1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21 
22 #include "config.h"
23 
24 #include "kvm-consts.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #  define ELF_MACHINE EM_AARCH64
30 #else
31 #  define TARGET_LONG_BITS 32
32 #  define ELF_MACHINE EM_ARM
33 #endif
34 
35 #define CPUArchState struct CPUARMState
36 
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
39 
40 #include "fpu/softfloat.h"
41 
42 #define TARGET_HAS_ICE 1
43 
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_STREX          10
54 #define EXCP_HVC            11   /* HyperVisor Call */
55 #define EXCP_HYP_TRAP       12
56 #define EXCP_SMC            13   /* Secure Monitor Call */
57 #define EXCP_VIRQ           14
58 #define EXCP_VFIQ           15
59 
60 #define ARMV7M_EXCP_RESET   1
61 #define ARMV7M_EXCP_NMI     2
62 #define ARMV7M_EXCP_HARD    3
63 #define ARMV7M_EXCP_MEM     4
64 #define ARMV7M_EXCP_BUS     5
65 #define ARMV7M_EXCP_USAGE   6
66 #define ARMV7M_EXCP_SVC     11
67 #define ARMV7M_EXCP_DEBUG   12
68 #define ARMV7M_EXCP_PENDSV  14
69 #define ARMV7M_EXCP_SYSTICK 15
70 
71 /* ARM-specific interrupt pending bits.  */
72 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
73 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
74 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
75 
76 /* The usual mapping for an AArch64 system register to its AArch32
77  * counterpart is for the 32 bit world to have access to the lower
78  * half only (with writes leaving the upper half untouched). It's
79  * therefore useful to be able to pass TCG the offset of the least
80  * significant half of a uint64_t struct member.
81  */
82 #ifdef HOST_WORDS_BIGENDIAN
83 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
84 #define offsetofhigh32(S, M) offsetof(S, M)
85 #else
86 #define offsetoflow32(S, M) offsetof(S, M)
87 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
88 #endif
89 
90 /* Meanings of the ARMCPU object's four inbound GPIO lines */
91 #define ARM_CPU_IRQ 0
92 #define ARM_CPU_FIQ 1
93 #define ARM_CPU_VIRQ 2
94 #define ARM_CPU_VFIQ 3
95 
96 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
97                             int srcreg, int operand, uint32_t value);
98 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
99                                int dstreg, int operand);
100 
101 struct arm_boot_info;
102 
103 #define NB_MMU_MODES 4
104 
105 /* We currently assume float and double are IEEE single and double
106    precision respectively.
107    Doing runtime conversions is tricky because VFP registers may contain
108    integer values (eg. as the result of a FTOSI instruction).
109    s<2n> maps to the least significant half of d<n>
110    s<2n+1> maps to the most significant half of d<n>
111  */
112 
113 /* CPU state for each instance of a generic timer (in cp15 c14) */
114 typedef struct ARMGenericTimer {
115     uint64_t cval; /* Timer CompareValue register */
116     uint64_t ctl; /* Timer Control register */
117 } ARMGenericTimer;
118 
119 #define GTIMER_PHYS 0
120 #define GTIMER_VIRT 1
121 #define NUM_GTIMERS 2
122 
123 typedef struct CPUARMState {
124     /* Regs for current mode.  */
125     uint32_t regs[16];
126 
127     /* 32/64 switch only happens when taking and returning from
128      * exceptions so the overlap semantics are taken care of then
129      * instead of having a complicated union.
130      */
131     /* Regs for A64 mode.  */
132     uint64_t xregs[32];
133     uint64_t pc;
134     /* PSTATE isn't an architectural register for ARMv8. However, it is
135      * convenient for us to assemble the underlying state into a 32 bit format
136      * identical to the architectural format used for the SPSR. (This is also
137      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
138      * 'pstate' register are.) Of the PSTATE bits:
139      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
140      *    semantics as for AArch32, as described in the comments on each field)
141      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
142      *  DAIF (exception masks) are kept in env->daif
143      *  all other bits are stored in their correct places in env->pstate
144      */
145     uint32_t pstate;
146     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
147 
148     /* Frequently accessed CPSR bits are stored separately for efficiency.
149        This contains all the other bits.  Use cpsr_{read,write} to access
150        the whole CPSR.  */
151     uint32_t uncached_cpsr;
152     uint32_t spsr;
153 
154     /* Banked registers.  */
155     uint64_t banked_spsr[8];
156     uint32_t banked_r13[8];
157     uint32_t banked_r14[8];
158 
159     /* These hold r8-r12.  */
160     uint32_t usr_regs[5];
161     uint32_t fiq_regs[5];
162 
163     /* cpsr flag cache for faster execution */
164     uint32_t CF; /* 0 or 1 */
165     uint32_t VF; /* V is the bit 31. All other bits are undefined */
166     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
167     uint32_t ZF; /* Z set if zero.  */
168     uint32_t QF; /* 0 or 1 */
169     uint32_t GE; /* cpsr[19:16] */
170     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
171     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
172     uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
173 
174     uint64_t elr_el[4]; /* AArch64 exception link regs  */
175     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
176 
177     /* System control coprocessor (cp15) */
178     struct {
179         uint32_t c0_cpuid;
180         uint64_t c0_cssel; /* Cache size selection.  */
181         uint64_t c1_sys; /* System control register.  */
182         uint64_t c1_coproc; /* Coprocessor access register.  */
183         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
184         uint64_t ttbr0_el1; /* MMU translation table base 0. */
185         uint64_t ttbr1_el1; /* MMU translation table base 1. */
186         uint64_t c2_control; /* MMU translation table base control.  */
187         uint32_t c2_mask; /* MMU translation table base selection mask.  */
188         uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
189         uint32_t c2_data; /* MPU data cachable bits.  */
190         uint32_t c2_insn; /* MPU instruction cachable bits.  */
191         uint32_t c3; /* MMU domain access control register
192                         MPU write buffer control.  */
193         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
194         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
195         uint64_t hcr_el2; /* Hypervisor configuration register */
196         uint64_t scr_el3; /* Secure configuration register.  */
197         uint32_t ifsr_el2; /* Fault status registers.  */
198         uint64_t esr_el[4];
199         uint32_t c6_region[8]; /* MPU base/size registers.  */
200         uint64_t far_el[4]; /* Fault address registers.  */
201         uint64_t par_el1;  /* Translation result. */
202         uint32_t c9_insn; /* Cache lockdown registers.  */
203         uint32_t c9_data;
204         uint64_t c9_pmcr; /* performance monitor control register */
205         uint64_t c9_pmcnten; /* perf monitor counter enables */
206         uint32_t c9_pmovsr; /* perf monitor overflow status */
207         uint32_t c9_pmxevtyper; /* perf monitor event type */
208         uint32_t c9_pmuserenr; /* perf monitor user enable */
209         uint32_t c9_pminten; /* perf monitor interrupt enables */
210         uint64_t mair_el1;
211         uint64_t vbar_el[4]; /* vector base address register */
212         uint32_t c13_fcse; /* FCSE PID.  */
213         uint64_t contextidr_el1; /* Context ID.  */
214         uint64_t tpidr_el0; /* User RW Thread register.  */
215         uint64_t tpidrro_el0; /* User RO Thread register.  */
216         uint64_t tpidr_el1; /* Privileged Thread register.  */
217         uint64_t c14_cntfrq; /* Counter Frequency register */
218         uint64_t c14_cntkctl; /* Timer Control register */
219         ARMGenericTimer c14_timer[NUM_GTIMERS];
220         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
221         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
222         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
223         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
224         uint32_t c15_threadid; /* TI debugger thread-ID.  */
225         uint32_t c15_config_base_address; /* SCU base address.  */
226         uint32_t c15_diagnostic; /* diagnostic register */
227         uint32_t c15_power_diagnostic;
228         uint32_t c15_power_control; /* power control */
229         uint64_t dbgbvr[16]; /* breakpoint value registers */
230         uint64_t dbgbcr[16]; /* breakpoint control registers */
231         uint64_t dbgwvr[16]; /* watchpoint value registers */
232         uint64_t dbgwcr[16]; /* watchpoint control registers */
233         uint64_t mdscr_el1;
234         /* If the counter is enabled, this stores the last time the counter
235          * was reset. Otherwise it stores the counter value
236          */
237         uint64_t c15_ccnt;
238         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
239     } cp15;
240 
241     struct {
242         uint32_t other_sp;
243         uint32_t vecbase;
244         uint32_t basepri;
245         uint32_t control;
246         int current_sp;
247         int exception;
248         int pending_exception;
249     } v7m;
250 
251     /* Information associated with an exception about to be taken:
252      * code which raises an exception must set cs->exception_index and
253      * the relevant parts of this structure; the cpu_do_interrupt function
254      * will then set the guest-visible registers as part of the exception
255      * entry process.
256      */
257     struct {
258         uint32_t syndrome; /* AArch64 format syndrome register */
259         uint32_t fsr; /* AArch32 format fault status register info */
260         uint64_t vaddress; /* virtual addr associated with exception, if any */
261         /* If we implement EL2 we will also need to store information
262          * about the intermediate physical address for stage 2 faults.
263          */
264     } exception;
265 
266     /* Thumb-2 EE state.  */
267     uint32_t teecr;
268     uint32_t teehbr;
269 
270     /* VFP coprocessor state.  */
271     struct {
272         /* VFP/Neon register state. Note that the mapping between S, D and Q
273          * views of the register bank differs between AArch64 and AArch32:
274          * In AArch32:
275          *  Qn = regs[2n+1]:regs[2n]
276          *  Dn = regs[n]
277          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
278          * (and regs[32] to regs[63] are inaccessible)
279          * In AArch64:
280          *  Qn = regs[2n+1]:regs[2n]
281          *  Dn = regs[2n]
282          *  Sn = regs[2n] bits 31..0
283          * This corresponds to the architecturally defined mapping between
284          * the two execution states, and means we do not need to explicitly
285          * map these registers when changing states.
286          */
287         float64 regs[64];
288 
289         uint32_t xregs[16];
290         /* We store these fpcsr fields separately for convenience.  */
291         int vec_len;
292         int vec_stride;
293 
294         /* scratch space when Tn are not sufficient.  */
295         uint32_t scratch[8];
296 
297         /* fp_status is the "normal" fp status. standard_fp_status retains
298          * values corresponding to the ARM "Standard FPSCR Value", ie
299          * default-NaN, flush-to-zero, round-to-nearest and is used by
300          * any operations (generally Neon) which the architecture defines
301          * as controlled by the standard FPSCR value rather than the FPSCR.
302          *
303          * To avoid having to transfer exception bits around, we simply
304          * say that the FPSCR cumulative exception flags are the logical
305          * OR of the flags in the two fp statuses. This relies on the
306          * only thing which needs to read the exception flags being
307          * an explicit FPSCR read.
308          */
309         float_status fp_status;
310         float_status standard_fp_status;
311     } vfp;
312     uint64_t exclusive_addr;
313     uint64_t exclusive_val;
314     uint64_t exclusive_high;
315 #if defined(CONFIG_USER_ONLY)
316     uint64_t exclusive_test;
317     uint32_t exclusive_info;
318 #endif
319 
320     /* iwMMXt coprocessor state.  */
321     struct {
322         uint64_t regs[16];
323         uint64_t val;
324 
325         uint32_t cregs[16];
326     } iwmmxt;
327 
328     /* For mixed endian mode.  */
329     bool bswap_code;
330 
331 #if defined(CONFIG_USER_ONLY)
332     /* For usermode syscall translation.  */
333     int eabi;
334 #endif
335 
336     struct CPUBreakpoint *cpu_breakpoint[16];
337     struct CPUWatchpoint *cpu_watchpoint[16];
338 
339     CPU_COMMON
340 
341     /* These fields after the common ones so they are preserved on reset.  */
342 
343     /* Internal CPU feature flags.  */
344     uint64_t features;
345 
346     void *nvic;
347     const struct arm_boot_info *boot_info;
348 
349     // Unicorn engine
350     struct uc_struct *uc;
351 } CPUARMState;
352 
353 #include "cpu-qom.h"
354 
355 ARMCPU *cpu_arm_init(struct uc_struct *uc, const char *cpu_model);
356 int cpu_arm_exec(struct uc_struct *uc, CPUARMState *s);
357 uint32_t do_arm_semihosting(CPUARMState *env);
358 
is_a64(CPUARMState * env)359 static inline bool is_a64(CPUARMState *env)
360 {
361     return env->aarch64;
362 }
363 
364 /* you can call this signal handler from your SIGBUS and SIGSEGV
365    signal handlers to inform the virtual CPU of exceptions. non zero
366    is returned if the signal was handled by the virtual CPU.  */
367 int cpu_arm_signal_handler(int host_signum, void *pinfo,
368                            void *puc);
369 int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
370                              int mmu_idx);
371 
372 /**
373  * pmccntr_sync
374  * @env: CPUARMState
375  *
376  * Synchronises the counter in the PMCCNTR. This must always be called twice,
377  * once before any action that might affect the timer and again afterwards.
378  * The function is used to swap the state of the register if required.
379  * This only happens when not in user mode (!CONFIG_USER_ONLY)
380  */
381 void pmccntr_sync(CPUARMState *env);
382 
383 /* SCTLR bit meanings. Several bits have been reused in newer
384  * versions of the architecture; in that case we define constants
385  * for both old and new bit meanings. Code which tests against those
386  * bits should probably check or otherwise arrange that the CPU
387  * is the architectural version it expects.
388  */
389 #define SCTLR_M       (1U << 0)
390 #define SCTLR_A       (1U << 1)
391 #define SCTLR_C       (1U << 2)
392 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
393 #define SCTLR_SA      (1U << 3)
394 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
395 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
396 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
397 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
398 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
399 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
400 #define SCTLR_ITD     (1U << 7) /* v8 onward */
401 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
402 #define SCTLR_SED     (1U << 8) /* v8 onward */
403 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
404 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
405 #define SCTLR_F       (1U << 10) /* up to v6 */
406 #define SCTLR_SW      (1U << 10) /* v7 onward */
407 #define SCTLR_Z       (1U << 11)
408 #define SCTLR_I       (1U << 12)
409 #define SCTLR_V       (1U << 13)
410 #define SCTLR_RR      (1U << 14) /* up to v7 */
411 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
412 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
413 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
414 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
415 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
416 #define SCTLR_HA      (1U << 17)
417 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
418 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
419 #define SCTLR_WXN     (1U << 19)
420 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
421 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
422 #define SCTLR_FI      (1U << 21)
423 #define SCTLR_U       (1U << 22)
424 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
425 #define SCTLR_VE      (1U << 24) /* up to v7 */
426 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
427 #define SCTLR_EE      (1U << 25)
428 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
429 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
430 #define SCTLR_NMFI    (1U << 27)
431 #define SCTLR_TRE     (1U << 28)
432 #define SCTLR_AFE     (1U << 29)
433 #define SCTLR_TE      (1U << 30)
434 
435 #define CPSR_M (0x1fU)
436 #define CPSR_T (1U << 5)
437 #define CPSR_F (1U << 6)
438 #define CPSR_I (1U << 7)
439 #define CPSR_A (1U << 8)
440 #define CPSR_E (1U << 9)
441 #define CPSR_IT_2_7 (0xfc00U)
442 #define CPSR_GE (0xfU << 16)
443 #define CPSR_IL (1U << 20)
444 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
445  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
446  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
447  * where it is live state but not accessible to the AArch32 code.
448  */
449 #define CPSR_RESERVED (0x7U << 21)
450 #define CPSR_J (1U << 24)
451 #define CPSR_IT_0_1 (3U << 25)
452 #define CPSR_Q (1U << 27)
453 #define CPSR_V (1U << 28)
454 #define CPSR_C (1U << 29)
455 #define CPSR_Z (1U << 30)
456 #define CPSR_N (1U << 31)
457 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
458 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
459 
460 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
461 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
462     | CPSR_NZCV)
463 /* Bits writable in user mode.  */
464 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
465 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
466 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
467 /* Mask of bits which may be set by exception return copying them from SPSR */
468 #define CPSR_ERET_MASK (~CPSR_RESERVED)
469 
470 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
471 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
472 #define TTBCR_PD0    (1U << 4)
473 #define TTBCR_PD1    (1U << 5)
474 #define TTBCR_EPD0   (1U << 7)
475 #define TTBCR_IRGN0  (3U << 8)
476 #define TTBCR_ORGN0  (3U << 10)
477 #define TTBCR_SH0    (3U << 12)
478 #define TTBCR_T1SZ   (3U << 16)
479 #define TTBCR_A1     (1U << 22)
480 #define TTBCR_EPD1   (1U << 23)
481 #define TTBCR_IRGN1  (3U << 24)
482 #define TTBCR_ORGN1  (3U << 26)
483 #define TTBCR_SH1    (1U << 28)
484 #define TTBCR_EAE    (1U << 31)
485 
486 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
487  * Only these are valid when in AArch64 mode; in
488  * AArch32 mode SPSRs are basically CPSR-format.
489  */
490 #define PSTATE_SP (1U)
491 #define PSTATE_M (0xFU)
492 #define PSTATE_nRW (1U << 4)
493 #define PSTATE_F (1U << 6)
494 #define PSTATE_I (1U << 7)
495 #define PSTATE_A (1U << 8)
496 #define PSTATE_D (1U << 9)
497 #define PSTATE_IL (1U << 20)
498 #define PSTATE_SS (1U << 21)
499 #define PSTATE_V (1U << 28)
500 #define PSTATE_C (1U << 29)
501 #define PSTATE_Z (1U << 30)
502 #define PSTATE_N (1U << 31)
503 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
504 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
505 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
506 /* Mode values for AArch64 */
507 #define PSTATE_MODE_EL3h 13
508 #define PSTATE_MODE_EL3t 12
509 #define PSTATE_MODE_EL2h 9
510 #define PSTATE_MODE_EL2t 8
511 #define PSTATE_MODE_EL1h 5
512 #define PSTATE_MODE_EL1t 4
513 #define PSTATE_MODE_EL0t 0
514 
515 /* Map EL and handler into a PSTATE_MODE.  */
aarch64_pstate_mode(unsigned int el,bool handler)516 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
517 {
518     return (el << 2) | handler;
519 }
520 
521 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
522  * interprocessing, so we don't attempt to sync with the cpsr state used by
523  * the 32 bit decoder.
524  */
pstate_read(CPUARMState * env)525 static inline uint32_t pstate_read(CPUARMState *env)
526 {
527     int ZF;
528 
529     ZF = (env->ZF == 0);
530     return (env->NF & 0x80000000) | (ZF << 30)
531         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
532         | env->pstate | env->daif;
533 }
534 
pstate_write(CPUARMState * env,uint32_t val)535 static inline void pstate_write(CPUARMState *env, uint32_t val)
536 {
537     env->ZF = (~val) & PSTATE_Z;
538     env->NF = val;
539     env->CF = (val >> 29) & 1;
540     env->VF = (val << 3) & 0x80000000;
541     env->daif = val & PSTATE_DAIF;
542     env->pstate = val & ~CACHED_PSTATE_BITS;
543 }
544 
545 /* Return the current CPSR value.  */
546 uint32_t cpsr_read(CPUARMState *env);
547 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
548 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
549 
550 /* Return the current xPSR value.  */
xpsr_read(CPUARMState * env)551 static inline uint32_t xpsr_read(CPUARMState *env)
552 {
553     int ZF;
554     ZF = (env->ZF == 0);
555     return (env->NF & 0x80000000) | (ZF << 30)
556         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
557         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
558         | ((env->condexec_bits & 0xfc) << 8)
559         | env->v7m.exception;
560 }
561 
562 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
xpsr_write(CPUARMState * env,uint32_t val,uint32_t mask)563 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
564 {
565     if (mask & CPSR_NZCV) {
566         env->ZF = (~val) & CPSR_Z;
567         env->NF = val;
568         env->CF = (val >> 29) & 1;
569         env->VF = (val << 3) & 0x80000000;
570     }
571     if (mask & CPSR_Q)
572         env->QF = ((val & CPSR_Q) != 0);
573     if (mask & (1 << 24))
574         env->thumb = ((val & (1 << 24)) != 0);
575     if (mask & CPSR_IT_0_1) {
576         env->condexec_bits &= ~3;
577         env->condexec_bits |= (val >> 25) & 3;
578     }
579     if (mask & CPSR_IT_2_7) {
580         env->condexec_bits &= 3;
581         env->condexec_bits |= (val >> 8) & 0xfc;
582     }
583     if (mask & 0x1ff) {
584         env->v7m.exception = val & 0x1ff;
585     }
586 }
587 
588 #define HCR_VM        (1ULL << 0)
589 #define HCR_SWIO      (1ULL << 1)
590 #define HCR_PTW       (1ULL << 2)
591 #define HCR_FMO       (1ULL << 3)
592 #define HCR_IMO       (1ULL << 4)
593 #define HCR_AMO       (1ULL << 5)
594 #define HCR_VF        (1ULL << 6)
595 #define HCR_VI        (1ULL << 7)
596 #define HCR_VSE       (1ULL << 8)
597 #define HCR_FB        (1ULL << 9)
598 #define HCR_BSU_MASK  (3ULL << 10)
599 #define HCR_DC        (1ULL << 12)
600 #define HCR_TWI       (1ULL << 13)
601 #define HCR_TWE       (1ULL << 14)
602 #define HCR_TID0      (1ULL << 15)
603 #define HCR_TID1      (1ULL << 16)
604 #define HCR_TID2      (1ULL << 17)
605 #define HCR_TID3      (1ULL << 18)
606 #define HCR_TSC       (1ULL << 19)
607 #define HCR_TIDCP     (1ULL << 20)
608 #define HCR_TACR      (1ULL << 21)
609 #define HCR_TSW       (1ULL << 22)
610 #define HCR_TPC       (1ULL << 23)
611 #define HCR_TPU       (1ULL << 24)
612 #define HCR_TTLB      (1ULL << 25)
613 #define HCR_TVM       (1ULL << 26)
614 #define HCR_TGE       (1ULL << 27)
615 #define HCR_TDZ       (1ULL << 28)
616 #define HCR_HCD       (1ULL << 29)
617 #define HCR_TRVM      (1ULL << 30)
618 #define HCR_RW        (1ULL << 31)
619 #define HCR_CD        (1ULL << 32)
620 #define HCR_ID        (1ULL << 33)
621 #define HCR_MASK      ((1ULL << 34) - 1)
622 
623 #define SCR_NS                (1U << 0)
624 #define SCR_IRQ               (1U << 1)
625 #define SCR_FIQ               (1U << 2)
626 #define SCR_EA                (1U << 3)
627 #define SCR_FW                (1U << 4)
628 #define SCR_AW                (1U << 5)
629 #define SCR_NET               (1U << 6)
630 #define SCR_SMD               (1U << 7)
631 #define SCR_HCE               (1U << 8)
632 #define SCR_SIF               (1U << 9)
633 #define SCR_RW                (1U << 10)
634 #define SCR_ST                (1U << 11)
635 #define SCR_TWI               (1U << 12)
636 #define SCR_TWE               (1U << 13)
637 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
638 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
639 
640 /* Return the current FPSCR value.  */
641 uint32_t vfp_get_fpscr(CPUARMState *env);
642 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
643 
644 /* For A64 the FPSCR is split into two logically distinct registers,
645  * FPCR and FPSR. However since they still use non-overlapping bits
646  * we store the underlying state in fpscr and just mask on read/write.
647  */
648 #define FPSR_MASK 0xf800009f
649 #define FPCR_MASK 0x07f79f00
vfp_get_fpsr(CPUARMState * env)650 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
651 {
652     return vfp_get_fpscr(env) & FPSR_MASK;
653 }
654 
vfp_set_fpsr(CPUARMState * env,uint32_t val)655 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
656 {
657     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
658     vfp_set_fpscr(env, new_fpscr);
659 }
660 
vfp_get_fpcr(CPUARMState * env)661 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
662 {
663     return vfp_get_fpscr(env) & FPCR_MASK;
664 }
665 
vfp_set_fpcr(CPUARMState * env,uint32_t val)666 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
667 {
668     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
669     vfp_set_fpscr(env, new_fpscr);
670 }
671 
672 enum arm_cpu_mode {
673   ARM_CPU_MODE_USR = 0x10,
674   ARM_CPU_MODE_FIQ = 0x11,
675   ARM_CPU_MODE_IRQ = 0x12,
676   ARM_CPU_MODE_SVC = 0x13,
677   ARM_CPU_MODE_MON = 0x16,
678   ARM_CPU_MODE_ABT = 0x17,
679   ARM_CPU_MODE_HYP = 0x1a,
680   ARM_CPU_MODE_UND = 0x1b,
681   ARM_CPU_MODE_SYS = 0x1f
682 };
683 
684 /* VFP system registers.  */
685 #define ARM_VFP_FPSID   0
686 #define ARM_VFP_FPSCR   1
687 #define ARM_VFP_MVFR2   5
688 #define ARM_VFP_MVFR1   6
689 #define ARM_VFP_MVFR0   7
690 #define ARM_VFP_FPEXC   8
691 #define ARM_VFP_FPINST  9
692 #define ARM_VFP_FPINST2 10
693 
694 /* iwMMXt coprocessor control registers.  */
695 #define ARM_IWMMXT_wCID		0
696 #define ARM_IWMMXT_wCon		1
697 #define ARM_IWMMXT_wCSSF	2
698 #define ARM_IWMMXT_wCASF	3
699 #define ARM_IWMMXT_wCGR0	8
700 #define ARM_IWMMXT_wCGR1	9
701 #define ARM_IWMMXT_wCGR2	10
702 #define ARM_IWMMXT_wCGR3	11
703 
704 /* If adding a feature bit which corresponds to a Linux ELF
705  * HWCAP bit, remember to update the feature-bit-to-hwcap
706  * mapping in linux-user/elfload.c:get_elf_hwcap().
707  */
708 enum arm_features {
709     ARM_FEATURE_VFP,
710     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
711     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
712     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
713     ARM_FEATURE_V6,
714     ARM_FEATURE_V6K,
715     ARM_FEATURE_V7,
716     ARM_FEATURE_THUMB2,
717     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
718     ARM_FEATURE_VFP3,
719     ARM_FEATURE_VFP_FP16,
720     ARM_FEATURE_NEON,
721     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
722     ARM_FEATURE_M, /* Microcontroller profile.  */
723     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
724     ARM_FEATURE_THUMB2EE,
725     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
726     ARM_FEATURE_V4T,
727     ARM_FEATURE_V5,
728     ARM_FEATURE_STRONGARM,
729     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
730     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
731     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
732     ARM_FEATURE_GENERIC_TIMER,
733     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
734     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
735     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
736     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
737     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
738     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
739     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
740     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
741     ARM_FEATURE_V8,
742     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
743     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
744     ARM_FEATURE_CBAR, /* has cp15 CBAR */
745     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
746     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
747     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
748     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
749     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
750     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
751     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
752 };
753 
arm_feature(CPUARMState * env,int feature)754 static inline int arm_feature(CPUARMState *env, int feature)
755 {
756     return (env->features & (1ULL << feature)) != 0;
757 }
758 
759 #if !defined(CONFIG_USER_ONLY)
760 /* Return true if exception levels below EL3 are in secure state,
761  * or would be following an exception return to that level.
762  * Unlike arm_is_secure() (which is always a question about the
763  * _current_ state of the CPU) this doesn't care about the current
764  * EL or mode.
765  */
arm_is_secure_below_el3(CPUARMState * env)766 static inline bool arm_is_secure_below_el3(CPUARMState *env)
767 {
768     if (arm_feature(env, ARM_FEATURE_EL3)) {
769         return !(env->cp15.scr_el3 & SCR_NS);
770     } else {
771         /* If EL2 is not supported then the secure state is implementation
772          * defined, in which case QEMU defaults to non-secure.
773          */
774         return false;
775     }
776 }
777 
778 /* Return true if the processor is in secure state */
arm_is_secure(CPUARMState * env)779 static inline bool arm_is_secure(CPUARMState *env)
780 {
781     if (arm_feature(env, ARM_FEATURE_EL3)) {
782         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
783             /* CPU currently in AArch64 state and EL3 */
784             return true;
785         } else if (!is_a64(env) &&
786                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
787             /* CPU currently in AArch32 state and monitor mode */
788             return true;
789         }
790     }
791     return arm_is_secure_below_el3(env);
792 }
793 
794 #else
arm_is_secure_below_el3(CPUARMState * env)795 static inline bool arm_is_secure_below_el3(CPUARMState *env)
796 {
797     return false;
798 }
799 
arm_is_secure(CPUARMState * env)800 static inline bool arm_is_secure(CPUARMState *env)
801 {
802     return false;
803 }
804 #endif
805 
806 /* Return true if the specified exception level is running in AArch64 state. */
arm_el_is_aa64(CPUARMState * env,int el)807 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
808 {
809     /* We don't currently support EL2, and this isn't valid for EL0
810      * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
811      * then the state of EL0 isn't well defined.)
812      */
813     assert(el == 1 || el == 3);
814 
815     /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
816      * is a QEMU-imposed simplification which we may wish to change later.
817      * If we in future support EL2 and/or EL3, then the state of lower
818      * exception levels is controlled by the HCR.RW and SCR.RW bits.
819      */
820     return arm_feature(env, ARM_FEATURE_AARCH64);
821 }
822 
823 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
824 unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx);
825 
826 /* Interface between CPU and Interrupt controller.  */
827 void armv7m_nvic_set_pending(void *opaque, int irq);
828 int armv7m_nvic_acknowledge_irq(void *opaque);
829 void armv7m_nvic_complete_irq(void *opaque, int irq);
830 
831 /* Interface for defining coprocessor registers.
832  * Registers are defined in tables of arm_cp_reginfo structs
833  * which are passed to define_arm_cp_regs().
834  */
835 
836 /* When looking up a coprocessor register we look for it
837  * via an integer which encodes all of:
838  *  coprocessor number
839  *  Crn, Crm, opc1, opc2 fields
840  *  32 or 64 bit register (ie is it accessed via MRC/MCR
841  *    or via MRRC/MCRR?)
842  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
843  * (In this case crn and opc2 should be zero.)
844  * For AArch64, there is no 32/64 bit size distinction;
845  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
846  * and 4 bit CRn and CRm. The encoding patterns are chosen
847  * to be easy to convert to and from the KVM encodings, and also
848  * so that the hashtable can contain both AArch32 and AArch64
849  * registers (to allow for interprocessing where we might run
850  * 32 bit code on a 64 bit core).
851  */
852 /* This bit is private to our hashtable cpreg; in KVM register
853  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
854  * in the upper bits of the 64 bit ID.
855  */
856 #define CP_REG_AA64_SHIFT 28
857 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
858 
859 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
860     (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
861      ((crm) << 7) | ((opc1) << 3) | (opc2))
862 
863 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
864     (CP_REG_AA64_MASK |                                 \
865      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
866      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
867      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
868      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
869      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
870      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
871 
872 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
873  * version used as a key for the coprocessor register hashtable
874  */
kvm_to_cpreg_id(uint64_t kvmid)875 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
876 {
877     uint32_t cpregid = kvmid;
878     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
879         cpregid |= CP_REG_AA64_MASK;
880     } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
881         cpregid |= (1 << 15);
882     }
883     return cpregid;
884 }
885 
886 /* Convert a truncated 32 bit hashtable key into the full
887  * 64 bit KVM register ID.
888  */
cpreg_to_kvm_id(uint32_t cpregid)889 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
890 {
891     uint64_t kvmid;
892 
893     if (cpregid & CP_REG_AA64_MASK) {
894         kvmid = cpregid & ~CP_REG_AA64_MASK;
895         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
896     } else {
897         kvmid = cpregid & ~(1 << 15);
898         if (cpregid & (1 << 15)) {
899             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
900         } else {
901             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
902         }
903     }
904     return kvmid;
905 }
906 
907 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
908  * special-behaviour cp reg and bits [15..8] indicate what behaviour
909  * it has. Otherwise it is a simple cp reg, where CONST indicates that
910  * TCG can assume the value to be constant (ie load at translate time)
911  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
912  * indicates that the TB should not be ended after a write to this register
913  * (the default is that the TB ends after cp writes). OVERRIDE permits
914  * a register definition to override a previous definition for the
915  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
916  * old must have the OVERRIDE bit set.
917  * NO_MIGRATE indicates that this register should be ignored for migration;
918  * (eg because any state is accessed via some other coprocessor register).
919  * IO indicates that this register does I/O and therefore its accesses
920  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
921  * registers which implement clocks or timers require this.
922  */
923 #define ARM_CP_SPECIAL 1
924 #define ARM_CP_CONST 2
925 #define ARM_CP_64BIT 4
926 #define ARM_CP_SUPPRESS_TB_END 8
927 #define ARM_CP_OVERRIDE 16
928 #define ARM_CP_NO_MIGRATE 32
929 #define ARM_CP_IO 64
930 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
931 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
932 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
933 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
934 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
935 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
936 /* Used only as a terminator for ARMCPRegInfo lists */
937 #define ARM_CP_SENTINEL 0xffff
938 /* Mask of only the flag bits in a type field */
939 #define ARM_CP_FLAG_MASK 0x7f
940 
941 /* Valid values for ARMCPRegInfo state field, indicating which of
942  * the AArch32 and AArch64 execution states this register is visible in.
943  * If the reginfo doesn't explicitly specify then it is AArch32 only.
944  * If the reginfo is declared to be visible in both states then a second
945  * reginfo is synthesised for the AArch32 view of the AArch64 register,
946  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
947  * Note that we rely on the values of these enums as we iterate through
948  * the various states in some places.
949  */
950 enum {
951     ARM_CP_STATE_AA32 = 0,
952     ARM_CP_STATE_AA64 = 1,
953     ARM_CP_STATE_BOTH = 2,
954 };
955 
956 /* Return true if cptype is a valid type field. This is used to try to
957  * catch errors where the sentinel has been accidentally left off the end
958  * of a list of registers.
959  */
cptype_valid(int cptype)960 static inline bool cptype_valid(int cptype)
961 {
962     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
963         || ((cptype & ARM_CP_SPECIAL) &&
964             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
965 }
966 
967 /* Access rights:
968  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
969  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
970  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
971  * (ie any of the privileged modes in Secure state, or Monitor mode).
972  * If a register is accessible in one privilege level it's always accessible
973  * in higher privilege levels too. Since "Secure PL1" also follows this rule
974  * (ie anything visible in PL2 is visible in S-PL1, some things are only
975  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
976  * terminology a little and call this PL3.
977  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
978  * with the ELx exception levels.
979  *
980  * If access permissions for a register are more complex than can be
981  * described with these bits, then use a laxer set of restrictions, and
982  * do the more restrictive/complex check inside a helper function.
983  */
984 #define PL3_R 0x80
985 #define PL3_W 0x40
986 #define PL2_R (0x20 | PL3_R)
987 #define PL2_W (0x10 | PL3_W)
988 #define PL1_R (0x08 | PL2_R)
989 #define PL1_W (0x04 | PL2_W)
990 #define PL0_R (0x02 | PL1_R)
991 #define PL0_W (0x01 | PL1_W)
992 
993 #define PL3_RW (PL3_R | PL3_W)
994 #define PL2_RW (PL2_R | PL2_W)
995 #define PL1_RW (PL1_R | PL1_W)
996 #define PL0_RW (PL0_R | PL0_W)
997 
998 /* Return the current Exception Level (as per ARMv8; note that this differs
999  * from the ARMv7 Privilege Level).
1000  */
arm_current_el(CPUARMState * env)1001 static inline int arm_current_el(CPUARMState *env)
1002 {
1003     if (is_a64(env)) {
1004         return extract32(env->pstate, 2, 2);
1005     }
1006 
1007     switch (env->uncached_cpsr & 0x1f) {
1008     case ARM_CPU_MODE_USR:
1009         return 0;
1010     case ARM_CPU_MODE_HYP:
1011         return 2;
1012     case ARM_CPU_MODE_MON:
1013         return 3;
1014     default:
1015         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1016             /* If EL3 is 32-bit then all secure privileged modes run in
1017              * EL3
1018              */
1019             return 3;
1020         }
1021 
1022         return 1;
1023     }
1024 }
1025 
1026 typedef struct ARMCPRegInfo ARMCPRegInfo;
1027 
1028 typedef enum CPAccessResult {
1029     /* Access is permitted */
1030     CP_ACCESS_OK = 0,
1031     /* Access fails due to a configurable trap or enable which would
1032      * result in a categorized exception syndrome giving information about
1033      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1034      * 0xc or 0x18).
1035      */
1036     CP_ACCESS_TRAP = 1,
1037     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1038      * Note that this is not a catch-all case -- the set of cases which may
1039      * result in this failure is specifically defined by the architecture.
1040      */
1041     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1042 } CPAccessResult;
1043 
1044 /* Access functions for coprocessor registers. These cannot fail and
1045  * may not raise exceptions.
1046  */
1047 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1048 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1049                        uint64_t value);
1050 /* Access permission check functions for coprocessor registers. */
1051 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1052 /* Hook function for register reset */
1053 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1054 
1055 #define CP_ANY 0xff
1056 
1057 /* Definition of an ARM coprocessor register */
1058 struct ARMCPRegInfo {
1059     /* Name of register (useful mainly for debugging, need not be unique) */
1060     const char *name;
1061     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1062      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1063      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1064      * will be decoded to this register. The register read and write
1065      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1066      * used by the program, so it is possible to register a wildcard and
1067      * then behave differently on read/write if necessary.
1068      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1069      * must both be zero.
1070      * For AArch64-visible registers, opc0 is also used.
1071      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1072      * way to distinguish (for KVM's benefit) guest-visible system registers
1073      * from demuxed ones provided to preserve the "no side effects on
1074      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1075      * visible (to match KVM's encoding); cp==0 will be converted to
1076      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1077      */
1078     uint8_t cp;
1079     uint8_t crn;
1080     uint8_t crm;
1081     uint8_t opc0;
1082     uint8_t opc1;
1083     uint8_t opc2;
1084     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1085     int state;
1086     /* Register type: ARM_CP_* bits/values */
1087     int type;
1088     /* Access rights: PL*_[RW] */
1089     int access;
1090     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1091      * this register was defined: can be used to hand data through to the
1092      * register read/write functions, since they are passed the ARMCPRegInfo*.
1093      */
1094     void *opaque;
1095     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1096      * fieldoffset is non-zero, the reset value of the register.
1097      */
1098     uint64_t resetvalue;
1099     /* Offset of the field in CPUARMState for this register. This is not
1100      * needed if either:
1101      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1102      *  2. both readfn and writefn are specified
1103      */
1104     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1105     /* Function for making any access checks for this register in addition to
1106      * those specified by the 'access' permissions bits. If NULL, no extra
1107      * checks required. The access check is performed at runtime, not at
1108      * translate time.
1109      */
1110     CPAccessFn *accessfn;
1111     /* Function for handling reads of this register. If NULL, then reads
1112      * will be done by loading from the offset into CPUARMState specified
1113      * by fieldoffset.
1114      */
1115     CPReadFn *readfn;
1116     /* Function for handling writes of this register. If NULL, then writes
1117      * will be done by writing to the offset into CPUARMState specified
1118      * by fieldoffset.
1119      */
1120     CPWriteFn *writefn;
1121     /* Function for doing a "raw" read; used when we need to copy
1122      * coprocessor state to the kernel for KVM or out for
1123      * migration. This only needs to be provided if there is also a
1124      * readfn and it has side effects (for instance clear-on-read bits).
1125      */
1126     CPReadFn *raw_readfn;
1127     /* Function for doing a "raw" write; used when we need to copy KVM
1128      * kernel coprocessor state into userspace, or for inbound
1129      * migration. This only needs to be provided if there is also a
1130      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1131      * or similar behaviour.
1132      */
1133     CPWriteFn *raw_writefn;
1134     /* Function for resetting the register. If NULL, then reset will be done
1135      * by writing resetvalue to the field specified in fieldoffset. If
1136      * fieldoffset is 0 then no reset will be done.
1137      */
1138     CPResetFn *resetfn;
1139 };
1140 
1141 /* Macros which are lvalues for the field in CPUARMState for the
1142  * ARMCPRegInfo *ri.
1143  */
1144 #define CPREG_FIELD32(env, ri) \
1145     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1146 #define CPREG_FIELD64(env, ri) \
1147     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1148 
1149 #define REGINFO_SENTINEL { NULL, 0,0,0,0,0,0, 0, ARM_CP_SENTINEL, 0, NULL, 0,0,0,0,0,0,0,0, }
1150 
1151 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1152                                     const ARMCPRegInfo *regs, void *opaque);
1153 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1154                                        const ARMCPRegInfo *regs, void *opaque);
define_arm_cp_regs(ARMCPU * cpu,const ARMCPRegInfo * regs)1155 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1156 {
1157     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1158 }
define_one_arm_cp_reg(ARMCPU * cpu,const ARMCPRegInfo * regs)1159 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1160 {
1161     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1162 }
1163 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1164 
1165 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1166 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1167                          uint64_t value);
1168 /* CPReadFn that can be used for read-as-zero behaviour */
1169 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1170 
1171 /* CPResetFn that does nothing, for use if no reset is required even
1172  * if fieldoffset is non zero.
1173  */
1174 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1175 
1176 /* Return true if this reginfo struct's field in the cpu state struct
1177  * is 64 bits wide.
1178  */
cpreg_field_is_64bit(const ARMCPRegInfo * ri)1179 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1180 {
1181     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1182 }
1183 
cp_access_ok(int current_el,const ARMCPRegInfo * ri,int isread)1184 static inline bool cp_access_ok(int current_el,
1185                                 const ARMCPRegInfo *ri, int isread)
1186 {
1187     return (ri->access >> ((current_el * 2) + isread)) & 1;
1188 }
1189 
1190 /**
1191  * write_list_to_cpustate
1192  * @cpu: ARMCPU
1193  *
1194  * For each register listed in the ARMCPU cpreg_indexes list, write
1195  * its value from the cpreg_values list into the ARMCPUState structure.
1196  * This updates TCG's working data structures from KVM data or
1197  * from incoming migration state.
1198  *
1199  * Returns: true if all register values were updated correctly,
1200  * false if some register was unknown or could not be written.
1201  * Note that we do not stop early on failure -- we will attempt
1202  * writing all registers in the list.
1203  */
1204 bool write_list_to_cpustate(ARMCPU *cpu);
1205 
1206 /**
1207  * write_cpustate_to_list:
1208  * @cpu: ARMCPU
1209  *
1210  * For each register listed in the ARMCPU cpreg_indexes list, write
1211  * its value from the ARMCPUState structure into the cpreg_values list.
1212  * This is used to copy info from TCG's working data structures into
1213  * KVM or for outbound migration.
1214  *
1215  * Returns: true if all register values were read correctly,
1216  * false if some register was unknown or could not be read.
1217  * Note that we do not stop early on failure -- we will attempt
1218  * reading all registers in the list.
1219  */
1220 bool write_cpustate_to_list(ARMCPU *cpu);
1221 
1222 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1223    Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1224    conventional cores (ie. Application or Realtime profile).  */
1225 
1226 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1227 
1228 #define ARM_CPUID_TI915T      0x54029152
1229 #define ARM_CPUID_TI925T      0x54029252
1230 
1231 #if defined(CONFIG_USER_ONLY)
1232 #define TARGET_PAGE_BITS 12
1233 #else
1234 /* The ARM MMU allows 1k pages.  */
1235 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1236    architecture revisions.  Maybe a configure option to disable them.  */
1237 #define TARGET_PAGE_BITS 10
1238 #endif
1239 
1240 #if defined(TARGET_AARCH64)
1241 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1242 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1243 #else
1244 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1245 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1246 #endif
1247 
arm_excp_unmasked(CPUState * cs,unsigned int excp_idx)1248 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx)
1249 {
1250     CPUARMState *env = cs->env_ptr;
1251     unsigned int cur_el = arm_current_el(env);
1252     unsigned int target_el = arm_excp_target_el(cs, excp_idx);
1253     /* FIXME: Use actual secure state.  */
1254     bool secure = false;
1255     /* If in EL1/0, Physical IRQ routing to EL2 only happens from NS state.  */
1256     bool irq_can_hyp = !secure && cur_el < 2 && target_el == 2;
1257 
1258     /* Don't take exceptions if they target a lower EL.  */
1259     if (cur_el > target_el) {
1260         return false;
1261     }
1262 
1263     switch (excp_idx) {
1264     case EXCP_FIQ:
1265         if (irq_can_hyp && (env->cp15.hcr_el2 & HCR_FMO)) {
1266             return true;
1267         }
1268         return !(env->daif & PSTATE_F);
1269     case EXCP_IRQ:
1270         if (irq_can_hyp && (env->cp15.hcr_el2 & HCR_IMO)) {
1271             return true;
1272         }
1273         return !(env->daif & PSTATE_I);
1274     case EXCP_VFIQ:
1275         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1276             /* VFIQs are only taken when hypervized and non-secure.  */
1277             return false;
1278         }
1279         return !(env->daif & PSTATE_F);
1280     case EXCP_VIRQ:
1281         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1282             /* VIRQs are only taken when hypervized and non-secure.  */
1283             return false;
1284         }
1285         return !(env->daif & PSTATE_I);
1286     default:
1287         g_assert_not_reached();
1288         return false;
1289     }
1290 }
1291 
cpu_init(struct uc_struct * uc,const char * cpu_model)1292 static inline CPUARMState *cpu_init(struct uc_struct *uc, const char *cpu_model)
1293 {
1294     ARMCPU *cpu = cpu_arm_init(uc, cpu_model);
1295     if (cpu) {
1296         return &cpu->env;
1297     }
1298     return NULL;
1299 }
1300 
1301 #ifdef TARGET_ARM
1302 #define cpu_exec cpu_arm_exec
1303 #define cpu_gen_code cpu_arm_gen_code
1304 #define cpu_signal_handler cpu_arm_signal_handler
1305 #define cpu_list arm_cpu_list
1306 #endif
1307 
1308 /* MMU modes definitions */
1309 #define MMU_MODE0_SUFFIX _user
1310 #define MMU_MODE1_SUFFIX _kernel
1311 #define MMU_USER_IDX 0
cpu_mmu_index(CPUARMState * env)1312 static inline int cpu_mmu_index (CPUARMState *env)
1313 {
1314     return arm_current_el(env);
1315 }
1316 
1317 /* Return the Exception Level targeted by debug exceptions;
1318  * currently always EL1 since we don't implement EL2 or EL3.
1319  */
arm_debug_target_el(CPUARMState * env)1320 static inline int arm_debug_target_el(CPUARMState *env)
1321 {
1322     return 1;
1323 }
1324 
aa64_generate_debug_exceptions(CPUARMState * env)1325 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1326 {
1327     if (arm_current_el(env) == arm_debug_target_el(env)) {
1328         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1329             || (env->daif & PSTATE_D)) {
1330             return false;
1331         }
1332     }
1333     return true;
1334 }
1335 
aa32_generate_debug_exceptions(CPUARMState * env)1336 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1337 {
1338     if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
1339         return aa64_generate_debug_exceptions(env);
1340     }
1341     return arm_current_el(env) != 2;
1342 }
1343 
1344 /* Return true if debugging exceptions are currently enabled.
1345  * This corresponds to what in ARM ARM pseudocode would be
1346  *    if UsingAArch32() then
1347  *        return AArch32.GenerateDebugExceptions()
1348  *    else
1349  *        return AArch64.GenerateDebugExceptions()
1350  * We choose to push the if() down into this function for clarity,
1351  * since the pseudocode has it at all callsites except for the one in
1352  * CheckSoftwareStep(), where it is elided because both branches would
1353  * always return the same value.
1354  *
1355  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1356  * don't yet implement those exception levels or their associated trap bits.
1357  */
arm_generate_debug_exceptions(CPUARMState * env)1358 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1359 {
1360     if (env->aarch64) {
1361         return aa64_generate_debug_exceptions(env);
1362     } else {
1363         return aa32_generate_debug_exceptions(env);
1364     }
1365 }
1366 
1367 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1368  * implicitly means this always returns false in pre-v8 CPUs.)
1369  */
arm_singlestep_active(CPUARMState * env)1370 static inline bool arm_singlestep_active(CPUARMState *env)
1371 {
1372     return extract32(env->cp15.mdscr_el1, 0, 1)
1373         && arm_el_is_aa64(env, arm_debug_target_el(env))
1374         && arm_generate_debug_exceptions(env);
1375 }
1376 
1377 #include "exec/cpu-all.h"
1378 
1379 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1380  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1381  */
1382 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1383 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1384 
1385 /* Bit usage when in AArch32 state: */
1386 #define ARM_TBFLAG_THUMB_SHIFT      0
1387 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
1388 #define ARM_TBFLAG_VECLEN_SHIFT     1
1389 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1390 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
1391 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1392 #define ARM_TBFLAG_PRIV_SHIFT       6
1393 #define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
1394 #define ARM_TBFLAG_VFPEN_SHIFT      7
1395 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
1396 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
1397 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1398 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1399 #define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1400 #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1401 #define ARM_TBFLAG_CPACR_FPEN_MASK  (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1402 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
1403 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1404 #define ARM_TBFLAG_PSTATE_SS_SHIFT 19
1405 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1406 /* We store the bottom two bits of the CPAR as TB flags and handle
1407  * checks on the other bits at runtime
1408  */
1409 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 20
1410 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1411 
1412 /* Bit usage when in AArch64 state */
1413 #define ARM_TBFLAG_AA64_EL_SHIFT    0
1414 #define ARM_TBFLAG_AA64_EL_MASK     (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1415 #define ARM_TBFLAG_AA64_FPEN_SHIFT  2
1416 #define ARM_TBFLAG_AA64_FPEN_MASK   (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1417 #define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
1418 #define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1419 #define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
1420 #define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1421 
1422 /* some convenience accessor macros */
1423 #define ARM_TBFLAG_AARCH64_STATE(F) \
1424     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1425 #define ARM_TBFLAG_THUMB(F) \
1426     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1427 #define ARM_TBFLAG_VECLEN(F) \
1428     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1429 #define ARM_TBFLAG_VECSTRIDE(F) \
1430     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1431 #define ARM_TBFLAG_PRIV(F) \
1432     (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1433 #define ARM_TBFLAG_VFPEN(F) \
1434     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1435 #define ARM_TBFLAG_CONDEXEC(F) \
1436     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1437 #define ARM_TBFLAG_BSWAP_CODE(F) \
1438     (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1439 #define ARM_TBFLAG_CPACR_FPEN(F) \
1440     (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1441 #define ARM_TBFLAG_SS_ACTIVE(F) \
1442     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1443 #define ARM_TBFLAG_PSTATE_SS(F) \
1444     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1445 #define ARM_TBFLAG_XSCALE_CPAR(F) \
1446     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1447 #define ARM_TBFLAG_AA64_EL(F) \
1448     (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1449 #define ARM_TBFLAG_AA64_FPEN(F) \
1450     (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1451 #define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
1452     (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1453 #define ARM_TBFLAG_AA64_PSTATE_SS(F) \
1454     (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1455 
cpu_get_tb_cpu_state(CPUARMState * env,target_ulong * pc,target_ulong * cs_base,int * flags)1456 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1457                                         target_ulong *cs_base, int *flags)
1458 {
1459     int fpen;
1460 
1461     if (arm_feature(env, ARM_FEATURE_V6)) {
1462         fpen = extract32(env->cp15.c1_coproc, 20, 2);
1463     } else {
1464         /* CPACR doesn't exist before v6, so VFP is always accessible */
1465         fpen = 3;
1466     }
1467 
1468     if (is_a64(env)) {
1469         *pc = env->pc;
1470         *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1471             | (arm_current_el(env) << ARM_TBFLAG_AA64_EL_SHIFT);
1472         if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1473             *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1474         }
1475         /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1476          * states defined in the ARM ARM for software singlestep:
1477          *  SS_ACTIVE   PSTATE.SS   State
1478          *     0            x       Inactive (the TB flag for SS is always 0)
1479          *     1            0       Active-pending
1480          *     1            1       Active-not-pending
1481          */
1482         if (arm_singlestep_active(env)) {
1483             *flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
1484             if (env->pstate & PSTATE_SS) {
1485                 *flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
1486             }
1487         }
1488     } else {
1489         int privmode;
1490         *pc = env->regs[15];
1491         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1492             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1493             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1494             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1495             | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1496         if (arm_feature(env, ARM_FEATURE_M)) {
1497             privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1498         } else {
1499             privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1500         }
1501         if (privmode) {
1502             *flags |= ARM_TBFLAG_PRIV_MASK;
1503         }
1504         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1505             || arm_el_is_aa64(env, 1)) {
1506             *flags |= ARM_TBFLAG_VFPEN_MASK;
1507         }
1508         if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1509             *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1510         }
1511         /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1512          * states defined in the ARM ARM for software singlestep:
1513          *  SS_ACTIVE   PSTATE.SS   State
1514          *     0            x       Inactive (the TB flag for SS is always 0)
1515          *     1            0       Active-pending
1516          *     1            1       Active-not-pending
1517          */
1518         if (arm_singlestep_active(env)) {
1519             *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1520             if (env->uncached_cpsr & PSTATE_SS) {
1521                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1522             }
1523         }
1524         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1525                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
1526     }
1527 
1528     *cs_base = 0;
1529 }
1530 
1531 #include "exec/exec-all.h"
1532 
cpu_pc_from_tb(CPUARMState * env,TranslationBlock * tb)1533 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1534 {
1535     if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1536         env->pc = tb->pc;
1537     } else {
1538         env->regs[15] = tb->pc;
1539     }
1540 }
1541 
1542 enum {
1543     QEMU_PSCI_CONDUIT_DISABLED = 0,
1544     QEMU_PSCI_CONDUIT_SMC = 1,
1545     QEMU_PSCI_CONDUIT_HVC = 2,
1546 };
1547 
1548 #endif
1549