1 /*
2 Copyright (C) 1999-2006 Id Software, Inc. and contributors.
3 For a list of contributors, see the accompanying CONTRIBUTORS file.
4 
5 This file is part of GtkRadiant.
6 
7 GtkRadiant is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 
12 GtkRadiant is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GtkRadiant; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
20 */
21 
22 // mathlib.c -- math primitives
23 #include "mathlib.h"
24 // we use memcpy and memset
25 #include <memory.h>
26 
27 const vec3_t vec3_origin = {0.0f,0.0f,0.0f};
28 
29 const vec3_t g_vec3_axis_x = { 1, 0, 0, };
30 const vec3_t g_vec3_axis_y = { 0, 1, 0, };
31 const vec3_t g_vec3_axis_z = { 0, 0, 1, };
32 
33 /*
34 ================
35 MakeNormalVectors
36 
37 Given a normalized forward vector, create two
38 other perpendicular vectors
39 ================
40 */
MakeNormalVectors(vec3_t forward,vec3_t right,vec3_t up)41 void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
42 {
43 	float		d;
44 
45 	// this rotate and negate guarantees a vector
46 	// not colinear with the original
47 	right[1] = -forward[0];
48 	right[2] = forward[1];
49 	right[0] = forward[2];
50 
51 	d = DotProduct (right, forward);
52 	VectorMA (right, -d, forward, right);
53 	VectorNormalize (right, right);
54 	CrossProduct (right, forward, up);
55 }
56 
VectorLength(const vec3_t v)57 vec_t VectorLength(const vec3_t v)
58 {
59 	int		i;
60 	float	length;
61 
62 	length = 0.0f;
63 	for (i=0 ; i< 3 ; i++)
64 		length += v[i]*v[i];
65 	length = (float)sqrt (length);
66 
67 	return length;
68 }
69 
VectorCompare(const vec3_t v1,const vec3_t v2)70 qboolean VectorCompare (const vec3_t v1, const vec3_t v2)
71 {
72 	int		i;
73 
74 	for (i=0 ; i<3 ; i++)
75 		if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
76 			return qfalse;
77 
78 	return qtrue;
79 }
80 
VectorMA(const vec3_t va,vec_t scale,const vec3_t vb,vec3_t vc)81 void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc )
82 {
83 	vc[0] = va[0] + scale*vb[0];
84 	vc[1] = va[1] + scale*vb[1];
85 	vc[2] = va[2] + scale*vb[2];
86 }
87 
_CrossProduct(vec3_t v1,vec3_t v2,vec3_t cross)88 void _CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
89 {
90 	cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
91 	cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
92 	cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
93 }
94 
_DotProduct(vec3_t v1,vec3_t v2)95 vec_t _DotProduct (vec3_t v1, vec3_t v2)
96 {
97 	return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
98 }
99 
_VectorSubtract(vec3_t va,vec3_t vb,vec3_t out)100 void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
101 {
102 	out[0] = va[0]-vb[0];
103 	out[1] = va[1]-vb[1];
104 	out[2] = va[2]-vb[2];
105 }
106 
_VectorAdd(vec3_t va,vec3_t vb,vec3_t out)107 void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
108 {
109 	out[0] = va[0]+vb[0];
110 	out[1] = va[1]+vb[1];
111 	out[2] = va[2]+vb[2];
112 }
113 
_VectorCopy(vec3_t in,vec3_t out)114 void _VectorCopy (vec3_t in, vec3_t out)
115 {
116 	out[0] = in[0];
117 	out[1] = in[1];
118 	out[2] = in[2];
119 }
120 
VectorNormalize(const vec3_t in,vec3_t out)121 vec_t VectorNormalize( const vec3_t in, vec3_t out ) {
122 	vec_t	length, ilength;
123 
124 	length = (vec_t)sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]);
125 	if (length == 0)
126 	{
127 		VectorClear (out);
128 		return 0;
129 	}
130 
131 	ilength = 1.0f/length;
132 	out[0] = in[0]*ilength;
133 	out[1] = in[1]*ilength;
134 	out[2] = in[2]*ilength;
135 
136 	return length;
137 }
138 
ColorNormalize(const vec3_t in,vec3_t out)139 vec_t ColorNormalize( const vec3_t in, vec3_t out ) {
140 	float	max, scale;
141 
142 	max = in[0];
143 	if (in[1] > max)
144 		max = in[1];
145 	if (in[2] > max)
146 		max = in[2];
147 
148 	if (max == 0) {
149 		out[0] = out[1] = out[2] = 1.0;
150 		return 0;
151 	}
152 
153 	scale = 1.0f / max;
154 
155 	VectorScale (in, scale, out);
156 
157 	return max;
158 }
159 
VectorInverse(vec3_t v)160 void VectorInverse (vec3_t v)
161 {
162 	v[0] = -v[0];
163 	v[1] = -v[1];
164 	v[2] = -v[2];
165 }
166 
167 /*
168 void VectorScale (vec3_t v, vec_t scale, vec3_t out)
169 {
170 	out[0] = v[0] * scale;
171 	out[1] = v[1] * scale;
172 	out[2] = v[2] * scale;
173 }
174 */
175 
VectorRotate(vec3_t vIn,vec3_t vRotation,vec3_t out)176 void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out)
177 {
178   vec3_t vWork, va;
179   int nIndex[3][2];
180   int i;
181 
182   VectorCopy(vIn, va);
183   VectorCopy(va, vWork);
184   nIndex[0][0] = 1; nIndex[0][1] = 2;
185   nIndex[1][0] = 2; nIndex[1][1] = 0;
186   nIndex[2][0] = 0; nIndex[2][1] = 1;
187 
188   for (i = 0; i < 3; i++)
189   {
190     if (vRotation[i] != 0)
191     {
192       float dAngle = vRotation[i] * Q_PI / 180.0f;
193 	    float c = (vec_t)cos(dAngle);
194       float s = (vec_t)sin(dAngle);
195       vWork[nIndex[i][0]] = va[nIndex[i][0]] * c - va[nIndex[i][1]] * s;
196       vWork[nIndex[i][1]] = va[nIndex[i][0]] * s + va[nIndex[i][1]] * c;
197     }
198     VectorCopy(vWork, va);
199   }
200   VectorCopy(vWork, out);
201 }
202 
VectorRotateOrigin(vec3_t vIn,vec3_t vRotation,vec3_t vOrigin,vec3_t out)203 void VectorRotateOrigin (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out)
204 {
205   vec3_t vTemp, vTemp2;
206 
207   VectorSubtract(vIn, vOrigin, vTemp);
208   VectorRotate(vTemp, vRotation, vTemp2);
209   VectorAdd(vTemp2, vOrigin, out);
210 }
211 
VectorPolar(vec3_t v,float radius,float theta,float phi)212 void VectorPolar(vec3_t v, float radius, float theta, float phi)
213 {
214  	v[0]=(float)(radius * cos(theta) * cos(phi));
215 	v[1]=(float)(radius * sin(theta) * cos(phi));
216 	v[2]=(float)(radius * sin(phi));
217 }
218 
VectorSnap(vec3_t v)219 void VectorSnap(vec3_t v)
220 {
221   int i;
222   for (i = 0; i < 3; i++)
223   {
224     v[i] = (vec_t)FLOAT_TO_INTEGER(v[i]);
225   }
226 }
227 
VectorISnap(vec3_t point,int snap)228 void VectorISnap(vec3_t point, int snap)
229 {
230   int i;
231 	for (i = 0 ;i < 3 ; i++)
232 	{
233 		point[i] = (vec_t)FLOAT_SNAP(point[i], snap);
234 	}
235 }
236 
VectorFSnap(vec3_t point,float snap)237 void VectorFSnap(vec3_t point, float snap)
238 {
239   int i;
240 	for (i = 0 ;i < 3 ; i++)
241 	{
242 		point[i] = (vec_t)FLOAT_SNAP(point[i], snap);
243 	}
244 }
245 
_Vector5Add(vec5_t va,vec5_t vb,vec5_t out)246 void _Vector5Add (vec5_t va, vec5_t vb, vec5_t out)
247 {
248 	out[0] = va[0]+vb[0];
249 	out[1] = va[1]+vb[1];
250 	out[2] = va[2]+vb[2];
251 	out[3] = va[3]+vb[3];
252 	out[4] = va[4]+vb[4];
253 }
254 
_Vector5Scale(vec5_t v,vec_t scale,vec5_t out)255 void _Vector5Scale (vec5_t v, vec_t scale, vec5_t out)
256 {
257 	out[0] = v[0] * scale;
258 	out[1] = v[1] * scale;
259 	out[2] = v[2] * scale;
260 	out[3] = v[3] * scale;
261 	out[4] = v[4] * scale;
262 }
263 
_Vector53Copy(vec5_t in,vec3_t out)264 void _Vector53Copy (vec5_t in, vec3_t out)
265 {
266 	out[0] = in[0];
267 	out[1] = in[1];
268 	out[2] = in[2];
269 }
270 
271 // NOTE: added these from Ritual's Q3Radiant
ClearBounds(vec3_t mins,vec3_t maxs)272 void ClearBounds (vec3_t mins, vec3_t maxs)
273 {
274 	mins[0] = mins[1] = mins[2] = 99999;
275 	maxs[0] = maxs[1] = maxs[2] = -99999;
276 }
277 
AddPointToBounds(vec3_t v,vec3_t mins,vec3_t maxs)278 void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs)
279 {
280 	int		i;
281 	vec_t	val;
282 
283 	for (i=0 ; i<3 ; i++)
284 	{
285 		val = v[i];
286 		if (val < mins[i])
287 			mins[i] = val;
288 		if (val > maxs[i])
289 			maxs[i] = val;
290 	}
291 }
292 
AngleVectors(vec3_t angles,vec3_t forward,vec3_t right,vec3_t up)293 void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
294 {
295 	float		angle;
296 	static float		sr, sp, sy, cr, cp, cy;
297 	// static to help MS compiler fp bugs
298 
299 	angle = angles[YAW] * (Q_PI*2.0f / 360.0f);
300 	sy = (vec_t)sin(angle);
301 	cy = (vec_t)cos(angle);
302 	angle = angles[PITCH] * (Q_PI*2.0f / 360.0f);
303 	sp = (vec_t)sin(angle);
304 	cp = (vec_t)cos(angle);
305 	angle = angles[ROLL] * (Q_PI*2.0f / 360.0f);
306 	sr = (vec_t)sin(angle);
307 	cr = (vec_t)cos(angle);
308 
309 	if (forward)
310 	{
311 		forward[0] = cp*cy;
312 		forward[1] = cp*sy;
313 		forward[2] = -sp;
314 	}
315 	if (right)
316 	{
317 		right[0] = -sr*sp*cy+cr*sy;
318 		right[1] = -sr*sp*sy-cr*cy;
319 		right[2] = -sr*cp;
320 	}
321 	if (up)
322 	{
323 		up[0] = cr*sp*cy+sr*sy;
324 		up[1] = cr*sp*sy-sr*cy;
325 		up[2] = cr*cp;
326 	}
327 }
328 
VectorToAngles(vec3_t vec,vec3_t angles)329 void VectorToAngles( vec3_t vec, vec3_t angles )
330 {
331 	float forward;
332 	float yaw, pitch;
333 
334 	if ( ( vec[ 0 ] == 0 ) && ( vec[ 1 ] == 0 ) )
335 	{
336 		yaw = 0;
337 		if ( vec[ 2 ] > 0 )
338 		{
339 			pitch = 90;
340 		}
341 		else
342 		{
343 			pitch = 270;
344 		}
345 	}
346 	else
347 	{
348 		yaw = (vec_t)atan2( vec[ 1 ], vec[ 0 ] ) * 180 / Q_PI;
349 		if ( yaw < 0 )
350 		{
351 			yaw += 360;
352 		}
353 
354 		forward = ( float )sqrt( vec[ 0 ] * vec[ 0 ] + vec[ 1 ] * vec[ 1 ] );
355 		pitch = (vec_t)atan2( vec[ 2 ], forward ) * 180 / Q_PI;
356 		if ( pitch < 0 )
357 		{
358 			pitch += 360;
359 		}
360 	}
361 
362 	angles[ 0 ] = pitch;
363 	angles[ 1 ] = yaw;
364 	angles[ 2 ] = 0;
365 }
366 
367 /*
368 =====================
369 PlaneFromPoints
370 
371 Returns false if the triangle is degenrate.
372 The normal will point out of the clock for clockwise ordered points
373 =====================
374 */
PlaneFromPoints(vec4_t plane,const vec3_t a,const vec3_t b,const vec3_t c)375 qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
376 	vec3_t	d1, d2;
377 
378 	VectorSubtract( b, a, d1 );
379 	VectorSubtract( c, a, d2 );
380 	CrossProduct( d2, d1, plane );
381 	if ( VectorNormalize( plane, plane ) == 0 ) {
382 		return qfalse;
383 	}
384 
385 	plane[3] = DotProduct( a, plane );
386 	return qtrue;
387 }
388 
389 /*
390 ** NormalToLatLong
391 **
392 ** We use two byte encoded normals in some space critical applications.
393 ** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
394 ** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
395 **
396 */
NormalToLatLong(const vec3_t normal,byte bytes[2])397 void NormalToLatLong( const vec3_t normal, byte bytes[2] ) {
398 	// check for singularities
399 	if ( normal[0] == 0 && normal[1] == 0 ) {
400 		if ( normal[2] > 0 ) {
401 			bytes[0] = 0;
402 			bytes[1] = 0;		// lat = 0, long = 0
403 		} else {
404 			bytes[0] = 128;
405 			bytes[1] = 0;		// lat = 0, long = 128
406 		}
407 	} else {
408 		int	a, b;
409 
410 		a = (int)( RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ) );
411 		a &= 0xff;
412 
413 		b = (int)( RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f ) );
414 		b &= 0xff;
415 
416 		bytes[0] = b;	// longitude
417 		bytes[1] = a;	// lattitude
418 	}
419 }
420 
421 /*
422 =================
423 PlaneTypeForNormal
424 =================
425 */
PlaneTypeForNormal(vec3_t normal)426 int	PlaneTypeForNormal (vec3_t normal) {
427 	if (normal[0] == 1.0 || normal[0] == -1.0)
428 		return PLANE_X;
429 	if (normal[1] == 1.0 || normal[1] == -1.0)
430 		return PLANE_Y;
431 	if (normal[2] == 1.0 || normal[2] == -1.0)
432 		return PLANE_Z;
433 
434 	return PLANE_NON_AXIAL;
435 }
436 
437 /*
438 ================
439 MatrixMultiply
440 ================
441 */
MatrixMultiply(float in1[3][3],float in2[3][3],float out[3][3])442 void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
443 	out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
444 				in1[0][2] * in2[2][0];
445 	out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
446 				in1[0][2] * in2[2][1];
447 	out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
448 				in1[0][2] * in2[2][2];
449 	out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
450 				in1[1][2] * in2[2][0];
451 	out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
452 				in1[1][2] * in2[2][1];
453 	out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
454 				in1[1][2] * in2[2][2];
455 	out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
456 				in1[2][2] * in2[2][0];
457 	out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
458 				in1[2][2] * in2[2][1];
459 	out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
460 				in1[2][2] * in2[2][2];
461 }
462 
ProjectPointOnPlane(vec3_t dst,const vec3_t p,const vec3_t normal)463 void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
464 {
465 	float d;
466 	vec3_t n;
467 	float inv_denom;
468 
469 	inv_denom = 1.0F / DotProduct( normal, normal );
470 
471 	d = DotProduct( normal, p ) * inv_denom;
472 
473 	n[0] = normal[0] * inv_denom;
474 	n[1] = normal[1] * inv_denom;
475 	n[2] = normal[2] * inv_denom;
476 
477 	dst[0] = p[0] - d * n[0];
478 	dst[1] = p[1] - d * n[1];
479 	dst[2] = p[2] - d * n[2];
480 }
481 
482 /*
483 ** assumes "src" is normalized
484 */
PerpendicularVector(vec3_t dst,const vec3_t src)485 void PerpendicularVector( vec3_t dst, const vec3_t src )
486 {
487 	int	pos;
488 	int i;
489 	vec_t minelem = 1.0F;
490 	vec3_t tempvec;
491 
492 	/*
493 	** find the smallest magnitude axially aligned vector
494 	*/
495 	for ( pos = 0, i = 0; i < 3; i++ )
496 	{
497 		if ( fabs( src[i] ) < minelem )
498 		{
499 			pos = i;
500 			minelem = (vec_t)fabs( src[i] );
501 		}
502 	}
503 	tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
504 	tempvec[pos] = 1.0F;
505 
506 	/*
507 	** project the point onto the plane defined by src
508 	*/
509 	ProjectPointOnPlane( dst, tempvec, src );
510 
511 	/*
512 	** normalize the result
513 	*/
514 	VectorNormalize( dst, dst );
515 }
516 
517 /*
518 ===============
519 RotatePointAroundVector
520 
521 This is not implemented very well...
522 ===============
523 */
RotatePointAroundVector(vec3_t dst,const vec3_t dir,const vec3_t point,float degrees)524 void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
525 							 float degrees ) {
526 	float	m[3][3];
527 	float	im[3][3];
528 	float	zrot[3][3];
529 	float	tmpmat[3][3];
530 	float	rot[3][3];
531 	int	i;
532 	vec3_t vr, vup, vf;
533 	float	rad;
534 
535 	vf[0] = dir[0];
536 	vf[1] = dir[1];
537 	vf[2] = dir[2];
538 
539 	PerpendicularVector( vr, dir );
540 	CrossProduct( vr, vf, vup );
541 
542 	m[0][0] = vr[0];
543 	m[1][0] = vr[1];
544 	m[2][0] = vr[2];
545 
546 	m[0][1] = vup[0];
547 	m[1][1] = vup[1];
548 	m[2][1] = vup[2];
549 
550 	m[0][2] = vf[0];
551 	m[1][2] = vf[1];
552 	m[2][2] = vf[2];
553 
554 	memcpy( im, m, sizeof( im ) );
555 
556 	im[0][1] = m[1][0];
557 	im[0][2] = m[2][0];
558 	im[1][0] = m[0][1];
559 	im[1][2] = m[2][1];
560 	im[2][0] = m[0][2];
561 	im[2][1] = m[1][2];
562 
563 	memset( zrot, 0, sizeof( zrot ) );
564 	zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
565 
566 	rad = (float)DEG2RAD( degrees );
567 	zrot[0][0] = (vec_t)cos( rad );
568 	zrot[0][1] = (vec_t)sin( rad );
569 	zrot[1][0] = (vec_t)-sin( rad );
570 	zrot[1][1] = (vec_t)cos( rad );
571 
572 	MatrixMultiply( m, zrot, tmpmat );
573 	MatrixMultiply( tmpmat, im, rot );
574 
575 	for ( i = 0; i < 3; i++ ) {
576 		dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
577 	}
578 }
579