1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3 
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8 
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 
13 See the GNU General Public License for more details.
14 
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18 
19 */
20 // mathlib.c -- math primitives
21 
22 #include "quakedef.h"
23 
24 #include <math.h>
25 
26 vec3_t vec3_origin = {0,0,0};
27 float ixtable[4096];
28 
29 /*-----------------------------------------------------------------*/
30 
31 float m_bytenormals[NUMVERTEXNORMALS][3] =
32 {
33 {-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f},
34 {-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f},
35 {-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f},
36 {0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f},
37 {0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f},
38 {0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f},
39 {0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f},
40 {0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f},
41 {-0.809017f, 0.309017f, 0.500000f}, {-0.587785f, 0.425325f, 0.688191f},
42 {-0.850651f, 0.525731f, 0.000000f}, {-0.864188f, 0.442863f, 0.238856f},
43 {-0.716567f, 0.681718f, 0.147621f}, {-0.688191f, 0.587785f, 0.425325f},
44 {-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f},
45 {-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f},
46 {-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f},
47 {0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f},
48 {0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f},
49 {0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f},
50 {-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f},
51 {0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f},
52 {0.238856f, 0.864188f, -0.442863f}, {0.262866f, 0.951056f, -0.162460f},
53 {0.500000f, 0.809017f, -0.309017f}, {0.850651f, 0.525731f, 0.000000f},
54 {0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f},
55 {0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f},
56 {0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f},
57 {0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f},
58 {0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f},
59 {1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f},
60 {0.850651f, -0.525731f, 0.000000f}, {0.955423f, -0.295242f, 0.000000f},
61 {0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f},
62 {0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f},
63 {0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f},
64 {0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f},
65 {0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f},
66 {0.681718f, -0.147621f, -0.716567f}, {0.850651f, 0.000000f, -0.525731f},
67 {0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f},
68 {0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f},
69 {0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f},
70 {0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f},
71 {0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f},
72 {-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f},
73 {-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f},
74 {-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f},
75 {0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f},
76 {0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f},
77 {-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f},
78 {0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f},
79 {0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f},
80 {0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f},
81 {0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f},
82 {0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f},
83 {0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f},
84 {0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f},
85 {0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f},
86 {0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f},
87 {0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f},
88 {0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f},
89 {0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f},
90 {-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f},
91 {-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f},
92 {-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f},
93 {-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f},
94 {-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f},
95 {-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f},
96 {-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f},
97 {-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f},
98 {-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f},
99 {-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f},
100 {0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f},
101 {0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f},
102 {0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f},
103 {0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f},
104 {-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f},
105 {-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f},
106 {-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f},
107 {-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f},
108 {-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f},
109 {-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f},
110 {-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f},
111 {-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f},
112 {-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f},
113 {-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f},
114 };
115 
116 #if 0
117 unsigned char NormalToByte(const vec3_t n)
118 {
119 	int i, best;
120 	float bestdistance, distance;
121 
122 	best = 0;
123 	bestdistance = DotProduct (n, m_bytenormals[0]);
124 	for (i = 1;i < NUMVERTEXNORMALS;i++)
125 	{
126 		distance = DotProduct (n, m_bytenormals[i]);
127 		if (distance > bestdistance)
128 		{
129 			bestdistance = distance;
130 			best = i;
131 		}
132 	}
133 	return best;
134 }
135 
136 // note: uses byte partly to force unsigned for the validity check
137 void ByteToNormal(unsigned char num, vec3_t n)
138 {
139 	if (num < NUMVERTEXNORMALS)
140 		VectorCopy(m_bytenormals[num], n);
141 	else
142 		VectorClear(n); // FIXME: complain?
143 }
144 
145 // assumes "src" is normalized
146 void PerpendicularVector( vec3_t dst, const vec3_t src )
147 {
148 	// LordHavoc: optimized to death and beyond
149 	int pos;
150 	float minelem;
151 
152 	if (src[0])
153 	{
154 		dst[0] = 0;
155 		if (src[1])
156 		{
157 			dst[1] = 0;
158 			if (src[2])
159 			{
160 				dst[2] = 0;
161 				pos = 0;
162 				minelem = fabs(src[0]);
163 				if (fabs(src[1]) < minelem)
164 				{
165 					pos = 1;
166 					minelem = fabs(src[1]);
167 				}
168 				if (fabs(src[2]) < minelem)
169 					pos = 2;
170 
171 				dst[pos] = 1;
172 				dst[0] -= src[pos] * src[0];
173 				dst[1] -= src[pos] * src[1];
174 				dst[2] -= src[pos] * src[2];
175 
176 				// normalize the result
177 				VectorNormalize(dst);
178 			}
179 			else
180 				dst[2] = 1;
181 		}
182 		else
183 		{
184 			dst[1] = 1;
185 			dst[2] = 0;
186 		}
187 	}
188 	else
189 	{
190 		dst[0] = 1;
191 		dst[1] = 0;
192 		dst[2] = 0;
193 	}
194 }
195 #endif
196 
197 
198 // LordHavoc: like AngleVectors, but taking a forward vector instead of angles, useful!
VectorVectors(const vec3_t forward,vec3_t right,vec3_t up)199 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
200 {
201 	// NOTE: this is consistent to AngleVectors applied to AnglesFromVectors
202 	if (forward[0] == 0 && forward[1] == 0)
203 	{
204 		if(forward[2] > 0)
205 		{
206 			VectorSet(right, 0, -1, 0);
207 			VectorSet(up, -1, 0, 0);
208 		}
209 		else
210 		{
211 			VectorSet(right, 0, -1, 0);
212 			VectorSet(up, 1, 0, 0);
213 		}
214 	}
215 	else
216 	{
217 		right[0] = forward[1];
218 		right[1] = -forward[0];
219 		right[2] = 0;
220 		VectorNormalize(right);
221 
222 		up[0] = (-forward[2]*forward[0]);
223 		up[1] = (-forward[2]*forward[1]);
224 		up[2] = (forward[0]*forward[0] + forward[1]*forward[1]);
225 		VectorNormalize(up);
226 	}
227 }
228 
VectorVectorsDouble(const double * forward,double * right,double * up)229 void VectorVectorsDouble(const double *forward, double *right, double *up)
230 {
231 	if (forward[0] == 0 && forward[1] == 0)
232 	{
233 		if(forward[2] > 0)
234 		{
235 			VectorSet(right, 0, -1, 0);
236 			VectorSet(up, -1, 0, 0);
237 		}
238 		else
239 		{
240 			VectorSet(right, 0, -1, 0);
241 			VectorSet(up, 1, 0, 0);
242 		}
243 	}
244 	else
245 	{
246 		right[0] = forward[1];
247 		right[1] = -forward[0];
248 		right[2] = 0;
249 		VectorNormalize(right);
250 
251 		up[0] = (-forward[2]*forward[0]);
252 		up[1] = (-forward[2]*forward[1]);
253 		up[2] = (forward[0]*forward[0] + forward[1]*forward[1]);
254 		VectorNormalize(up);
255 	}
256 }
257 
RotatePointAroundVector(vec3_t dst,const vec3_t dir,const vec3_t point,float degrees)258 void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees )
259 {
260 	float t0, t1;
261 	float angle, c, s;
262 	vec3_t vr, vu, vf;
263 
264 	angle = DEG2RAD(degrees);
265 	c = cos(angle);
266 	s = sin(angle);
267 	VectorCopy(dir, vf);
268 	VectorVectors(vf, vr, vu);
269 
270 	t0 = vr[0] *  c + vu[0] * -s;
271 	t1 = vr[0] *  s + vu[0] *  c;
272 	dst[0] = (t0 * vr[0] + t1 * vu[0] + vf[0] * vf[0]) * point[0]
273 	       + (t0 * vr[1] + t1 * vu[1] + vf[0] * vf[1]) * point[1]
274 	       + (t0 * vr[2] + t1 * vu[2] + vf[0] * vf[2]) * point[2];
275 
276 	t0 = vr[1] *  c + vu[1] * -s;
277 	t1 = vr[1] *  s + vu[1] *  c;
278 	dst[1] = (t0 * vr[0] + t1 * vu[0] + vf[1] * vf[0]) * point[0]
279 	       + (t0 * vr[1] + t1 * vu[1] + vf[1] * vf[1]) * point[1]
280 	       + (t0 * vr[2] + t1 * vu[2] + vf[1] * vf[2]) * point[2];
281 
282 	t0 = vr[2] *  c + vu[2] * -s;
283 	t1 = vr[2] *  s + vu[2] *  c;
284 	dst[2] = (t0 * vr[0] + t1 * vu[0] + vf[2] * vf[0]) * point[0]
285 	       + (t0 * vr[1] + t1 * vu[1] + vf[2] * vf[1]) * point[1]
286 	       + (t0 * vr[2] + t1 * vu[2] + vf[2] * vf[2]) * point[2];
287 }
288 
289 /*-----------------------------------------------------------------*/
290 
291 // returns the smallest integer greater than or equal to "value", or 0 if "value" is too big
CeilPowerOf2(unsigned int value)292 unsigned int CeilPowerOf2(unsigned int value)
293 {
294 	unsigned int ceilvalue;
295 
296 	if (value > (1U << (sizeof(int) * 8 - 1)))
297 		return 0;
298 
299 	ceilvalue = 1;
300 	while (ceilvalue < value)
301 		ceilvalue <<= 1;
302 
303 	return ceilvalue;
304 }
305 
306 
307 /*-----------------------------------------------------------------*/
308 
309 
PlaneClassify(mplane_t * p)310 void PlaneClassify(mplane_t *p)
311 {
312 	// for optimized plane comparisons
313 	if (p->normal[0] == 1)
314 		p->type = 0;
315 	else if (p->normal[1] == 1)
316 		p->type = 1;
317 	else if (p->normal[2] == 1)
318 		p->type = 2;
319 	else
320 		p->type = 3;
321 	// for BoxOnPlaneSide
322 	p->signbits = 0;
323 	if (p->normal[0] < 0) // 1
324 		p->signbits |= 1;
325 	if (p->normal[1] < 0) // 2
326 		p->signbits |= 2;
327 	if (p->normal[2] < 0) // 4
328 		p->signbits |= 4;
329 }
330 
BoxOnPlaneSide(const vec3_t emins,const vec3_t emaxs,const mplane_t * p)331 int BoxOnPlaneSide(const vec3_t emins, const vec3_t emaxs, const mplane_t *p)
332 {
333 	if (p->type < 3)
334 		return ((emaxs[p->type] >= p->dist) | ((emins[p->type] < p->dist) << 1));
335 	switch(p->signbits)
336 	{
337 	default:
338 	case 0: return (((p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]) >= p->dist) | (((p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]) < p->dist) << 1));
339 	case 1: return (((p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]) >= p->dist) | (((p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]) < p->dist) << 1));
340 	case 2: return (((p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]) >= p->dist) | (((p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]) < p->dist) << 1));
341 	case 3: return (((p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]) >= p->dist) | (((p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]) < p->dist) << 1));
342 	case 4: return (((p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]) >= p->dist) | (((p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]) < p->dist) << 1));
343 	case 5: return (((p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]) >= p->dist) | (((p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]) < p->dist) << 1));
344 	case 6: return (((p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]) >= p->dist) | (((p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]) < p->dist) << 1));
345 	case 7: return (((p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]) >= p->dist) | (((p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]) < p->dist) << 1));
346 	}
347 }
348 
349 #if 0
350 int BoxOnPlaneSide_Separate(const vec3_t emins, const vec3_t emaxs, const vec3_t normal, const vec_t dist)
351 {
352 	switch((normal[0] < 0) | ((normal[1] < 0) << 1) | ((normal[2] < 0) << 2))
353 	{
354 	default:
355 	case 0: return (((normal[0] * emaxs[0] + normal[1] * emaxs[1] + normal[2] * emaxs[2]) >= dist) | (((normal[0] * emins[0] + normal[1] * emins[1] + normal[2] * emins[2]) < dist) << 1));
356 	case 1: return (((normal[0] * emins[0] + normal[1] * emaxs[1] + normal[2] * emaxs[2]) >= dist) | (((normal[0] * emaxs[0] + normal[1] * emins[1] + normal[2] * emins[2]) < dist) << 1));
357 	case 2: return (((normal[0] * emaxs[0] + normal[1] * emins[1] + normal[2] * emaxs[2]) >= dist) | (((normal[0] * emins[0] + normal[1] * emaxs[1] + normal[2] * emins[2]) < dist) << 1));
358 	case 3: return (((normal[0] * emins[0] + normal[1] * emins[1] + normal[2] * emaxs[2]) >= dist) | (((normal[0] * emaxs[0] + normal[1] * emaxs[1] + normal[2] * emins[2]) < dist) << 1));
359 	case 4: return (((normal[0] * emaxs[0] + normal[1] * emaxs[1] + normal[2] * emins[2]) >= dist) | (((normal[0] * emins[0] + normal[1] * emins[1] + normal[2] * emaxs[2]) < dist) << 1));
360 	case 5: return (((normal[0] * emins[0] + normal[1] * emaxs[1] + normal[2] * emins[2]) >= dist) | (((normal[0] * emaxs[0] + normal[1] * emins[1] + normal[2] * emaxs[2]) < dist) << 1));
361 	case 6: return (((normal[0] * emaxs[0] + normal[1] * emins[1] + normal[2] * emins[2]) >= dist) | (((normal[0] * emins[0] + normal[1] * emaxs[1] + normal[2] * emaxs[2]) < dist) << 1));
362 	case 7: return (((normal[0] * emins[0] + normal[1] * emins[1] + normal[2] * emins[2]) >= dist) | (((normal[0] * emaxs[0] + normal[1] * emaxs[1] + normal[2] * emaxs[2]) < dist) << 1));
363 	}
364 }
365 #endif
366 
BoxPlaneCorners(const vec3_t emins,const vec3_t emaxs,const mplane_t * p,vec3_t outnear,vec3_t outfar)367 void BoxPlaneCorners(const vec3_t emins, const vec3_t emaxs, const mplane_t *p, vec3_t outnear, vec3_t outfar)
368 {
369 	if (p->type < 3)
370 	{
371 		outnear[0] = outnear[1] = outnear[2] = outfar[0] = outfar[1] = outfar[2] = 0;
372 		outnear[p->type] = emins[p->type];
373 		outfar[p->type] = emaxs[p->type];
374 		return;
375 	}
376 	switch(p->signbits)
377 	{
378 	default:
379 	case 0: outnear[0] = emaxs[0];outnear[1] = emaxs[1];outnear[2] = emaxs[2];outfar[0] = emins[0];outfar[1] = emins[1];outfar[2] = emins[2];break;
380 	case 1: outnear[0] = emins[0];outnear[1] = emaxs[1];outnear[2] = emaxs[2];outfar[0] = emaxs[0];outfar[1] = emins[1];outfar[2] = emins[2];break;
381 	case 2: outnear[0] = emaxs[0];outnear[1] = emins[1];outnear[2] = emaxs[2];outfar[0] = emins[0];outfar[1] = emaxs[1];outfar[2] = emins[2];break;
382 	case 3: outnear[0] = emins[0];outnear[1] = emins[1];outnear[2] = emaxs[2];outfar[0] = emaxs[0];outfar[1] = emaxs[1];outfar[2] = emins[2];break;
383 	case 4: outnear[0] = emaxs[0];outnear[1] = emaxs[1];outnear[2] = emins[2];outfar[0] = emins[0];outfar[1] = emins[1];outfar[2] = emaxs[2];break;
384 	case 5: outnear[0] = emins[0];outnear[1] = emaxs[1];outnear[2] = emins[2];outfar[0] = emaxs[0];outfar[1] = emins[1];outfar[2] = emaxs[2];break;
385 	case 6: outnear[0] = emaxs[0];outnear[1] = emins[1];outnear[2] = emins[2];outfar[0] = emins[0];outfar[1] = emaxs[1];outfar[2] = emaxs[2];break;
386 	case 7: outnear[0] = emins[0];outnear[1] = emins[1];outnear[2] = emins[2];outfar[0] = emaxs[0];outfar[1] = emaxs[1];outfar[2] = emaxs[2];break;
387 	}
388 }
389 
BoxPlaneCorners_Separate(const vec3_t emins,const vec3_t emaxs,const vec3_t normal,vec3_t outnear,vec3_t outfar)390 void BoxPlaneCorners_Separate(const vec3_t emins, const vec3_t emaxs, const vec3_t normal, vec3_t outnear, vec3_t outfar)
391 {
392 	switch((normal[0] < 0) | ((normal[1] < 0) << 1) | ((normal[2] < 0) << 2))
393 	{
394 	default:
395 	case 0: outnear[0] = emaxs[0];outnear[1] = emaxs[1];outnear[2] = emaxs[2];outfar[0] = emins[0];outfar[1] = emins[1];outfar[2] = emins[2];break;
396 	case 1: outnear[0] = emins[0];outnear[1] = emaxs[1];outnear[2] = emaxs[2];outfar[0] = emaxs[0];outfar[1] = emins[1];outfar[2] = emins[2];break;
397 	case 2: outnear[0] = emaxs[0];outnear[1] = emins[1];outnear[2] = emaxs[2];outfar[0] = emins[0];outfar[1] = emaxs[1];outfar[2] = emins[2];break;
398 	case 3: outnear[0] = emins[0];outnear[1] = emins[1];outnear[2] = emaxs[2];outfar[0] = emaxs[0];outfar[1] = emaxs[1];outfar[2] = emins[2];break;
399 	case 4: outnear[0] = emaxs[0];outnear[1] = emaxs[1];outnear[2] = emins[2];outfar[0] = emins[0];outfar[1] = emins[1];outfar[2] = emaxs[2];break;
400 	case 5: outnear[0] = emins[0];outnear[1] = emaxs[1];outnear[2] = emins[2];outfar[0] = emaxs[0];outfar[1] = emins[1];outfar[2] = emaxs[2];break;
401 	case 6: outnear[0] = emaxs[0];outnear[1] = emins[1];outnear[2] = emins[2];outfar[0] = emins[0];outfar[1] = emaxs[1];outfar[2] = emaxs[2];break;
402 	case 7: outnear[0] = emins[0];outnear[1] = emins[1];outnear[2] = emins[2];outfar[0] = emaxs[0];outfar[1] = emaxs[1];outfar[2] = emaxs[2];break;
403 	}
404 }
405 
BoxPlaneCornerDistances(const vec3_t emins,const vec3_t emaxs,const mplane_t * p,vec_t * outneardist,vec_t * outfardist)406 void BoxPlaneCornerDistances(const vec3_t emins, const vec3_t emaxs, const mplane_t *p, vec_t *outneardist, vec_t *outfardist)
407 {
408 	if (p->type < 3)
409 	{
410 		*outneardist = emins[p->type] - p->dist;
411 		*outfardist = emaxs[p->type] - p->dist;
412 		return;
413 	}
414 	switch(p->signbits)
415 	{
416 	default:
417 	case 0: *outneardist = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2] - p->dist;*outfardist = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2] - p->dist;break;
418 	case 1: *outneardist = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2] - p->dist;*outfardist = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2] - p->dist;break;
419 	case 2: *outneardist = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2] - p->dist;*outfardist = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2] - p->dist;break;
420 	case 3: *outneardist = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2] - p->dist;*outfardist = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2] - p->dist;break;
421 	case 4: *outneardist = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2] - p->dist;*outfardist = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2] - p->dist;break;
422 	case 5: *outneardist = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2] - p->dist;*outfardist = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2] - p->dist;break;
423 	case 6: *outneardist = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2] - p->dist;*outfardist = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2] - p->dist;break;
424 	case 7: *outneardist = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2] - p->dist;*outfardist = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2] - p->dist;break;
425 	}
426 }
427 
BoxPlaneCornerDistances_Separate(const vec3_t emins,const vec3_t emaxs,const vec3_t normal,vec_t * outneardist,vec_t * outfardist)428 void BoxPlaneCornerDistances_Separate(const vec3_t emins, const vec3_t emaxs, const vec3_t normal, vec_t *outneardist, vec_t *outfardist)
429 {
430 	switch((normal[0] < 0) | ((normal[1] < 0) << 1) | ((normal[2] < 0) << 2))
431 	{
432 	default:
433 	case 0: *outneardist = normal[0] * emaxs[0] + normal[1] * emaxs[1] + normal[2] * emaxs[2];*outfardist = normal[0] * emins[0] + normal[1] * emins[1] + normal[2] * emins[2];break;
434 	case 1: *outneardist = normal[0] * emins[0] + normal[1] * emaxs[1] + normal[2] * emaxs[2];*outfardist = normal[0] * emaxs[0] + normal[1] * emins[1] + normal[2] * emins[2];break;
435 	case 2: *outneardist = normal[0] * emaxs[0] + normal[1] * emins[1] + normal[2] * emaxs[2];*outfardist = normal[0] * emins[0] + normal[1] * emaxs[1] + normal[2] * emins[2];break;
436 	case 3: *outneardist = normal[0] * emins[0] + normal[1] * emins[1] + normal[2] * emaxs[2];*outfardist = normal[0] * emaxs[0] + normal[1] * emaxs[1] + normal[2] * emins[2];break;
437 	case 4: *outneardist = normal[0] * emaxs[0] + normal[1] * emaxs[1] + normal[2] * emins[2];*outfardist = normal[0] * emins[0] + normal[1] * emins[1] + normal[2] * emaxs[2];break;
438 	case 5: *outneardist = normal[0] * emins[0] + normal[1] * emaxs[1] + normal[2] * emins[2];*outfardist = normal[0] * emaxs[0] + normal[1] * emins[1] + normal[2] * emaxs[2];break;
439 	case 6: *outneardist = normal[0] * emaxs[0] + normal[1] * emins[1] + normal[2] * emins[2];*outfardist = normal[0] * emins[0] + normal[1] * emaxs[1] + normal[2] * emaxs[2];break;
440 	case 7: *outneardist = normal[0] * emins[0] + normal[1] * emins[1] + normal[2] * emins[2];*outfardist = normal[0] * emaxs[0] + normal[1] * emaxs[1] + normal[2] * emaxs[2];break;
441 	}
442 }
443 
AngleVectors(const vec3_t angles,vec3_t forward,vec3_t right,vec3_t up)444 void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
445 {
446 	double angle, sr, sp, sy, cr, cp, cy;
447 
448 	angle = angles[YAW] * (M_PI*2 / 360);
449 	sy = sin(angle);
450 	cy = cos(angle);
451 	angle = angles[PITCH] * (M_PI*2 / 360);
452 	sp = sin(angle);
453 	cp = cos(angle);
454 	if (forward)
455 	{
456 		forward[0] = cp*cy;
457 		forward[1] = cp*sy;
458 		forward[2] = -sp;
459 	}
460 	if (right || up)
461 	{
462 		if (angles[ROLL])
463 		{
464 			angle = angles[ROLL] * (M_PI*2 / 360);
465 			sr = sin(angle);
466 			cr = cos(angle);
467 			if (right)
468 			{
469 				right[0] = -1*(sr*sp*cy+cr*-sy);
470 				right[1] = -1*(sr*sp*sy+cr*cy);
471 				right[2] = -1*(sr*cp);
472 			}
473 			if (up)
474 			{
475 				up[0] = (cr*sp*cy+-sr*-sy);
476 				up[1] = (cr*sp*sy+-sr*cy);
477 				up[2] = cr*cp;
478 			}
479 		}
480 		else
481 		{
482 			if (right)
483 			{
484 				right[0] = sy;
485 				right[1] = -cy;
486 				right[2] = 0;
487 			}
488 			if (up)
489 			{
490 				up[0] = (sp*cy);
491 				up[1] = (sp*sy);
492 				up[2] = cp;
493 			}
494 		}
495 	}
496 }
497 
AngleVectorsFLU(const vec3_t angles,vec3_t forward,vec3_t left,vec3_t up)498 void AngleVectorsFLU (const vec3_t angles, vec3_t forward, vec3_t left, vec3_t up)
499 {
500 	double angle, sr, sp, sy, cr, cp, cy;
501 
502 	angle = angles[YAW] * (M_PI*2 / 360);
503 	sy = sin(angle);
504 	cy = cos(angle);
505 	angle = angles[PITCH] * (M_PI*2 / 360);
506 	sp = sin(angle);
507 	cp = cos(angle);
508 	if (forward)
509 	{
510 		forward[0] = cp*cy;
511 		forward[1] = cp*sy;
512 		forward[2] = -sp;
513 	}
514 	if (left || up)
515 	{
516 		if (angles[ROLL])
517 		{
518 			angle = angles[ROLL] * (M_PI*2 / 360);
519 			sr = sin(angle);
520 			cr = cos(angle);
521 			if (left)
522 			{
523 				left[0] = sr*sp*cy+cr*-sy;
524 				left[1] = sr*sp*sy+cr*cy;
525 				left[2] = sr*cp;
526 			}
527 			if (up)
528 			{
529 				up[0] = cr*sp*cy+-sr*-sy;
530 				up[1] = cr*sp*sy+-sr*cy;
531 				up[2] = cr*cp;
532 			}
533 		}
534 		else
535 		{
536 			if (left)
537 			{
538 				left[0] = -sy;
539 				left[1] = cy;
540 				left[2] = 0;
541 			}
542 			if (up)
543 			{
544 				up[0] = sp*cy;
545 				up[1] = sp*sy;
546 				up[2] = cp;
547 			}
548 		}
549 	}
550 }
551 
AngleVectorsDuke3DFLU(const vec3_t angles,vec3_t forward,vec3_t left,vec3_t up,double maxShearAngle)552 void AngleVectorsDuke3DFLU (const vec3_t angles, vec3_t forward, vec3_t left, vec3_t up, double maxShearAngle)
553 {
554 	double angle, sr, sy, cr, cy;
555 	double sxx, sxz, szx, szz;
556 	double cosMaxShearAngle = cos(maxShearAngle * (M_PI*2 / 360));
557 	double tanMaxShearAngle = tan(maxShearAngle * (M_PI*2 / 360));
558 
559 	angle = angles[YAW] * (M_PI*2 / 360);
560 	sy = sin(angle);
561 	cy = cos(angle);
562 	angle = angles[PITCH] * (M_PI*2 / 360);
563 
564 	// We will calculate a shear matrix pitch = [[sxx sxz][szx szz]].
565 
566 	if (fabs(cos(angle)) > cosMaxShearAngle)
567 	{
568 		// Pure shear. Keep the original sign of the coefficients.
569 		sxx = 1;
570 		sxz = 0;
571 		szx = -tan(angle);
572 		szz = 1;
573 		// Covering angle per screen coordinate:
574 		// d/dt arctan((sxz + t*szz) / (sxx + t*szx)) @ t=0
575 		// d_angle = det(S) / (sxx*sxx + szx*szx)
576 		//         = 1 / (1 + tan^2 angle)
577 		//         = cos^2 angle.
578 	}
579 	else
580 	{
581 		// A mix of shear and rotation. Implementation-wise, we're
582 		// looking at a capsule, and making the screen surface
583 		// tangential to it... and if we get here, we're looking at the
584 		// two half-spheres of the capsule (and the cylinder part is
585 		// handled above).
586 		double x, y, h, t, d, f;
587 		h = tanMaxShearAngle;
588 		x = cos(angle);
589 		y = sin(angle);
590 		t = h * fabs(y) + sqrt(1 - (h * x) * (h * x));
591 		sxx =  x * t;
592 		sxz =  y * t - h * (y > 0 ? 1.0 : -1.0);
593 		szx = -y * t;
594 		szz =  x * t;
595 		// BUT: keep the amount of a sphere we see in pitch direction
596 		// invariant.
597 		// Covering angle per screen coordinate:
598 		// d_angle = det(S) / (sxx*sxx + szx*szx)
599 		d = (sxx * szz - sxz * szx) / (sxx * sxx + szx * szx);
600 		f = cosMaxShearAngle * cosMaxShearAngle / d;
601 		sxz *= f;
602 		szz *= f;
603 	}
604 
605 	if (forward)
606 	{
607 		forward[0] = sxx*cy;
608 		forward[1] = sxx*sy;
609 		forward[2] = szx;
610 	}
611 	if (left || up)
612 	{
613 		if (angles[ROLL])
614 		{
615 			angle = angles[ROLL] * (M_PI*2 / 360);
616 			sr = sin(angle);
617 			cr = cos(angle);
618 			if (left)
619 			{
620 				left[0] = sr*sxz*cy+cr*-sy;
621 				left[1] = sr*sxz*sy+cr*cy;
622 				left[2] = sr*szz;
623 			}
624 			if (up)
625 			{
626 				up[0] = cr*sxz*cy+-sr*-sy;
627 				up[1] = cr*sxz*sy+-sr*cy;
628 				up[2] = cr*szz;
629 			}
630 		}
631 		else
632 		{
633 			if (left)
634 			{
635 				left[0] = -sy;
636 				left[1] = cy;
637 				left[2] = 0;
638 			}
639 			if (up)
640 			{
641 				up[0] = sxz*cy;
642 				up[1] = sxz*sy;
643 				up[2] = szz;
644 			}
645 		}
646 	}
647 }
648 
649 // LordHavoc: calculates pitch/yaw/roll angles from forward and up vectors
AnglesFromVectors(vec3_t angles,const vec3_t forward,const vec3_t up,qboolean flippitch)650 void AnglesFromVectors (vec3_t angles, const vec3_t forward, const vec3_t up, qboolean flippitch)
651 {
652 	if (forward[0] == 0 && forward[1] == 0)
653 	{
654 		if(forward[2] > 0)
655 		{
656 			angles[PITCH] = -M_PI * 0.5;
657 			angles[YAW] = up ? atan2(-up[1], -up[0]) : 0;
658 		}
659 		else
660 		{
661 			angles[PITCH] = M_PI * 0.5;
662 			angles[YAW] = up ? atan2(up[1], up[0]) : 0;
663 		}
664 		angles[ROLL] = 0;
665 	}
666 	else
667 	{
668 		angles[YAW] = atan2(forward[1], forward[0]);
669 		angles[PITCH] = -atan2(forward[2], sqrt(forward[0]*forward[0] + forward[1]*forward[1]));
670 		// note: we know that angles[PITCH] is in ]-pi/2..pi/2[ due to atan2(anything, positive)
671 		if (up)
672 		{
673 			vec_t cp = cos(angles[PITCH]), sp = sin(angles[PITCH]);
674 			// note: we know cp > 0, due to the range angles[pitch] is in
675 			vec_t cy = cos(angles[YAW]), sy = sin(angles[YAW]);
676 			vec3_t tleft, tup;
677 			tleft[0] = -sy;
678 			tleft[1] = cy;
679 			tleft[2] = 0;
680 			tup[0] = sp*cy;
681 			tup[1] = sp*sy;
682 			tup[2] = cp;
683 			angles[ROLL] = -atan2(DotProduct(up, tleft), DotProduct(up, tup));
684 			// for up == '0 0 1', this is
685 			// angles[ROLL] = -atan2(0, cp);
686 			// which is 0
687 		}
688 		else
689 			angles[ROLL] = 0;
690 
691 		// so no up vector is equivalent to '1 0 0'!
692 	}
693 
694 	// now convert radians to degrees, and make all values positive
695 	VectorScale(angles, 180.0 / M_PI, angles);
696 	if (flippitch)
697 		angles[PITCH] *= -1;
698 	if (angles[PITCH] < 0) angles[PITCH] += 360;
699 	if (angles[YAW] < 0) angles[YAW] += 360;
700 	if (angles[ROLL] < 0) angles[ROLL] += 360;
701 
702 #if 0
703 {
704 	// debugging code
705 	vec3_t tforward, tleft, tup, nforward, nup;
706 	VectorCopy(forward, nforward);
707 	VectorNormalize(nforward);
708 	if (up)
709 	{
710 		VectorCopy(up, nup);
711 		VectorNormalize(nup);
712 		AngleVectors(angles, tforward, tleft, tup);
713 		if (VectorDistance(tforward, nforward) > 0.01 || VectorDistance(tup, nup) > 0.01)
714 		{
715 			Con_Printf("vectoangles('%f %f %f', '%f %f %f') = %f %f %f\n", nforward[0], nforward[1], nforward[2], nup[0], nup[1], nup[2], angles[0], angles[1], angles[2]);
716 			Con_Printf("^3But that is '%f %f %f', '%f %f %f'\n", tforward[0], tforward[1], tforward[2], tup[0], tup[1], tup[2]);
717 		}
718 	}
719 	else
720 	{
721 		AngleVectors(angles, tforward, tleft, tup);
722 		if (VectorDistance(tforward, nforward) > 0.01)
723 		{
724 			Con_Printf("vectoangles('%f %f %f') = %f %f %f\n", nforward[0], nforward[1], nforward[2], angles[0], angles[1], angles[2]);
725 			Con_Printf("^3But that is '%f %f %f'\n", tforward[0], tforward[1], tforward[2]);
726 		}
727 	}
728 }
729 #endif
730 }
731 
732 #if 0
733 void AngleMatrix (const vec3_t angles, const vec3_t translate, vec_t matrix[][4])
734 {
735 	double angle, sr, sp, sy, cr, cp, cy;
736 
737 	angle = angles[YAW] * (M_PI*2 / 360);
738 	sy = sin(angle);
739 	cy = cos(angle);
740 	angle = angles[PITCH] * (M_PI*2 / 360);
741 	sp = sin(angle);
742 	cp = cos(angle);
743 	angle = angles[ROLL] * (M_PI*2 / 360);
744 	sr = sin(angle);
745 	cr = cos(angle);
746 	matrix[0][0] = cp*cy;
747 	matrix[0][1] = sr*sp*cy+cr*-sy;
748 	matrix[0][2] = cr*sp*cy+-sr*-sy;
749 	matrix[0][3] = translate[0];
750 	matrix[1][0] = cp*sy;
751 	matrix[1][1] = sr*sp*sy+cr*cy;
752 	matrix[1][2] = cr*sp*sy+-sr*cy;
753 	matrix[1][3] = translate[1];
754 	matrix[2][0] = -sp;
755 	matrix[2][1] = sr*cp;
756 	matrix[2][2] = cr*cp;
757 	matrix[2][3] = translate[2];
758 }
759 #endif
760 
761 
762 // LordHavoc: renamed this to Length, and made the normal one a #define
VectorNormalizeLength(vec3_t v)763 float VectorNormalizeLength (vec3_t v)
764 {
765 	float length, ilength;
766 
767 	length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
768 	length = sqrt (length);
769 
770 	if (length)
771 	{
772 		ilength = 1/length;
773 		v[0] *= ilength;
774 		v[1] *= ilength;
775 		v[2] *= ilength;
776 	}
777 
778 	return length;
779 
780 }
781 
782 
783 /*
784 ================
785 R_ConcatRotations
786 ================
787 */
R_ConcatRotations(const float in1[3* 3],const float in2[3* 3],float out[3* 3])788 void R_ConcatRotations (const float in1[3*3], const float in2[3*3], float out[3*3])
789 {
790 	out[0*3+0] = in1[0*3+0] * in2[0*3+0] + in1[0*3+1] * in2[1*3+0] + in1[0*3+2] * in2[2*3+0];
791 	out[0*3+1] = in1[0*3+0] * in2[0*3+1] + in1[0*3+1] * in2[1*3+1] + in1[0*3+2] * in2[2*3+1];
792 	out[0*3+2] = in1[0*3+0] * in2[0*3+2] + in1[0*3+1] * in2[1*3+2] + in1[0*3+2] * in2[2*3+2];
793 	out[1*3+0] = in1[1*3+0] * in2[0*3+0] + in1[1*3+1] * in2[1*3+0] + in1[1*3+2] * in2[2*3+0];
794 	out[1*3+1] = in1[1*3+0] * in2[0*3+1] + in1[1*3+1] * in2[1*3+1] + in1[1*3+2] * in2[2*3+1];
795 	out[1*3+2] = in1[1*3+0] * in2[0*3+2] + in1[1*3+1] * in2[1*3+2] + in1[1*3+2] * in2[2*3+2];
796 	out[2*3+0] = in1[2*3+0] * in2[0*3+0] + in1[2*3+1] * in2[1*3+0] + in1[2*3+2] * in2[2*3+0];
797 	out[2*3+1] = in1[2*3+0] * in2[0*3+1] + in1[2*3+1] * in2[1*3+1] + in1[2*3+2] * in2[2*3+1];
798 	out[2*3+2] = in1[2*3+0] * in2[0*3+2] + in1[2*3+1] * in2[1*3+2] + in1[2*3+2] * in2[2*3+2];
799 }
800 
801 
802 /*
803 ================
804 R_ConcatTransforms
805 ================
806 */
R_ConcatTransforms(const float in1[3* 4],const float in2[3* 4],float out[3* 4])807 void R_ConcatTransforms (const float in1[3*4], const float in2[3*4], float out[3*4])
808 {
809 	out[0*4+0] = in1[0*4+0] * in2[0*4+0] + in1[0*4+1] * in2[1*4+0] + in1[0*4+2] * in2[2*4+0];
810 	out[0*4+1] = in1[0*4+0] * in2[0*4+1] + in1[0*4+1] * in2[1*4+1] + in1[0*4+2] * in2[2*4+1];
811 	out[0*4+2] = in1[0*4+0] * in2[0*4+2] + in1[0*4+1] * in2[1*4+2] + in1[0*4+2] * in2[2*4+2];
812 	out[0*4+3] = in1[0*4+0] * in2[0*4+3] + in1[0*4+1] * in2[1*4+3] + in1[0*4+2] * in2[2*4+3] + in1[0*4+3];
813 	out[1*4+0] = in1[1*4+0] * in2[0*4+0] + in1[1*4+1] * in2[1*4+0] + in1[1*4+2] * in2[2*4+0];
814 	out[1*4+1] = in1[1*4+0] * in2[0*4+1] + in1[1*4+1] * in2[1*4+1] + in1[1*4+2] * in2[2*4+1];
815 	out[1*4+2] = in1[1*4+0] * in2[0*4+2] + in1[1*4+1] * in2[1*4+2] + in1[1*4+2] * in2[2*4+2];
816 	out[1*4+3] = in1[1*4+0] * in2[0*4+3] + in1[1*4+1] * in2[1*4+3] + in1[1*4+2] * in2[2*4+3] + in1[1*4+3];
817 	out[2*4+0] = in1[2*4+0] * in2[0*4+0] + in1[2*4+1] * in2[1*4+0] + in1[2*4+2] * in2[2*4+0];
818 	out[2*4+1] = in1[2*4+0] * in2[0*4+1] + in1[2*4+1] * in2[1*4+1] + in1[2*4+2] * in2[2*4+1];
819 	out[2*4+2] = in1[2*4+0] * in2[0*4+2] + in1[2*4+1] * in2[1*4+2] + in1[2*4+2] * in2[2*4+2];
820 	out[2*4+3] = in1[2*4+0] * in2[0*4+3] + in1[2*4+1] * in2[1*4+3] + in1[2*4+2] * in2[2*4+3] + in1[2*4+3];
821 }
822 
RadiusFromBounds(const vec3_t mins,const vec3_t maxs)823 float RadiusFromBounds (const vec3_t mins, const vec3_t maxs)
824 {
825 	vec3_t m1, m2;
826 	VectorMultiply(mins, mins, m1);
827 	VectorMultiply(maxs, maxs, m2);
828 	return sqrt(max(m1[0], m2[0]) + max(m1[1], m2[1]) + max(m1[2], m2[2]));
829 }
830 
RadiusFromBoundsAndOrigin(const vec3_t mins,const vec3_t maxs,const vec3_t origin)831 float RadiusFromBoundsAndOrigin (const vec3_t mins, const vec3_t maxs, const vec3_t origin)
832 {
833 	vec3_t m1, m2;
834 	VectorSubtract(mins, origin, m1);VectorMultiply(m1, m1, m1);
835 	VectorSubtract(maxs, origin, m2);VectorMultiply(m2, m2, m2);
836 	return sqrt(max(m1[0], m2[0]) + max(m1[1], m2[1]) + max(m1[2], m2[2]));
837 }
838 
Mathlib_Init(void)839 void Mathlib_Init(void)
840 {
841 	int a;
842 
843 	// LordHavoc: setup 1.0f / N table for quick recipricols of integers
844 	ixtable[0] = 0;
845 	for (a = 1;a < 4096;a++)
846 		ixtable[a] = 1.0f / a;
847 }
848 
849 #include "matrixlib.h"
850 
Matrix4x4_Print(const matrix4x4_t * in)851 void Matrix4x4_Print(const matrix4x4_t *in)
852 {
853 	Con_Printf("%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n"
854 	, in->m[0][0], in->m[0][1], in->m[0][2], in->m[0][3]
855 	, in->m[1][0], in->m[1][1], in->m[1][2], in->m[1][3]
856 	, in->m[2][0], in->m[2][1], in->m[2][2], in->m[2][3]
857 	, in->m[3][0], in->m[3][1], in->m[3][2], in->m[3][3]);
858 }
859 
Math_atov(const char * s,prvm_vec3_t out)860 int Math_atov(const char *s, prvm_vec3_t out)
861 {
862 	int i;
863 	VectorClear(out);
864 	if (*s == '\'')
865 		s++;
866 	for (i = 0;i < 3;i++)
867 	{
868 		while (*s == ' ' || *s == '\t')
869 			s++;
870 		out[i] = atof (s);
871 		if (out[i] == 0 && *s != '-' && *s != '+' && (*s < '0' || *s > '9'))
872 			break; // not a number
873 		while (*s && *s != ' ' && *s !='\t' && *s != '\'')
874 			s++;
875 		if (*s == '\'')
876 			break;
877 	}
878 	return i;
879 }
880 
BoxFromPoints(vec3_t mins,vec3_t maxs,int numpoints,vec_t * point3f)881 void BoxFromPoints(vec3_t mins, vec3_t maxs, int numpoints, vec_t *point3f)
882 {
883 	int i;
884 	VectorCopy(point3f, mins);
885 	VectorCopy(point3f, maxs);
886 	for (i = 1, point3f += 3;i < numpoints;i++, point3f += 3)
887 	{
888 		mins[0] = min(mins[0], point3f[0]);maxs[0] = max(maxs[0], point3f[0]);
889 		mins[1] = min(mins[1], point3f[1]);maxs[1] = max(maxs[1], point3f[1]);
890 		mins[2] = min(mins[2], point3f[2]);maxs[2] = max(maxs[2], point3f[2]);
891 	}
892 }
893 
894 // LordHavoc: this has to be done right or you get severe precision breakdown
LoopingFrameNumberFromDouble(double t,int loopframes)895 int LoopingFrameNumberFromDouble(double t, int loopframes)
896 {
897 	if (loopframes)
898 		return (int)(t - floor(t/loopframes)*loopframes);
899 	else
900 		return (int)t;
901 }
902 
903 static unsigned int mul_Lecuyer[4] = { 0x12e15e35, 0xb500f16e, 0x2e714eb2, 0xb37916a5 };
904 
mul128(unsigned int a[],unsigned int b[],unsigned int dest[4])905 static void mul128(unsigned int a[], unsigned int b[], unsigned int dest[4])
906 {
907 	unsigned long long t[4];
908 	t[0] = a[0] * b[0];
909 	t[1] = a[1] * b[1];
910 	t[2] = a[2] * b[2];
911 	t[3] = a[3] * b[3];
912 
913 	// this is complicated because C doesn't have a way to make use of the
914 	// cpu status carry flag, so we do it all in reverse order from what
915 	// would otherwise make sense, and have to make multiple passes...
916 	t[3] += t[2] >> 32; t[2] &= 0xffffffff;
917 	t[2] += t[1] >> 32; t[1] &= 0xffffffff;
918 	t[1] += t[0] >> 32; t[0] &= 0xffffffff;
919 
920 	t[3] += t[2] >> 32; t[2] &= 0xffffffff;
921 	t[2] += t[1] >> 32; t[1] &= 0xffffffff;
922 
923 	t[3] += t[2] >> 32; t[2] &= 0xffffffff;
924 
925 	dest[0] = t[0] & 0xffffffff;
926 	dest[1] = t[1] & 0xffffffff;
927 	dest[2] = t[2] & 0xffffffff;
928 	dest[3] = t[3] & 0xffffffff;
929 }
930 
Math_RandomSeed_Reset(randomseed_t * r)931 void Math_RandomSeed_Reset(randomseed_t *r)
932 {
933 	r->s[0] = 1;
934 	r->s[1] = 0;
935 	r->s[2] = 0;
936 	r->s[3] = 0;
937 }
938 
Math_RandomSeed_FromInt(randomseed_t * r,unsigned int n)939 void Math_RandomSeed_FromInt(randomseed_t *r, unsigned int n)
940 {
941 	// if the entire s[] is zero the algorithm would break completely, so make sure it isn't zero by putting a 1 here
942 	r->s[0] = 1;
943 	r->s[1] = 0;
944 	r->s[2] = 0;
945 	r->s[3] = n;
946 }
947 
Math_rand64(randomseed_t * r)948 unsigned long long Math_rand64(randomseed_t *r)
949 {
950 	unsigned int o[4];
951 	mul128(r->s, mul_Lecuyer, o);
952 	r->s[0] = o[0];
953 	r->s[1] = o[1];
954 	r->s[2] = o[2];
955 	r->s[3] = o[3];
956 	return ((unsigned long long)o[3] << 32) + o[2];
957 }
958 
Math_randomf(randomseed_t * r)959 float Math_randomf(randomseed_t *r)
960 {
961 	unsigned long long n = Math_rand64(r);
962 	return n * (0.25f / 0x80000000 / 0x80000000);
963 }
964 
Math_crandomf(randomseed_t * r)965 float Math_crandomf(randomseed_t *r)
966 {
967 	// do this with a signed number and double the result, so we make use of all parts of the cow
968 	long long n = (long long)Math_rand64(r);
969 	return n * (0.5f / 0x80000000 / 0x80000000);
970 }
971 
Math_randomrangef(randomseed_t * r,float minf,float maxf)972 float Math_randomrangef(randomseed_t *r, float minf, float maxf)
973 {
974 	return Math_randomf(r) * (maxf - minf) + minf;
975 }
976 
Math_randomrangei(randomseed_t * r,int mini,int maxi)977 int Math_randomrangei(randomseed_t *r, int mini, int maxi)
978 {
979 	unsigned long long n = Math_rand64(r);
980 	return (int)(((n >> 33) * (maxi - mini) + mini) >> 31);
981 }
982