1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #include <common.h>
4 #include <malloc.h>
5 #include <net.h>
6 #include <netdev.h>
7 #include <pci.h>
8 
9 #undef DEBUG_SROM
10 #undef DEBUG_SROM2
11 
12 #undef UPDATE_SROM
13 
14 /* PCI Registers.
15  */
16 #define PCI_CFDA_PSM		0x43
17 
18 #define CFRV_RN		0x000000f0	/* Revision Number */
19 
20 #define WAKEUP		0x00		/* Power Saving Wakeup */
21 #define SLEEP		0x80		/* Power Saving Sleep Mode */
22 
23 #define DC2114x_BRK	0x0020		/* CFRV break between DC21142 & DC21143 */
24 
25 /* Ethernet chip registers.
26  */
27 #define DE4X5_BMR	0x000		/* Bus Mode Register */
28 #define DE4X5_TPD	0x008		/* Transmit Poll Demand Reg */
29 #define DE4X5_RRBA	0x018		/* RX Ring Base Address Reg */
30 #define DE4X5_TRBA	0x020		/* TX Ring Base Address Reg */
31 #define DE4X5_STS	0x028		/* Status Register */
32 #define DE4X5_OMR	0x030		/* Operation Mode Register */
33 #define DE4X5_SICR	0x068		/* SIA Connectivity Register */
34 #define DE4X5_APROM	0x048		/* Ethernet Address PROM */
35 
36 /* Register bits.
37  */
38 #define BMR_SWR		0x00000001	/* Software Reset */
39 #define STS_TS		0x00700000	/* Transmit Process State */
40 #define STS_RS		0x000e0000	/* Receive Process State */
41 #define OMR_ST		0x00002000	/* Start/Stop Transmission Command */
42 #define OMR_SR		0x00000002	/* Start/Stop Receive */
43 #define OMR_PS		0x00040000	/* Port Select */
44 #define OMR_SDP		0x02000000	/* SD Polarity - MUST BE ASSERTED */
45 #define OMR_PM		0x00000080	/* Pass All Multicast */
46 
47 /* Descriptor bits.
48  */
49 #define R_OWN		0x80000000	/* Own Bit */
50 #define RD_RER		0x02000000	/* Receive End Of Ring */
51 #define RD_LS		0x00000100	/* Last Descriptor */
52 #define RD_ES		0x00008000	/* Error Summary */
53 #define TD_TER		0x02000000	/* Transmit End Of Ring */
54 #define T_OWN		0x80000000	/* Own Bit */
55 #define TD_LS		0x40000000	/* Last Segment */
56 #define TD_FS		0x20000000	/* First Segment */
57 #define TD_ES		0x00008000	/* Error Summary */
58 #define TD_SET		0x08000000	/* Setup Packet */
59 
60 /* The EEPROM commands include the alway-set leading bit. */
61 #define SROM_WRITE_CMD	5
62 #define SROM_READ_CMD	6
63 #define SROM_ERASE_CMD	7
64 
65 #define SROM_HWADD	    0x0014	/* Hardware Address offset in SROM */
66 #define SROM_RD		0x00004000	/* Read from Boot ROM */
67 #define EE_DATA_WRITE	      0x04	/* EEPROM chip data in. */
68 #define EE_WRITE_0	    0x4801
69 #define EE_WRITE_1	    0x4805
70 #define EE_DATA_READ	      0x08	/* EEPROM chip data out. */
71 #define SROM_SR		0x00000800	/* Select Serial ROM when set */
72 
73 #define DT_IN		0x00000004	/* Serial Data In */
74 #define DT_CLK		0x00000002	/* Serial ROM Clock */
75 #define DT_CS		0x00000001	/* Serial ROM Chip Select */
76 
77 #define POLL_DEMAND	1
78 
79 #ifdef CONFIG_TULIP_FIX_DAVICOM
80 #define RESET_DM9102(dev) {\
81     unsigned long i;\
82     i=INL(dev, 0x0);\
83     udelay(1000);\
84     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
85     udelay(1000);\
86 }
87 #else
88 #define RESET_DE4X5(dev) {\
89     int i;\
90     i=INL(dev, DE4X5_BMR);\
91     udelay(1000);\
92     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
93     udelay(1000);\
94     OUTL(dev, i, DE4X5_BMR);\
95     udelay(1000);\
96     for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
97     udelay(1000);\
98 }
99 #endif
100 
101 #define START_DE4X5(dev) {\
102     s32 omr; \
103     omr = INL(dev, DE4X5_OMR);\
104     omr |= OMR_ST | OMR_SR;\
105     OUTL(dev, omr, DE4X5_OMR);		/* Enable the TX and/or RX */\
106 }
107 
108 #define STOP_DE4X5(dev) {\
109     s32 omr; \
110     omr = INL(dev, DE4X5_OMR);\
111     omr &= ~(OMR_ST|OMR_SR);\
112     OUTL(dev, omr, DE4X5_OMR);		/* Disable the TX and/or RX */ \
113 }
114 
115 #define NUM_RX_DESC PKTBUFSRX
116 #ifndef CONFIG_TULIP_FIX_DAVICOM
117 	#define NUM_TX_DESC 1			/* Number of TX descriptors   */
118 #else
119 	#define NUM_TX_DESC 4
120 #endif
121 #define RX_BUFF_SZ  PKTSIZE_ALIGN
122 
123 #define TOUT_LOOP   1000000
124 
125 #define SETUP_FRAME_LEN 192
126 
127 struct de4x5_desc {
128 	volatile s32 status;
129 	u32 des1;
130 	u32 buf;
131 	u32 next;
132 };
133 
134 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring         */
135 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring         */
136 static int rx_new;                             /* RX descriptor ring pointer */
137 static int tx_new;                             /* TX descriptor ring pointer */
138 
139 static char rxRingSize;
140 static char txRingSize;
141 
142 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
143 static void  sendto_srom(struct eth_device* dev, u_int command, u_long addr);
144 static int   getfrom_srom(struct eth_device* dev, u_long addr);
145 static int   do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
146 static int   do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
147 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
148 #ifdef UPDATE_SROM
149 static int   write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
150 static void  update_srom(struct eth_device *dev, bd_t *bis);
151 #endif
152 #ifndef CONFIG_TULIP_FIX_DAVICOM
153 static int   read_srom(struct eth_device *dev, u_long ioaddr, int index);
154 static void  read_hw_addr(struct eth_device* dev, bd_t * bis);
155 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
156 static void  send_setup_frame(struct eth_device* dev, bd_t * bis);
157 
158 static int   dc21x4x_init(struct eth_device* dev, bd_t* bis);
159 static int   dc21x4x_send(struct eth_device *dev, void *packet, int length);
160 static int   dc21x4x_recv(struct eth_device* dev);
161 static void  dc21x4x_halt(struct eth_device* dev);
162 #ifdef CONFIG_TULIP_SELECT_MEDIA
163 extern void  dc21x4x_select_media(struct eth_device* dev);
164 #endif
165 
166 #if defined(CONFIG_E500)
167 #define phys_to_bus(a) (a)
168 #else
169 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
170 #endif
171 
INL(struct eth_device * dev,u_long addr)172 static int INL(struct eth_device* dev, u_long addr)
173 {
174 	return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
175 }
176 
OUTL(struct eth_device * dev,int command,u_long addr)177 static void OUTL(struct eth_device* dev, int command, u_long addr)
178 {
179 	*(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
180 }
181 
182 static struct pci_device_id supported[] = {
183 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
184 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
185 #ifdef CONFIG_TULIP_FIX_DAVICOM
186 	{ PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
187 #endif
188 	{ }
189 };
190 
dc21x4x_initialize(bd_t * bis)191 int dc21x4x_initialize(bd_t *bis)
192 {
193 	int			idx=0;
194 	int			card_number = 0;
195 	unsigned int		cfrv;
196 	unsigned char		timer;
197 	pci_dev_t		devbusfn;
198 	unsigned int		iobase;
199 	unsigned short		status;
200 	struct eth_device*	dev;
201 
202 	while(1) {
203 		devbusfn =  pci_find_devices(supported, idx++);
204 		if (devbusfn == -1) {
205 			break;
206 		}
207 
208 		/* Get the chip configuration revision register. */
209 		pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
210 
211 #ifndef CONFIG_TULIP_FIX_DAVICOM
212 		if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
213 			printf("Error: The chip is not DC21143.\n");
214 			continue;
215 		}
216 #endif
217 
218 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
219 		status |=
220 #ifdef CONFIG_TULIP_USE_IO
221 		  PCI_COMMAND_IO |
222 #else
223 		  PCI_COMMAND_MEMORY |
224 #endif
225 		  PCI_COMMAND_MASTER;
226 		pci_write_config_word(devbusfn, PCI_COMMAND, status);
227 
228 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
229 #ifdef CONFIG_TULIP_USE_IO
230 		if (!(status & PCI_COMMAND_IO)) {
231 			printf("Error: Can not enable I/O access.\n");
232 			continue;
233 		}
234 #else
235 		if (!(status & PCI_COMMAND_MEMORY)) {
236 			printf("Error: Can not enable MEMORY access.\n");
237 			continue;
238 		}
239 #endif
240 
241 		if (!(status & PCI_COMMAND_MASTER)) {
242 			printf("Error: Can not enable Bus Mastering.\n");
243 			continue;
244 		}
245 
246 		/* Check the latency timer for values >= 0x60. */
247 		pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
248 
249 		if (timer < 0x60) {
250 			pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
251 		}
252 
253 #ifdef CONFIG_TULIP_USE_IO
254 		/* read BAR for memory space access */
255 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
256 		iobase &= PCI_BASE_ADDRESS_IO_MASK;
257 #else
258 		/* read BAR for memory space access */
259 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
260 		iobase &= PCI_BASE_ADDRESS_MEM_MASK;
261 #endif
262 		debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
263 
264 		dev = (struct eth_device*) malloc(sizeof *dev);
265 
266 		if (!dev) {
267 			printf("Can not allocalte memory of dc21x4x\n");
268 			break;
269 		}
270 		memset(dev, 0, sizeof(*dev));
271 
272 #ifdef CONFIG_TULIP_FIX_DAVICOM
273 		sprintf(dev->name, "Davicom#%d", card_number);
274 #else
275 		sprintf(dev->name, "dc21x4x#%d", card_number);
276 #endif
277 
278 #ifdef CONFIG_TULIP_USE_IO
279 		dev->iobase = pci_io_to_phys(devbusfn, iobase);
280 #else
281 		dev->iobase = pci_mem_to_phys(devbusfn, iobase);
282 #endif
283 		dev->priv   = (void*) devbusfn;
284 		dev->init   = dc21x4x_init;
285 		dev->halt   = dc21x4x_halt;
286 		dev->send   = dc21x4x_send;
287 		dev->recv   = dc21x4x_recv;
288 
289 		/* Ensure we're not sleeping. */
290 		pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
291 
292 		udelay(10 * 1000);
293 
294 #ifndef CONFIG_TULIP_FIX_DAVICOM
295 		read_hw_addr(dev, bis);
296 #endif
297 		eth_register(dev);
298 
299 		card_number++;
300 	}
301 
302 	return card_number;
303 }
304 
dc21x4x_init(struct eth_device * dev,bd_t * bis)305 static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
306 {
307 	int		i;
308 	int		devbusfn = (int) dev->priv;
309 
310 	/* Ensure we're not sleeping. */
311 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
312 
313 #ifdef CONFIG_TULIP_FIX_DAVICOM
314 	RESET_DM9102(dev);
315 #else
316 	RESET_DE4X5(dev);
317 #endif
318 
319 	if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
320 		printf("Error: Cannot reset ethernet controller.\n");
321 		return -1;
322 	}
323 
324 #ifdef CONFIG_TULIP_SELECT_MEDIA
325 	dc21x4x_select_media(dev);
326 #else
327 	OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
328 #endif
329 
330 	for (i = 0; i < NUM_RX_DESC; i++) {
331 		rx_ring[i].status = cpu_to_le32(R_OWN);
332 		rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
333 		rx_ring[i].buf = cpu_to_le32(
334 			phys_to_bus((u32)net_rx_packets[i]));
335 #ifdef CONFIG_TULIP_FIX_DAVICOM
336 		rx_ring[i].next = cpu_to_le32(
337 			phys_to_bus((u32)&rx_ring[(i + 1) % NUM_RX_DESC]));
338 #else
339 		rx_ring[i].next = 0;
340 #endif
341 	}
342 
343 	for (i=0; i < NUM_TX_DESC; i++) {
344 		tx_ring[i].status = 0;
345 		tx_ring[i].des1 = 0;
346 		tx_ring[i].buf = 0;
347 
348 #ifdef CONFIG_TULIP_FIX_DAVICOM
349 	tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
350 #else
351 		tx_ring[i].next = 0;
352 #endif
353 	}
354 
355 	rxRingSize = NUM_RX_DESC;
356 	txRingSize = NUM_TX_DESC;
357 
358 	/* Write the end of list marker to the descriptor lists. */
359 	rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
360 	tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
361 
362 	/* Tell the adapter where the TX/RX rings are located. */
363 	OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
364 	OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
365 
366 	START_DE4X5(dev);
367 
368 	tx_new = 0;
369 	rx_new = 0;
370 
371 	send_setup_frame(dev, bis);
372 
373 	return 0;
374 }
375 
dc21x4x_send(struct eth_device * dev,void * packet,int length)376 static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
377 {
378 	int		status = -1;
379 	int		i;
380 
381 	if (length <= 0) {
382 		printf("%s: bad packet size: %d\n", dev->name, length);
383 		goto Done;
384 	}
385 
386 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
387 		if (i >= TOUT_LOOP) {
388 			printf("%s: tx error buffer not ready\n", dev->name);
389 			goto Done;
390 		}
391 	}
392 
393 	tx_ring[tx_new].buf    = cpu_to_le32(phys_to_bus((u32) packet));
394 	tx_ring[tx_new].des1   = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
395 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
396 
397 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
398 
399 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
400 		if (i >= TOUT_LOOP) {
401 			printf(".%s: tx buffer not ready\n", dev->name);
402 			goto Done;
403 		}
404 	}
405 
406 	if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
407 #if 0 /* test-only */
408 		printf("TX error status = 0x%08X\n",
409 			le32_to_cpu(tx_ring[tx_new].status));
410 #endif
411 		tx_ring[tx_new].status = 0x0;
412 		goto Done;
413 	}
414 
415 	status = length;
416 
417  Done:
418     tx_new = (tx_new+1) % NUM_TX_DESC;
419 	return status;
420 }
421 
dc21x4x_recv(struct eth_device * dev)422 static int dc21x4x_recv(struct eth_device* dev)
423 {
424 	s32		status;
425 	int		length    = 0;
426 
427 	for ( ; ; ) {
428 		status = (s32)le32_to_cpu(rx_ring[rx_new].status);
429 
430 		if (status & R_OWN) {
431 			break;
432 		}
433 
434 		if (status & RD_LS) {
435 			/* Valid frame status.
436 			 */
437 			if (status & RD_ES) {
438 
439 				/* There was an error.
440 				 */
441 				printf("RX error status = 0x%08X\n", status);
442 			} else {
443 				/* A valid frame received.
444 				 */
445 				length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
446 
447 				/* Pass the packet up to the protocol
448 				 * layers.
449 				 */
450 				net_process_received_packet(
451 					net_rx_packets[rx_new], length - 4);
452 			}
453 
454 			/* Change buffer ownership for this frame, back
455 			 * to the adapter.
456 			 */
457 			rx_ring[rx_new].status = cpu_to_le32(R_OWN);
458 		}
459 
460 		/* Update entry information.
461 		 */
462 		rx_new = (rx_new + 1) % rxRingSize;
463 	}
464 
465 	return length;
466 }
467 
dc21x4x_halt(struct eth_device * dev)468 static void dc21x4x_halt(struct eth_device* dev)
469 {
470 	int		devbusfn = (int) dev->priv;
471 
472 	STOP_DE4X5(dev);
473 	OUTL(dev, 0, DE4X5_SICR);
474 
475 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
476 }
477 
send_setup_frame(struct eth_device * dev,bd_t * bis)478 static void send_setup_frame(struct eth_device* dev, bd_t *bis)
479 {
480 	int		i;
481 	char	setup_frame[SETUP_FRAME_LEN];
482 	char	*pa = &setup_frame[0];
483 
484 	memset(pa, 0xff, SETUP_FRAME_LEN);
485 
486 	for (i = 0; i < ETH_ALEN; i++) {
487 		*(pa + (i & 1)) = dev->enetaddr[i];
488 		if (i & 0x01) {
489 			pa += 4;
490 		}
491 	}
492 
493 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
494 		if (i >= TOUT_LOOP) {
495 			printf("%s: tx error buffer not ready\n", dev->name);
496 			goto Done;
497 		}
498 	}
499 
500 	tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
501 	tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
502 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
503 
504 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
505 
506 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
507 		if (i >= TOUT_LOOP) {
508 			printf("%s: tx buffer not ready\n", dev->name);
509 			goto Done;
510 		}
511 	}
512 
513 	if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
514 		printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
515 	}
516 	tx_new = (tx_new+1) % NUM_TX_DESC;
517 
518 Done:
519 	return;
520 }
521 
522 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
523 /* SROM Read and write routines.
524  */
525 static void
sendto_srom(struct eth_device * dev,u_int command,u_long addr)526 sendto_srom(struct eth_device* dev, u_int command, u_long addr)
527 {
528 	OUTL(dev, command, addr);
529 	udelay(1);
530 }
531 
532 static int
getfrom_srom(struct eth_device * dev,u_long addr)533 getfrom_srom(struct eth_device* dev, u_long addr)
534 {
535 	s32 tmp;
536 
537 	tmp = INL(dev, addr);
538 	udelay(1);
539 
540 	return tmp;
541 }
542 
543 /* Note: this routine returns extra data bits for size detection. */
do_read_eeprom(struct eth_device * dev,u_long ioaddr,int location,int addr_len)544 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
545 {
546 	int i;
547 	unsigned retval = 0;
548 	int read_cmd = location | (SROM_READ_CMD << addr_len);
549 
550 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
551 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
552 
553 #ifdef DEBUG_SROM
554 	printf(" EEPROM read at %d ", location);
555 #endif
556 
557 	/* Shift the read command bits out. */
558 	for (i = 4 + addr_len; i >= 0; i--) {
559 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
560 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
561 		udelay(10);
562 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
563 		udelay(10);
564 #ifdef DEBUG_SROM2
565 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
566 #endif
567 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
568 	}
569 
570 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
571 
572 #ifdef DEBUG_SROM2
573 	printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
574 #endif
575 
576 	for (i = 16; i > 0; i--) {
577 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
578 		udelay(10);
579 #ifdef DEBUG_SROM2
580 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
581 #endif
582 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
583 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
584 		udelay(10);
585 	}
586 
587 	/* Terminate the EEPROM access. */
588 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
589 
590 #ifdef DEBUG_SROM2
591 	printf(" EEPROM value at %d is %5.5x.\n", location, retval);
592 #endif
593 
594 	return retval;
595 }
596 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
597 
598 /* This executes a generic EEPROM command, typically a write or write
599  * enable. It returns the data output from the EEPROM, and thus may
600  * also be used for reads.
601  */
602 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
do_eeprom_cmd(struct eth_device * dev,u_long ioaddr,int cmd,int cmd_len)603 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
604 {
605 	unsigned retval = 0;
606 
607 #ifdef DEBUG_SROM
608 	printf(" EEPROM op 0x%x: ", cmd);
609 #endif
610 
611 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
612 
613 	/* Shift the command bits out. */
614 	do {
615 		short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
616 		sendto_srom(dev,dataval, ioaddr);
617 		udelay(10);
618 
619 #ifdef DEBUG_SROM2
620 		printf("%X", getfrom_srom(dev,ioaddr) & 15);
621 #endif
622 
623 		sendto_srom(dev,dataval | DT_CLK, ioaddr);
624 		udelay(10);
625 		retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
626 	} while (--cmd_len >= 0);
627 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
628 
629 	/* Terminate the EEPROM access. */
630 	sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
631 
632 #ifdef DEBUG_SROM
633 	printf(" EEPROM result is 0x%5.5x.\n", retval);
634 #endif
635 
636 	return retval;
637 }
638 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
639 
640 #ifndef CONFIG_TULIP_FIX_DAVICOM
read_srom(struct eth_device * dev,u_long ioaddr,int index)641 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
642 {
643 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
644 
645 	return do_eeprom_cmd(dev, ioaddr,
646 			     (((SROM_READ_CMD << ee_addr_size) | index) << 16)
647 			     | 0xffff, 3 + ee_addr_size + 16);
648 }
649 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
650 
651 #ifdef UPDATE_SROM
write_srom(struct eth_device * dev,u_long ioaddr,int index,int new_value)652 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
653 {
654 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
655 	int i;
656 	unsigned short newval;
657 
658 	udelay(10*1000); /* test-only */
659 
660 #ifdef DEBUG_SROM
661 	printf("ee_addr_size=%d.\n", ee_addr_size);
662 	printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
663 #endif
664 
665 	/* Enable programming modes. */
666 	do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
667 
668 	/* Do the actual write. */
669 	do_eeprom_cmd(dev, ioaddr,
670 		      (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
671 		      3 + ee_addr_size + 16);
672 
673 	/* Poll for write finished. */
674 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
675 	for (i = 0; i < 10000; i++)			/* Typical 2000 ticks */
676 		if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
677 			break;
678 
679 #ifdef DEBUG_SROM
680 	printf(" Write finished after %d ticks.\n", i);
681 #endif
682 
683 	/* Disable programming. */
684 	do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
685 
686 	/* And read the result. */
687 	newval = do_eeprom_cmd(dev, ioaddr,
688 			       (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
689 			       | 0xffff, 3 + ee_addr_size + 16);
690 #ifdef DEBUG_SROM
691 	printf("  New value at offset %d is %4.4x.\n", index, newval);
692 #endif
693 	return 1;
694 }
695 #endif
696 
697 #ifndef CONFIG_TULIP_FIX_DAVICOM
read_hw_addr(struct eth_device * dev,bd_t * bis)698 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
699 {
700 	u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
701 	int i, j = 0;
702 
703 	for (i = 0; i < (ETH_ALEN >> 1); i++) {
704 		tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
705 		*p = le16_to_cpu(tmp);
706 		j += *p++;
707 	}
708 
709 	if ((j == 0) || (j == 0x2fffd)) {
710 		memset (dev->enetaddr, 0, ETH_ALEN);
711 		debug ("Warning: can't read HW address from SROM.\n");
712 		goto Done;
713 	}
714 
715 	return;
716 
717 Done:
718 #ifdef UPDATE_SROM
719 	update_srom(dev, bis);
720 #endif
721 	return;
722 }
723 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
724 
725 #ifdef UPDATE_SROM
update_srom(struct eth_device * dev,bd_t * bis)726 static void update_srom(struct eth_device *dev, bd_t *bis)
727 {
728 	int i;
729 	static unsigned short eeprom[0x40] = {
730 		0x140b, 0x6610, 0x0000, 0x0000,	/* 00 */
731 		0x0000, 0x0000, 0x0000, 0x0000,	/* 04 */
732 		0x00a3, 0x0103, 0x0000, 0x0000,	/* 08 */
733 		0x0000, 0x1f00, 0x0000, 0x0000,	/* 0c */
734 		0x0108, 0x038d, 0x0000, 0x0000,	/* 10 */
735 		0xe078, 0x0001, 0x0040, 0x0018,	/* 14 */
736 		0x0000, 0x0000, 0x0000, 0x0000,	/* 18 */
737 		0x0000, 0x0000, 0x0000, 0x0000,	/* 1c */
738 		0x0000, 0x0000, 0x0000, 0x0000,	/* 20 */
739 		0x0000, 0x0000, 0x0000, 0x0000,	/* 24 */
740 		0x0000, 0x0000, 0x0000, 0x0000,	/* 28 */
741 		0x0000, 0x0000, 0x0000, 0x0000,	/* 2c */
742 		0x0000, 0x0000, 0x0000, 0x0000,	/* 30 */
743 		0x0000, 0x0000, 0x0000, 0x0000,	/* 34 */
744 		0x0000, 0x0000, 0x0000, 0x0000,	/* 38 */
745 		0x0000, 0x0000, 0x0000, 0x4e07,	/* 3c */
746 	};
747 	uchar enetaddr[6];
748 
749 	/* Ethernet Addr... */
750 	if (!eth_env_get_enetaddr("ethaddr", enetaddr))
751 		return;
752 	eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
753 	eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
754 	eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
755 
756 	for (i=0; i<0x40; i++) {
757 		write_srom(dev, DE4X5_APROM, i, eeprom[i]);
758 	}
759 }
760 #endif	/* UPDATE_SROM */
761