1 /*
2  * Copyright (C) 2014 - Linaro
3  * Author: Rob Herring <rob.herring@linaro.org>
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  This program is distributed in the hope that it will be useful,
11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *  GNU General Public License for more details.
14  *
15  *  You should have received a copy of the GNU General Public License
16  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "kvm-consts.h"
23 #include "qemu/main-loop.h"
24 #include "sysemu/runstate.h"
25 #include "internals.h"
26 #include "arm-powerctl.h"
27 
arm_is_psci_call(ARMCPU * cpu,int excp_type)28 bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
29 {
30     /* Return true if the r0/x0 value indicates a PSCI call and
31      * the exception type matches the configured PSCI conduit. This is
32      * called before the SMC/HVC instruction is executed, to decide whether
33      * we should treat it as a PSCI call or with the architecturally
34      * defined behaviour for an SMC or HVC (which might be UNDEF or trap
35      * to EL2 or to EL3).
36      */
37     CPUARMState *env = &cpu->env;
38     uint64_t param = is_a64(env) ? env->xregs[0] : env->regs[0];
39 
40     switch (excp_type) {
41     case EXCP_HVC:
42         if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_HVC) {
43             return false;
44         }
45         break;
46     case EXCP_SMC:
47         if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
48             return false;
49         }
50         break;
51     default:
52         return false;
53     }
54 
55     switch (param) {
56     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
57     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
58     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
59     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
60     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
61     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
62     case QEMU_PSCI_0_1_FN_CPU_ON:
63     case QEMU_PSCI_0_2_FN_CPU_ON:
64     case QEMU_PSCI_0_2_FN64_CPU_ON:
65     case QEMU_PSCI_0_1_FN_CPU_OFF:
66     case QEMU_PSCI_0_2_FN_CPU_OFF:
67     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
68     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
69     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
70     case QEMU_PSCI_0_1_FN_MIGRATE:
71     case QEMU_PSCI_0_2_FN_MIGRATE:
72         return true;
73     default:
74         return false;
75     }
76 }
77 
arm_handle_psci_call(ARMCPU * cpu)78 void arm_handle_psci_call(ARMCPU *cpu)
79 {
80     /*
81      * This function partially implements the logic for dispatching Power State
82      * Coordination Interface (PSCI) calls (as described in ARM DEN 0022B.b),
83      * to the extent required for bringing up and taking down secondary cores,
84      * and for handling reset and poweroff requests.
85      * Additional information about the calling convention used is available in
86      * the document 'SMC Calling Convention' (ARM DEN 0028)
87      */
88     CPUARMState *env = &cpu->env;
89     uint64_t param[4];
90     uint64_t context_id, mpidr;
91     target_ulong entry;
92     int32_t ret = 0;
93     int i;
94 
95     for (i = 0; i < 4; i++) {
96         /*
97          * All PSCI functions take explicit 32-bit or native int sized
98          * arguments so we can simply zero-extend all arguments regardless
99          * of which exact function we are about to call.
100          */
101         param[i] = is_a64(env) ? env->xregs[i] : env->regs[i];
102     }
103 
104     if ((param[0] & QEMU_PSCI_0_2_64BIT) && !is_a64(env)) {
105         ret = QEMU_PSCI_RET_INVALID_PARAMS;
106         goto err;
107     }
108 
109     switch (param[0]) {
110         CPUState *target_cpu_state;
111         ARMCPU *target_cpu;
112 
113     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
114         ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
115         break;
116     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
117         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
118         break;
119     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
120     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
121         mpidr = param[1];
122 
123         switch (param[2]) {
124         case 0:
125             target_cpu_state = arm_get_cpu_by_id(mpidr);
126             if (!target_cpu_state) {
127                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
128                 break;
129             }
130             target_cpu = ARM_CPU(target_cpu_state);
131 
132             g_assert(qemu_mutex_iothread_locked());
133             ret = target_cpu->power_state;
134             break;
135         default:
136             /* Everything above affinity level 0 is always on. */
137             ret = 0;
138         }
139         break;
140     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
141         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
142         /* QEMU reset and shutdown are async requests, but PSCI
143          * mandates that we never return from the reset/shutdown
144          * call, so power the CPU off now so it doesn't execute
145          * anything further.
146          */
147         goto cpu_off;
148     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
149         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
150         goto cpu_off;
151     case QEMU_PSCI_0_1_FN_CPU_ON:
152     case QEMU_PSCI_0_2_FN_CPU_ON:
153     case QEMU_PSCI_0_2_FN64_CPU_ON:
154     {
155         /* The PSCI spec mandates that newly brought up CPUs start
156          * in the highest exception level which exists and is enabled
157          * on the calling CPU. Since the QEMU PSCI implementation is
158          * acting as a "fake EL3" or "fake EL2" firmware, this for us
159          * means that we want to start at the highest NS exception level
160          * that we are providing to the guest.
161          * The execution mode should be that which is currently in use
162          * by the same exception level on the calling CPU.
163          * The CPU should be started with the context_id value
164          * in x0 (if AArch64) or r0 (if AArch32).
165          */
166         int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
167         bool target_aarch64 = arm_el_is_aa64(env, target_el);
168 
169         mpidr = param[1];
170         entry = param[2];
171         context_id = param[3];
172         ret = arm_set_cpu_on(mpidr, entry, context_id,
173                              target_el, target_aarch64);
174         break;
175     }
176     case QEMU_PSCI_0_1_FN_CPU_OFF:
177     case QEMU_PSCI_0_2_FN_CPU_OFF:
178         goto cpu_off;
179     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
180     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
181     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
182         /* Affinity levels are not supported in QEMU */
183         if (param[1] & 0xfffe0000) {
184             ret = QEMU_PSCI_RET_INVALID_PARAMS;
185             break;
186         }
187         /* Powerdown is not supported, we always go into WFI */
188         if (is_a64(env)) {
189             env->xregs[0] = 0;
190         } else {
191             env->regs[0] = 0;
192         }
193         helper_wfi(env, 4);
194         break;
195     case QEMU_PSCI_0_1_FN_MIGRATE:
196     case QEMU_PSCI_0_2_FN_MIGRATE:
197         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
198         break;
199     default:
200         g_assert_not_reached();
201     }
202 
203 err:
204     if (is_a64(env)) {
205         env->xregs[0] = ret;
206     } else {
207         env->regs[0] = ret;
208     }
209     return;
210 
211 cpu_off:
212     ret = arm_set_cpu_off(cpu->mp_affinity);
213     /* notreached */
214     /* sanity check in case something failed */
215     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
216 }
217