693      * remain non-secure. We implement this by just ORing in the NSTable/NS
9694      * bits at each step.
9695      */
9696     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9697     for (;;) {
9698         uint64_t descriptor;
9699         bool nstable;
9700 
9701         descaddr |= (address >> (stride * (4 - level))) & indexmask;
9702         descaddr &= ~7ULL;
9703         nstable = extract32(tableattrs, 4, 1);
9704         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9705         if (fi->type != ARMFault_None) {
9706             goto do_fault;
9707         }
9708 
9709         if (!(descriptor & 1) ||
9710             (!(descriptor & 2) && (level == 3))) {
9711             /* Invalid, or the Reserved level 3 encoding */
9712             goto do_fault;
9713         }
9714         descaddr = descriptor & descaddrmask;
9715 
9716         if ((descriptor & 2) && (level < 3)) {
9717             /* Table entry. The top five bits are attributes which may
9718              * propagate down through lower levels of the table (and
9719              * which are all arranged so that 0 means "no effect", so
9720              * we can gather them up by ORing in the bits at each level).
9721              */
9722             tableattrs |= extract64(descriptor, 59, 5);
9723             level++;
9724             indexmask = indexmask_grainsize;
9725             continue;
9726         }
9727         /* Block entry at level 1 or 2, or page entry at level 3.
9728          * These are basically the same thing, although the number
9729          * of bits we pull in from the vaddr varies.
9730          */
9731         page_size = (1ULL << ((stride * (4 - level)) + 3));
9732         descaddr |= (address & (page_size - 1));
9733         /* Extract attributes from the descriptor */
9734         attrs = extract64(descriptor, 2, 10)
9735             | (extract64(descriptor, 52, 12) << 10);
9736 
9737         if (mmu_idx == ARMMMUIdx_S2NS) {
9738             /* Stage 2 table descriptors do not include any attribute fields */
9739             break;
9740         }
9741         /* Merge in attributes from table descriptors */
9742         attrs |= nstable << 3; /* NS */
9743         guarded = extract64(descriptor, 50, 1);  /* GP */
9744         if (param.hpd) {
9745             /* HPD disables all the table attributes except NSTable.  */
9746             break;
9747         }
9748         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
9749         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9750          * means "force PL1 access only", which means forcing AP[1] to 0.
9751          */
9752         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
9753         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
9754         break;
9755     }
9756     /* Here descaddr is the final physical address, and attributes
9757      * are all in attrs.
9758      */
9759     fault_type = ARMFault_AccessFlag;
9760     if ((attrs & (1 << 8)) == 0) {
9761         /* Access flag */
9762         goto do_fault;
9763     }
9764 
9765     ap = extract32(attrs, 4, 2);
9766     xn = extract32(attrs, 12, 1);
9767 
9768     if (mmu_idx == ARMMMUIdx_S2NS) {
9769         ns = true;
9770         *prot = get_S2prot(env, ap, xn);
9771     } else {
9772         ns = extract32(attrs, 3, 1);
9773         pxn = extract32(attrs, 11, 1);
9774         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9775     }
9776 
9777     fault_type = ARMFault_Permission;
9778     if (!(*prot & (1 << access_type))) {
9779         goto do_fault;
9780     }
9781 
9782     if (ns) {
9783         /* The NS bit will (as required by the architecture) have no effect if
9784          * the CPU doesn't support TZ or this is a non-secure translation
9785          * regime, because the attribute will already be non-secure.
9786          */
9787         txattrs->secure = false;
9788     }
9789     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
9790     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
9791         txattrs->target_tlb_bit0 = true;
9792     }
9793 
9794     if (cacheattrs != NULL) {
9795         if (mmu_idx == ARMMMUIdx_S2NS) {
9796             cacheattrs->attrs = convert_stage2_attrs(env,
9797                                                      extract32(attrs, 0, 4));
9798         } else {
9799             /* Index into MAIR registers for cache attributes */
9800             uint8_t attrindx = extract32(attrs, 0, 3);
9801             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9802             assert(attrindx <= 7);
9803             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9804         }
9805         cacheattrs->shareability = extract32(attrs, 6, 2);
9806     }
9807 
9808     *phys_ptr = descaddr;
9809     *page_size_ptr = page_size;
9810     return false;
9811 
9812 do_fault:
9813     fi->type = fault_type;
9814     fi->level = level;
9815     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9816     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9817     return true;
9818 }
9819 
get_phys_addr_pmsav7_default(CPUARMState * env,ARMMMUIdx mmu_idx,int32_t address,int * prot)9820 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9821                                                 ARMMMUIdx mmu_idx,
9822                                                 int32_t address, int *prot)
9823 {
9824     if (!arm_feature(env, ARM_FEATURE_M)) {
9825         *prot = PAGE_READ | PAGE_WRITE;
9826         switch (address) {
9827         case 0xF0000000 ... 0xFFFFFFFF:
9828             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9829                 /* hivecs execing is ok */
9830                 *prot |= PAGE_EXEC;
9831             }
9832             break;
9833         case 0x00000000 ... 0x7FFFFFFF:
9834             *prot |= PAGE_EXEC;
9835             break;
9836         }
9837     } else {
9838         /* Default system address map for M profile cores.
9839          * The architecture specifies which regions are execute-never;
9840          * at the MPU level no other checks are defined.
9841          */
9842         switch (address) {
9843         case 0x00000000 ... 0x1fffffff: /* ROM */
9844         case 0x20000000 ... 0x3fffffff: /* SRAM */
9845         case 0x60000000 ... 0x7fffffff: /* RAM */
9846         case 0x80000000 ... 0x9fffffff: /* RAM */
9847             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9848             break;
9849         case 0x40000000 ... 0x5fffffff: /* Peripheral */
9850         case 0xa0000000 ... 0xbfffffff: /* Device */
9851         case 0xc0000000 ... 0xdfffffff: /* Device */
9852         case 0xe0000000 ... 0xffffffff: /* System */
9853             *prot = PAGE_READ | PAGE_WRITE;
9854             break;
9855         default:
9856             g_assert_not_reached();
9857         }
9858     }
9859 }
9860 
pmsav7_use_background_region(ARMCPU * cpu,ARMMMUIdx mmu_idx,bool is_user)9861 static bool pmsav7_use_background_region(ARMCPU *cpu,
9862                                          ARMMMUIdx mmu_idx, bool is_user)
9863 {
9864     /* Return true if we should use the default memory map as a
9865      * "background" region if there are no hits against any MPU regions.
9866      */
9867     CPUARMState *env = &cpu->env;
9868 
9869     if (is_user) {
9870         return false;
9871     }
9872 
9873     if (arm_feature(env, ARM_FEATURE_M)) {
9874         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9875             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9876     } else {
9877         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9878     }
9879 }
9880 
m_is_ppb_region(CPUARMState * env,uint32_t address)9881 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9882 {
9883     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9884     return arm_feature(env, ARM_FEATURE_M) &&
9885         extract32(address, 20, 12) == 0xe00;
9886 }
9887 
m_is_system_region(CPUARMState * env,uint32_t address)9888 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9889 {
9890     /* True if address is in the M profile system region
9891      * 0xe0000000 - 0xffffffff
9892      */
9893     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9894 }
9895 
get_phys_addr_pmsav7(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,hwaddr * phys_ptr,int * prot,target_ulong * page_size,ARMMMUFaultInfo * fi)9896 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9897                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9898                                  hwaddr *phys_ptr, int *prot,
9899                                  target_ulong *page_size,
9900                                  ARMMMUFaultInfo *fi)
9901 {
9902     ARMCPU *cpu = env_archcpu(env);
9903     int n;
9904     bool is_user = regime_is_user(env, mmu_idx);
9905 
9906     *phys_ptr = address;
9907     *page_size = TARGET_PAGE_SIZE;
9908     *prot = 0;
9909 
9910     if (regime_translation_disabled(env, mmu_idx) ||
9911         m_is_ppb_region(env, address)) {
9912         /* MPU disabled or M profile PPB access: use default memory map.
9913          * The other case which uses the default memory map in the
9914          * v7M ARM ARM pseudocode is exception vector reads from the vector
9915          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9916          * which always does a direct read using address_space_ldl(), rather
9917          * than going via this function, so we don't need to check that here.
9918          */
9919         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9920     } else { /* MPU enabled */
9921         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9922             /* region search */
9923             uint32_t base = env->pmsav7.drbar[n];
9924             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9925             uint32_t rmask;
9926             bool srdis = false;
9927 
9928             if (!(env->pmsav7.drsr[n] & 0x1)) {
9929                 continue;
9930             }
9931 
9932             if (!rsize) {
9933                 qemu_log_mask(LOG_GUEST_ERROR,
9934                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9935                 continue;
9936             }
9937             rsize++;
9938             rmask = (1ull << rsize) - 1;
9939 
9940             if (base & rmask) {
9941                 qemu_log_mask(LOG_GUEST_ERROR,
9942                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9943                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9944                               n, base, rmask);
9945                 continue;
9946             }
9947 
9948             if (address < base || address > base + rmask) {
9949                 /*
9950                  * Address not in this region. We must check whether the
9951                  * region covers addresses in the same page as our address.
9952                  * In that case we must not report a size that covers the
9953                  * whole page for a subsequent hit against a different MPU
9954                  * region or the background region, because it would result in
9955                  * incorrect TLB hits for subsequent accesses to addresses that
9956                  * are in this MPU region.
9957                  */
9958                 if (ranges_overlap(base, rmask,
9959                                    address & TARGET_PAGE_MASK,
9960                                    TARGET_PAGE_SIZE)) {
9961                     *page_size = 1;
9962                 }
9963                 continue;
9964             }
9965 
9966             /* Region matched */
9967 
9968             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9969                 int i, snd;
9970                 uint32_t srdis_mask;
9971 
9972                 rsize -= 3; /* sub region size (power of 2) */
9973                 snd = ((address - base) >> rsize) & 0x7;
9974                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9975 
9976                 srdis_mask = srdis ? 0x3 : 0x0;
9977                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9978                     /* This will check in groups of 2, 4 and then 8, whether
9979                      * the subregion bits are consistent. rsize is incremented
9980                      * back up to give the region size, considering consistent
9981                      * adjacent subregions as one region. Stop testing if rsize
9982                      * is already big enough for an entire QEMU page.
9983                      */
9984                     int snd_rounded = snd & ~(i - 1);
9985                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9986                                                      snd_rounded + 8, i);
9987                     if (srdis_mask ^ srdis_multi) {
9988                         break;
9989                     }
9990                     srdis_mask = (srdis_mask << i) | srdis_mask;
9991                     rsize++;
9992                 }
9993             }
9994             if (srdis) {
9995                 continue;
9996             }
9997             if (rsize < TARGET_PAGE_BITS) {
9998                 *page_size = 1 << rsize;
9999             }
10000             break;
10001         }
10002 
10003         if (n == -1) { /* no hits */
10004             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10005                 /* background fault */
10006                 fi->type = ARMFault_Background;
10007                 return true;
10008             }
10009             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10010         } else { /* a MPU hit! */
10011             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
10012             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10013 
10014             if (m_is_system_region(env, address)) {
10015                 /* System space is always execute never */
10016                 xn = 1;
10017             }
10018 
10019             if (is_user) { /* User mode AP bit decoding */
10020                 switch (ap) {
10021                 case 0:
10022                 case 1:
10023                 case 5:
10024                     break; /* no access */
10025                 case 3:
10026                     *prot |= PAGE_WRITE;
10027                     /* fall through */
10028                 case 2:
10029                 case 6:
10030                     *prot |= PAGE_READ | PAGE_EXEC;
10031                     break;
10032                 case 7:
10033                     /* for v7M, same as 6; for R profile a reserved value */
10034                     if (arm_feature(env, ARM_FEATURE_M)) {
10035                         *prot |= PAGE_READ | PAGE_EXEC;
10036                         break;
10037                     }
10038                     /* fall through */
10039                 default:
10040                     qemu_log_mask(LOG_GUEST_ERROR,
10041                                   "DRACR[%d]: Bad value for AP bits: 0x%"
10042                                   PRIx32 "\n", n, ap);
10043                 }
10044             } else { /* Priv. mode AP bits decoding */
10045                 switch (ap) {
10046                 case 0:
10047                     break; /* no access */
10048                 case 1:
10049                 case 2:
10050                 case 3:
10051                     *prot |= PAGE_WRITE;
10052                     /* fall through */
10053                 case 5:
10054                 case 6:
10055                     *prot |= PAGE_READ | PAGE_EXEC;
10056                     break;
10057                 case 7:
10058                     /* for v7M, same as 6; for R profile a reserved value */
10059                     if (arm_feature(env, ARM_FEATURE_M)) {
10060                         *prot |= PAGE_READ | PAGE_EXEC;
10061                         break;
10062                     }
10063                     /* fall through */
10064                 default:
10065                     qemu_log_mask(LOG_GUEST_ERROR,
10066                                   "DRACR[%d]: Bad value for AP bits: 0x%"
10067                                   PRIx32 "\n", n, ap);
10068                 }
10069             }
10070 
10071             /* execute never */
10072             if (xn) {
10073                 *prot &= ~PAGE_EXEC;
10074             }
10075         }
10076     }
10077 
10078     fi->type = ARMFault_Permission;
10079     fi->level = 1;
10080     return !(*prot & (1 << access_type));
10081 }
10082 
v8m_is_sau_exempt(CPUARMState * env,uint32_t address,MMUAccessType access_type)10083 static bool v8m_is_sau_exempt(CPUARMState *env,
10084                               uint32_t address, MMUAccessType access_type)
10085 {
10086     /* The architecture specifies that certain address ranges are
10087      * exempt from v8M SAU/IDAU checks.
10088      */
10089     return
10090         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10091         (address >= 0xe0000000 && address <= 0xe0002fff) ||
10092         (address >= 0xe000e000 && address <= 0xe000efff) ||
10093         (address >= 0xe002e000 && address <= 0xe002efff) ||
10094         (address >= 0xe0040000 && address <= 0xe0041fff) ||
10095         (address >= 0xe00ff000 && address <= 0xe00fffff);
10096 }
10097 
v8m_security_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,V8M_SAttributes * sattrs)10098 void v8m_security_lookup(CPUARMState *env, uint32_t address,
10099                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10100                                 V8M_SAttributes *sattrs)
10101 {
10102     /* Look up the security attributes for this address. Compare the
10103      * pseudocode SecurityCheck() function.
10104      * We assume the caller has zero-initialized *sattrs.
10105      */
10106     ARMCPU *cpu = env_archcpu(env);
10107     int r;
10108     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10109     int idau_region = IREGION_NOTVALID;
10110     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10111     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10112 
10113     if (cpu->idau) {
10114         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10115         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10116 
10117         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10118                    &idau_nsc);
10119     }
10120 
10121     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10122         /* 0xf0000000..0xffffffff is always S for insn fetches */
10123         return;
10124     }
10125 
10126     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10127         sattrs->ns = !regime_is_secure(env, mmu_idx);
10128         return;
10129     }
10130 
10131     if (idau_region != IREGION_NOTVALID) {
10132         sattrs->irvalid = true;
10133         sattrs->iregion = idau_region;
10134     }
10135 
10136     switch (env->sau.ctrl & 3) {
10137     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10138         break;
10139     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10140         sattrs->ns = true;
10141         break;
10142     default: /* SAU.ENABLE == 1 */
10143         for (r = 0; r < cpu->sau_sregion; r++) {
10144             if (env->sau.rlar[r] & 1) {
10145                 uint32_t base = env->sau.rbar[r] & ~0x1f;
10146                 uint32_t limit = env->sau.rlar[r] | 0x1f;
10147 
10148                 if (base <= address && limit >= address) {
10149                     if (base > addr_page_base || limit < addr_page_limit) {
10150                         sattrs->subpage = true;
10151                     }
10152                     if (sattrs->srvalid) {
10153                         /* If we hit in more than one region then we must report
10154                          * as Secure, not NS-Callable, with no valid region
10155                          * number info.
10156                          */
10157                         sattrs->ns = false;
10158                         sattrs->nsc = false;
10159                         sattrs->sregion = 0;
10160                         sattrs->srvalid = false;
10161                         break;
10162                     } else {
10163                         if (env->sau.rlar[r] & 2) {
10164                             sattrs->nsc = true;
10165                         } else {
10166                             sattrs->ns = true;
10167                         }
10168                         sattrs->srvalid = true;
10169                         sattrs->sregion = r;
10170                     }
10171                 } else {
10172                     /*
10173                      * Address not in this region. We must check whether the
10174                      * region covers addresses in the same page as our address.
10175                      * In that case we must not report a size that covers the
10176                      * whole page for a subsequent hit against a different MPU
10177                      * region or the background region, because it would result
10178                      * in incorrect TLB hits for subsequent accesses to
10179                      * addresses that are in this MPU region.
10180                      */
10181                     if (limit >= base &&
10182                         ranges_overlap(base, limit - base + 1,
10183                                        addr_page_base,
10184                                        TARGET_PAGE_SIZE)) {
10185                         sattrs->subpage = true;
10186                     }
10187                 }
10188             }
10189         }
10190         break;
10191     }
10192 
10193     /*
10194      * The IDAU will override the SAU lookup results if it specifies
10195      * higher security than the SAU does.
10196      */
10197     if (!idau_ns) {
10198         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10199             sattrs->ns = false;
10200             sattrs->nsc = idau_nsc;
10201         }
10202     }
10203 }
10204 
pmsav8_mpu_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,hwaddr * phys_ptr,MemTxAttrs * txattrs,int * prot,bool * is_subpage,ARMMMUFaultInfo * fi,uint32_t * mregion)10205 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10206                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
10207                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
10208                               int *prot, bool *is_subpage,
10209                               ARMMMUFaultInfo *fi, uint32_t *mregion)
10210 {
10211     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10212      * that a full phys-to-virt translation does).
10213      * mregion is (if not NULL) set to the region number which matched,
10214      * or -1 if no region number is returned (MPU off, address did not
10215      * hit a region, address hit in multiple regions).
10216      * We set is_subpage to true if the region hit doesn't cover the
10217      * entire TARGET_PAGE the address is within.
10218      */
10219     ARMCPU *cpu = env_archcpu(env);
10220     bool is_user = regime_is_user(env, mmu_idx);
10221     uint32_t secure = regime_is_secure(env, mmu_idx);
10222     int n;
10223     int matchregion = -1;
10224     bool hit = false;
10225     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10226     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10227 
10228     *is_subpage = false;
10229     *phys_ptr = address;
10230     *prot = 0;
10231     if (mregion) {
10232         *mregion = -1;
10233     }
10234 
10235     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10236      * was an exception vector read from the vector table (which is always
10237      * done using the default system address map), because those accesses
10238      * are done in arm_v7m_load_vector(), which always does a direct
10239      * read using address_space_ldl(), rather than going via this function.
10240      */
10241     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10242         hit = true;
10243     } else if (m_is_ppb_region(env, address)) {
10244         hit = true;
10245     } else {
10246         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10247             hit = true;
10248         }
10249 
10250         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10251             /* region search */
10252             /* Note that the base address is bits [31:5] from the register
10253              * with bits [4:0] all zeroes, but the limit address is bits
10254              * [31:5] from the register with bits [4:0] all ones.
10255              */
10256             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10257             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10258 
10259             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10260                 /* Region disabled */
10261                 continue;
10262             }
10263 
10264             if (address < base || address > limit) {
10265                 /*
10266                  * Address not in this region. We must check whether the
10267                  * region covers addresses in the same page as our address.
10268                  * In that case we must not report a size that covers the
10269                  * whole page for a subsequent hit against a different MPU
10270                  * region or the background region, because it would result in
10271                  * incorrect TLB hits for subsequent accesses to addresses that
10272                  * are in this MPU region.
10273                  */
10274                 if (limit >= base &&
10275                     ranges_overlap(base, limit - base + 1,
10276                                    addr_page_base,
10277                                    TARGET_PAGE_SIZE)) {
10278                     *is_subpage = true;
10279                 }
10280                 continue;
10281             }
10282 
10283             if (base > addr_page_base || limit < addr_page_limit) {
10284                 *is_subpage = true;
10285             }
10286 
10287             if (matchregion != -1) {
10288                 /* Multiple regions match -- always a failure (unlike
10289                  * PMSAv7 where highest-numbered-region wins)
10290                  */
10291                 fi->type = ARMFault_Permission;
10292                 fi->level = 1;
10293                 return true;
10294             }
10295 
10296             matchregion = n;
10297             hit = true;
10298         }
10299     }
10300 
10301     if (!hit) {
10302         /* background fault */
10303         fi->type = ARMFault_Background;
10304         return true;
10305     }
10306 
10307     if (matchregion == -1) {
10308         /* hit using the background region */
10309         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10310     } else {
10311         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10312         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10313 
10314         if (m_is_system_region(env, address)) {
10315             /* System space is always execute never */
10316             xn = 1;
10317         }
10318 
10319         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10320         if (*prot && !xn) {
10321             *prot |= PAGE_EXEC;
10322         }
10323         /* We don't need to look the attribute up in the MAIR0/MAIR1
10324          * registers because that only tells us about cacheability.
10325          */
10326         if (mregion) {
10327             *mregion = matchregion;
10328         }
10329     }
10330 
10331     fi->type = ARMFault_Permission;
10332     fi->level = 1;
10333     return !(*prot & (1 << access_type));
10334 }
10335 
10336 
get_phys_addr_pmsav8(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,hwaddr * phys_ptr,MemTxAttrs * txattrs,int * prot,target_ulong * page_size,ARMMMUFaultInfo * fi)10337 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10338                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10339                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
10340                                  int *prot, target_ulong *page_size,
10341                                  ARMMMUFaultInfo *fi)
10342 {
10343     uint32_t secure = regime_is_secure(env, mmu_idx);
10344     V8M_SAttributes sattrs = {};
10345     bool ret;
10346     bool mpu_is_subpage;
10347 
10348     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10349         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10350         if (access_type == MMU_INST_FETCH) {
10351             /* Instruction fetches always use the MMU bank and the
10352              * transaction attribute determined by the fetch address,
10353              * regardless of CPU state. This is painful for QEMU
10354              * to handle, because it would mean we need to encode
10355              * into the mmu_idx not just the (user, negpri) information
10356              * for the current security state but also that for the
10357              * other security state, which would balloon the number
10358              * of mmu_idx values needed alarmingly.
10359              * Fortunately we can avoid this because it's not actually
10360              * possible to arbitrarily execute code from memory with
10361              * the wrong security attribute: it will always generate
10362              * an exception of some kind or another, apart from the
10363              * special case of an NS CPU executing an SG instruction
10364              * in S&NSC memory. So we always just fail the translation
10365              * here and sort things out in the exception handler
10366              * (including possibly emulating an SG instruction).
10367              */
10368             if (sattrs.ns != !secure) {
10369                 if (sattrs.nsc) {
10370                     fi->type = ARMFault_QEMU_NSCExec;
10371                 } else {
10372                     fi->type = ARMFault_QEMU_SFault;
10373                 }
10374                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10375                 *phys_ptr = address;
10376                 *prot = 0;
10377                 return true;
10378             }
10379         } else {
10380             /* For data accesses we always use the MMU bank indicated
10381              * by the current CPU state, but the security attributes
10382              * might downgrade a secure access to nonsecure.
10383              */
10384             if (sattrs.ns) {
10385                 txattrs->secure = false;
10386             } else if (!secure) {
10387                 /* NS access to S memory must fault.
10388                  * Architecturally we should first check whether the
10389                  * MPU information for this address indicates that we
10390                  * are doing an unaligned access to Device memory, which
10391                  * should generate a UsageFault instead. QEMU does not
10392                  * currently check for that kind of unaligned access though.
10393                  * If we added it we would need to do so as a special case
10394                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10395                  */
10396                 fi->type = ARMFault_QEMU_SFault;
10397                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10398                 *phys_ptr = address;
10399                 *prot = 0;
10400                 return true;
10401             }
10402         }
10403     }
10404 
10405     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10406                             txattrs, prot, &mpu_is_subpage, fi, NULL);
10407     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10408     return ret;
10409 }
10410 
get_phys_addr_pmsav5(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,hwaddr * phys_ptr,int * prot,ARMMMUFaultInfo * fi)10411 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10412                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10413                                  hwaddr *phys_ptr, int *prot,
10414                                  ARMMMUFaultInfo *fi)
10415 {
10416     int n;
10417     uint32_t mask;
10418     uint32_t base;
10419     bool is_user = regime_is_user(env, mmu_idx);
10420 
10421     if (regime_translation_disabled(env, mmu_idx)) {
10422         /* MPU disabled.  */
10423         *phys_ptr = address;
10424         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10425         return false;
10426     }
10427 
10428     *phys_ptr = address;
10429     for (n = 7; n >= 0; n--) {
10430         base = env->cp15.c6_region[n];
10431         if ((base & 1) == 0) {
10432             continue;
10433         }
10434         mask = 1 << ((base >> 1) & 0x1f);
10435         /* Keep this shift separate from the above to avoid an
10436            (undefined) << 32.  */
10437         mask = (mask << 1) - 1;
10438         if (((base ^ address) & ~mask) == 0) {
10439             break;
10440         }
10441     }
10442     if (n < 0) {
10443         fi->type = ARMFault_Background;
10444         return true;
10445     }
10446 
10447     if (access_type == MMU_INST_FETCH) {
10448         mask = env->cp15.pmsav5_insn_ap;
10449     } else {
10450         mask = env->cp15.pmsav5_data_ap;
10451     }
10452     mask = (mask >> (n * 4)) & 0xf;
10453     switch (mask) {
10454     case 0:
10455         fi->type = ARMFault_Permission;
10456         fi->level = 1;
10457         return true;
10458     case 1:
10459         if (is_user) {
10460             fi->type = ARMFault_Permission;
10461             fi->level = 1;
10462             return true;
10463         }
10464         *prot = PAGE_READ | PAGE_WRITE;
10465         break;
10466     case 2:
10467         *prot = PAGE_READ;
10468         if (!is_user) {
10469             *prot |= PAGE_WRITE;
10470         }
10471         break;
10472     case 3:
10473         *prot = PAGE_READ | PAGE_WRITE;
10474         break;
10475     case 5:
10476         if (is_user) {
10477             fi->type = ARMFault_Permission;
10478             fi->level = 1;
10479             return true;
10480         }
10481         *prot = PAGE_READ;
10482         break;
10483     case 6:
10484         *prot = PAGE_READ;
10485         break;
10486     default:
10487         /* Bad permission.  */
10488         fi->type = ARMFault_Permission;
10489         fi->level = 1;
10490         return true;
10491     }
10492     *prot |= PAGE_EXEC;
10493     return false;
10494 }
10495 
10496 /* Combine either inner or outer cacheability attributes for normal
10497  * memory, according to table D4-42 and pseudocode procedure
10498  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10499  *
10500  * NB: only stage 1 includes allocation hints (RW bits), leading to
10501  * some asymmetry.
10502  */
combine_cacheattr_nibble(uint8_t s1,uint8_t s2)10503 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10504 {
10505     if (s1 == 4 || s2 == 4) {
10506         /* non-cacheable has precedence */
10507         return 4;
10508     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10509         /* stage 1 write-through takes precedence */
10510         return s1;
10511     } else if (extract32(s2, 2, 2) == 2) {
10512         /* stage 2 write-through takes precedence, but the allocation hint
10513          * is still taken from stage 1
10514          */
10515         return (2 << 2) | extract32(s1, 0, 2);
10516     } else { /* write-back */
10517         return s1;
10518     }
10519 }
10520 
10521 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10522  * and CombineS1S2Desc()
10523  *
10524  * @s1:      Attributes from stage 1 walk
10525  * @s2:      Attributes from stage 2 walk
10526  */
combine_cacheattrs(ARMCacheAttrs s1,ARMCacheAttrs s2)10527 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10528 {
10529     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10530     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10531     ARMCacheAttrs ret;
10532 
10533     /* Combine shareability attributes (table D4-43) */
10534     if (s1.shareability == 2 || s2.shareability == 2) {
10535         /* if either are outer-shareable, the result is outer-shareable */
10536         ret.shareability = 2;
10537     } else if (s1.shareability == 3 || s2.shareability == 3) {
10538         /* if either are inner-shareable, the result is inner-shareable */
10539         ret.shareability = 3;
10540     } else {
10541         /* both non-shareable */
10542         ret.shareability = 0;
10543     }
10544 
10545     /* Combine memory type and cacheability attributes */
10546     if (s1hi == 0 || s2hi == 0) {
10547         /* Device has precedence over normal */
10548         if (s1lo == 0 || s2lo == 0) {
10549             /* nGnRnE has precedence over anything */
10550             ret.attrs = 0;
10551         } else if (s1lo == 4 || s2lo == 4) {
10552             /* non-Reordering has precedence over Reordering */
10553             ret.attrs = 4;  /* nGnRE */
10554         } else if (s1lo == 8 || s2lo == 8) {
10555             /* non-Gathering has precedence over Gathering */
10556             ret.attrs = 8;  /* nGRE */
10557         } else {
10558             ret.attrs = 0xc; /* GRE */
10559         }
10560 
10561         /* Any location for which the resultant memory type is any
10562          * type of Device memory is always treated as Outer Shareable.
10563          */
10564         ret.shareability = 2;
10565     } else { /* Normal memory */
10566         /* Outer/inner cacheability combine independently */
10567         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10568                   | combine_cacheattr_nibble(s1lo, s2lo);
10569 
10570         if (ret.attrs == 0x44) {
10571             /* Any location for which the resultant memory type is Normal
10572              * Inner Non-cacheable, Outer Non-cacheable is always treated
10573              * as Outer Shareable.
10574              */
10575             ret.shareability = 2;
10576         }
10577     }
10578 
10579     return ret;
10580 }
10581 
10582 
10583 /* get_phys_addr - get the physical address for this virtual address
10584  *
10585  * Find the physical address corresponding to the given virtual address,
10586  * by doing a translation table walk on MMU based systems or using the
10587  * MPU state on MPU based systems.
10588  *
10589  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10590  * prot and page_size may not be filled in, and the populated fsr value provides
10591  * information on why the translation aborted, in the format of a
10592  * DFSR/IFSR fault register, with the following caveats:
10593  *  * we honour the short vs long DFSR format differences.
10594  *  * the WnR bit is never set (the caller must do this).
10595  *  * for PSMAv5 based systems we don't bother to return a full FSR format
10596  *    value.
10597  *
10598  * @env: CPUARMState
10599  * @address: virtual address to get physical address for
10600  * @access_type: 0 for read, 1 for write, 2 for execute
10601  * @mmu_idx: MMU index indicating required translation regime
10602  * @phys_ptr: set to the physical address corresponding to the virtual address
10603  * @attrs: set to the memory transaction attributes to use
10604  * @prot: set to the permissions for the page containing phys_ptr
10605  * @page_size: set to the size of the page containing phys_ptr
10606  * @fi: set to fault info if the translation fails
10607  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10608  */
get_phys_addr(CPUARMState * env,target_ulong address,MMUAccessType access_type,ARMMMUIdx mmu_idx,hwaddr * phys_ptr,MemTxAttrs * attrs,int * prot,target_ulong * page_size,ARMMMUFaultInfo * fi,ARMCacheAttrs * cacheattrs)10609 bool get_phys_addr(CPUARMState *env, target_ulong address,
10610                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
10611                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10612                    target_ulong *page_size,
10613                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10614 {
10615     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10616         /* Call ourselves recursively to do the stage 1 and then stage 2
10617          * translations.
10618          */
10619         if (arm_feature(env, ARM_FEATURE_EL2)) {
10620             hwaddr ipa;
10621             int s2_prot;
10622             int ret;
10623             ARMCacheAttrs cacheattrs2 = {};
10624 
10625             ret = get_phys_addr(env, address, access_type,
10626                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10627                                 prot, page_size, fi, cacheattrs);
10628 
10629             /* If S1 fails or S2 is disabled, return early.  */
10630             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10631                 *phys_ptr = ipa;
10632                 return ret;
10633             }
10634 
10635             /* S1 is done. Now do S2 translation.  */
10636             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10637                                      phys_ptr, attrs, &s2_prot,
10638                                      page_size, fi,
10639                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
10640             fi->s2addr = ipa;
10641             /* Combine the S1 and S2 perms.  */
10642             *prot &= s2_prot;
10643 
10644             /* Combine the S1 and S2 cache attributes, if needed */
10645             if (!ret && cacheattrs != NULL) {
10646                 if (env->cp15.hcr_el2 & HCR_DC) {
10647                     /*
10648                      * HCR.DC forces the first stage attributes to
10649                      *  Normal Non-Shareable,
10650                      *  Inner Write-Back Read-Allocate Write-Allocate,
10651                      *  Outer Write-Back Read-Allocate Write-Allocate.
10652                      */
10653                     cacheattrs->attrs = 0xff;
10654                     cacheattrs->shareability = 0;
10655                 }
10656                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10657             }
10658 
10659             return ret;
10660         } else {
10661             /*
10662              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10663              */
10664             mmu_idx = stage_1_mmu_idx(mmu_idx);
10665         }
10666     }
10667 
10668     /* The page table entries may downgrade secure to non-secure, but
10669      * cannot upgrade an non-secure translation regime's attributes
10670      * to secure.
10671      */
10672     attrs->secure = regime_is_secure(env, mmu_idx);
10673     attrs->user = regime_is_user(env, mmu_idx);
10674 
10675     /* Fast Context Switch Extension. This doesn't exist at all in v8.
10676      * In v7 and earlier it affects all stage 1 translations.
10677      */
10678     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10679         && !arm_feature(env, ARM_FEATURE_V8)) {
10680         if (regime_el(env, mmu_idx) == 3) {
10681             address += env->cp15.fcseidr_s;
10682         } else {
10683             address += env->cp15.fcseidr_ns;
10684         }
10685     }
10686 
10687     if (arm_feature(env, ARM_FEATURE_PMSA)) {
10688         bool ret;
10689         *page_size = TARGET_PAGE_SIZE;
10690 
10691         if (arm_feature(env, ARM_FEATURE_V8)) {
10692             /* PMSAv8 */
10693             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10694                                        phys_ptr, attrs, prot, page_size, fi);
10695         } else if (arm_feature(env, ARM_FEATURE_V7)) {
10696             /* PMSAv7 */
10697             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10698                                        phys_ptr, prot, page_size, fi);
10699         } else {
10700             /* Pre-v7 MPU */
10701             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10702                                        phys_ptr, prot, fi);
10703         }
10704         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10705                       " mmu_idx %u -> %s (prot %c%c%c)\n",
10706                       access_type == MMU_DATA_LOAD ? "reading" :
10707                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10708                       (uint32_t)address, mmu_idx,
10709                       ret ? "Miss" : "Hit",
10710                       *prot & PAGE_READ ? 'r' : '-',
10711                       *prot & PAGE_WRITE ? 'w' : '-',
10712                       *prot & PAGE_EXEC ? 'x' : '-');
10713 
10714         return ret;
10715     }
10716 
10717     /* Definitely a real MMU, not an MPU */
10718 
10719     if (regime_translation_disabled(env, mmu_idx)) {
10720         /* MMU disabled. */
10721         *phys_ptr = address;
10722         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10723         *page_size = TARGET_PAGE_SIZE;
10724         return 0;
10725     }
10726 
10727     if (regime_using_lpae_format(env, mmu_idx)) {
10728         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10729                                   phys_ptr, attrs, prot, page_size,
10730                                   fi, cacheattrs);
10731     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10732         return get_phys_addr_v6(env, address, access_type, mmu_idx,
10733                                 phys_ptr, attrs, prot, page_size, fi);
10734     } else {
10735         return get_phys_addr_v5(env, address, access_type, mmu_idx,
10736                                     phys_ptr, prot, page_size, fi);
10737     }
10738 }
10739 
arm_cpu_get_phys_page_attrs_debug(CPUState * cs,vaddr addr,MemTxAttrs * attrs)10740 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10741                                          MemTxAttrs *attrs)
10742 {
10743     ARMCPU *cpu = ARM_CPU(cs);
10744     CPUARMState *env = &cpu->env;
10745     hwaddr phys_addr;
10746     target_ulong page_size;
10747     int prot;
10748     bool ret;
10749     ARMMMUFaultInfo fi = {};
10750     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
10751 
10752     *attrs = (MemTxAttrs) {};
10753 
10754     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10755                         attrs, &prot, &page_size, &fi, NULL);
10756 
10757     if (ret) {
10758         return -1;
10759     }
10760     return phys_addr;
10761 }
10762 
10763 #endif
10764 
10765 /* Note that signed overflow is undefined in C.  The following routines are
10766    careful to use unsigned types where modulo arithmetic is required.
10767    Failure to do so _will_ break on newer gcc.  */
10768 
10769 /* Signed saturating arithmetic.  */
10770 
10771 /* Perform 16-bit signed saturating addition.  */
add16_sat(uint16_t a,uint16_t b)10772 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10773 {
10774     uint16_t res;
10775 
10776     res = a + b;
10777     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10778         if (a & 0x8000)
10779             res = 0x8000;
10780         else
10781             res = 0x7fff;
10782     }
10783     return res;
10784 }
10785 
10786 /* Perform 8-bit signed saturating addition.  */
add8_sat(uint8_t a,uint8_t b)10787 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10788 {
10789     uint8_t res;
10790 
10791     res = a + b;
10792     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10793         if (a & 0x80)
10794             res = 0x80;
10795         else
10796             res = 0x7f;
10797     }
10798     return res;
10799 }
10800 
10801 /* Perform 16-bit signed saturating subtraction.  */
sub16_sat(uint16_t a,uint16_t b)10802 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10803 {
10804     uint16_t res;
10805 
10806     res = a - b;
10807     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10808         if (a & 0x8000)
10809             res = 0x8000;
10810         else
10811             res = 0x7fff;
10812     }
10813     return res;
10814 }
10815 
10816 /* Perform 8-bit signed saturating subtraction.  */
sub8_sat(uint8_t a,uint8_t b)10817 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10818 {
10819     uint8_t res;
10820 
10821     res = a - b;
10822     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10823         if (a & 0x80)
10824             res = 0x80;
10825         else
10826             res = 0x7f;
10827     }
10828     return res;
10829 }
10830 
10831 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10832 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10833 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10834 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10835 #define PFX q
10836 
10837 #include "op_addsub.h"
10838 
10839 /* Unsigned saturating arithmetic.  */
add16_usat(uint16_t a,uint16_t b)10840 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10841 {
10842     uint16_t res;
10843     res = a + b;
10844     if (res < a)
10845         res = 0xffff;
10846     return res;
10847 }
10848 
sub16_usat(uint16_t a,uint16_t b)10849 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10850 {
10851     if (a > b)
10852         return a - b;
10853     else
10854         return 0;
10855 }
10856 
add8_usat(uint8_t a,uint8_t b)10857 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10858 {
10859     uint8_t res;
10860     res = a + b;
10861     if (res < a)
10862         res = 0xff;
10863     return res;
10864 }
10865 
sub8_usat(uint8_t a,uint8_t b)10866 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10867 {
10868     if (a > b)
10869         return a - b;
10870     else
10871         return 0;
10872 }
10873 
10874 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10875 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10876 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
10877 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
10878 #define PFX uq
10879 
10880 #include "op_addsub.h"
10881 
10882 /* Signed modulo arithmetic.  */
10883 #define SARITH16(a, b, n, op) do { \
10884     int32_t sum; \
10885     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10886     RESULT(sum, n, 16); \
10887     if (sum >= 0) \
10888         ge |= 3 << (n * 2); \
10889     } while(0)
10890 
10891 #define SARITH8(a, b, n, op) do { \
10892     int32_t sum; \
10893     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10894     RESULT(sum, n, 8); \
10895     if (sum >= 0) \
10896         ge |= 1 << n; \
10897     } while(0)
10898 
10899 
10900 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10901 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10902 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
10903 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
10904 #define PFX s
10905 #define ARITH_GE
10906 
10907 #include "op_addsub.h"
10908 
10909 /* Unsigned modulo arithmetic.  */
10910 #define ADD16(a, b, n) do { \
10911     uint32_t sum; \
10912     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10913     RESULT(sum, n, 16); \
10914     if ((sum >> 16) == 1) \
10915         ge |= 3 << (n * 2); \
10916     } while(0)
10917 
10918 #define ADD8(a, b, n) do { \
10919     uint32_t sum; \
10920     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10921     RESULT(sum, n, 8); \
10922     if ((sum >> 8) == 1) \
10923         ge |= 1 << n; \
10924     } while(0)
10925 
10926 #define SUB16(a, b, n) do { \
10927     uint32_t sum; \
10928     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10929     RESULT(sum, n, 16); \
10930     if ((sum >> 16) == 0) \
10931         ge |= 3 << (n * 2); \
10932     } while(0)
10933 
10934 #define SUB8(a, b, n) do { \
10935     uint32_t sum; \
10936     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10937     RESULT(sum, n, 8); \
10938     if ((sum >> 8) == 0) \
10939         ge |= 1 << n; \
10940     } while(0)
10941 
10942 #define PFX u
10943 #define ARITH_GE
10944 
10945 #include "op_addsub.h"
10946 
10947 /* Halved signed arithmetic.  */
10948 #define ADD16(a, b, n) \
10949   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10950 #define SUB16(a, b, n) \
10951   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10952 #define ADD8(a, b, n) \
10953   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10954 #define SUB8(a, b, n) \
10955   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10956 #define PFX sh
10957 
10958 #include "op_addsub.h"
10959 
10960 /* Halved unsigned arithmetic.  */
10961 #define ADD16(a, b, n) \
10962   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10963 #define SUB16(a, b, n) \
10964   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10965 #define ADD8(a, b, n) \
10966   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10967 #define SUB8(a, b, n) \
10968   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10969 #define PFX uh
10970 
10971 #include "op_addsub.h"
10972 
do_usad(uint8_t a,uint8_t b)10973 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10974 {
10975     if (a > b)
10976         return a - b;
10977     else
10978         return b - a;
10979 }
10980 
10981 /* Unsigned sum of absolute byte differences.  */
HELPER(usad8)10982 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10983 {
10984     uint32_t sum;
10985     sum = do_usad(a, b);
10986     sum += do_usad(a >> 8, b >> 8);
10987     sum += do_usad(a >> 16, b >>16);
10988     sum += do_usad(a >> 24, b >> 24);
10989     return sum;
10990 }
10991 
10992 /* For ARMv6 SEL instruction.  */
HELPER(sel_flags)10993 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10994 {
10995     uint32_t mask;
10996 
10997     mask = 0;
10998     if (flags & 1)
10999         mask |= 0xff;
11000     if (flags & 2)
11001         mask |= 0xff00;
11002     if (flags & 4)
11003         mask |= 0xff0000;
11004     if (flags & 8)
11005         mask |= 0xff000000;
11006     return (a & mask) | (b & ~mask);
11007 }
11008 
11009 /* CRC helpers.
11010  * The upper bytes of val (above the number specified by 'bytes') must have
11011  * been zeroed out by the caller.
11012  */
HELPER(crc32)11013 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11014 {
11015     uint8_t buf[4];
11016 
11017     stl_le_p(buf, val);
11018 
11019     /* zlib crc32 converts the accumulator and output to one's complement.  */
11020     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11021 }
11022 
HELPER(crc32c)11023 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11024 {
11025     uint8_t buf[4];
11026 
11027     stl_le_p(buf, val);
11028 
11029     /* Linux crc32c converts the output to one's complement.  */
11030     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11031 }
11032 
11033 /* Return the exception level to which FP-disabled exceptions should
11034  * be taken, or 0 if FP is enabled.
11035  */
fp_exception_el(CPUARMState * env,int cur_el)11036 int fp_exception_el(CPUARMState *env, int cur_el)
11037 {
11038 #ifndef CONFIG_USER_ONLY
11039     int fpen;
11040 
11041     /* CPACR and the CPTR registers don't exist before v6, so FP is
11042      * always accessible
11043      */
11044     if (!arm_feature(env, ARM_FEATURE_V6)) {
11045         return 0;
11046     }
11047 
11048     if (arm_feature(env, ARM_FEATURE_M)) {
11049         /* CPACR can cause a NOCP UsageFault taken to current security state */
11050         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11051             return 1;
11052         }
11053 
11054         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11055             if (!extract32(env->v7m.nsacr, 10, 1)) {
11056                 /* FP insns cause a NOCP UsageFault taken to Secure */
11057                 return 3;
11058             }
11059         }
11060 
11061         return 0;
11062     }
11063 
11064     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11065      * 0, 2 : trap EL0 and EL1/PL1 accesses
11066      * 1    : trap only EL0 accesses
11067      * 3    : trap no accesses
11068      */
11069     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
11070     switch (fpen) {
11071     case 0:
11072     case 2:
11073         if (cur_el == 0 || cur_el == 1) {
11074             /* Trap to PL1, which might be EL1 or EL3 */
11075             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
11076                 return 3;
11077             }
11078             return 1;
11079         }
11080         if (cur_el == 3 && !is_a64(env)) {
11081             /* Secure PL1 running at EL3 */
11082             return 3;
11083         }
11084         break;
11085     case 1:
11086         if (cur_el == 0) {
11087             return 1;
11088         }
11089         break;
11090     case 3:
11091         break;
11092     }
11093 
11094     /*
11095      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11096      * to control non-secure access to the FPU. It doesn't have any
11097      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11098      */
11099     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11100          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11101         if (!extract32(env->cp15.nsacr, 10, 1)) {
11102             /* FP insns act as UNDEF */
11103             return cur_el == 2 ? 2 : 1;
11104         }
11105     }
11106 
11107     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
11108      * check because zero bits in the registers mean "don't trap".
11109      */
11110 
11111     /* CPTR_EL2 : present in v7VE or v8 */
11112     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
11113         && !arm_is_secure_below_el3(env)) {
11114         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
11115         return 2;
11116     }
11117 
11118     /* CPTR_EL3 : present in v8 */
11119     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
11120         /* Trap all FP ops to EL3 */
11121         return 3;
11122     }
11123 #endif
11124     return 0;
11125 }
11126 
11127 #ifndef CONFIG_TCG
arm_v7m_mmu_idx_for_secstate(CPUARMState * env,bool secstate)11128 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11129 {
11130     g_assert_not_reached();
11131 }
11132 #endif
11133 
arm_mmu_idx_el(CPUARMState * env,int el)11134 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11135 {
11136     if (arm_feature(env, ARM_FEATURE_M)) {
11137         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11138     }
11139 
11140     if (el < 2 && arm_is_secure_below_el3(env)) {
11141         return ARMMMUIdx_S1SE0 + el;
11142     } else {
11143         return ARMMMUIdx_S12NSE0 + el;
11144     }
11145 }
11146 
arm_mmu_idx(CPUARMState * env)11147 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11148 {
11149     return arm_mmu_idx_el(env, arm_current_el(env));
11150 }
11151 
cpu_mmu_index(CPUARMState * env,bool ifetch)11152 int cpu_mmu_index(CPUARMState *env, bool ifetch)
11153 {
11154     return arm_to_core_mmu_idx(arm_mmu_idx(env));
11155 }
11156 
11157 #ifndef CONFIG_USER_ONLY
arm_stage1_mmu_idx(CPUARMState * env)11158 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
11159 {
11160     return stage_1_mmu_idx(arm_mmu_idx(env));
11161 }
11162 #endif
11163 
rebuild_hflags_common(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx,uint32_t flags)11164 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
11165                                       ARMMMUIdx mmu_idx, uint32_t flags)
11166 {
11167     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
11168     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
11169                        arm_to_core_mmu_idx(mmu_idx));
11170 
11171     if (arm_singlestep_active(env)) {
11172         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
11173     }
11174     return flags;
11175 }
11176 
rebuild_hflags_common_32(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx,uint32_t flags)11177 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11178                                          ARMMMUIdx mmu_idx, uint32_t flags)
11179 {
11180     bool sctlr_b = arm_sctlr_b(env);
11181 
11182     if (sctlr_b) {
11183         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
11184     }
11185     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
11186         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11187     }
11188     flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
11189 
11190     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11191 }
11192 
rebuild_hflags_m32(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx)11193 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
11194                                    ARMMMUIdx mmu_idx)
11195 {
11196     uint32_t flags = 0;
11197 
11198     /* v8M always enables the fpu.  */
11199     flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11200 
11201     if (arm_v7m_is_handler_mode(env)) {
11202         flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
11203     }
11204 
11205     /*
11206      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11207      * is suppressing them because the requested execution priority
11208      * is less than 0.
11209      */
11210     if (arm_feature(env, ARM_FEATURE_V8) &&
11211         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11212           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11213         flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
11214     }
11215 
11216     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11217 }
11218 
rebuild_hflags_aprofile(CPUARMState * env)11219 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
11220 {
11221     int flags = 0;
11222 
11223     flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
11224                        arm_debug_target_el(env));
11225     return flags;
11226 }
11227 
rebuild_hflags_a32(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx)11228 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
11229                                    ARMMMUIdx mmu_idx)
11230 {
11231     uint32_t flags = rebuild_hflags_aprofile(env);
11232 
11233     if (arm_el_is_aa64(env, 1)) {
11234         flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11235     }
11236     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11237 }
11238 
rebuild_hflags_a64(CPUARMState * env,int el,int fp_el,ARMMMUIdx mmu_idx)11239 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11240                                    ARMMMUIdx mmu_idx)
11241 {
11242     uint32_t flags = rebuild_hflags_aprofile(env);
11243     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11244     ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
11245     uint64_t sctlr;
11246     int tbii, tbid;
11247 
11248     flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
11249 
11250     /* FIXME: ARMv8.1-VHE S2 translation regime.  */
11251     if (regime_el(env, stage1) < 2) {
11252         ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
11253         tbid = (p1.tbi << 1) | p0.tbi;
11254         tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
11255     } else {
11256         tbid = p0.tbi;
11257         tbii = tbid & !p0.tbid;
11258     }
11259 
11260     flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
11261     flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
11262 
11263     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11264         int sve_el = sve_exception_el(env, el);
11265         uint32_t zcr_len;
11266 
11267         /*
11268          * If SVE is disabled, but FP is enabled,
11269          * then the effective len is 0.
11270          */
11271         if (sve_el != 0 && fp_el == 0) {
11272             zcr_len = 0;
11273         } else {
11274             zcr_len = sve_zcr_len_for_el(env, el);
11275         }
11276         flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
11277         flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
11278     }
11279 
11280     sctlr = arm_sctlr(env, el);
11281 
11282     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11283         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11284     }
11285 
11286     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11287         /*
11288          * In order to save space in flags, we record only whether
11289          * pauth is "inactive", meaning all insns are implemented as
11290          * a nop, or "active" when some action must be performed.
11291          * The decision of which action to take is left to a helper.
11292          */
11293         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11294             flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
11295         }
11296     }
11297 
11298     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11299         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
11300         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11301             flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
11302         }
11303     }
11304 
11305     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11306 }
11307 
rebuild_hflags_internal(CPUARMState * env)11308 static uint32_t rebuild_hflags_internal(CPUARMState *env)
11309 {
11310     int el = arm_current_el(env);
11311     int fp_el = fp_exception_el(env, el);
11312     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11313 
11314     if (is_a64(env)) {
11315         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11316     } else if (arm_feature(env, ARM_FEATURE_M)) {
11317         return rebuild_hflags_m32(env, fp_el, mmu_idx);
11318     } else {
11319         return rebuild_hflags_a32(env, fp_el, mmu_idx);
11320     }
11321 }
11322 
arm_rebuild_hflags(CPUARMState * env)11323 void arm_rebuild_hflags(CPUARMState *env)
11324 {
11325     env->hflags = rebuild_hflags_internal(env);
11326 }
11327 
HELPER(rebuild_hflags_m32)11328 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11329 {
11330     int fp_el = fp_exception_el(env, el);
11331     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11332 
11333     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11334 }
11335 
11336 /*
11337  * If we have triggered a EL state change we can't rely on the
11338  * translator having passed it too us, we need to recompute.
11339  */
HELPER(rebuild_hflags_a32_newel)11340 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
11341 {
11342     int el = arm_current_el(env);
11343     int fp_el = fp_exception_el(env, el);
11344     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11345     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11346 }
11347 
HELPER(rebuild_hflags_a32)11348 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11349 {
11350     int fp_el = fp_exception_el(env, el);
11351     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11352 
11353     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11354 }
11355 
HELPER(rebuild_hflags_a64)11356 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11357 {
11358     int fp_el = fp_exception_el(env, el);
11359     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11360 
11361     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11362 }
11363 
cpu_get_tb_cpu_state(CPUARMState * env,target_ulong * pc,target_ulong * cs_base,uint32_t * pflags)11364 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11365                           target_ulong *cs_base, uint32_t *pflags)
11366 {
11367     uint32_t flags = env->hflags;
11368     uint32_t pstate_for_ss;
11369 
11370     *cs_base = 0;
11371 #ifdef CONFIG_DEBUG_TCG
11372     assert(flags == rebuild_hflags_internal(env));
11373 #endif
11374 
11375     if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
11376         *pc = env->pc;
11377         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11378             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
11379         }
11380         pstate_for_ss = env->pstate;
11381     } else {
11382         *pc = env->regs[15];
11383 
11384         if (arm_feature(env, ARM_FEATURE_M)) {
11385             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11386                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11387                 != env->v7m.secure) {
11388                 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
11389             }
11390 
11391             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11392                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11393                  (env->v7m.secure &&
11394                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11395                 /*
11396                  * ASPEN is set, but FPCA/SFPA indicate that there is no
11397                  * active FP context; we must create a new FP context before
11398                  * executing any FP insn.
11399                  */
11400                 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
11401             }
11402 
11403             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11404             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11405                 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
11406             }
11407         } else {
11408             /*
11409              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11410              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11411              */
11412             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11413                 flags = FIELD_DP32(flags, TBFLAG_A32,
11414                                    XSCALE_CPAR, env->cp15.c15_cpar);
11415             } else {
11416                 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
11417                                    env->vfp.vec_len);
11418                 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
11419                                    env->vfp.vec_stride);
11420             }
11421             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11422                 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11423             }
11424         }
11425 
11426         flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
11427         flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
11428         pstate_for_ss = env->uncached_cpsr;
11429     }
11430 
11431     /*
11432      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11433      * states defined in the ARM ARM for software singlestep:
11434      *  SS_ACTIVE   PSTATE.SS   State
11435      *     0            x       Inactive (the TB flag for SS is always 0)
11436      *     1            0       Active-pending
11437      *     1            1       Active-not-pending
11438      * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
11439      */
11440     if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
11441         (pstate_for_ss & PSTATE_SS)) {
11442         flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
11443     }
11444 
11445     *pflags = flags;
11446 }
11447 
11448 #ifdef TARGET_AARCH64
11449 /*
11450  * The manual says that when SVE is enabled and VQ is widened the
11451  * implementation is allowed to zero the previously inaccessible
11452  * portion of the registers.  The corollary to that is that when
11453  * SVE is enabled and VQ is narrowed we are also allowed to zero
11454  * the now inaccessible portion of the registers.
11455  *
11456  * The intent of this is that no predicate bit beyond VQ is ever set.
11457  * Which means that some operations on predicate registers themselves
11458  * may operate on full uint64_t or even unrolled across the maximum
11459  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
11460  * may well be cheaper than conditionals to restrict the operation
11461  * to the relevant portion of a uint16_t[16].
11462  */
aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)11463 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11464 {
11465     int i, j;
11466     uint64_t pmask;
11467 
11468     assert(vq >= 1 && vq <= ARM_MAX_VQ);
11469     assert(vq <= env_archcpu(env)->sve_max_vq);
11470 
11471     /* Zap the high bits of the zregs.  */
11472     for (i = 0; i < 32; i++) {
11473         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11474     }
11475 
11476     /* Zap the high bits of the pregs and ffr.  */
11477     pmask = 0;
11478     if (vq & 3) {
11479         pmask = ~(-1ULL << (16 * (vq & 3)));
11480     }
11481     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11482         for (i = 0; i < 17; ++i) {
11483             env->vfp.pregs[i].p[j] &= pmask;
11484         }
11485         pmask = 0;
11486     }
11487 }
11488 
11489 /*
11490  * Notice a change in SVE vector size when changing EL.
11491  */
aarch64_sve_change_el(CPUARMState * env,int old_el,int new_el,bool el0_a64)11492 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11493                            int new_el, bool el0_a64)
11494 {
11495     ARMCPU *cpu = env_archcpu(env);
11496     int old_len, new_len;
11497     bool old_a64, new_a64;
11498 
11499     /* Nothing to do if no SVE.  */
11500     if (!cpu_isar_feature(aa64_sve, cpu)) {
11501         return;
11502     }
11503 
11504     /* Nothing to do if FP is disabled in either EL.  */
11505     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11506         return;
11507     }
11508 
11509     /*
11510      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11511      * at ELx, or not available because the EL is in AArch32 state, then
11512      * for all purposes other than a direct read, the ZCR_ELx.LEN field
11513      * has an effective value of 0".
11514      *
11515      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11516      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11517      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
11518      * we already have the correct register contents when encountering the
11519      * vq0->vq0 transition between EL0->EL1.
11520      */
11521     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11522     old_len = (old_a64 && !sve_exception_el(env, old_el)
11523                ? sve_zcr_len_for_el(env, old_el) : 0);
11524     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11525     new_len = (new_a64 && !sve_exception_el(env, new_el)
11526                ? sve_zcr_len_for_el(env, new_el) : 0);
11527 
11528     /* When changing vector length, clear inaccessible state.  */
11529     if (new_len < old_len) {
11530         aarch64_sve_narrow_vq(env, new_len + 1);
11531     }
11532 }
11533 #endif
11534