1 #ifndef PHOSPHOR_MASK_RESIZING_H
2 #define PHOSPHOR_MASK_RESIZING_H
3 
4 /////////////////////////////  GPL LICENSE NOTICE  /////////////////////////////
5 
6 //  crt-royale: A full-featured CRT shader, with cheese.
7 //  Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
8 //
9 //  This program is free software; you can redistribute it and/or modify it
10 //  under the terms of the GNU General Public License as published by the Free
11 //  Software Foundation; either version 2 of the License, or any later version.
12 //
13 //  This program is distributed in the hope that it will be useful, but WITHOUT
14 //  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 //  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 //  more details.
17 //
18 //  You should have received a copy of the GNU General Public License along with
19 //  this program; if not, write to the Free Software Foundation, Inc., 59 Temple
20 //  Place, Suite 330, Boston, MA 02111-1307 USA
21 
22 
23 //////////////////////////////////  INCLUDES  //////////////////////////////////
24 
25 #include "../user-settings.h"
26 #include "derived-settings-and-constants.h"
27 
28 /////////////////////////////  CODEPATH SELECTION  /////////////////////////////
29 
30 //  Choose a looping strategy based on what's allowed:
31 //  Dynamic loops not allowed: Use a flat static loop.
32 //  Dynamic loops accomodated: Coarsely branch around static loops.
33 //  Dynamic loops assumed allowed: Use a flat dynamic loop.
34 #ifndef DRIVERS_ALLOW_DYNAMIC_BRANCHES
35     #ifdef ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
36         #define BREAK_LOOPS_INTO_PIECES
37     #else
38         #define USE_SINGLE_STATIC_LOOP
39     #endif
40 #endif  //  No else needed: Dynamic loops assumed.
41 
42 
43 //////////////////////////////////  CONSTANTS  /////////////////////////////////
44 
45 //  The larger the resized tile, the fewer samples we'll need for downsizing.
46 //  See if we can get a static min tile size > mask_min_allowed_tile_size:
47 static const float mask_min_allowed_tile_size = ceil(
48     mask_min_allowed_triad_size * mask_triads_per_tile);
49 static const float mask_min_expected_tile_size =
50         mask_min_allowed_tile_size;
51 //  Limit the number of sinc resize taps by the maximum minification factor:
52 static const float pi_over_lobes = pi/mask_sinc_lobes;
53 static const float max_sinc_resize_samples_float = 2.0 * mask_sinc_lobes *
54     mask_resize_src_lut_size.x/mask_min_expected_tile_size;
55 //  Vectorized loops sample in multiples of 4.  Round up to be safe:
56 static const float max_sinc_resize_samples_m4 = ceil(
57     max_sinc_resize_samples_float * 0.25) * 4.0;
58 
59 
60 /////////////////////////  RESAMPLING FUNCTION HELPERS  ////////////////////////
61 
get_dynamic_loop_size(const float magnification_scale)62 inline float get_dynamic_loop_size(const float magnification_scale)
63 {
64     //  Requires:   The following global constants must be defined:
65     //              1.) mask_sinc_lobes
66     //              2.) max_sinc_resize_samples_m4
67     //  Returns:    The minimum number of texture samples for a correct downsize
68     //              at magnification_scale.
69     //  We're downsizing, so the filter is sized across 2*lobes output pixels
70     //  (not 2*lobes input texels).  This impacts distance measurements and the
71     //  minimum number of input samples needed.
72     const float min_samples_float = 2.0 * mask_sinc_lobes / magnification_scale;
73     const float min_samples_m4 = ceil(min_samples_float * 0.25) * 4.0;
74     #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
75         const float max_samples_m4 = max_sinc_resize_samples_m4;
76     #else   // ifdef BREAK_LOOPS_INTO_PIECES
77         //  Simulating loops with branches imposes a 128-sample limit.
78         const float max_samples_m4 = min(128.0, max_sinc_resize_samples_m4);
79     #endif
80     return min(min_samples_m4, max_samples_m4);
81 }
82 
get_first_texel_tile_uv_and_dist(const float2 tex_uv,const float2 tex_size,const float dr,const float input_tiles_per_texture_r,const float samples,static const bool vertical)83 float2 get_first_texel_tile_uv_and_dist(const float2 tex_uv,
84     const float2 tex_size, const float dr,
85     const float input_tiles_per_texture_r, const float samples,
86     static const bool vertical)
87 {
88     //  Requires:   1.) dr == du == 1.0/texture_size.x or
89     //                  dr == dv == 1.0/texture_size.y
90     //                  (whichever direction we're resampling in).
91     //                  It's a scalar to save register space.
92     //              2.) input_tiles_per_texture_r is the number of input tiles
93     //                  that can fit in the input texture in the direction we're
94     //                  resampling this pass.
95     //              3.) vertical indicates whether we're resampling vertically
96     //                  this pass (or horizontally).
97     //  Returns:    Pack and return the first sample's tile_uv coord in [0, 1]
98     //              and its texel distance from the destination pixel, in the
99     //              resized dimension only.
100     //  We'll start with the topmost or leftmost sample and work down or right,
101     //  so get the first sample location and distance.  Modify both dimensions
102     //  as if we're doing a one-pass 2D resize; we'll throw away the unneeded
103     //  (and incorrect) dimension at the end.
104     const float2 curr_texel = tex_uv * tex_size;
105     const float2 prev_texel =
106         floor(curr_texel - float2(under_half)) + float2(0.5);
107     const float2 first_texel = prev_texel - float2(samples/2.0 - 1.0);
108     const float2 first_texel_uv_wrap_2D = first_texel * dr;
109     const float2 first_texel_dist_2D = curr_texel - first_texel;
110     //  Convert from tex_uv to tile_uv coords so we can sub fracs for fmods.
111     const float2 first_texel_tile_uv_wrap_2D =
112         first_texel_uv_wrap_2D * input_tiles_per_texture_r;
113     //  Project wrapped coordinates to the [0, 1] range.  We'll do this with all
114     //  samples,but the first texel is special, since it might be negative.
115     const float2 coord_negative =
116         float2((first_texel_tile_uv_wrap_2D.x < 0.),(first_texel_tile_uv_wrap_2D.y < 0.));
117     const float2 first_texel_tile_uv_2D =
118         frac(first_texel_tile_uv_wrap_2D) + coord_negative;
119     //  Pack the first texel's tile_uv coord and texel distance in 1D:
120     const float2 tile_u_and_dist =
121         float2(first_texel_tile_uv_2D.x, first_texel_dist_2D.x);
122     const float2 tile_v_and_dist =
123         float2(first_texel_tile_uv_2D.y, first_texel_dist_2D.y);
124     return vertical ? tile_v_and_dist : tile_u_and_dist;
125     //return lerp(tile_u_and_dist, tile_v_and_dist, float(vertical));
126 }
127 
tex2Dlod0try(const sampler2D tex,const float2 tex_uv)128 inline float4 tex2Dlod0try(const sampler2D tex, const float2 tex_uv)
129 {
130     //  Mipmapping and anisotropic filtering get confused by sinc-resampling.
131     //  One [slow] workaround is to select the lowest mip level:
132     #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
133         return textureLod(tex, float4(tex_uv, 0.0, 0.0).xy);
134     #else
135         #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
136             return tex2Dbias(tex, float4(tex_uv, 0.0, -16.0));
137         #else
138             return texture(tex, tex_uv);
139         #endif
140     #endif
141 }
142 
143 
144 //////////////////////////////  LOOP BODY MACROS  //////////////////////////////
145 
146 //  Using inline functions can exceed the temporary register limit, so we're
147 //  stuck with #define macros (I'm TRULY sorry).  They're declared here instead
148 //  of above to be closer to the actual invocation sites.  Steps:
149 //  1.) Get the exact texel location.
150 //  2.) Sample the phosphor mask (already assumed encoded in linear RGB).
151 //  3.) Get the distance from the current pixel and sinc weight:
152 //          sinc(dist) = sin(pi * dist)/(pi * dist)
153 //      We can also use the slower/smoother Lanczos instead:
154 //          L(x) = sinc(dist) * sinc(dist / lobes)
155 //  4.) Accumulate the weight sum in weights, and accumulate the weighted texels
156 //      in pixel_color (we'll normalize outside the loop at the end).
157 //  We vectorize the loop to help reduce the Lanczos window's cost.
158 
159     //  The r coord is the coord in the dimension we're resizing along (u or v),
160     //  and first_texel_tile_uv_rrrr is a float4 of the first texel's u or v
161     //  tile_uv coord in [0, 1].  tex_uv_r will contain the tile_uv u or v coord
162     //  for four new texel samples.
163     #define CALCULATE_R_COORD_FOR_4_SAMPLES                                    \
164         const float4 true_i = float4(i_base + i) + float4(0.0, 1.0, 2.0, 3.0); \
165         const float4 tile_uv_r = frac(                                         \
166             first_texel_tile_uv_rrrr + true_i * tile_dr);                      \
167         const float4 tex_uv_r = tile_uv_r * tile_size_uv_r;
168 
169     #ifdef PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
170         #define CALCULATE_SINC_RESAMPLE_WEIGHTS                                \
171             const float4 pi_dist_over_lobes = pi_over_lobes * dist;            \
172             const float4 weights = min(sin(pi_dist) * sin(pi_dist_over_lobes) /\
173                 (pi_dist*pi_dist_over_lobes), float4(1.0));
174     #else
175         #define CALCULATE_SINC_RESAMPLE_WEIGHTS                                \
176             const float4 weights = min(sin(pi_dist)/pi_dist, float4(1.0));
177     #endif
178 
179     #define UPDATE_COLOR_AND_WEIGHT_SUMS                                       \
180         const float4 dist = magnification_scale *                              \
181             abs(first_dist_unscaled - true_i);                                 \
182         const float4 pi_dist = pi * dist;                                      \
183         CALCULATE_SINC_RESAMPLE_WEIGHTS;                                       \
184         pixel_color += new_sample0 * weights.xxx;                              \
185         pixel_color += new_sample1 * weights.yyy;                              \
186         pixel_color += new_sample2 * weights.zzz;                              \
187         pixel_color += new_sample3 * weights.www;                              \
188         weight_sum += weights;
189 
190     #define VERTICAL_SINC_RESAMPLE_LOOP_BODY                                   \
191         CALCULATE_R_COORD_FOR_4_SAMPLES;                                       \
192         const float3 new_sample0 = tex2Dlod0try(tex,                       \
193             float2(tex_uv.x, tex_uv_r.x)).rgb;                                 \
194         const float3 new_sample1 = tex2Dlod0try(tex,                       \
195             float2(tex_uv.x, tex_uv_r.y)).rgb;                                 \
196         const float3 new_sample2 = tex2Dlod0try(tex,                       \
197             float2(tex_uv.x, tex_uv_r.z)).rgb;                                 \
198         const float3 new_sample3 = tex2Dlod0try(tex,                       \
199             float2(tex_uv.x, tex_uv_r.w)).rgb;                                 \
200         UPDATE_COLOR_AND_WEIGHT_SUMS;
201 
202     #define HORIZONTAL_SINC_RESAMPLE_LOOP_BODY                                 \
203         CALCULATE_R_COORD_FOR_4_SAMPLES;                                       \
204         const float3 new_sample0 = tex2Dlod0try(tex,                       \
205             float2(tex_uv_r.x, tex_uv.y)).rgb;                                 \
206         const float3 new_sample1 = tex2Dlod0try(tex,                       \
207             float2(tex_uv_r.y, tex_uv.y)).rgb;                                 \
208         const float3 new_sample2 = tex2Dlod0try(tex,                       \
209             float2(tex_uv_r.z, tex_uv.y)).rgb;                                 \
210         const float3 new_sample3 = tex2Dlod0try(tex,                       \
211             float2(tex_uv_r.w, tex_uv.y)).rgb;                                 \
212         UPDATE_COLOR_AND_WEIGHT_SUMS;
213 
214 
215 ////////////////////////////  RESAMPLING FUNCTIONS  ////////////////////////////
216 
downsample_vertical_sinc_tiled(const sampler2D tex,const float2 tex_uv,const float2 tex_size,static const float dr,const float magnification_scale,static const float tile_size_uv_r)217 float3 downsample_vertical_sinc_tiled(const sampler2D tex,
218     const float2 tex_uv, const float2 tex_size, static const float dr,
219     const float magnification_scale, static const float tile_size_uv_r)
220 {
221     //  Requires:   1.) dr == du == 1.0/texture_size.x or
222     //                  dr == dv == 1.0/texture_size.y
223     //                  (whichever direction we're resampling in).
224     //                  It's a scalar to save register space.
225     //              2.) tile_size_uv_r is the number of texels an input tile
226     //                  takes up in the input texture, in the direction we're
227     //                  resampling this pass.
228     //              3.) magnification_scale must be <= 1.0.
229     //  Returns:    Return a [Lanczos] sinc-resampled pixel of a vertically
230     //              downsized input tile embedded in an input texture.  (The
231     //              vertical version is special-cased though: It assumes the
232     //              tile size equals the [static] texture size, since it's used
233     //              on an LUT texture input containing one tile.  For more
234     //              generic use, eliminate the "static" in the parameters.)
235     //  The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension
236     //  we're resizing along, e.g. "dy" in this case.
237     #ifdef USE_SINGLE_STATIC_LOOP
238         //  A static loop can be faster, but it might blur too much from using
239         //  more samples than it should.
240         static const int samples = int(max_sinc_resize_samples_m4);
241     #else
242         const int samples = int(get_dynamic_loop_size(magnification_scale));
243     #endif
244 
245     //  Get the first sample location (scalar tile uv coord along the resized
246     //  dimension) and distance from the output location (in texels):
247     static const float input_tiles_per_texture_r = 1.0/tile_size_uv_r;
248     //  true = vertical resize:
249     const float2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist(
250         tex_uv, tex_size, dr, input_tiles_per_texture_r, samples, true);
251     const float4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx;
252     const float4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy;
253     //  Get the tile sample offset:
254     static const float tile_dr = dr * input_tiles_per_texture_r;
255 
256     //  Sum up each weight and weighted sample color, varying the looping
257     //  strategy based on our expected dynamic loop capabilities.  See the
258     //  loop body macros above.
259     int i_base = 0;
260     float4 weight_sum = float4(0.0);
261     float3 pixel_color = float3(0.0);
262     static const int i_step = 4;
263     #ifdef BREAK_LOOPS_INTO_PIECES
264         if(samples - i_base >= 64)
265         {
266             for(int i = 0; i < 64; i += i_step)
267             {
268                 VERTICAL_SINC_RESAMPLE_LOOP_BODY;
269             }
270             i_base += 64;
271         }
272         if(samples - i_base >= 32)
273         {
274             for(int i = 0; i < 32; i += i_step)
275             {
276                 VERTICAL_SINC_RESAMPLE_LOOP_BODY;
277             }
278             i_base += 32;
279         }
280         if(samples - i_base >= 16)
281         {
282             for(int i = 0; i < 16; i += i_step)
283             {
284                 VERTICAL_SINC_RESAMPLE_LOOP_BODY;
285             }
286             i_base += 16;
287         }
288         if(samples - i_base >= 8)
289         {
290             for(int i = 0; i < 8; i += i_step)
291             {
292                 VERTICAL_SINC_RESAMPLE_LOOP_BODY;
293             }
294             i_base += 8;
295         }
296         if(samples - i_base >= 4)
297         {
298             for(int i = 0; i < 4; i += i_step)
299             {
300                 VERTICAL_SINC_RESAMPLE_LOOP_BODY;
301             }
302             i_base += 4;
303         }
304         //  Do another 4-sample block for a total of 128 max samples.
305         if(samples - i_base > 0)
306         {
307             for(int i = 0; i < 4; i += i_step)
308             {
309                 VERTICAL_SINC_RESAMPLE_LOOP_BODY;
310             }
311         }
312     #else
313         for(int i = 0; i < samples; i += i_step)
314         {
315             VERTICAL_SINC_RESAMPLE_LOOP_BODY;
316         }
317     #endif
318     //  Normalize so the weight_sum == 1.0, and return:
319     const float2 weight_sum_reduce = weight_sum.xy + weight_sum.zw;
320     const float3 scalar_weight_sum = float3(weight_sum_reduce.x +
321         weight_sum_reduce.y);
322     return (pixel_color/scalar_weight_sum);
323 }
324 
downsample_horizontal_sinc_tiled(const sampler2D tex,const float2 tex_uv,const float2 tex_size,const float dr,const float magnification_scale,const float tile_size_uv_r)325 float3 downsample_horizontal_sinc_tiled(const sampler2D tex,
326     const float2 tex_uv, const float2 tex_size, const float dr,
327     const float magnification_scale, const float tile_size_uv_r)
328 {
329     //  Differences from downsample_horizontal_sinc_tiled:
330     //  1.) The dr and tile_size_uv_r parameters are not static consts.
331     //  2.) The "vertical" parameter to get_first_texel_tile_uv_and_dist is
332     //      set to false instead of true.
333     //  3.) The horizontal version of the loop body is used.
334     //  TODO: If we can get guaranteed compile-time dead code elimination,
335     //  we can combine the vertical/horizontal downsampling functions by:
336     //  1.) Add an extra static const bool parameter called "vertical."
337     //  2.) Supply it with the result of get_first_texel_tile_uv_and_dist().
338     //  3.) Use a conditional assignment in the loop body macro.  This is the
339     //      tricky part: We DO NOT want to incur the extra conditional
340     //      assignment in the inner loop at runtime!
341     //  The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension
342     //  we're resizing along, e.g. "dx" in this case.
343     #ifdef USE_SINGLE_STATIC_LOOP
344         //  If we have to load all samples, we might as well use them.
345         static const int samples = int(max_sinc_resize_samples_m4);
346     #else
347         const int samples = int(get_dynamic_loop_size(magnification_scale));
348     #endif
349 
350     //  Get the first sample location (scalar tile uv coord along resized
351     //  dimension) and distance from the output location (in texels):
352     const float input_tiles_per_texture_r = 1.0/tile_size_uv_r;
353     //  false = horizontal resize:
354     const float2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist(
355         tex_uv, tex_size, dr, input_tiles_per_texture_r, samples, false);
356     const float4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx;
357     const float4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy;
358     //  Get the tile sample offset:
359     const float tile_dr = dr * input_tiles_per_texture_r;
360 
361     //  Sum up each weight and weighted sample color, varying the looping
362     //  strategy based on our expected dynamic loop capabilities.  See the
363     //  loop body macros above.
364     int i_base = 0;
365     float4 weight_sum = float4(0.0);
366     float3 pixel_color = float3(0.0);
367     static const int i_step = 4;
368     #ifdef BREAK_LOOPS_INTO_PIECES
369         if(samples - i_base >= 64)
370         {
371             for(int i = 0; i < 64; i += i_step)
372             {
373                 HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
374             }
375             i_base += 64;
376         }
377         if(samples - i_base >= 32)
378         {
379             for(int i = 0; i < 32; i += i_step)
380             {
381                 HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
382             }
383             i_base += 32;
384         }
385         if(samples - i_base >= 16)
386         {
387             for(int i = 0; i < 16; i += i_step)
388             {
389                 HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
390             }
391             i_base += 16;
392         }
393         if(samples - i_base >= 8)
394         {
395             for(int i = 0; i < 8; i += i_step)
396             {
397                 HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
398             }
399             i_base += 8;
400         }
401         if(samples - i_base >= 4)
402         {
403             for(int i = 0; i < 4; i += i_step)
404             {
405                 HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
406             }
407             i_base += 4;
408         }
409         //  Do another 4-sample block for a total of 128 max samples.
410         if(samples - i_base > 0)
411         {
412             for(int i = 0; i < 4; i += i_step)
413             {
414                 HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
415             }
416         }
417     #else
418         for(int i = 0; i < samples; i += i_step)
419         {
420             HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
421         }
422     #endif
423     //  Normalize so the weight_sum == 1.0, and return:
424     const float2 weight_sum_reduce = weight_sum.xy + weight_sum.zw;
425     const float3 scalar_weight_sum = float3(weight_sum_reduce.x +
426         weight_sum_reduce.y);
427     return (pixel_color/scalar_weight_sum);
428 }
429 
430 
431 ////////////////////////////  TILE SIZE CALCULATION  ///////////////////////////
432 
get_resized_mask_tile_size(const float2 estimated_viewport_size,const float2 estimated_mask_resize_output_size,const bool solemnly_swear_same_inputs_for_every_pass)433 float2 get_resized_mask_tile_size(const float2 estimated_viewport_size,
434     const float2 estimated_mask_resize_output_size,
435     const bool solemnly_swear_same_inputs_for_every_pass)
436 {
437     //  Requires:   The following global constants must be defined according to
438     //              certain constraints:
439     //              1.) mask_resize_num_triads: Must be high enough that our
440     //                  mask sampling method won't have artifacts later
441     //                  (long story; see derived-settings-and-constants.h)
442     //              2.) mask_resize_src_lut_size: Texel size of our mask LUT
443     //              3.) mask_triads_per_tile: Num horizontal triads in our LUT
444     //              4.) mask_min_allowed_triad_size: User setting (the more
445     //                  restrictive it is, the faster the resize will go)
446     //              5.) mask_min_allowed_tile_size_x < mask_resize_src_lut_size.x
447     //              6.) mask_triad_size_desired_{runtime, static}
448     //              7.) mask_num_triads_desired_{runtime, static}
449     //              8.) mask_specify_num_triads must be 0.0/1.0 (false/true)
450     //              The function parameters must be defined as follows:
451     //              1.) estimated_viewport_size == (final viewport size);
452     //                  If mask_specify_num_triads is 1.0/true and the viewport
453     //                  estimate is wrong, the number of triads will differ from
454     //                  the user's preference by about the same factor.
455     //              2.) estimated_mask_resize_output_size: Must equal the
456     //                  output size of the MASK_RESIZE pass.
457     //                  Exception: The x component may be estimated garbage if
458     //                  and only if the caller throws away the x result.
459     //              3.) solemnly_swear_same_inputs_for_every_pass: Set to false,
460     //                  unless you can guarantee that every call across every
461     //                  pass will use the same sizes for the other parameters.
462     //              When calling this across multiple passes, always use the
463     //              same y viewport size/scale, and always use the same x
464     //              viewport size/scale when using the x result.
465     //  Returns:    Return the final size of a manually resized mask tile, after
466     //              constraining the desired size to avoid artifacts.  Under
467     //              unusual circumstances, tiles may become stretched vertically
468     //              (see wall of text below).
469     //  Stated tile properties must be correct:
470     static const float tile_aspect_ratio_inv =
471         mask_resize_src_lut_size.y/mask_resize_src_lut_size.x;
472     static const float tile_aspect_ratio = 1.0/tile_aspect_ratio_inv;
473     static const float2 tile_aspect = float2(1.0, tile_aspect_ratio_inv);
474     //  If mask_specify_num_triads is 1.0/true and estimated_viewport_size.x is
475     //  wrong, the user preference will be misinterpreted:
476     const float desired_tile_size_x = mask_triads_per_tile * lerp(
477         global.mask_triad_size_desired,
478         estimated_viewport_size.x / global.mask_num_triads_desired,
479         global.mask_specify_num_triads);
480     if(get_mask_sample_mode() > 0.5)
481     {
482         //  We don't need constraints unless we're sampling MASK_RESIZE.
483         return desired_tile_size_x * tile_aspect;
484     }
485     //  Make sure we're not upsizing:
486     const float temp_tile_size_x =
487         min(desired_tile_size_x, mask_resize_src_lut_size.x);
488     //  Enforce min_tile_size and max_tile_size in both dimensions:
489     const float2 temp_tile_size = temp_tile_size_x * tile_aspect;
490     static const float2 min_tile_size =
491         mask_min_allowed_tile_size * tile_aspect;
492     const float2 max_tile_size =
493         estimated_mask_resize_output_size / mask_resize_num_tiles;
494     const float2 clamped_tile_size =
495         clamp(temp_tile_size, min_tile_size, max_tile_size);
496     //  Try to maintain tile_aspect_ratio.  This is the tricky part:
497     //  If we're currently resizing in the y dimension, the x components
498     //  could be MEANINGLESS.  (If estimated_mask_resize_output_size.x is
499     //  bogus, then so is max_tile_size.x and clamped_tile_size.x.)
500     //  We can't adjust the y size based on clamped_tile_size.x.  If it
501     //  clamps when it shouldn't, it won't clamp again when later passes
502     //  call this function with the correct sizes, and the discrepancy will
503     //  break the sampling coords in MASKED_SCANLINES.  Instead, we'll limit
504     //  the x size based on the y size, but not vice versa, unless the
505     //  caller swears the parameters were the same (correct) in every pass.
506     //  As a result, triads could appear vertically stretched if:
507     //  a.) mask_resize_src_lut_size.x > mask_resize_src_lut_size.y: Wide
508     //      LUT's might clamp x more than y (all provided LUT's are square)
509     //  b.) true_viewport_size.x < true_viewport_size.y: The user is playing
510     //      with a vertically oriented screen (not accounted for anyway)
511     //  c.) mask_resize_viewport_scale.x < masked_resize_viewport_scale.y:
512     //      Viewport scales are equal by default.
513     //  If any of these are the case, you can fix the stretching by setting:
514     //      mask_resize_viewport_scale.x = mask_resize_viewport_scale.y *
515     //          (1.0 / min_expected_aspect_ratio) *
516     //          (mask_resize_src_lut_size.x / mask_resize_src_lut_size.y)
517     const float x_tile_size_from_y =
518         clamped_tile_size.y * tile_aspect_ratio;
519     const float y_tile_size_from_x = lerp(clamped_tile_size.y,
520         clamped_tile_size.x * tile_aspect_ratio_inv,
521         float(solemnly_swear_same_inputs_for_every_pass));
522     const float2 reclamped_tile_size = float2(
523         min(clamped_tile_size.x, x_tile_size_from_y),
524         min(clamped_tile_size.y, y_tile_size_from_x));
525     //  We need integer tile sizes in both directions for tiled sampling to
526     //  work correctly.  Use floor (to make sure we don't round up), but be
527     //  careful to avoid a rounding bug where floor decreases whole numbers:
528     const float2 final_resized_tile_size =
529         floor(reclamped_tile_size + float2(FIX_ZERO(0.0)));
530     return final_resized_tile_size;
531 }
532 
533 
534 /////////////////////////  FINAL MASK SAMPLING HELPERS  ////////////////////////
535 
get_mask_sampling_parameters(const float2 mask_resize_texture_size,const float2 mask_resize_video_size,const float2 true_viewport_size,out float2 mask_tiles_per_screen)536 float4 get_mask_sampling_parameters(const float2 mask_resize_texture_size,
537     const float2 mask_resize_video_size, const float2 true_viewport_size,
538     out float2 mask_tiles_per_screen)
539 {
540     //  Requires:   1.) Requirements of get_resized_mask_tile_size() must be
541     //                  met, particularly regarding global constants.
542     //              The function parameters must be defined as follows:
543     //              1.) mask_resize_texture_size == MASK_RESIZE.texture_size
544     //                  if get_mask_sample_mode() is 0 (otherwise anything)
545     //              2.) mask_resize_video_size == MASK_RESIZE.video_size
546     //                  if get_mask_sample_mode() is 0 (otherwise anything)
547     //              3.) true_viewport_size == IN.output_size for a pass set to
548     //                  1.0 viewport scale (i.e. it must be correct)
549     //  Returns:    Return a float4 containing:
550     //                  xy: tex_uv coords for the start of the mask tile
551     //                  zw: tex_uv size of the mask tile from start to end
552     //              mask_tiles_per_screen is an out parameter containing the
553     //              number of mask tiles that will fit on the screen.
554     //  First get the final resized tile size.  The viewport size and mask
555     //  resize viewport scale must be correct, but don't solemnly swear they
556     //  were correct in both mask resize passes unless you know it's true.
557     //  (We can better ensure a correct tile aspect ratio if the parameters are
558     //  guaranteed correct in all passes...but if we lie, we'll get inconsistent
559     //  sizes across passes, resulting in broken texture coordinates.)
560     const float mask_sample_mode = get_mask_sample_mode();
561     const float2 mask_resize_tile_size = get_resized_mask_tile_size(
562         true_viewport_size, mask_resize_video_size, false);
563     if(mask_sample_mode < 0.5)
564     {
565         //  Sample MASK_RESIZE: The resized tile is a fraction of the texture
566         //  size and starts at a nonzero offset to allow for border texels:
567         const float2 mask_tile_uv_size = mask_resize_tile_size /
568             mask_resize_texture_size;
569         const float2 skipped_tiles = mask_start_texels/mask_resize_tile_size;
570         const float2 mask_tile_start_uv = skipped_tiles * mask_tile_uv_size;
571         //  mask_tiles_per_screen must be based on the *true* viewport size:
572         mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size;
573         return float4(mask_tile_start_uv, mask_tile_uv_size);
574     }
575     else
576     {
577         //  If we're tiling at the original size (1:1 pixel:texel), redefine a
578         //  "tile" to be the full texture containing many triads.  Otherwise,
579         //  we're hardware-resampling an LUT, and the texture truly contains a
580         //  single unresized phosphor mask tile anyway.
581         static const float2 mask_tile_uv_size = float2(1.0);
582         static const float2 mask_tile_start_uv = float2(0.0);
583         if(mask_sample_mode > 1.5)
584         {
585             //  Repeat the full LUT at a 1:1 pixel:texel ratio without resizing:
586             mask_tiles_per_screen = true_viewport_size/mask_texture_large_size;
587         }
588         else
589         {
590             //  Hardware-resize the original LUT:
591             mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size;
592         }
593         return float4(mask_tile_start_uv, mask_tile_uv_size);
594     }
595 }
596 /*
597 float2 fix_tiling_discontinuities_normalized(const float2 tile_uv,
598     float2 duv_dx, float2 duv_dy)
599 {
600     //  Requires:   1.) duv_dx == ddx(tile_uv)
601     //              2.) duv_dy == ddy(tile_uv)
602     //              3.) tile_uv contains tile-relative uv coords in [0, 1],
603     //                  such that (0.5, 0.5) is the center of a tile, etc.
604     //                  ("Tile" can mean texture, the video embedded in the
605     //                  texture, or some other "tile" embedded in a texture.)
606     //  Returns:    Return new tile_uv coords that contain no discontinuities
607     //              across a 2x2 pixel quad.
608     //  Description:
609     //  When uv coords wrap from 1.0 to 0.0, they create a discontinuity in the
610     //  derivatives, which we assume happened if the absolute difference between
611     //  any fragment in a 2x2 block is > ~half a tile.  If the current block has
612     //  a u or v discontinuity and the current fragment is in the first half of
613     //  the tile along that axis (i.e. it wrapped from 1.0 to 0.0), add a tile
614     //  to that coord to make the 2x2 block continuous.  (It will now have a
615     //  coord > 1.0 in the padding area beyond the tile.)  This function takes
616     //  derivatives as parameters so the caller can reuse them.
617     //  In case we're using high-quality (nVidia-style) derivatives, ensure
618     //  diagonically opposite fragments see each other for correctness:
619     duv_dx = abs(duv_dx) + abs(ddy(duv_dx));
620     duv_dy = abs(duv_dy) + abs(ddx(duv_dy));
621     const float2 pixel_in_first_half_tile = float2((tile_uv.x < 0.5),(tile_uv.y < 0.5));
622     const float2 jump_exists = float2(((duv_dx + duv_dy).x > 0.5),((duv_dx + duv_dy).y > 0.5));
623     return tile_uv + jump_exists * pixel_in_first_half_tile;
624 }
625 */
convert_phosphor_tile_uv_wrap_to_tex_uv(const float2 tile_uv_wrap,const float4 mask_tile_start_uv_and_size)626 float2 convert_phosphor_tile_uv_wrap_to_tex_uv(const float2 tile_uv_wrap,
627     const float4 mask_tile_start_uv_and_size)
628 {
629     //  Requires:   1.) tile_uv_wrap contains tile-relative uv coords, where the
630     //                  tile spans from [0, 1], such that (0.5, 0.5) is at the
631     //                  tile center.  The input coords can range from [0, inf],
632     //                  and their fractional parts map to a repeated tile.
633     //                  ("Tile" can mean texture, the video embedded in the
634     //                  texture, or some other "tile" embedded in a texture.)
635     //              2.) mask_tile_start_uv_and_size.xy contains tex_uv coords
636     //                  for the start of the embedded tile in the full texture.
637     //              3.) mask_tile_start_uv_and_size.zw contains the [fractional]
638     //                  tex_uv size of the embedded tile in the full texture.
639     //  Returns:    Return tex_uv coords (used for texture sampling)
640     //              corresponding to tile_uv_wrap.
641     if(get_mask_sample_mode() < 0.5)
642     {
643         //  Manually repeat the resized mask tile to fill the screen:
644         //  First get fractional tile_uv coords.  Using frac/fmod on coords
645         //  confuses anisotropic filtering; fix it as user options dictate.
646         //  derived-settings-and-constants.h disables incompatible options.
647         #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
648             float2 tile_uv = frac(tile_uv_wrap * 0.5) * 2.0;
649         #else
650             float2 tile_uv = frac(tile_uv_wrap);
651         #endif
652         #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
653             const float2 tile_uv_dx = ddx(tile_uv);
654             const float2 tile_uv_dy = ddy(tile_uv);
655             tile_uv = fix_tiling_discontinuities_normalized(tile_uv,
656                 tile_uv_dx, tile_uv_dy);
657         #endif
658         //  The tile is embedded in a padded FBO, and it may start at a
659         //  nonzero offset if border texels are used to avoid artifacts:
660         const float2 mask_tex_uv = mask_tile_start_uv_and_size.xy +
661             tile_uv * mask_tile_start_uv_and_size.zw;
662         return mask_tex_uv;
663     }
664     else
665     {
666         //  Sample from the input phosphor mask texture with hardware tiling.
667         //  If we're tiling at the original size (mode 2), the "tile" is the
668         //  whole texture, and it contains a large number of triads mapped with
669         //  a 1:1 pixel:texel ratio.  OTHERWISE, the texture contains a single
670         //  unresized tile.  tile_uv_wrap already has correct coords for both!
671         return tile_uv_wrap;
672     }
673 }
674 
675 
676 #endif  //  PHOSPHOR_MASK_RESIZING_H
677 
678