1 /*
2 * jdhuff.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains Huffman entropy decoding routines.
9 *
10 * Much of the complexity here has to do with supporting input suspension.
11 * If the data source module demands suspension, we want to be able to back
12 * up to the start of the current MCU.  To do this, we copy state variables
13 * into local working storage, and update them back to the permanent
14 * storage only upon successful completion of an MCU.
15 */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jdhuff.h"		/* Declarations shared with jdphuff.c */
21 
22 
23 /*
24 * Expanded entropy decoder object for Huffman decoding.
25 *
26 * The savable_state subrecord contains fields that change within an MCU,
27 * but must not be updated permanently until we complete the MCU.
28 */
29 
30 typedef struct {
31 	int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
32 } savable_state;
33 
34 /* This macro is to work around compilers with missing or broken
35 * structure assignment.  You'll need to fix this code if you have
36 * such a compiler and you change MAX_COMPS_IN_SCAN.
37 */
38 
39 #ifndef NO_STRUCT_ASSIGN
40 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
41 #else
42 #if MAX_COMPS_IN_SCAN == 4
43 #define ASSIGN_STATE(dest,src)  \
44 	((dest).last_dc_val[0] = (src).last_dc_val[0], \
45 	(dest).last_dc_val[1] = (src).last_dc_val[1], \
46 	(dest).last_dc_val[2] = (src).last_dc_val[2], \
47 	(dest).last_dc_val[3] = (src).last_dc_val[3])
48 #endif
49 #endif
50 
51 
52 typedef struct {
53 	struct jpeg_entropy_decoder pub; /* public fields */
54 
55 	/* These fields are loaded into local variables at start of each MCU.
56 	* In case of suspension, we exit WITHOUT updating them.
57 	*/
58 	bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
59 	savable_state saved;		/* Other state at start of MCU */
60 
61 	/* These fields are NOT loaded into local working state. */
62 	unsigned int restarts_to_go;	/* MCUs left in this restart interval */
63 
64 	/* Pointers to derived tables (these workspaces have image lifespan) */
65 	d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
66 	d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
67 
68 	/* Precalculated info set up by start_pass for use in decode_mcu: */
69 
70 	/* Pointers to derived tables to be used for each block within an MCU */
71 	d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
72 	d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
73 	/* Whether we care about the DC and AC coefficient values for each block */
74 	boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
75 	boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
76 } huff_entropy_decoder;
77 
78 typedef huff_entropy_decoder * huff_entropy_ptr;
79 
80 
81 /*
82 * Initialize for a Huffman-compressed scan.
83 */
84 
85 METHODDEF(void)
start_pass_huff_decoder(j_decompress_ptr cinfo)86 start_pass_huff_decoder (j_decompress_ptr cinfo)
87 {
88 	huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
89 	int ci, blkn, dctbl, actbl;
90 	jpeg_component_info * compptr;
91 
92 	/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
93 	* This ought to be an error condition, but we make it a warning because
94 	* there are some baseline files out there with all zeroes in these bytes.
95 	*/
96 	if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
97 		cinfo->Ah != 0 || cinfo->Al != 0)
98 		WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
99 
100 	for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
101 		compptr = cinfo->cur_comp_info[ci];
102 		dctbl = compptr->dc_tbl_no;
103 		actbl = compptr->ac_tbl_no;
104 		/* Compute derived values for Huffman tables */
105 		/* We may do this more than once for a table, but it's not expensive */
106 		jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
107 			& entropy->dc_derived_tbls[dctbl]);
108 		jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
109 			& entropy->ac_derived_tbls[actbl]);
110 		/* Initialize DC predictions to 0 */
111 		entropy->saved.last_dc_val[ci] = 0;
112 	}
113 
114 	/* Precalculate decoding info for each block in an MCU of this scan */
115 	for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
116 		ci = cinfo->MCU_membership[blkn];
117 		compptr = cinfo->cur_comp_info[ci];
118 		/* Precalculate which table to use for each block */
119 		entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
120 		entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
121 		/* Decide whether we really care about the coefficient values */
122 		if (compptr->component_needed) {
123 			entropy->dc_needed[blkn] = TRUE;
124 			/* we don't need the ACs if producing a 1/8th-size image */
125 			entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
126 		} else {
127 			entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
128 		}
129 	}
130 
131 	/* Initialize bitread state variables */
132 	entropy->bitstate.bits_left = 0;
133 	entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
134 	entropy->pub.insufficient_data = FALSE;
135 
136 	/* Initialize restart counter */
137 	entropy->restarts_to_go = cinfo->restart_interval;
138 }
139 
140 
141 /*
142 * Compute the derived values for a Huffman table.
143 * This routine also performs some validation checks on the table.
144 *
145 * Note this is also used by jdphuff.c.
146 */
147 
148 GLOBAL(void)
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo,boolean isDC,int tblno,d_derived_tbl ** pdtbl)149 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
150 						 d_derived_tbl ** pdtbl)
151 {
152 	JHUFF_TBL *htbl;
153 	d_derived_tbl *dtbl;
154 	int p, i, l, si, numsymbols;
155 	int lookbits, ctr;
156 	char huffsize[257];
157 	unsigned int huffcode[257];
158 	unsigned int code;
159 
160 	/* Note that huffsize[] and huffcode[] are filled in code-length order,
161 	* paralleling the order of the symbols themselves in htbl->huffval[].
162 	*/
163 
164 	/* Find the input Huffman table */
165 	if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
166 		ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
167 	htbl =
168 		isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
169 	if (htbl == NULL)
170 		ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
171 
172 	/* Allocate a workspace if we haven't already done so. */
173 	if (*pdtbl == NULL)
174 		*pdtbl = (d_derived_tbl *)
175 		(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
176 		SIZEOF(d_derived_tbl));
177 	dtbl = *pdtbl;
178 	dtbl->pub = htbl;		/* fill in back link */
179 
180 	/* Figure C.1: make table of Huffman code length for each symbol */
181 
182 	p = 0;
183 	for (l = 1; l <= 16; l++) {
184 		i = (int) htbl->bits[l];
185 		if (i < 0 || p + i > 256)	/* protect against table overrun */
186 			ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
187 		while (i--)
188 			huffsize[p++] = (char) l;
189 	}
190 	huffsize[p] = 0;
191 	numsymbols = p;
192 
193 	/* Figure C.2: generate the codes themselves */
194 	/* We also validate that the counts represent a legal Huffman code tree. */
195 
196 	code = 0;
197 	si = huffsize[0];
198 	p = 0;
199 	while (huffsize[p]) {
200 		while (((int) huffsize[p]) == si) {
201 			huffcode[p++] = code;
202 			code++;
203 		}
204 		/* code is now 1 more than the last code used for codelength si; but
205 		* it must still fit in si bits, since no code is allowed to be all ones.
206 		*/
207 		if (((INT32) code) >= (((INT32) 1) << si))
208 			ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
209 		code <<= 1;
210 		si++;
211 	}
212 
213 	/* Figure F.15: generate decoding tables for bit-sequential decoding */
214 
215 	p = 0;
216 	for (l = 1; l <= 16; l++) {
217 		if (htbl->bits[l]) {
218 			/* valoffset[l] = huffval[] index of 1st symbol of code length l,
219 			* minus the minimum code of length l
220 			*/
221 			dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
222 			p += htbl->bits[l];
223 			dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
224 		} else {
225 			dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
226 		}
227 	}
228 	dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
229 
230 	/* Compute lookahead tables to speed up decoding.
231 	* First we set all the table entries to 0, indicating "too long";
232 	* then we iterate through the Huffman codes that are short enough and
233 	* fill in all the entries that correspond to bit sequences starting
234 	* with that code.
235 	*/
236 
237 	MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
238 
239 	p = 0;
240 	for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
241 		for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
242 			/* l = current code's length, p = its index in huffcode[] & huffval[]. */
243 			/* Generate left-justified code followed by all possible bit sequences */
244 			lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
245 			for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
246 				dtbl->look_nbits[lookbits] = l;
247 				dtbl->look_sym[lookbits] = htbl->huffval[p];
248 				lookbits++;
249 			}
250 		}
251 	}
252 
253 	/* Validate symbols as being reasonable.
254 	* For AC tables, we make no check, but accept all byte values 0..255.
255 	* For DC tables, we require the symbols to be in range 0..15.
256 	* (Tighter bounds could be applied depending on the data depth and mode,
257 	* but this is sufficient to ensure safe decoding.)
258 	*/
259 	if (isDC) {
260 		for (i = 0; i < numsymbols; i++) {
261 			int sym = htbl->huffval[i];
262 			if (sym < 0 || sym > 15)
263 				ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
264 		}
265 	}
266 }
267 
268 
269 /*
270 * Out-of-line code for bit fetching (shared with jdphuff.c).
271 * See jdhuff.h for info about usage.
272 * Note: current values of get_buffer and bits_left are passed as parameters,
273 * but are returned in the corresponding fields of the state struct.
274 *
275 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
276 * of get_buffer to be used.  (On machines with wider words, an even larger
277 * buffer could be used.)  However, on some machines 32-bit shifts are
278 * quite slow and take time proportional to the number of places shifted.
279 * (This is true with most PC compilers, for instance.)  In this case it may
280 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
281 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
282 */
283 
284 #ifdef SLOW_SHIFT_32
285 #define MIN_GET_BITS  15	/* minimum allowable value */
286 #else
287 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
288 #endif
289 
290 
291 GLOBAL(boolean)
jpeg_fill_bit_buffer(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,int nbits)292 jpeg_fill_bit_buffer (bitread_working_state * state,
293 					  register bit_buf_type get_buffer, register int bits_left,
294 					  int nbits)
295 					  /* Load up the bit buffer to a depth of at least nbits */
296 {
297 	/* Copy heavily used state fields into locals (hopefully registers) */
298 	register const JOCTET * next_input_byte = state->next_input_byte;
299 	register size_t bytes_in_buffer = state->bytes_in_buffer;
300 	j_decompress_ptr cinfo = state->cinfo;
301 
302 	/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
303 	/* (It is assumed that no request will be for more than that many bits.) */
304 	/* We fail to do so only if we hit a marker or are forced to suspend. */
305 
306 	if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
307 		while (bits_left < MIN_GET_BITS) {
308 			register int c;
309 
310 			/* Attempt to read a byte */
311 			if (bytes_in_buffer == 0) {
312 				if (! (*cinfo->src->fill_input_buffer) (cinfo))
313 					return FALSE;
314 				next_input_byte = cinfo->src->next_input_byte;
315 				bytes_in_buffer = cinfo->src->bytes_in_buffer;
316 			}
317 			bytes_in_buffer--;
318 			c = GETJOCTET(*next_input_byte++);
319 
320 			/* If it's 0xFF, check and discard stuffed zero byte */
321 			if (c == 0xFF) {
322 				/* Loop here to discard any padding FF's on terminating marker,
323 				* so that we can save a valid unread_marker value.  NOTE: we will
324 				* accept multiple FF's followed by a 0 as meaning a single FF data
325 				* byte.  This data pattern is not valid according to the standard.
326 				*/
327 				do {
328 					if (bytes_in_buffer == 0) {
329 						if (! (*cinfo->src->fill_input_buffer) (cinfo))
330 							return FALSE;
331 						next_input_byte = cinfo->src->next_input_byte;
332 						bytes_in_buffer = cinfo->src->bytes_in_buffer;
333 					}
334 					bytes_in_buffer--;
335 					c = GETJOCTET(*next_input_byte++);
336 				} while (c == 0xFF);
337 
338 				if (c == 0) {
339 					/* Found FF/00, which represents an FF data byte */
340 					c = 0xFF;
341 				} else {
342 					/* Oops, it's actually a marker indicating end of compressed data.
343 					* Save the marker code for later use.
344 					* Fine point: it might appear that we should save the marker into
345 					* bitread working state, not straight into permanent state.  But
346 					* once we have hit a marker, we cannot need to suspend within the
347 					* current MCU, because we will read no more bytes from the data
348 					* source.  So it is OK to update permanent state right away.
349 					*/
350 					cinfo->unread_marker = c;
351 					/* See if we need to insert some fake zero bits. */
352 					goto no_more_bytes;
353 				}
354 			}
355 
356 			/* OK, load c into get_buffer */
357 			get_buffer = (get_buffer << 8) | c;
358 			bits_left += 8;
359 		} /* end while */
360 	} else {
361 no_more_bytes:
362 		/* We get here if we've read the marker that terminates the compressed
363 		* data segment.  There should be enough bits in the buffer register
364 		* to satisfy the request; if so, no problem.
365 		*/
366 		if (nbits > bits_left) {
367 			/* Uh-oh.  Report corrupted data to user and stuff zeroes into
368 			* the data stream, so that we can produce some kind of image.
369 			* We use a nonvolatile flag to ensure that only one warning message
370 			* appears per data segment.
371 			*/
372 			if (! cinfo->entropy->insufficient_data) {
373 				WARNMS(cinfo, JWRN_HIT_MARKER);
374 				cinfo->entropy->insufficient_data = TRUE;
375 			}
376 			/* Fill the buffer with zero bits */
377 			get_buffer <<= MIN_GET_BITS - bits_left;
378 			bits_left = MIN_GET_BITS;
379 		}
380 	}
381 
382 	/* Unload the local registers */
383 	state->next_input_byte = next_input_byte;
384 	state->bytes_in_buffer = bytes_in_buffer;
385 	state->get_buffer = get_buffer;
386 	state->bits_left = bits_left;
387 
388 	return TRUE;
389 }
390 
391 
392 /*
393 * Out-of-line code for Huffman code decoding.
394 * See jdhuff.h for info about usage.
395 */
396 
397 GLOBAL(int)
jpeg_huff_decode(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,d_derived_tbl * htbl,int min_bits)398 jpeg_huff_decode (bitread_working_state * state,
399 				  register bit_buf_type get_buffer, register int bits_left,
400 				  d_derived_tbl * htbl, int min_bits)
401 {
402 	register int l = min_bits;
403 	register INT32 code;
404 
405 	/* HUFF_DECODE has determined that the code is at least min_bits */
406 	/* bits long, so fetch that many bits in one swoop. */
407 
408 	CHECK_BIT_BUFFER(*state, l, return -1);
409 	code = GET_BITS(l);
410 
411 	/* Collect the rest of the Huffman code one bit at a time. */
412 	/* This is per Figure F.16 in the JPEG spec. */
413 
414 	while (code > htbl->maxcode[l]) {
415 		code <<= 1;
416 		CHECK_BIT_BUFFER(*state, 1, return -1);
417 		code |= GET_BITS(1);
418 		l++;
419 	}
420 
421 	/* Unload the local registers */
422 	state->get_buffer = get_buffer;
423 	state->bits_left = bits_left;
424 
425 	/* With garbage input we may reach the sentinel value l = 17. */
426 
427 	if (l > 16) {
428 		WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
429 		return 0;			/* fake a zero as the safest result */
430 	}
431 
432 	return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
433 }
434 
435 
436 /*
437 * Figure F.12: extend sign bit.
438 * On some machines, a shift and add will be faster than a table lookup.
439 */
440 
441 #ifdef AVOID_TABLES
442 
443 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
444 
445 #else
446 
447 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
448 
449 static const int extend_test[16] =   /* entry n is 2**(n-1) */
450 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
451 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
452 
453 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
454 { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
455 ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
456 ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
457 ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
458 
459 #endif /* AVOID_TABLES */
460 
461 
462 /*
463 * Check for a restart marker & resynchronize decoder.
464 * Returns FALSE if must suspend.
465 */
466 
467 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)468 process_restart (j_decompress_ptr cinfo)
469 {
470 	huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
471 	int ci;
472 
473 	/* Throw away any unused bits remaining in bit buffer; */
474 	/* include any full bytes in next_marker's count of discarded bytes */
475 	cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
476 	entropy->bitstate.bits_left = 0;
477 
478 	/* Advance past the RSTn marker */
479 	if (! (*cinfo->marker->read_restart_marker) (cinfo))
480 		return FALSE;
481 
482 	/* Re-initialize DC predictions to 0 */
483 	for (ci = 0; ci < cinfo->comps_in_scan; ci++)
484 		entropy->saved.last_dc_val[ci] = 0;
485 
486 	/* Reset restart counter */
487 	entropy->restarts_to_go = cinfo->restart_interval;
488 
489 	/* Reset out-of-data flag, unless read_restart_marker left us smack up
490 	* against a marker.  In that case we will end up treating the next data
491 	* segment as empty, and we can avoid producing bogus output pixels by
492 	* leaving the flag set.
493 	*/
494 	if (cinfo->unread_marker == 0)
495 		entropy->pub.insufficient_data = FALSE;
496 
497 	return TRUE;
498 }
499 
500 
501 /*
502 * Decode and return one MCU's worth of Huffman-compressed coefficients.
503 * The coefficients are reordered from zigzag order into natural array order,
504 * but are not dequantized.
505 *
506 * The i'th block of the MCU is stored into the block pointed to by
507 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
508 * (Wholesale zeroing is usually a little faster than retail...)
509 *
510 * Returns FALSE if data source requested suspension.  In that case no
511 * changes have been made to permanent state.  (Exception: some output
512 * coefficients may already have been assigned.  This is harmless for
513 * this module, since we'll just re-assign them on the next call.)
514 */
515 
516 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)517 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
518 {
519 	huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
520 	int blkn;
521 	BITREAD_STATE_VARS;
522 	savable_state state;
523 
524 	/* Process restart marker if needed; may have to suspend */
525 	if (cinfo->restart_interval) {
526 		if (entropy->restarts_to_go == 0)
527 			if (! process_restart(cinfo))
528 				return FALSE;
529 	}
530 
531 	/* If we've run out of data, just leave the MCU set to zeroes.
532 	* This way, we return uniform gray for the remainder of the segment.
533 	*/
534 	if (! entropy->pub.insufficient_data) {
535 
536 		/* Load up working state */
537 		BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
538 		ASSIGN_STATE(state, entropy->saved);
539 
540 		/* Outer loop handles each block in the MCU */
541 
542 		for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
543 			JBLOCKROW block = MCU_data[blkn];
544 			d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
545 			d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
546 			register int s, k, r;
547 
548 			/* Decode a single block's worth of coefficients */
549 
550 			/* Section F.2.2.1: decode the DC coefficient difference */
551 			HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
552 			if (s) {
553 				CHECK_BIT_BUFFER(br_state, s, return FALSE);
554 				r = GET_BITS(s);
555 				s = HUFF_EXTEND(r, s);
556 			}
557 
558 			if (entropy->dc_needed[blkn]) {
559 				/* Convert DC difference to actual value, update last_dc_val */
560 				int ci = cinfo->MCU_membership[blkn];
561 				s += state.last_dc_val[ci];
562 				state.last_dc_val[ci] = s;
563 				/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
564 				(*block)[0] = (JCOEF) s;
565 			}
566 
567 			if (entropy->ac_needed[blkn]) {
568 
569 				/* Section F.2.2.2: decode the AC coefficients */
570 				/* Since zeroes are skipped, output area must be cleared beforehand */
571 				for (k = 1; k < DCTSIZE2; k++) {
572 					HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
573 
574 					r = s >> 4;
575 					s &= 15;
576 
577 					if (s) {
578 						k += r;
579 						CHECK_BIT_BUFFER(br_state, s, return FALSE);
580 						r = GET_BITS(s);
581 						s = HUFF_EXTEND(r, s);
582 						/* Output coefficient in natural (dezigzagged) order.
583 						* Note: the extra entries in jpeg_natural_order[] will save us
584 						* if k >= DCTSIZE2, which could happen if the data is corrupted.
585 						*/
586 						(*block)[jpeg_natural_order[k]] = (JCOEF) s;
587 					} else {
588 						if (r != 15)
589 							break;
590 						k += 15;
591 					}
592 				}
593 
594 			} else {
595 
596 				/* Section F.2.2.2: decode the AC coefficients */
597 				/* In this path we just discard the values */
598 				for (k = 1; k < DCTSIZE2; k++) {
599 					HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
600 
601 					r = s >> 4;
602 					s &= 15;
603 
604 					if (s) {
605 						k += r;
606 						CHECK_BIT_BUFFER(br_state, s, return FALSE);
607 						DROP_BITS(s);
608 					} else {
609 						if (r != 15)
610 							break;
611 						k += 15;
612 					}
613 				}
614 
615 			}
616 		}
617 
618 		/* Completed MCU, so update state */
619 		BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
620 		ASSIGN_STATE(entropy->saved, state);
621 	}
622 
623 	/* Account for restart interval (no-op if not using restarts) */
624 	entropy->restarts_to_go--;
625 
626 	return TRUE;
627 }
628 
629 
630 /*
631 * Module initialization routine for Huffman entropy decoding.
632 */
633 
634 GLOBAL(void)
jinit_huff_decoder(j_decompress_ptr cinfo)635 jinit_huff_decoder (j_decompress_ptr cinfo)
636 {
637 	huff_entropy_ptr entropy;
638 	int i;
639 
640 	entropy = (huff_entropy_ptr)
641 		(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
642 		SIZEOF(huff_entropy_decoder));
643 	cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
644 	entropy->pub.start_pass = start_pass_huff_decoder;
645 	entropy->pub.decode_mcu = decode_mcu;
646 
647 	/* Mark tables unallocated */
648 	for (i = 0; i < NUM_HUFF_TBLS; i++) {
649 		entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
650 	}
651 }
652