1 /* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
2 /*
3  * ====================================================
4  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 // pow(x,y) return x**y
13 //
14 //                    n
15 // Method:  Let x =  2   * (1+f)
16 //      1. Compute and return log2(x) in two pieces:
17 //              log2(x) = w1 + w2,
18 //         where w1 has 53-24 = 29 bit trailing zeros.
19 //      2. Perform y*log2(x) = n+y' by simulating muti-precision
20 //         arithmetic, where |y'|<=0.5.
21 //      3. Return x**y = 2**n*exp(y'*log2)
22 //
23 // Special cases:
24 //      1.  (anything) ** 0  is 1
25 //      2.  1 ** (anything)  is 1
26 //      3.  (anything except 1) ** NAN is NAN
27 //      4.  NAN ** (anything except 0) is NAN
28 //      5.  +-(|x| > 1) **  +INF is +INF
29 //      6.  +-(|x| > 1) **  -INF is +0
30 //      7.  +-(|x| < 1) **  +INF is +0
31 //      8.  +-(|x| < 1) **  -INF is +INF
32 //      9.  -1          ** +-INF is 1
33 //      10. +0 ** (+anything except 0, NAN)               is +0
34 //      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
35 //      12. +0 ** (-anything except 0, NAN)               is +INF, raise divbyzero
36 //      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF, raise divbyzero
37 //      14. -0 ** (+odd integer) is -0
38 //      15. -0 ** (-odd integer) is -INF, raise divbyzero
39 //      16. +INF ** (+anything except 0,NAN) is +INF
40 //      17. +INF ** (-anything except 0,NAN) is +0
41 //      18. -INF ** (+odd integer) is -INF
42 //      19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
43 //      20. (anything) ** 1 is (anything)
44 //      21. (anything) ** -1 is 1/(anything)
45 //      22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
46 //      23. (-anything except 0 and inf) ** (non-integer) is NAN
47 //
48 // Accuracy:
49 //      pow(x,y) returns x**y nearly rounded. In particular
50 //                      pow(integer,integer)
51 //      always returns the correct integer provided it is
52 //      representable.
53 //
54 // Constants :
55 // The hexadecimal values are the intended ones for the following
56 // constants. The decimal values may be used, provided that the
57 // compiler will convert from decimal to binary accurately enough
58 // to produce the hexadecimal values shown.
59 //
60 use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word};
61 
62 const BP: [f64; 2] = [1.0, 1.5];
63 const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
64 const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
65 const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
66 const HUGE: f64 = 1.0e300;
67 const TINY: f64 = 1.0e-300;
68 
69 // poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
70 const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
71 const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
72 const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
73 const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
74 const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
75 const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
76 const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
77 const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
78 const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
79 const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
80 const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
81 const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
82 const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
83 const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
84 const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
85 const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
86 const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
87 const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
88 const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
89 const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
90 const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
91 
92 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pow(x: f64, y: f64) -> f6493 pub fn pow(x: f64, y: f64) -> f64 {
94     let t1: f64;
95     let t2: f64;
96 
97     let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
98     let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
99 
100     let mut ix: i32 = (hx & 0x7fffffff) as i32;
101     let iy: i32 = (hy & 0x7fffffff) as i32;
102 
103     /* x**0 = 1, even if x is NaN */
104     if ((iy as u32) | ly) == 0 {
105         return 1.0;
106     }
107 
108     /* 1**y = 1, even if y is NaN */
109     if hx == 0x3ff00000 && lx == 0 {
110         return 1.0;
111     }
112 
113     /* NaN if either arg is NaN */
114     if ix > 0x7ff00000
115         || (ix == 0x7ff00000 && lx != 0)
116         || iy > 0x7ff00000
117         || (iy == 0x7ff00000 && ly != 0)
118     {
119         return x + y;
120     }
121 
122     /* determine if y is an odd int when x < 0
123      * yisint = 0       ... y is not an integer
124      * yisint = 1       ... y is an odd int
125      * yisint = 2       ... y is an even int
126      */
127     let mut yisint: i32 = 0;
128     let mut k: i32;
129     let mut j: i32;
130     if hx < 0 {
131         if iy >= 0x43400000 {
132             yisint = 2; /* even integer y */
133         } else if iy >= 0x3ff00000 {
134             k = (iy >> 20) - 0x3ff; /* exponent */
135 
136             if k > 20 {
137                 j = (ly >> (52 - k)) as i32;
138 
139                 if (j << (52 - k)) == (ly as i32) {
140                     yisint = 2 - (j & 1);
141                 }
142             } else if ly == 0 {
143                 j = iy >> (20 - k);
144 
145                 if (j << (20 - k)) == iy {
146                     yisint = 2 - (j & 1);
147                 }
148             }
149         }
150     }
151 
152     if ly == 0 {
153         /* special value of y */
154         if iy == 0x7ff00000 {
155             /* y is +-inf */
156 
157             return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
158                 /* (-1)**+-inf is 1 */
159                 1.0
160             } else if ix >= 0x3ff00000 {
161                 /* (|x|>1)**+-inf = inf,0 */
162                 if hy >= 0 {
163                     y
164                 } else {
165                     0.0
166                 }
167             } else {
168                 /* (|x|<1)**+-inf = 0,inf */
169                 if hy >= 0 {
170                     0.0
171                 } else {
172                     -y
173                 }
174             };
175         }
176 
177         if iy == 0x3ff00000 {
178             /* y is +-1 */
179             return if hy >= 0 { x } else { 1.0 / x };
180         }
181 
182         if hy == 0x40000000 {
183             /* y is 2 */
184             return x * x;
185         }
186 
187         if hy == 0x3fe00000 {
188             /* y is 0.5 */
189             if hx >= 0 {
190                 /* x >= +0 */
191                 return sqrt(x);
192             }
193         }
194     }
195 
196     let mut ax: f64 = fabs(x);
197     if lx == 0 {
198         /* special value of x */
199         if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
200             /* x is +-0,+-inf,+-1 */
201             let mut z: f64 = ax;
202 
203             if hy < 0 {
204                 /* z = (1/|x|) */
205                 z = 1.0 / z;
206             }
207 
208             if hx < 0 {
209                 if ((ix - 0x3ff00000) | yisint) == 0 {
210                     z = (z - z) / (z - z); /* (-1)**non-int is NaN */
211                 } else if yisint == 1 {
212                     z = -z; /* (x<0)**odd = -(|x|**odd) */
213                 }
214             }
215 
216             return z;
217         }
218     }
219 
220     let mut s: f64 = 1.0; /* sign of result */
221     if hx < 0 {
222         if yisint == 0 {
223             /* (x<0)**(non-int) is NaN */
224             return (x - x) / (x - x);
225         }
226 
227         if yisint == 1 {
228             /* (x<0)**(odd int) */
229             s = -1.0;
230         }
231     }
232 
233     /* |y| is HUGE */
234     if iy > 0x41e00000 {
235         /* if |y| > 2**31 */
236         if iy > 0x43f00000 {
237             /* if |y| > 2**64, must o/uflow */
238             if ix <= 0x3fefffff {
239                 return if hy < 0 { HUGE * HUGE } else { TINY * TINY };
240             }
241 
242             if ix >= 0x3ff00000 {
243                 return if hy > 0 { HUGE * HUGE } else { TINY * TINY };
244             }
245         }
246 
247         /* over/underflow if x is not close to one */
248         if ix < 0x3fefffff {
249             return if hy < 0 {
250                 s * HUGE * HUGE
251             } else {
252                 s * TINY * TINY
253             };
254         }
255         if ix > 0x3ff00000 {
256             return if hy > 0 {
257                 s * HUGE * HUGE
258             } else {
259                 s * TINY * TINY
260             };
261         }
262 
263         /* now |1-x| is TINY <= 2**-20, suffice to compute
264         log(x) by x-x^2/2+x^3/3-x^4/4 */
265         let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
266         let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
267         let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
268         let v: f64 = t * IVLN2_L - w * IVLN2;
269         t1 = with_set_low_word(u + v, 0);
270         t2 = v - (t1 - u);
271     } else {
272         // double ss,s2,s_h,s_l,t_h,t_l;
273         let mut n: i32 = 0;
274 
275         if ix < 0x00100000 {
276             /* take care subnormal number */
277             ax *= TWO53;
278             n -= 53;
279             ix = get_high_word(ax) as i32;
280         }
281 
282         n += (ix >> 20) - 0x3ff;
283         j = ix & 0x000fffff;
284 
285         /* determine interval */
286         let k: i32;
287         ix = j | 0x3ff00000; /* normalize ix */
288         if j <= 0x3988E {
289             /* |x|<sqrt(3/2) */
290             k = 0;
291         } else if j < 0xBB67A {
292             /* |x|<sqrt(3)   */
293             k = 1;
294         } else {
295             k = 0;
296             n += 1;
297             ix -= 0x00100000;
298         }
299         ax = with_set_high_word(ax, ix as u32);
300 
301         /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
302         let u: f64 = ax - BP[k as usize]; /* bp[0]=1.0, bp[1]=1.5 */
303         let v: f64 = 1.0 / (ax + BP[k as usize]);
304         let ss: f64 = u * v;
305         let s_h = with_set_low_word(ss, 0);
306 
307         /* t_h=ax+bp[k] High */
308         let t_h: f64 = with_set_high_word(
309             0.0,
310             ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
311         );
312         let t_l: f64 = ax - (t_h - BP[k as usize]);
313         let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
314 
315         /* compute log(ax) */
316         let s2: f64 = ss * ss;
317         let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
318         r += s_l * (s_h + ss);
319         let s2: f64 = s_h * s_h;
320         let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
321         let t_l: f64 = r - ((t_h - 3.0) - s2);
322 
323         /* u+v = ss*(1+...) */
324         let u: f64 = s_h * t_h;
325         let v: f64 = s_l * t_h + t_l * ss;
326 
327         /* 2/(3log2)*(ss+...) */
328         let p_h: f64 = with_set_low_word(u + v, 0);
329         let p_l = v - (p_h - u);
330         let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
331         let z_l: f64 = CP_L * p_h + p_l * CP + DP_L[k as usize];
332 
333         /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
334         let t: f64 = n as f64;
335         t1 = with_set_low_word(((z_h + z_l) + DP_H[k as usize]) + t, 0);
336         t2 = z_l - (((t1 - t) - DP_H[k as usize]) - z_h);
337     }
338 
339     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
340     let y1: f64 = with_set_low_word(y, 0);
341     let p_l: f64 = (y - y1) * t1 + y * t2;
342     let mut p_h: f64 = y1 * t1;
343     let z: f64 = p_l + p_h;
344     let mut j: i32 = (z.to_bits() >> 32) as i32;
345     let i: i32 = z.to_bits() as i32;
346     // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
347 
348     if j >= 0x40900000 {
349         /* z >= 1024 */
350         if (j - 0x40900000) | i != 0 {
351             /* if z > 1024 */
352             return s * HUGE * HUGE; /* overflow */
353         }
354 
355         if p_l + OVT > z - p_h {
356             return s * HUGE * HUGE; /* overflow */
357         }
358     } else if (j & 0x7fffffff) >= 0x4090cc00 {
359         /* z <= -1075 */
360         // FIXME: instead of abs(j) use unsigned j
361 
362         if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
363             /* z < -1075 */
364             return s * TINY * TINY; /* underflow */
365         }
366 
367         if p_l <= z - p_h {
368             return s * TINY * TINY; /* underflow */
369         }
370     }
371 
372     /* compute 2**(p_h+p_l) */
373     let i: i32 = j & (0x7fffffff as i32);
374     k = (i >> 20) - 0x3ff;
375     let mut n: i32 = 0;
376 
377     if i > 0x3fe00000 {
378         /* if |z| > 0.5, set n = [z+0.5] */
379         n = j + (0x00100000 >> (k + 1));
380         k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
381         let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
382         n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
383         if j < 0 {
384             n = -n;
385         }
386         p_h -= t;
387     }
388 
389     let t: f64 = with_set_low_word(p_l + p_h, 0);
390     let u: f64 = t * LG2_H;
391     let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
392     let mut z: f64 = u + v;
393     let w: f64 = v - (z - u);
394     let t: f64 = z * z;
395     let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
396     let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
397     z = 1.0 - (r - z);
398     j = get_high_word(z) as i32;
399     j += n << 20;
400 
401     if (j >> 20) <= 0 {
402         /* subnormal output */
403         z = scalbn(z, n);
404     } else {
405         z = with_set_high_word(z, j as u32);
406     }
407 
408     s * z
409 }
410 
411 #[cfg(test)]
412 mod tests {
413     extern crate core;
414 
415     use self::core::f64::consts::{E, PI};
416     use self::core::f64::{EPSILON, INFINITY, MAX, MIN, MIN_POSITIVE, NAN, NEG_INFINITY};
417     use super::pow;
418 
419     const POS_ZERO: &[f64] = &[0.0];
420     const NEG_ZERO: &[f64] = &[-0.0];
421     const POS_ONE: &[f64] = &[1.0];
422     const NEG_ONE: &[f64] = &[-1.0];
423     const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI];
424     const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI];
425     const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), MIN_POSITIVE, EPSILON];
426     const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -MIN_POSITIVE, -EPSILON];
427     const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, MAX];
428     const NEG_EVENS: &[f64] = &[MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0];
429     const POS_ODDS: &[f64] = &[3.0, 7.0];
430     const NEG_ODDS: &[f64] = &[-7.0, -3.0];
431     const NANS: &[f64] = &[NAN];
432     const POS_INF: &[f64] = &[INFINITY];
433     const NEG_INF: &[f64] = &[NEG_INFINITY];
434 
435     const ALL: &[&[f64]] = &[
436         POS_ZERO,
437         NEG_ZERO,
438         NANS,
439         NEG_SMALL_FLOATS,
440         POS_SMALL_FLOATS,
441         NEG_FLOATS,
442         POS_FLOATS,
443         NEG_EVENS,
444         POS_EVENS,
445         NEG_ODDS,
446         POS_ODDS,
447         NEG_INF,
448         POS_INF,
449         NEG_ONE,
450         POS_ONE,
451     ];
452     const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF];
453     const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF];
454 
pow_test(base: f64, exponent: f64, expected: f64)455     fn pow_test(base: f64, exponent: f64, expected: f64) {
456         let res = pow(base, exponent);
457         assert!(
458             if expected.is_nan() {
459                 res.is_nan()
460             } else {
461                 pow(base, exponent) == expected
462             },
463             "{} ** {} was {} instead of {}",
464             base,
465             exponent,
466             res,
467             expected
468         );
469     }
470 
test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64)471     fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) {
472         sets.iter()
473             .for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected)));
474     }
475 
test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64)476     fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) {
477         sets.iter()
478             .for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected)));
479     }
480 
test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64)481     fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) {
482         sets.iter().for_each(|s| {
483             s.iter().for_each(|val| {
484                 let exp = expected(*val);
485                 let res = computed(*val);
486 
487                 assert!(
488                     if exp.is_nan() {
489                         res.is_nan()
490                     } else {
491                         exp == res
492                     },
493                     "test for {} was {} instead of {}",
494                     val,
495                     res,
496                     exp
497                 );
498             })
499         });
500     }
501 
502     #[test]
zero_as_exponent()503     fn zero_as_exponent() {
504         test_sets_as_base(ALL, 0.0, 1.0);
505         test_sets_as_base(ALL, -0.0, 1.0);
506     }
507 
508     #[test]
one_as_base()509     fn one_as_base() {
510         test_sets_as_exponent(1.0, ALL, 1.0);
511     }
512 
513     #[test]
nan_inputs()514     fn nan_inputs() {
515         // NAN as the base:
516         // (NAN ^ anything *but 0* should be NAN)
517         test_sets_as_exponent(NAN, &ALL[2..], NAN);
518 
519         // NAN as the exponent:
520         // (anything *but 1* ^ NAN should be NAN)
521         test_sets_as_base(&ALL[..(ALL.len() - 2)], NAN, NAN);
522     }
523 
524     #[test]
infinity_as_base()525     fn infinity_as_base() {
526         // Positive Infinity as the base:
527         // (+Infinity ^ positive anything but 0 and NAN should be +Infinity)
528         test_sets_as_exponent(INFINITY, &POS[1..], INFINITY);
529 
530         // (+Infinity ^ negative anything except 0 and NAN should be 0.0)
531         test_sets_as_exponent(INFINITY, &NEG[1..], 0.0);
532 
533         // Negative Infinity as the base:
534         // (-Infinity ^ positive odd ints should be -Infinity)
535         test_sets_as_exponent(NEG_INFINITY, &[POS_ODDS], NEG_INFINITY);
536 
537         // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything))
538         // We can lump in pos/neg odd ints here because they don't seem to
539         // cause panics (div by zero) in release mode (I think).
540         test_sets(ALL, &|v: f64| pow(NEG_INFINITY, v), &|v: f64| pow(-0.0, -v));
541     }
542 
543     #[test]
infinity_as_exponent()544     fn infinity_as_exponent() {
545         // Positive/Negative base greater than 1:
546         // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes NAN as the base)
547         test_sets_as_base(&ALL[5..(ALL.len() - 2)], INFINITY, INFINITY);
548 
549         // (pos/neg > 1 ^ -Infinity should be 0.0)
550         test_sets_as_base(&ALL[5..ALL.len() - 2], NEG_INFINITY, 0.0);
551 
552         // Positive/Negative base less than 1:
553         let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS];
554 
555         // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes NAN as the base)
556         test_sets_as_base(base_below_one, INFINITY, 0.0);
557 
558         // (pos/neg < 1 ^ -Infinity should be Infinity)
559         test_sets_as_base(base_below_one, NEG_INFINITY, INFINITY);
560 
561         // Positive/Negative 1 as the base:
562         // (pos/neg 1 ^ Infinity should be 1)
563         test_sets_as_base(&[NEG_ONE, POS_ONE], INFINITY, 1.0);
564 
565         // (pos/neg 1 ^ -Infinity should be 1)
566         test_sets_as_base(&[NEG_ONE, POS_ONE], NEG_INFINITY, 1.0);
567     }
568 
569     #[test]
zero_as_base()570     fn zero_as_base() {
571         // Positive Zero as the base:
572         // (+0 ^ anything positive but 0 and NAN should be +0)
573         test_sets_as_exponent(0.0, &POS[1..], 0.0);
574 
575         // (+0 ^ anything negative but 0 and NAN should be Infinity)
576         // (this should panic because we're dividing by zero)
577         test_sets_as_exponent(0.0, &NEG[1..], INFINITY);
578 
579         // Negative Zero as the base:
580         // (-0 ^ anything positive but 0, NAN, and odd ints should be +0)
581         test_sets_as_exponent(-0.0, &POS[3..], 0.0);
582 
583         // (-0 ^ anything negative but 0, NAN, and odd ints should be Infinity)
584         // (should panic because of divide by zero)
585         test_sets_as_exponent(-0.0, &NEG[3..], INFINITY);
586 
587         // (-0 ^ positive odd ints should be -0)
588         test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0);
589 
590         // (-0 ^ negative odd ints should be -Infinity)
591         // (should panic because of divide by zero)
592         test_sets_as_exponent(-0.0, &[NEG_ODDS], NEG_INFINITY);
593     }
594 
595     #[test]
special_cases()596     fn special_cases() {
597         // One as the exponent:
598         // (anything ^ 1 should be anything - i.e. the base)
599         test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v);
600 
601         // Negative One as the exponent:
602         // (anything ^ -1 should be 1/anything)
603         test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v);
604 
605         // Factoring -1 out:
606         // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer))
607         &[POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS]
608             .iter()
609             .for_each(|int_set| {
610                 int_set.iter().for_each(|int| {
611                     test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| {
612                         pow(-1.0, *int) * pow(v, *int)
613                     });
614                 })
615             });
616 
617         // Negative base (imaginary results):
618         // (-anything except 0 and Infinity ^ non-integer should be NAN)
619         &NEG[1..(NEG.len() - 1)].iter().for_each(|set| {
620             set.iter().for_each(|val| {
621                 test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| NAN);
622             })
623         });
624     }
625 
626     #[test]
normal_cases()627     fn normal_cases() {
628         assert_eq!(pow(2.0, 20.0), (1 << 20) as f64);
629         assert_eq!(pow(-1.0, 9.0), -1.0);
630         assert!(pow(-1.0, 2.2).is_nan());
631         assert!(pow(-1.0, -1.14).is_nan());
632     }
633 }
634