1 // Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
2 // Licensed under GPLv2+
3 // Refer to the license.txt file included.
4 
5 #include "core/core_timing_util.h"
6 
7 #include <cinttypes>
8 #include <limits>
9 #include "common/logging/log.h"
10 #include "common/uint128.h"
11 #include "core/hardware_properties.h"
12 
13 namespace Core::Timing {
14 
15 constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / Hardware::BASE_CLOCK_RATE;
16 
msToCycles(std::chrono::milliseconds ms)17 s64 msToCycles(std::chrono::milliseconds ms) {
18     if (static_cast<u64>(ms.count() / 1000) > MAX_VALUE_TO_MULTIPLY) {
19         LOG_ERROR(Core_Timing, "Integer overflow, use max value");
20         return std::numeric_limits<s64>::max();
21     }
22     if (static_cast<u64>(ms.count()) > MAX_VALUE_TO_MULTIPLY) {
23         LOG_DEBUG(Core_Timing, "Time very big, do rounding");
24         return Hardware::BASE_CLOCK_RATE * (ms.count() / 1000);
25     }
26     return (Hardware::BASE_CLOCK_RATE * ms.count()) / 1000;
27 }
28 
usToCycles(std::chrono::microseconds us)29 s64 usToCycles(std::chrono::microseconds us) {
30     if (static_cast<u64>(us.count() / 1000000) > MAX_VALUE_TO_MULTIPLY) {
31         LOG_ERROR(Core_Timing, "Integer overflow, use max value");
32         return std::numeric_limits<s64>::max();
33     }
34     if (static_cast<u64>(us.count()) > MAX_VALUE_TO_MULTIPLY) {
35         LOG_DEBUG(Core_Timing, "Time very big, do rounding");
36         return Hardware::BASE_CLOCK_RATE * (us.count() / 1000000);
37     }
38     return (Hardware::BASE_CLOCK_RATE * us.count()) / 1000000;
39 }
40 
nsToCycles(std::chrono::nanoseconds ns)41 s64 nsToCycles(std::chrono::nanoseconds ns) {
42     const u128 temporal = Common::Multiply64Into128(ns.count(), Hardware::BASE_CLOCK_RATE);
43     return Common::Divide128On32(temporal, static_cast<u32>(1000000000)).first;
44 }
45 
msToClockCycles(std::chrono::milliseconds ns)46 u64 msToClockCycles(std::chrono::milliseconds ns) {
47     const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
48     return Common::Divide128On32(temp, 1000).first;
49 }
50 
usToClockCycles(std::chrono::microseconds ns)51 u64 usToClockCycles(std::chrono::microseconds ns) {
52     const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
53     return Common::Divide128On32(temp, 1000000).first;
54 }
55 
nsToClockCycles(std::chrono::nanoseconds ns)56 u64 nsToClockCycles(std::chrono::nanoseconds ns) {
57     const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
58     return Common::Divide128On32(temp, 1000000000).first;
59 }
60 
CpuCyclesToClockCycles(u64 ticks)61 u64 CpuCyclesToClockCycles(u64 ticks) {
62     const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
63     return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
64 }
65 
CyclesToMs(s64 cycles)66 std::chrono::milliseconds CyclesToMs(s64 cycles) {
67     const u128 temporal = Common::Multiply64Into128(cycles, 1000);
68     u64 ms = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
69     return std::chrono::milliseconds(ms);
70 }
71 
CyclesToNs(s64 cycles)72 std::chrono::nanoseconds CyclesToNs(s64 cycles) {
73     const u128 temporal = Common::Multiply64Into128(cycles, 1000000000);
74     u64 ns = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
75     return std::chrono::nanoseconds(ns);
76 }
77 
CyclesToUs(s64 cycles)78 std::chrono::microseconds CyclesToUs(s64 cycles) {
79     const u128 temporal = Common::Multiply64Into128(cycles, 1000000);
80     u64 us = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
81     return std::chrono::microseconds(us);
82 }
83 
84 } // namespace Core::Timing
85