1 /*
2 ===========================================================================
3 Copyright (C) 1999 - 2005, Id Software, Inc.
4 Copyright (C) 2000 - 2013, Raven Software, Inc.
5 Copyright (C) 2001 - 2013, Activision, Inc.
6 Copyright (C) 2013 - 2015, OpenJK contributors
7 
8 This file is part of the OpenJK source code.
9 
10 OpenJK is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License version 2 as
12 published by the Free Software Foundation.
13 
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 ===========================================================================
22 */
23 
24 #include "q_math.h"
25 #include <assert.h>
26 #include <float.h>
27 #include <math.h>
28 #include <stdlib.h>
29 
30 
31 ///////////////////////////////////////////////////////////////////////////
32 //
33 //      DIRECTION ENCODING
34 //
35 ///////////////////////////////////////////////////////////////////////////
36 #define NUMVERTEXNORMALS 162
37 static const vec3_t bytedirs[NUMVERTEXNORMALS] =
38 {
39 	{-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f},
40 	{-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f},
41 	{-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f},
42 	{0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f},
43 	{0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f},
44 	{0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f},
45 	{0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f},
46 	{0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f},
47 	{-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f},
48 	{-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f},
49 	{-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f},
50 	{-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f},
51 	{-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f},
52 	{-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f},
53 	{0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f},
54 	{0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f},
55 	{0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f},
56 	{-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f},
57 	{0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f},
58 	{0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f},
59 	{0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f},
60 	{0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f},
61 	{0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f},
62 	{0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f},
63 	{0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f},
64 	{0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f},
65 	{1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f},
66 	{0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f},
67 	{0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f},
68 	{0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f},
69 	{0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f},
70 	{0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f},
71 	{0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f},
72 	{0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f},
73 	{0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f},
74 	{0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f},
75 	{0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f},
76 	{0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f},
77 	{0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f},
78 	{-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f},
79 	{-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f},
80 	{-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f},
81 	{0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f},
82 	{0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f},
83 	{-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f},
84 	{0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f},
85 	{0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f},
86 	{0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f},
87 	{0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f},
88 	{0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f},
89 	{0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f},
90 	{0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f},
91 	{0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f},
92 	{0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f},
93 	{0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f},
94 	{0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f},
95 	{0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f},
96 	{-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f},
97 	{-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f},
98 	{-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f},
99 	{-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f},
100 	{-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f},
101 	{-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f},
102 	{-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f},
103 	{-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f},
104 	{-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f},
105 	{-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f},
106 	{0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f},
107 	{0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f},
108 	{0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f},
109 	{0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f},
110 	{-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f},
111 	{-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f},
112 	{-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f},
113 	{-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f},
114 	{-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f},
115 	{-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f},
116 	{-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f},
117 	{-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f},
118 	{-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f},
119 	{-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f}
120 };
121 
122 // this isn't a real cheap function to call!
DirToByte(vec3_t dir)123 int DirToByte( vec3_t dir )
124 {
125 	int		i, best;
126 	float	d, bestd;
127 
128 	if ( !dir ) {
129 		return 0;
130 	}
131 
132 	bestd = 0;
133 	best = 0;
134 	for (i=0 ; i<NUMVERTEXNORMALS ; i++)
135 	{
136 		d = DotProduct(dir, bytedirs[i]);
137 		if (d > bestd)
138 		{
139 			bestd = d;
140 			best = i;
141 		}
142 	}
143 
144 	return best;
145 }
146 
ByteToDir(int b,vec3_t dir)147 void ByteToDir( int b, vec3_t dir )
148 {
149 	if ( b < 0 || b >= NUMVERTEXNORMALS ) {
150 		VectorCopy( vec3_origin, dir );
151 		return;
152 	}
153 	VectorCopy(bytedirs[b], dir);
154 }
155 
156 /*
157 ** NormalToLatLong
158 **
159 ** We use two byte encoded normals in some space critical applications.
160 ** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
161 ** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
162 **
163 */
164 //rwwRMG - added
NormalToLatLong(const vec3_t normal,byte bytes[2])165 void NormalToLatLong( const vec3_t normal, byte bytes[2] )
166 {
167 	// check for singularities
168 	if (!normal[0] && !normal[1])
169 	{
170 		if ( normal[2] > 0.0f )
171 		{
172 			bytes[0] = 0;
173 			bytes[1] = 0;		// lat = 0, long = 0
174 		}
175 		else
176 		{
177 			bytes[0] = 128;
178 			bytes[1] = 0;		// lat = 0, long = 128
179 		}
180 	}
181 	else
182 	{
183 		int	a, b;
184 
185 		a = (int)(RAD2DEG( (float)atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ));
186 		a &= 0xff;
187 
188 		b = (int)(RAD2DEG( (float)acos( normal[2] ) ) * ( 255.0f / 360.0f ));
189 		b &= 0xff;
190 
191 		bytes[0] = b;	// longitude
192 		bytes[1] = a;	// lattitude
193 	}
194 }
195 
196 ///////////////////////////////////////////////////////////////////////////
197 //
198 //      RANDOM NUMBER GENERATION
199 //
200 ///////////////////////////////////////////////////////////////////////////
Q_rand(int * seed)201 int Q_rand( int *seed )
202 {
203 	*seed = (69069 * *seed + 1);
204 	return *seed;
205 }
206 
Q_random(int * seed)207 float Q_random( int *seed )
208 {
209 	return (Q_rand(seed) & 0xffff) / (float)0x10000;
210 }
211 
Q_crandom(int * seed)212 float Q_crandom( int *seed )
213 {
214 	return 2.0f * (Q_random(seed) - 0.5f);
215 }
216 
217 // This is the VC libc version of rand() without multiple seeds per thread or 12 levels
218 // of subroutine calls.
219 // Both calls have been designed to minimise the inherent number of float <--> int
220 // conversions and the additional math required to get the desired value.
221 // eg the typical tint = (rand() * 255) / 32768
222 // becomes tint = irand(0, 255)
223 static uint32_t	holdrand = 0x89abcdef;
224 
Rand_Init(int seed)225 void Rand_Init( int seed )
226 {
227 	holdrand = seed;
228 }
229 
230 // Returns a float min <= x < max (exclusive; will get max - 0.00001; but never max)
flrand(float min,float max)231 float flrand(float min, float max)
232 {
233 	float	result;
234 
235 	holdrand = (holdrand * 214013L) + 2531011L;
236 	result = (float)(holdrand >> 17); // 0 - 32767 range
237 	result = ((result * (max - min)) / (float)QRAND_MAX) + min;
238 
239 	return(result);
240 }
241 
Q_flrand(float min,float max)242 float Q_flrand( float min, float max )
243 {
244 	return flrand(min, max);
245 }
246 
247 // Returns an integer min <= x <= max (ie inclusive)
irand(int min,int max)248 int irand( int min, int max )
249 {
250 	int	result;
251 
252 	assert((max - min) < QRAND_MAX);
253 
254 	max++;
255 	holdrand = (holdrand * 214013L) + 2531011L;
256 	result = holdrand >> 17;
257 	result = ((result * (max - min)) >> 15) + min;
258 
259 	return result;
260 }
261 
Q_irand(int value1,int value2)262 int Q_irand( int value1, int value2 )
263 {
264 	return irand(value1, value2);
265 }
266 
267 /*
268 erandom
269 
270 This function produces a random number with a exponential
271 distribution and the specified mean value.
272 */
erandom(float mean)273 float erandom( float mean )
274 {
275 	float	r;
276 
277 	do {
278 		r = Q_flrand(0.0f, 1.0f);
279 	} while ( r == 0.0 );
280 
281 	return -mean * logf( r );
282 }
283 
284 
285 ///////////////////////////////////////////////////////////////////////////
286 //
287 //      MATH UTILITIES
288 //
289 ///////////////////////////////////////////////////////////////////////////
ClampChar(int i)290 signed char ClampChar( int i )
291 {
292 	if ( i < -128 ) {
293 		return -128;
294 	}
295 	if ( i > 127 ) {
296 		return 127;
297 	}
298 	return i;
299 }
300 
ClampShort(int i)301 signed short ClampShort( int i )
302 {
303 	if ( i < -32768 ) {
304 		return -32768;
305 	}
306 	if ( i > 0x7fff ) {
307 		return 0x7fff;
308 	}
309 	return i;
310 }
311 
Com_Clampi(int min,int max,int value)312 int Com_Clampi( int min, int max, int value )
313 {
314 	if ( value < min )
315 	{
316 		return min;
317 	}
318 	if ( value > max )
319 	{
320 		return max;
321 	}
322 	return value;
323 }
324 
Com_Clamp(float min,float max,float value)325 float Com_Clamp( float min, float max, float value ) {
326 	if ( value < min ) {
327 		return min;
328 	}
329 	if ( value > max ) {
330 		return max;
331 	}
332 	return value;
333 }
334 
Com_AbsClampi(int min,int max,int value)335 int Com_AbsClampi( int min, int max, int value )
336 {
337 	if( value < 0 )
338 	{
339 		return Com_Clampi( -max, -min, value );
340 	}
341 	else
342 	{
343 		return Com_Clampi( min, max, value );
344 	}
345 }
346 
Com_AbsClamp(float min,float max,float value)347 float Com_AbsClamp( float min, float max, float value )
348 {
349 	if( value < 0.0f )
350 	{
351 		return Com_Clamp( -max, -min, value );
352 	}
353 	else
354 	{
355 		return Com_Clamp( min, max, value );
356 	}
357 }
358 
359 
Q_rsqrt(float number)360 float Q_rsqrt( float number )
361 {
362 	byteAlias_t t;
363 	float x2, y;
364 	const float threehalfs = 1.5F;
365 
366 	x2 = number * 0.5F;
367 	y  = number;
368 	t.f  = number;
369 	t.i  = 0x5f3759df - ( t.i >> 1 );               // what the fuck?
370 	y  = t.f;
371 	y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration
372 												//	y  = y * ( threehalfs - ( x2 * y * y ) );   // 2nd iteration, this can be removed
373 
374 	assert( !Q_isnan(y) );
375 	return y;
376 }
377 
Q_fabs(float f)378 float Q_fabs( float f )
379 {
380 	byteAlias_t fi;
381 	fi.f = f;
382 	fi.i &= 0x7FFFFFFF;
383 	return fi.f;
384 }
385 
386 /*
387 =====================
388 Q_acos
389 
390 the msvc acos doesn't always return a value between -PI and PI:
391 
392 int i;
393 i = 1065353246;
394 acos(*(float*) &i) == -1.#IND0
395 
396 This should go in q_math but it is too late to add new traps
397 to game and ui
398 =====================
399 */
Q_acos(float c)400 float Q_acos(float c) {
401 	float angle;
402 
403 	angle = acosf(c);
404 
405 	if (angle > M_PI) {
406 		return (float)M_PI;
407 	}
408 	if (angle < -M_PI) {
409 		return (float)M_PI;
410 	}
411 	return angle;
412 }
413 
Q_asin(float c)414 float Q_asin(float c)
415 {
416 	float angle;
417 
418 	angle = asinf(c);
419 
420 	if (angle > M_PI) {
421 		return (float)M_PI;
422 	}
423 	if (angle < -M_PI) {
424 		return (float)M_PI;
425 	}
426 	return angle;
427 }
428 
Q_powf(float x,int y)429 float Q_powf ( float x, int y )
430 {
431 	float r = x;
432 	for ( y--; y>0; y-- )
433 		r *= x;
434 	return r;
435 }
436 
Q_isnan(float f)437 qboolean Q_isnan (float f)
438 {
439 #ifdef _MSC_VER
440 	return (qboolean)(_isnan (f) != 0);
441 #else
442 	return (qboolean)(isnan (f) != 0);
443 #endif
444 }
445 
Q_log2(int val)446 int Q_log2( int val )
447 {
448 	int answer;
449 
450 	answer = 0;
451 	while ( ( val>>=1 ) != 0 ) {
452 		answer++;
453 	}
454 	return answer;
455 }
456 
LerpAngle(float from,float to,float frac)457 float LerpAngle(float from, float to, float frac)
458 {
459 	float	a;
460 
461 	if ( to - from > 180 ) {
462 		to -= 360;
463 	}
464 	if ( to - from < -180 ) {
465 		to += 360;
466 	}
467 	a = from + frac * (to - from);
468 
469 	return a;
470 }
471 
472 /*
473 =================
474 AngleSubtract
475 
476 Always returns a value from -180 to 180
477 =================
478 */
AngleSubtract(float a1,float a2)479 float AngleSubtract( float a1, float a2 ) {
480 	float	a;
481 
482 	a = a1 - a2;
483 	a=fmodf(a,360);//chop it down quickly, then level it out
484 	while ( a > 180 ) {
485 		a -= 360;
486 	}
487 	while ( a < -180 ) {
488 		a += 360;
489 	}
490 	return a;
491 }
492 
AnglesSubtract(vec3_t v1,vec3_t v2,vec3_t v3)493 void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) {
494 	v3[0] = AngleSubtract( v1[0], v2[0] );
495 	v3[1] = AngleSubtract( v1[1], v2[1] );
496 	v3[2] = AngleSubtract( v1[2], v2[2] );
497 }
498 
AngleMod(float a)499 float AngleMod(float a) {
500 	a = (360.0f/65536) * ((int)(a*(65536/360.0f)) & 65535);
501 	return a;
502 }
503 
504 /*
505 =================
506 AngleNormalize360
507 
508 returns angle normalized to the range [0 <= angle < 360]
509 =================
510 */
AngleNormalize360(float angle)511 float AngleNormalize360 ( float angle ) {
512 	return (360.0f / 65536) * ((int)(angle * (65536 / 360.0f)) & 65535);
513 }
514 
515 /*
516 =================
517 AngleNormalize180
518 
519 returns angle normalized to the range [-180 < angle <= 180]
520 =================
521 */
AngleNormalize180(float angle)522 float AngleNormalize180 ( float angle ) {
523 	angle = AngleNormalize360( angle );
524 	if ( angle > 180.0 ) {
525 		angle -= 360.0;
526 	}
527 	return angle;
528 }
529 
530 /*
531 =================
532 AngleDelta
533 
534 returns the normalized delta from angle1 to angle2
535 =================
536 */
AngleDelta(float angle1,float angle2)537 float AngleDelta ( float angle1, float angle2 ) {
538 	return AngleNormalize180( angle1 - angle2 );
539 }
540 
541 
542 ///////////////////////////////////////////////////////////////////////////
543 //
544 //      GEOMETRIC UTILITIES
545 //
546 ///////////////////////////////////////////////////////////////////////////
547 /*
548 =====================
549 PlaneFromPoints
550 
551 Returns false if the triangle is degenrate.
552 The normal will point out of the clock for clockwise ordered points
553 =====================
554 */
PlaneFromPoints(vec4_t plane,const vec3_t a,const vec3_t b,const vec3_t c)555 qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
556 	vec3_t	d1, d2;
557 
558 	VectorSubtract( b, a, d1 );
559 	VectorSubtract( c, a, d2 );
560 	CrossProduct( d2, d1, plane );
561 	if ( VectorNormalize( plane ) == 0 ) {
562 		return qfalse;
563 	}
564 
565 	plane[3] = DotProduct( a, plane );
566 	return qtrue;
567 }
568 
569 /*
570 ===============
571 RotatePointAroundVector
572 
573 From q3mme
574 ===============
575 */
RotatePointAroundVector(vec3_t dst,const vec3_t dir,const vec3_t point,float degrees)576 void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) {
577 	float   m[3][3];
578 	float   c, s, t;
579 
580 	degrees = -DEG2RAD( degrees );
581 	s = sinf( degrees );
582 	c = cosf( degrees );
583 	t = 1 - c;
584 
585 	m[0][0] = t*dir[0]*dir[0] + c;
586 	m[0][1] = t*dir[0]*dir[1] + s*dir[2];
587 	m[0][2] = t*dir[0]*dir[2] - s*dir[1];
588 
589 	m[1][0] = t*dir[0]*dir[1] - s*dir[2];
590 	m[1][1] = t*dir[1]*dir[1] + c;
591 	m[1][2] = t*dir[1]*dir[2] + s*dir[0];
592 
593 	m[2][0] = t*dir[0]*dir[2] + s*dir[1];
594 	m[2][1] = t*dir[1]*dir[2] - s*dir[0];
595 	m[2][2] = t*dir[2]*dir[2] + c;
596 	VectorRotate( point, m, dst );
597 }
598 
RotateAroundDirection(matrix3_t axis,float yaw)599 void RotateAroundDirection( matrix3_t axis, float yaw ) {
600 
601 	// create an arbitrary axis[1]
602 	PerpendicularVector( axis[1], axis[0] );
603 
604 	// rotate it around axis[0] by yaw
605 	if ( yaw ) {
606 		vec3_t	temp;
607 
608 		VectorCopy( axis[1], temp );
609 		RotatePointAroundVector( axis[1], axis[0], temp, yaw );
610 	}
611 
612 	// cross to get axis[2]
613 	CrossProduct( axis[0], axis[1], axis[2] );
614 }
615 
vectoangles(const vec3_t value1,vec3_t angles)616 void vectoangles( const vec3_t value1, vec3_t angles ) {
617 	float	forward;
618 	float	yaw, pitch;
619 
620 	if ( value1[1] == 0 && value1[0] == 0 ) {
621 		yaw = 0;
622 		if ( value1[2] > 0 ) {
623 			pitch = 90;
624 		}
625 		else {
626 			pitch = 270;
627 		}
628 	}
629 	else {
630 		if ( value1[0] ) {
631 			yaw = ( atan2f ( value1[1], value1[0] ) * 180 / M_PI );
632 		}
633 		else if ( value1[1] > 0 ) {
634 			yaw = 90;
635 		}
636 		else {
637 			yaw = 270;
638 		}
639 		if ( yaw < 0 ) {
640 			yaw += 360;
641 		}
642 
643 		forward = sqrtf ( value1[0]*value1[0] + value1[1]*value1[1] );
644 		pitch = ( atan2f(value1[2], forward) * 180 / M_PI );
645 		if ( pitch < 0 ) {
646 			pitch += 360;
647 		}
648 	}
649 
650 	angles[PITCH] = -pitch;
651 	angles[YAW] = yaw;
652 	angles[ROLL] = 0;
653 }
654 
GetYawForDirection(const vec3_t p1,const vec3_t p2)655 vec_t GetYawForDirection( const vec3_t p1, const vec3_t p2 ) {
656 	vec3_t v, angles;
657 
658 	VectorSubtract( p2, p1, v );
659 	vectoangles( v, angles );
660 
661 	return angles[YAW];
662 }
663 
GetAnglesForDirection(const vec3_t p1,const vec3_t p2,vec3_t out)664 void GetAnglesForDirection( const vec3_t p1, const vec3_t p2, vec3_t out ) {
665 	vec3_t v;
666 
667 	VectorSubtract( p2, p1, v );
668 	vectoangles( v, out );
669 }
670 
ProjectPointOnPlane(vec3_t dst,const vec3_t p,const vec3_t normal)671 void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
672 {
673 	float d;
674 	vec3_t n;
675 	float inv_denom;
676 
677 	inv_denom =  DotProduct( normal, normal );
678 	assert( Q_fabs(inv_denom) != 0.0f );
679 	inv_denom = 1.0f / inv_denom;
680 
681 	d = DotProduct( normal, p ) * inv_denom;
682 
683 	n[0] = normal[0] * inv_denom;
684 	n[1] = normal[1] * inv_denom;
685 	n[2] = normal[2] * inv_denom;
686 
687 	dst[0] = p[0] - d * n[0];
688 	dst[1] = p[1] - d * n[1];
689 	dst[2] = p[2] - d * n[2];
690 }
691 
G_FindClosestPointOnLineSegment(const vec3_t start,const vec3_t end,const vec3_t from,vec3_t result)692 qboolean G_FindClosestPointOnLineSegment( const vec3_t start, const vec3_t end, const vec3_t from, vec3_t result )
693 {
694 	vec3_t	vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From;
695 	float	distEnd2From, distEnd2Result, theta, cos_theta, dot;
696 
697 	//Find the perpendicular vector to vec from start to end
698 	VectorSubtract( from, start, vecStart2From);
699 	VectorSubtract( end, start, vecStart2End);
700 
701 	dot = DotProductNormalize( vecStart2From, vecStart2End );
702 
703 	if ( dot <= 0 )
704 	{
705 		//The perpendicular would be beyond or through the start point
706 		VectorCopy( start, result );
707 		return qfalse;
708 	}
709 
710 	if ( dot == 1 )
711 	{
712 		//parallel, closer of 2 points will be the target
713 		if( (VectorLengthSquared( vecStart2From )) < (VectorLengthSquared( vecStart2End )) )
714 		{
715 			VectorCopy( from, result );
716 		}
717 		else
718 		{
719 			VectorCopy( end, result );
720 		}
721 		return qfalse;
722 	}
723 
724 	//Try other end
725 	VectorSubtract( from, end, vecEnd2From);
726 	VectorSubtract( start, end, vecEnd2Start);
727 
728 	dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
729 
730 	if ( dot <= 0 )
731 	{//The perpendicular would be beyond or through the start point
732 		VectorCopy( end, result );
733 		return qfalse;
734 	}
735 
736 	if ( dot == 1 )
737 	{//parallel, closer of 2 points will be the target
738 		if( (VectorLengthSquared( vecEnd2From )) < (VectorLengthSquared( vecEnd2Start )))
739 		{
740 			VectorCopy( from, result );
741 		}
742 		else
743 		{
744 			VectorCopy( end, result );
745 		}
746 		return qfalse;
747 	}
748 
749 	//		      /|
750 	//		  c  / |
751 	//		    /  |a
752 	//	theta  /)__|
753 	//		      b
754 	//cos(theta) = b / c
755 	//solve for b
756 	//b = cos(theta) * c
757 
758 	//angle between vecs end2from and end2start, should be between 0 and 90
759 	theta = 90 * (1 - dot);//theta
760 
761 						   //Get length of side from End2Result using sine of theta
762 	distEnd2From = VectorLength( vecEnd2From );//c
763 	cos_theta = cosf(DEG2RAD(theta));//cos(theta)
764 	distEnd2Result = cos_theta * distEnd2From;//b
765 
766 											  //Extrapolate to find result
767 	VectorNormalize( vecEnd2Start );
768 	VectorMA( end, distEnd2Result, vecEnd2Start, result );
769 
770 	//perpendicular intersection is between the 2 endpoints
771 	return qtrue;
772 }
773 
G_PointDistFromLineSegment(const vec3_t start,const vec3_t end,const vec3_t from)774 float G_PointDistFromLineSegment( const vec3_t start, const vec3_t end, const vec3_t from )
775 {
776 	vec3_t	vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From, intersection;
777 	float	distEnd2From, distStart2From, distEnd2Result, theta, cos_theta, dot;
778 
779 	//Find the perpendicular vector to vec from start to end
780 	VectorSubtract( from, start, vecStart2From);
781 	VectorSubtract( end, start, vecStart2End);
782 	VectorSubtract( from, end, vecEnd2From);
783 	VectorSubtract( start, end, vecEnd2Start);
784 
785 	dot = DotProductNormalize( vecStart2From, vecStart2End );
786 
787 	distStart2From = Distance( start, from );
788 	distEnd2From = Distance( end, from );
789 
790 	if ( dot <= 0 )
791 	{
792 		//The perpendicular would be beyond or through the start point
793 		return distStart2From;
794 	}
795 
796 	if ( dot == 1 )
797 	{
798 		//parallel, closer of 2 points will be the target
799 		return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
800 	}
801 
802 	//Try other end
803 
804 	dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
805 
806 	if ( dot <= 0 )
807 	{//The perpendicular would be beyond or through the end point
808 		return distEnd2From;
809 	}
810 
811 	if ( dot == 1 )
812 	{//parallel, closer of 2 points will be the target
813 		return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
814 	}
815 
816 	//		      /|
817 	//		  c  / |
818 	//		    /  |a
819 	//	theta  /)__|
820 	//		      b
821 	//cos(theta) = b / c
822 	//solve for b
823 	//b = cos(theta) * c
824 
825 	//angle between vecs end2from and end2start, should be between 0 and 90
826 	theta = 90 * (1 - dot);//theta
827 
828 						   //Get length of side from End2Result using sine of theta
829 	cos_theta = cosf(DEG2RAD(theta));//cos(theta)
830 	distEnd2Result = cos_theta * distEnd2From;//b
831 
832 											  //Extrapolate to find result
833 	VectorNormalize( vecEnd2Start );
834 	VectorMA( end, distEnd2Result, vecEnd2Start, intersection );
835 
836 	//perpendicular intersection is between the 2 endpoints, return dist to it from from
837 	return Distance( intersection, from );
838 }
839 
MatrixMultiply(float in1[3][3],float in2[3][3],float out[3][3])840 void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
841 	out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
842 		in1[0][2] * in2[2][0];
843 	out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
844 		in1[0][2] * in2[2][1];
845 	out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
846 		in1[0][2] * in2[2][2];
847 	out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
848 		in1[1][2] * in2[2][0];
849 	out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
850 		in1[1][2] * in2[2][1];
851 	out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
852 		in1[1][2] * in2[2][2];
853 	out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
854 		in1[2][2] * in2[2][0];
855 	out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
856 		in1[2][2] * in2[2][1];
857 	out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
858 		in1[2][2] * in2[2][2];
859 }
860 
861 
862 ///////////////////////////////////////////////////////////////////////////
863 //
864 //      BOUNDING BOX
865 //
866 ///////////////////////////////////////////////////////////////////////////
RadiusFromBounds(const vec3_t mins,const vec3_t maxs)867 float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
868 	int		i;
869 	vec3_t	corner;
870 	float	a, b;
871 
872 	for (i=0 ; i<3 ; i++) {
873 		a = fabsf( mins[i] );
874 		b = fabsf( maxs[i] );
875 		corner[i] = a > b ? a : b;
876 	}
877 
878 	return VectorLength (corner);
879 }
880 
ClearBounds(vec3_t mins,vec3_t maxs)881 void ClearBounds( vec3_t mins, vec3_t maxs ) {
882 	mins[0] = mins[1] = mins[2] = 100000;
883 	maxs[0] = maxs[1] = maxs[2] = -100000;
884 }
885 
AddPointToBounds(const vec3_t v,vec3_t mins,vec3_t maxs)886 void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
887 	if ( v[0] < mins[0] ) {
888 		mins[0] = v[0];
889 	}
890 	if ( v[0] > maxs[0]) {
891 		maxs[0] = v[0];
892 	}
893 
894 	if ( v[1] < mins[1] ) {
895 		mins[1] = v[1];
896 	}
897 	if ( v[1] > maxs[1]) {
898 		maxs[1] = v[1];
899 	}
900 
901 	if ( v[2] < mins[2] ) {
902 		mins[2] = v[2];
903 	}
904 	if ( v[2] > maxs[2]) {
905 		maxs[2] = v[2];
906 	}
907 }
908 
909 
910 ///////////////////////////////////////////////////////////////////////////
911 //
912 //      PLANE
913 //
914 ///////////////////////////////////////////////////////////////////////////
SetPlaneSignbits(cplane_t * out)915 void SetPlaneSignbits( cplane_t *out )
916 {
917 	int	bits, j;
918 
919 	// for fast box on planeside test
920 	bits = 0;
921 	for (j=0 ; j<3 ; j++) {
922 		if (out->normal[j] < 0) {
923 			bits |= 1<<j;
924 		}
925 	}
926 	out->signbits = bits;
927 }
928 
PlaneTypeForNormal(vec3_t normal)929 int	PlaneTypeForNormal( vec3_t normal )
930 {
931 	if ( normal[0] == 1.0 )
932 		return PLANE_X;
933 	if ( normal[1] == 1.0 )
934 		return PLANE_Y;
935 	if ( normal[2] == 1.0 )
936 		return PLANE_Z;
937 
938 	return PLANE_NON_AXIAL;
939 }
940 
941 /*
942 ==================
943 BoxOnPlaneSide
944 
945 Returns 1, 2, or 1 + 2
946 ==================
947 */
BoxOnPlaneSide(vec3_t emins,vec3_t emaxs,cplane_t * p)948 int BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, cplane_t *p)
949 {
950 	float	dist[2];
951 	int		sides, b, i;
952 
953 	// fast axial cases
954 	if (p->type < 3)
955 	{
956 		if (p->dist <= emins[p->type])
957 			return 1;
958 		if (p->dist >= emaxs[p->type])
959 			return 2;
960 		return 3;
961 	}
962 
963 	// general case
964 	dist[0] = dist[1] = 0;
965 	if (p->signbits < 8) // >= 8: default case is original code (dist[0]=dist[1]=0)
966 	{
967 		for (i=0 ; i<3 ; i++)
968 		{
969 			b = (p->signbits >> i) & 1;
970 			dist[ b] += p->normal[i]*emaxs[i];
971 			dist[!b] += p->normal[i]*emins[i];
972 		}
973 	}
974 
975 	sides = 0;
976 	if (dist[0] >= p->dist)
977 		sides = 1;
978 	if (dist[1] < p->dist)
979 		sides |= 2;
980 
981 	return sides;
982 }
983 
984 
985 ///////////////////////////////////////////////////////////////////////////
986 //
987 //      AXIS
988 //
989 ///////////////////////////////////////////////////////////////////////////
990 matrix3_t	axisDefault = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
991 
AxisClear(matrix3_t axis)992 void AxisClear( matrix3_t axis ) {
993 	axis[0][0] = 1;
994 	axis[0][1] = 0;
995 	axis[0][2] = 0;
996 	axis[1][0] = 0;
997 	axis[1][1] = 1;
998 	axis[1][2] = 0;
999 	axis[2][0] = 0;
1000 	axis[2][1] = 0;
1001 	axis[2][2] = 1;
1002 }
1003 
AxisCopy(matrix3_t in,matrix3_t out)1004 void AxisCopy( matrix3_t in, matrix3_t out ) {
1005 	VectorCopy( in[0], out[0] );
1006 	VectorCopy( in[1], out[1] );
1007 	VectorCopy( in[2], out[2] );
1008 }
1009 
AnglesToAxis(const vec3_t angles,matrix3_t axis)1010 void AnglesToAxis( const vec3_t angles, matrix3_t axis ) {
1011 	vec3_t right;
1012 
1013 	// angle vectors returns "right" instead of "y axis"
1014 	AngleVectors( angles, axis[0], right, axis[2] );
1015 	VectorSubtract( vec3_origin, right, axis[1] );
1016 }
1017 
1018 
1019 ///////////////////////////////////////////////////////////////////////////
1020 //
1021 //      VEC2
1022 //
1023 ///////////////////////////////////////////////////////////////////////////
1024 vec2_t		vec2_zero = {0,0};
1025 
VectorAdd2(const vec2_t vec1,const vec2_t vec2,vec2_t vecOut)1026 void VectorAdd2( const vec2_t vec1, const vec2_t vec2, vec2_t vecOut )
1027 {
1028 	vecOut[0] = vec1[0]+vec2[0];
1029 	vecOut[1] = vec1[1]+vec2[1];
1030 }
1031 
VectorSubtract2(const vec2_t vec1,const vec2_t vec2,vec2_t vecOut)1032 void VectorSubtract2( const vec2_t vec1, const vec2_t vec2, vec2_t vecOut )
1033 {
1034 	vecOut[0] = vec1[0]-vec2[0];
1035 	vecOut[1] = vec1[1]-vec2[1];
1036 }
1037 
VectorScale2(const vec2_t vecIn,float scale,vec2_t vecOut)1038 void VectorScale2( const vec2_t vecIn, float scale, vec2_t vecOut )
1039 {
1040 	vecOut[0] = vecIn[0]*scale;
1041 	vecOut[1] = vecIn[1]*scale;
1042 }
1043 
VectorMA2(const vec2_t vec1,float scale,const vec2_t vec2,vec2_t vecOut)1044 void VectorMA2( const vec2_t vec1, float scale, const vec2_t vec2, vec2_t vecOut )
1045 {
1046 	vecOut[0] = vec1[0] + scale*vec2[0];
1047 	vecOut[1] = vec1[1] + scale*vec2[1];
1048 }
1049 
VectorSet2(vec2_t vec,float x,float y)1050 void VectorSet2( vec2_t vec, float x, float y )
1051 {
1052 	vec[0]=x; vec[1]=y;
1053 }
1054 
VectorClear2(vec2_t vec)1055 void VectorClear2( vec2_t vec )
1056 {
1057 	vec[0] = vec[1] = 0.0f;
1058 }
1059 
VectorCopy2(const vec2_t vecIn,vec2_t vecOut)1060 void VectorCopy2( const vec2_t vecIn, vec2_t vecOut )
1061 {
1062 	vecOut[0] = vecIn[0];
1063 	vecOut[1] = vecIn[1];
1064 }
1065 
1066 
1067 ///////////////////////////////////////////////////////////////////////////
1068 //
1069 //      VEC3
1070 //
1071 ///////////////////////////////////////////////////////////////////////////
1072 vec3_t		vec3_origin = {0,0,0};
1073 
VectorAdd(const vec3_t vec1,const vec3_t vec2,vec3_t vecOut)1074 void VectorAdd( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut )
1075 {
1076 	vecOut[0] = vec1[0]+vec2[0];
1077 	vecOut[1] = vec1[1]+vec2[1];
1078 	vecOut[2] = vec1[2]+vec2[2];
1079 }
1080 
VectorSubtract(const vec3_t vec1,const vec3_t vec2,vec3_t vecOut)1081 void VectorSubtract( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut )
1082 {
1083 	vecOut[0] = vec1[0]-vec2[0];
1084 	vecOut[1] = vec1[1]-vec2[1];
1085 	vecOut[2] = vec1[2]-vec2[2];
1086 }
1087 
VectorScale(const vec3_t vecIn,float scale,vec3_t vecOut)1088 void VectorScale( const vec3_t vecIn, float scale, vec3_t vecOut )
1089 {
1090 	vecOut[0] = vecIn[0]*scale;
1091 	vecOut[1] = vecIn[1]*scale;
1092 	vecOut[2] = vecIn[2]*scale;
1093 }
1094 
VectorMA(const vec3_t vec1,float scale,const vec3_t vec2,vec3_t vecOut)1095 void VectorMA( const vec3_t vec1, float scale, const vec3_t vec2, vec3_t vecOut )
1096 {
1097 	vecOut[0] = vec1[0] + scale*vec2[0];
1098 	vecOut[1] = vec1[1] + scale*vec2[1];
1099 	vecOut[2] = vec1[2] + scale*vec2[2];
1100 }
1101 
VectorSet(vec3_t vec,float x,float y,float z)1102 void VectorSet( vec3_t vec, float x, float y, float z )
1103 {
1104 	vec[0]=x; vec[1]=y; vec[2]=z;
1105 }
1106 
VectorClear(vec3_t vec)1107 void VectorClear( vec3_t vec )
1108 {
1109 	vec[0] = vec[1] = vec[2] = 0.0f;
1110 }
1111 
VectorCopy(const vec3_t vecIn,vec3_t vecOut)1112 void VectorCopy( const vec3_t vecIn, vec3_t vecOut )
1113 {
1114 	vecOut[0] = vecIn[0];
1115 	vecOut[1] = vecIn[1];
1116 	vecOut[2] = vecIn[2];
1117 }
1118 
VectorLength(const vec3_t vec)1119 float VectorLength( const vec3_t vec )
1120 {
1121 	return (float)sqrt( vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2] );
1122 }
1123 
VectorLengthSquared(const vec3_t vec)1124 float VectorLengthSquared( const vec3_t vec )
1125 {
1126 	return (vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
1127 }
1128 
Distance(const vec3_t p1,const vec3_t p2)1129 float Distance( const vec3_t p1, const vec3_t p2 )
1130 {
1131 	vec3_t	v;
1132 
1133 	VectorSubtract( p2, p1, v );
1134 	return VectorLength( v );
1135 }
1136 
DistanceSquared(const vec3_t p1,const vec3_t p2)1137 float DistanceSquared( const vec3_t p1, const vec3_t p2 )
1138 {
1139 	vec3_t	v;
1140 
1141 	VectorSubtract( p2, p1, v );
1142 	return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
1143 }
1144 
1145 // fast vector normalize routine that does not check to make sure
1146 // that length != 0, nor does it return length, uses rsqrt approximation
VectorNormalizeFast(vec3_t vec)1147 void VectorNormalizeFast( vec3_t vec )
1148 {
1149 	float ilength;
1150 
1151 	ilength = Q_rsqrt( DotProduct( vec, vec ) );
1152 
1153 	vec[0] *= ilength;
1154 	vec[1] *= ilength;
1155 	vec[2] *= ilength;
1156 }
1157 
VectorNormalize(vec3_t vec)1158 float VectorNormalize( vec3_t vec )
1159 {
1160 	float	length, ilength;
1161 
1162 	length = vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2];
1163 	length = sqrtf( length );
1164 
1165 	if ( length ) {
1166 		ilength = 1/length;
1167 		vec[0] *= ilength;
1168 		vec[1] *= ilength;
1169 		vec[2] *= ilength;
1170 	}
1171 
1172 	return length;
1173 }
1174 
VectorNormalize2(const vec3_t vec,vec3_t vecOut)1175 float VectorNormalize2( const vec3_t vec, vec3_t vecOut )
1176 {
1177 	float	length, ilength;
1178 
1179 	length = vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2];
1180 	length = sqrtf( length );
1181 
1182 	if ( length ) {
1183 		ilength = 1/length;
1184 		vecOut[0] = vec[0]*ilength;
1185 		vecOut[1] = vec[1]*ilength;
1186 		vecOut[2] = vec[2]*ilength;
1187 	}
1188 	else
1189 		VectorClear( vecOut );
1190 
1191 	return length;
1192 }
1193 
VectorAdvance(const vec3_t veca,const float scale,const vec3_t vecb,vec3_t vecc)1194 void VectorAdvance( const vec3_t veca, const float scale, const vec3_t vecb, vec3_t vecc)
1195 {
1196 	vecc[0] = veca[0] + (scale * (vecb[0] - veca[0]));
1197 	vecc[1] = veca[1] + (scale * (vecb[1] - veca[1]));
1198 	vecc[2] = veca[2] + (scale * (vecb[2] - veca[2]));
1199 }
1200 
VectorInc(vec3_t vec)1201 void VectorInc( vec3_t vec ) {
1202 	vec[0] += 1.0f; vec[1] += 1.0f; vec[2] += 1.0f;
1203 }
1204 
VectorDec(vec3_t vec)1205 void VectorDec( vec3_t vec ) {
1206 	vec[0] -= 1.0f; vec[1] -= 1.0f; vec[2] -= 1.0f;
1207 }
1208 
VectorInverse(vec3_t vec)1209 void VectorInverse( vec3_t vec ) {
1210 	vec[0] = -vec[0]; vec[1] = -vec[1]; vec[2] = -vec[2];
1211 }
1212 
CrossProduct(const vec3_t vec1,const vec3_t vec2,vec3_t vecOut)1213 void CrossProduct( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut ) {
1214 	vecOut[0] = vec1[1]*vec2[2] - vec1[2]*vec2[1];
1215 	vecOut[1] = vec1[2]*vec2[0] - vec1[0]*vec2[2];
1216 	vecOut[2] = vec1[0]*vec2[1] - vec1[1]*vec2[0];
1217 }
1218 
DotProduct(const vec3_t vec1,const vec3_t vec2)1219 float DotProduct( const vec3_t vec1, const vec3_t vec2 ) {
1220 	return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2];
1221 }
1222 
VectorCompare(const vec3_t vec1,const vec3_t vec2)1223 qboolean VectorCompare( const vec3_t vec1, const vec3_t vec2 )
1224 {
1225 	return (qboolean)(vec1[0] == vec2[0] && vec1[1] == vec2[1] && vec1[2] == vec2[2]);
1226 }
1227 
VectorCompare2(const vec3_t v1,const vec3_t v2)1228 qboolean VectorCompare2( const vec3_t v1, const vec3_t v2 )
1229 {
1230 	if ( v1[0] > (v2[0] + 0.0001f) || v1[0] < (v2[0] - 0.0001f) ||
1231 			v1[1] > (v2[1] + 0.0001f) || v1[1] < (v2[1] + 0.0001f) ||
1232 			v1[2] > (v2[2] + 0.0001f) || v1[2] < (v2[2] + 0.0001f) )
1233 	{
1234 		return qfalse;
1235 	}
1236 
1237 	return qtrue;
1238 }
1239 
SnapVector(float * v)1240 void SnapVector( float *v )
1241 {
1242 #if defined(_MSC_VER) && !defined(idx64)
1243 	// pitiful attempt to reduce _ftol2 calls -rww
1244 	static int i;
1245 	static float f;
1246 
1247 	f = *v;
1248 	__asm fld f
1249 	__asm fistp	i
1250 	*v = (float)i;
1251 	v++;
1252 	f = *v;
1253 	__asm fld f
1254 	__asm fistp i
1255 	*v = (float)i;
1256 	v++;
1257 	f = *v;
1258 	__asm fld f
1259 	__asm fistp i
1260 	*v = (float)i;
1261 #else // mac, linux, mingw
1262 	v[0] = (int)v[0];
1263 	v[1] = (int)v[1];
1264 	v[2] = (int)v[2];
1265 #endif
1266 }
1267 
DistanceHorizontal(const vec3_t p1,const vec3_t p2)1268 float DistanceHorizontal( const vec3_t p1, const vec3_t p2 )
1269 {
1270 	vec3_t	v;
1271 
1272 	VectorSubtract( p2, p1, v );
1273 	return sqrtf( v[0]*v[0] + v[1]*v[1] ); //Leave off the z component
1274 }
1275 
DistanceHorizontalSquared(const vec3_t p1,const vec3_t p2)1276 float DistanceHorizontalSquared( const vec3_t p1, const vec3_t p2 )
1277 {
1278 	vec3_t	v;
1279 
1280 	VectorSubtract( p2, p1, v );
1281 	return v[0]*v[0] + v[1]*v[1];	//Leave off the z component
1282 }
1283 
1284 /*
1285 ================
1286 MakeNormalVectors
1287 
1288 Given a normalized forward vector, create two
1289 other perpendicular vectors
1290 ================
1291 */
MakeNormalVectors(const vec3_t forward,vec3_t right,vec3_t up)1292 void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
1293 	float		d;
1294 
1295 	// this rotate and negate guarantees a vector
1296 	// not colinear with the original
1297 	right[1] = -forward[0];
1298 	right[2] = forward[1];
1299 	right[0] = forward[2];
1300 
1301 	d = DotProduct(right, forward);
1302 	VectorMA(right, -d, forward, right);
1303 	VectorNormalize (right);
1304 	CrossProduct (right, forward, up);
1305 }
1306 
VectorRotate(const vec3_t in,matrix3_t matrix,vec3_t out)1307 void VectorRotate( const vec3_t in, matrix3_t matrix, vec3_t out )
1308 {
1309 	out[0] = DotProduct( in, matrix[0] );
1310 	out[1] = DotProduct( in, matrix[1] );
1311 	out[2] = DotProduct( in, matrix[2] );
1312 }
1313 
AngleVectors(const vec3_t angles,vec3_t forward,vec3_t right,vec3_t up)1314 void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
1315 	float		angle;
1316 	static float		sr, sp, sy, cr, cp, cy;
1317 	// static to help MS compiler fp bugs
1318 
1319 	angle = angles[YAW] * (M_PI*2 / 360);
1320 	sy = sinf(angle);
1321 	cy = cosf(angle);
1322 	angle = angles[PITCH] * (M_PI*2 / 360);
1323 	sp = sinf(angle);
1324 	cp = cosf(angle);
1325 	angle = angles[ROLL] * (M_PI*2 / 360);
1326 	sr = sinf(angle);
1327 	cr = cosf(angle);
1328 
1329 	if (forward)
1330 	{
1331 		forward[0] = cp*cy;
1332 		forward[1] = cp*sy;
1333 		forward[2] = -sp;
1334 	}
1335 	if (right)
1336 	{
1337 		right[0] = (-1*sr*sp*cy+-1*cr*-sy);
1338 		right[1] = (-1*sr*sp*sy+-1*cr*cy);
1339 		right[2] = -1*sr*cp;
1340 	}
1341 	if (up)
1342 	{
1343 		up[0] = (cr*sp*cy+-sr*-sy);
1344 		up[1] = (cr*sp*sy+-sr*cy);
1345 		up[2] = cr*cp;
1346 	}
1347 }
1348 
1349 /*
1350 ** assumes "src" is normalized
1351 */
PerpendicularVector(vec3_t dst,const vec3_t src)1352 void PerpendicularVector( vec3_t dst, const vec3_t src )
1353 {
1354 	int	pos;
1355 	int i;
1356 	float minelem = 1.0F;
1357 	vec3_t tempvec;
1358 
1359 	/*
1360 	** find the smallest magnitude axially aligned vector
1361 	*/
1362 	for ( pos = 0, i = 0; i < 3; i++ )
1363 	{
1364 		if ( fabs( src[i] ) < minelem )
1365 		{
1366 			pos = i;
1367 			minelem = fabsf( src[i] );
1368 		}
1369 	}
1370 	tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
1371 	tempvec[pos] = 1.0F;
1372 
1373 	/*
1374 	** project the point onto the plane defined by src
1375 	*/
1376 	ProjectPointOnPlane( dst, tempvec, src );
1377 
1378 	/*
1379 	** normalize the result
1380 	*/
1381 	VectorNormalize( dst );
1382 }
1383 
DotProductNormalize(const vec3_t inVec1,const vec3_t inVec2)1384 float DotProductNormalize( const vec3_t inVec1, const vec3_t inVec2 )
1385 {
1386 	vec3_t	v1, v2;
1387 
1388 	VectorNormalize2( inVec1, v1 );
1389 	VectorNormalize2( inVec2, v2 );
1390 
1391 	return DotProduct(v1, v2);
1392 }
1393 
1394 
1395 ///////////////////////////////////////////////////////////////////////////
1396 //
1397 //      VEC4
1398 //
1399 ///////////////////////////////////////////////////////////////////////////
VectorScale4(const vec4_t vecIn,float scale,vec4_t vecOut)1400 void VectorScale4( const vec4_t vecIn, float scale, vec4_t vecOut )
1401 {
1402 	vecOut[0] = vecIn[0]*scale;
1403 	vecOut[1] = vecIn[1]*scale;
1404 	vecOut[2] = vecIn[2]*scale;
1405 	vecOut[3] = vecIn[3]*scale;
1406 }
1407 
VectorCopy4(const vec4_t vecIn,vec4_t vecOut)1408 void VectorCopy4( const vec4_t vecIn, vec4_t vecOut )
1409 {
1410 	vecOut[0] = vecIn[0];
1411 	vecOut[1] = vecIn[1];
1412 	vecOut[2] = vecIn[2];
1413 	vecOut[3] = vecIn[3];
1414 }
1415 
VectorSet4(vec4_t vec,float x,float y,float z,float w)1416 void VectorSet4( vec4_t vec, float x, float y, float z, float w )
1417 {
1418 	vec[0]=x; vec[1]=y; vec[2]=z; vec[3]=w;
1419 }
1420 
VectorClear4(vec4_t vec)1421 void VectorClear4( vec4_t vec )
1422 {
1423 	vec[0] = vec[1] = vec[2] = vec[3] = 0;
1424 }
1425 
1426 ///////////////////////////////////////////////////////////////////////////
1427 //
1428 //      VEC5
1429 //
1430 ///////////////////////////////////////////////////////////////////////////
VectorSet5(vec5_t vec,float x,float y,float z,float w,float u)1431 void VectorSet5( vec5_t vec, float x, float y, float z, float w, float u ) {
1432 	vec[0]=x; vec[1]=y; vec[2]=z; vec[3]=w; vec[4]=u;
1433 }
1434