1 /*
2  *  xxHash - Fast Hash algorithm
3  *  Copyright (c) Yann Collet, Facebook, Inc.
4  *
5  *  You can contact the author at :
6  *  - xxHash homepage: http://www.xxhash.com
7  *  - xxHash source repository : https://github.com/Cyan4973/xxHash
8  *
9  * This source code is licensed under both the BSD-style license (found in the
10  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
11  * in the COPYING file in the root directory of this source tree).
12  * You may select, at your option, one of the above-listed licenses.
13 */
14 
15 
16 /* *************************************
17 *  Tuning parameters
18 ***************************************/
19 /*!XXH_FORCE_MEMORY_ACCESS :
20  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
21  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
22  * The below switch allow to select different access method for improved performance.
23  * Method 0 (default) : use `memcpy()`. Safe and portable.
24  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
25  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
26  * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
27  *            It can generate buggy code on targets which do not support unaligned memory accesses.
28  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
29  * See http://stackoverflow.com/a/32095106/646947 for details.
30  * Prefer these methods in priority order (0 > 1 > 2)
31  */
32 #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
33 #  if (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
34   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
35   defined(__ICCARM__)
36 #    define XXH_FORCE_MEMORY_ACCESS 1
37 #  endif
38 #endif
39 
40 /*!XXH_ACCEPT_NULL_INPUT_POINTER :
41  * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
42  * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
43  * By default, this option is disabled. To enable it, uncomment below define :
44  */
45 /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
46 
47 /*!XXH_FORCE_NATIVE_FORMAT :
48  * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
49  * Results are therefore identical for little-endian and big-endian CPU.
50  * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
51  * Should endian-independence be of no importance for your application, you may set the #define below to 1,
52  * to improve speed for Big-endian CPU.
53  * This option has no impact on Little_Endian CPU.
54  */
55 #ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
56 #  define XXH_FORCE_NATIVE_FORMAT 0
57 #endif
58 
59 /*!XXH_FORCE_ALIGN_CHECK :
60  * This is a minor performance trick, only useful with lots of very small keys.
61  * It means : check for aligned/unaligned input.
62  * The check costs one initial branch per hash; set to 0 when the input data
63  * is guaranteed to be aligned.
64  */
65 #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
66 #  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
67 #    define XXH_FORCE_ALIGN_CHECK 0
68 #  else
69 #    define XXH_FORCE_ALIGN_CHECK 1
70 #  endif
71 #endif
72 
73 
74 /* *************************************
75 *  Includes & Memory related functions
76 ***************************************/
77 /* Modify the local functions below should you wish to use some other memory routines */
78 /* for ZSTD_malloc(), ZSTD_free() */
79 #define ZSTD_DEPS_NEED_MALLOC
80 #include "zstd_deps.h"  /* size_t, ZSTD_malloc, ZSTD_free, ZSTD_memcpy */
XXH_malloc(size_t s)81 static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); }
XXH_free(void * p)82 static void  XXH_free  (void* p)  { ZSTD_free(p); }
XXH_memcpy(void * dest,const void * src,size_t size)83 static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); }
84 
85 #ifndef XXH_STATIC_LINKING_ONLY
86 #  define XXH_STATIC_LINKING_ONLY
87 #endif
88 #include "xxhash.h"
89 
90 
91 /* *************************************
92 *  Compiler Specific Options
93 ***************************************/
94 #include "compiler.h"
95 
96 
97 /* *************************************
98 *  Basic Types
99 ***************************************/
100 #include "mem.h"  /* BYTE, U32, U64, size_t */
101 
102 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
103 
104 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
XXH_read32(const void * memPtr)105 static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
XXH_read64(const void * memPtr)106 static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
107 
108 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
109 
110 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
111 /* currently only defined for gcc and icc */
112 typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
113 
XXH_read32(const void * ptr)114 static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
XXH_read64(const void * ptr)115 static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
116 
117 #else
118 
119 /* portable and safe solution. Generally efficient.
120  * see : http://stackoverflow.com/a/32095106/646947
121  */
122 
XXH_read32(const void * memPtr)123 static U32 XXH_read32(const void* memPtr)
124 {
125     U32 val;
126     ZSTD_memcpy(&val, memPtr, sizeof(val));
127     return val;
128 }
129 
XXH_read64(const void * memPtr)130 static U64 XXH_read64(const void* memPtr)
131 {
132     U64 val;
133     ZSTD_memcpy(&val, memPtr, sizeof(val));
134     return val;
135 }
136 
137 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
138 
139 
140 /* ****************************************
141 *  Compiler-specific Functions and Macros
142 ******************************************/
143 #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
144 
145 /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
146 #if defined(_MSC_VER)
147 #  define XXH_rotl32(x,r) _rotl(x,r)
148 #  define XXH_rotl64(x,r) _rotl64(x,r)
149 #else
150 #if defined(__ICCARM__)
151 #  include <intrinsics.h>
152 #  define XXH_rotl32(x,r) __ROR(x,(32 - r))
153 #else
154 #  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
155 #endif
156 #  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
157 #endif
158 
159 #if defined(_MSC_VER)     /* Visual Studio */
160 #  define XXH_swap32 _byteswap_ulong
161 #  define XXH_swap64 _byteswap_uint64
162 #elif GCC_VERSION >= 403
163 #  define XXH_swap32 __builtin_bswap32
164 #  define XXH_swap64 __builtin_bswap64
165 #else
XXH_swap32(U32 x)166 static U32 XXH_swap32 (U32 x)
167 {
168     return  ((x << 24) & 0xff000000 ) |
169             ((x <<  8) & 0x00ff0000 ) |
170             ((x >>  8) & 0x0000ff00 ) |
171             ((x >> 24) & 0x000000ff );
172 }
XXH_swap64(U64 x)173 static U64 XXH_swap64 (U64 x)
174 {
175     return  ((x << 56) & 0xff00000000000000ULL) |
176             ((x << 40) & 0x00ff000000000000ULL) |
177             ((x << 24) & 0x0000ff0000000000ULL) |
178             ((x << 8)  & 0x000000ff00000000ULL) |
179             ((x >> 8)  & 0x00000000ff000000ULL) |
180             ((x >> 24) & 0x0000000000ff0000ULL) |
181             ((x >> 40) & 0x000000000000ff00ULL) |
182             ((x >> 56) & 0x00000000000000ffULL);
183 }
184 #endif
185 
186 
187 /* *************************************
188 *  Architecture Macros
189 ***************************************/
190 typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
191 
192 /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
193 #ifndef XXH_CPU_LITTLE_ENDIAN
194     static const int g_one = 1;
195 #   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
196 #endif
197 
198 
199 /* ***************************
200 *  Memory reads
201 *****************************/
202 typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
203 
XXH_readLE32_align(const void * ptr,XXH_endianess endian,XXH_alignment align)204 FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
205 {
206     if (align==XXH_unaligned)
207         return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
208     else
209         return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
210 }
211 
XXH_readLE32(const void * ptr,XXH_endianess endian)212 FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
213 {
214     return XXH_readLE32_align(ptr, endian, XXH_unaligned);
215 }
216 
XXH_readBE32(const void * ptr)217 static U32 XXH_readBE32(const void* ptr)
218 {
219     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
220 }
221 
XXH_readLE64_align(const void * ptr,XXH_endianess endian,XXH_alignment align)222 FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
223 {
224     if (align==XXH_unaligned)
225         return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
226     else
227         return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
228 }
229 
XXH_readLE64(const void * ptr,XXH_endianess endian)230 FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
231 {
232     return XXH_readLE64_align(ptr, endian, XXH_unaligned);
233 }
234 
XXH_readBE64(const void * ptr)235 static U64 XXH_readBE64(const void* ptr)
236 {
237     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
238 }
239 
240 
241 /* *************************************
242 *  Macros
243 ***************************************/
244 #define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
245 
246 
247 /* *************************************
248 *  Constants
249 ***************************************/
250 static const U32 PRIME32_1 = 2654435761U;
251 static const U32 PRIME32_2 = 2246822519U;
252 static const U32 PRIME32_3 = 3266489917U;
253 static const U32 PRIME32_4 =  668265263U;
254 static const U32 PRIME32_5 =  374761393U;
255 
256 static const U64 PRIME64_1 = 11400714785074694791ULL;
257 static const U64 PRIME64_2 = 14029467366897019727ULL;
258 static const U64 PRIME64_3 =  1609587929392839161ULL;
259 static const U64 PRIME64_4 =  9650029242287828579ULL;
260 static const U64 PRIME64_5 =  2870177450012600261ULL;
261 
XXH_versionNumber(void)262 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
263 
264 
265 /* **************************
266 *  Utils
267 ****************************/
XXH32_copyState(XXH32_state_t * restrict dstState,const XXH32_state_t * restrict srcState)268 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
269 {
270     ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
271 }
272 
XXH64_copyState(XXH64_state_t * restrict dstState,const XXH64_state_t * restrict srcState)273 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
274 {
275     ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
276 }
277 
278 
279 /* ***************************
280 *  Simple Hash Functions
281 *****************************/
282 
XXH32_round(U32 seed,U32 input)283 static U32 XXH32_round(U32 seed, U32 input)
284 {
285     seed += input * PRIME32_2;
286     seed  = XXH_rotl32(seed, 13);
287     seed *= PRIME32_1;
288     return seed;
289 }
290 
XXH32_endian_align(const void * input,size_t len,U32 seed,XXH_endianess endian,XXH_alignment align)291 FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
292 {
293     const BYTE* p = (const BYTE*)input;
294     const BYTE* bEnd = p + len;
295     U32 h32;
296 #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
297 
298 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
299     if (p==NULL) {
300         len=0;
301         bEnd=p=(const BYTE*)(size_t)16;
302     }
303 #endif
304 
305     if (len>=16) {
306         const BYTE* const limit = bEnd - 16;
307         U32 v1 = seed + PRIME32_1 + PRIME32_2;
308         U32 v2 = seed + PRIME32_2;
309         U32 v3 = seed + 0;
310         U32 v4 = seed - PRIME32_1;
311 
312         do {
313             v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
314             v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
315             v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
316             v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
317         } while (p<=limit);
318 
319         h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
320     } else {
321         h32  = seed + PRIME32_5;
322     }
323 
324     h32 += (U32) len;
325 
326     while (p+4<=bEnd) {
327         h32 += XXH_get32bits(p) * PRIME32_3;
328         h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
329         p+=4;
330     }
331 
332     while (p<bEnd) {
333         h32 += (*p) * PRIME32_5;
334         h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
335         p++;
336     }
337 
338     h32 ^= h32 >> 15;
339     h32 *= PRIME32_2;
340     h32 ^= h32 >> 13;
341     h32 *= PRIME32_3;
342     h32 ^= h32 >> 16;
343 
344     return h32;
345 }
346 
347 
XXH32(const void * input,size_t len,unsigned int seed)348 XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
349 {
350 #if 0
351     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
352     XXH32_CREATESTATE_STATIC(state);
353     XXH32_reset(state, seed);
354     XXH32_update(state, input, len);
355     return XXH32_digest(state);
356 #else
357     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
358 
359     if (XXH_FORCE_ALIGN_CHECK) {
360         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
361             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
362                 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
363             else
364                 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
365     }   }
366 
367     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
368         return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
369     else
370         return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
371 #endif
372 }
373 
374 
XXH64_round(U64 acc,U64 input)375 static U64 XXH64_round(U64 acc, U64 input)
376 {
377     acc += input * PRIME64_2;
378     acc  = XXH_rotl64(acc, 31);
379     acc *= PRIME64_1;
380     return acc;
381 }
382 
XXH64_mergeRound(U64 acc,U64 val)383 static U64 XXH64_mergeRound(U64 acc, U64 val)
384 {
385     val  = XXH64_round(0, val);
386     acc ^= val;
387     acc  = acc * PRIME64_1 + PRIME64_4;
388     return acc;
389 }
390 
XXH64_endian_align(const void * input,size_t len,U64 seed,XXH_endianess endian,XXH_alignment align)391 FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
392 {
393     const BYTE* p = (const BYTE*)input;
394     const BYTE* const bEnd = p + len;
395     U64 h64;
396 #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
397 
398 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
399     if (p==NULL) {
400         len=0;
401         bEnd=p=(const BYTE*)(size_t)32;
402     }
403 #endif
404 
405     if (len>=32) {
406         const BYTE* const limit = bEnd - 32;
407         U64 v1 = seed + PRIME64_1 + PRIME64_2;
408         U64 v2 = seed + PRIME64_2;
409         U64 v3 = seed + 0;
410         U64 v4 = seed - PRIME64_1;
411 
412         do {
413             v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
414             v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
415             v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
416             v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
417         } while (p<=limit);
418 
419         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
420         h64 = XXH64_mergeRound(h64, v1);
421         h64 = XXH64_mergeRound(h64, v2);
422         h64 = XXH64_mergeRound(h64, v3);
423         h64 = XXH64_mergeRound(h64, v4);
424 
425     } else {
426         h64  = seed + PRIME64_5;
427     }
428 
429     h64 += (U64) len;
430 
431     while (p+8<=bEnd) {
432         U64 const k1 = XXH64_round(0, XXH_get64bits(p));
433         h64 ^= k1;
434         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
435         p+=8;
436     }
437 
438     if (p+4<=bEnd) {
439         h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
440         h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
441         p+=4;
442     }
443 
444     while (p<bEnd) {
445         h64 ^= (*p) * PRIME64_5;
446         h64 = XXH_rotl64(h64, 11) * PRIME64_1;
447         p++;
448     }
449 
450     h64 ^= h64 >> 33;
451     h64 *= PRIME64_2;
452     h64 ^= h64 >> 29;
453     h64 *= PRIME64_3;
454     h64 ^= h64 >> 32;
455 
456     return h64;
457 }
458 
459 
XXH64(const void * input,size_t len,unsigned long long seed)460 XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
461 {
462 #if 0
463     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
464     XXH64_CREATESTATE_STATIC(state);
465     XXH64_reset(state, seed);
466     XXH64_update(state, input, len);
467     return XXH64_digest(state);
468 #else
469     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
470 
471     if (XXH_FORCE_ALIGN_CHECK) {
472         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
473             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
474                 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
475             else
476                 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
477     }   }
478 
479     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
480         return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
481     else
482         return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
483 #endif
484 }
485 
486 
487 /* **************************************************
488 *  Advanced Hash Functions
489 ****************************************************/
490 
XXH32_createState(void)491 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
492 {
493     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
494 }
XXH32_freeState(XXH32_state_t * statePtr)495 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
496 {
497     XXH_free(statePtr);
498     return XXH_OK;
499 }
500 
XXH64_createState(void)501 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
502 {
503     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
504 }
XXH64_freeState(XXH64_state_t * statePtr)505 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
506 {
507     XXH_free(statePtr);
508     return XXH_OK;
509 }
510 
511 
512 /*** Hash feed ***/
513 
XXH32_reset(XXH32_state_t * statePtr,unsigned int seed)514 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
515 {
516     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
517     ZSTD_memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */
518     state.v1 = seed + PRIME32_1 + PRIME32_2;
519     state.v2 = seed + PRIME32_2;
520     state.v3 = seed + 0;
521     state.v4 = seed - PRIME32_1;
522     ZSTD_memcpy(statePtr, &state, sizeof(state));
523     return XXH_OK;
524 }
525 
526 
XXH64_reset(XXH64_state_t * statePtr,unsigned long long seed)527 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
528 {
529     XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
530     ZSTD_memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */
531     state.v1 = seed + PRIME64_1 + PRIME64_2;
532     state.v2 = seed + PRIME64_2;
533     state.v3 = seed + 0;
534     state.v4 = seed - PRIME64_1;
535     ZSTD_memcpy(statePtr, &state, sizeof(state));
536     return XXH_OK;
537 }
538 
539 
XXH32_update_endian(XXH32_state_t * state,const void * input,size_t len,XXH_endianess endian)540 FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
541 {
542     const BYTE* p = (const BYTE*)input;
543     const BYTE* const bEnd = p + len;
544 
545 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
546     if (input==NULL) return XXH_ERROR;
547 #endif
548 
549     state->total_len_32 += (unsigned)len;
550     state->large_len |= (len>=16) | (state->total_len_32>=16);
551 
552     if (state->memsize + len < 16)  {   /* fill in tmp buffer */
553         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
554         state->memsize += (unsigned)len;
555         return XXH_OK;
556     }
557 
558     if (state->memsize) {   /* some data left from previous update */
559         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
560         {   const U32* p32 = state->mem32;
561             state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
562             state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
563             state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
564             state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
565         }
566         p += 16-state->memsize;
567         state->memsize = 0;
568     }
569 
570     if (p <= bEnd-16) {
571         const BYTE* const limit = bEnd - 16;
572         U32 v1 = state->v1;
573         U32 v2 = state->v2;
574         U32 v3 = state->v3;
575         U32 v4 = state->v4;
576 
577         do {
578             v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
579             v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
580             v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
581             v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
582         } while (p<=limit);
583 
584         state->v1 = v1;
585         state->v2 = v2;
586         state->v3 = v3;
587         state->v4 = v4;
588     }
589 
590     if (p < bEnd) {
591         XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
592         state->memsize = (unsigned)(bEnd-p);
593     }
594 
595     return XXH_OK;
596 }
597 
XXH32_update(XXH32_state_t * state_in,const void * input,size_t len)598 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
599 {
600     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
601 
602     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
603         return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
604     else
605         return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
606 }
607 
608 
609 
XXH32_digest_endian(const XXH32_state_t * state,XXH_endianess endian)610 FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
611 {
612     const BYTE * p = (const BYTE*)state->mem32;
613     const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
614     U32 h32;
615 
616     if (state->large_len) {
617         h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
618     } else {
619         h32 = state->v3 /* == seed */ + PRIME32_5;
620     }
621 
622     h32 += state->total_len_32;
623 
624     while (p+4<=bEnd) {
625         h32 += XXH_readLE32(p, endian) * PRIME32_3;
626         h32  = XXH_rotl32(h32, 17) * PRIME32_4;
627         p+=4;
628     }
629 
630     while (p<bEnd) {
631         h32 += (*p) * PRIME32_5;
632         h32  = XXH_rotl32(h32, 11) * PRIME32_1;
633         p++;
634     }
635 
636     h32 ^= h32 >> 15;
637     h32 *= PRIME32_2;
638     h32 ^= h32 >> 13;
639     h32 *= PRIME32_3;
640     h32 ^= h32 >> 16;
641 
642     return h32;
643 }
644 
645 
XXH32_digest(const XXH32_state_t * state_in)646 XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
647 {
648     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
649 
650     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
651         return XXH32_digest_endian(state_in, XXH_littleEndian);
652     else
653         return XXH32_digest_endian(state_in, XXH_bigEndian);
654 }
655 
656 
657 
658 /* **** XXH64 **** */
659 
XXH64_update_endian(XXH64_state_t * state,const void * input,size_t len,XXH_endianess endian)660 FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
661 {
662     const BYTE* p = (const BYTE*)input;
663     const BYTE* const bEnd = p + len;
664 
665 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
666     if (input==NULL) return XXH_ERROR;
667 #endif
668 
669     state->total_len += len;
670 
671     if (state->memsize + len < 32) {  /* fill in tmp buffer */
672         if (input != NULL) {
673             XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
674         }
675         state->memsize += (U32)len;
676         return XXH_OK;
677     }
678 
679     if (state->memsize) {   /* tmp buffer is full */
680         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
681         state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
682         state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
683         state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
684         state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
685         p += 32-state->memsize;
686         state->memsize = 0;
687     }
688 
689     if (p+32 <= bEnd) {
690         const BYTE* const limit = bEnd - 32;
691         U64 v1 = state->v1;
692         U64 v2 = state->v2;
693         U64 v3 = state->v3;
694         U64 v4 = state->v4;
695 
696         do {
697             v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
698             v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
699             v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
700             v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
701         } while (p<=limit);
702 
703         state->v1 = v1;
704         state->v2 = v2;
705         state->v3 = v3;
706         state->v4 = v4;
707     }
708 
709     if (p < bEnd) {
710         XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
711         state->memsize = (unsigned)(bEnd-p);
712     }
713 
714     return XXH_OK;
715 }
716 
XXH64_update(XXH64_state_t * state_in,const void * input,size_t len)717 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
718 {
719     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
720 
721     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
722         return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
723     else
724         return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
725 }
726 
727 
728 
XXH64_digest_endian(const XXH64_state_t * state,XXH_endianess endian)729 FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
730 {
731     const BYTE * p = (const BYTE*)state->mem64;
732     const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
733     U64 h64;
734 
735     if (state->total_len >= 32) {
736         U64 const v1 = state->v1;
737         U64 const v2 = state->v2;
738         U64 const v3 = state->v3;
739         U64 const v4 = state->v4;
740 
741         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
742         h64 = XXH64_mergeRound(h64, v1);
743         h64 = XXH64_mergeRound(h64, v2);
744         h64 = XXH64_mergeRound(h64, v3);
745         h64 = XXH64_mergeRound(h64, v4);
746     } else {
747         h64  = state->v3 + PRIME64_5;
748     }
749 
750     h64 += (U64) state->total_len;
751 
752     while (p+8<=bEnd) {
753         U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
754         h64 ^= k1;
755         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
756         p+=8;
757     }
758 
759     if (p+4<=bEnd) {
760         h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
761         h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
762         p+=4;
763     }
764 
765     while (p<bEnd) {
766         h64 ^= (*p) * PRIME64_5;
767         h64  = XXH_rotl64(h64, 11) * PRIME64_1;
768         p++;
769     }
770 
771     h64 ^= h64 >> 33;
772     h64 *= PRIME64_2;
773     h64 ^= h64 >> 29;
774     h64 *= PRIME64_3;
775     h64 ^= h64 >> 32;
776 
777     return h64;
778 }
779 
780 
XXH64_digest(const XXH64_state_t * state_in)781 XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
782 {
783     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
784 
785     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
786         return XXH64_digest_endian(state_in, XXH_littleEndian);
787     else
788         return XXH64_digest_endian(state_in, XXH_bigEndian);
789 }
790 
791 
792 /* **************************
793 *  Canonical representation
794 ****************************/
795 
796 /*! Default XXH result types are basic unsigned 32 and 64 bits.
797 *   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
798 *   These functions allow transformation of hash result into and from its canonical format.
799 *   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
800 */
801 
XXH32_canonicalFromHash(XXH32_canonical_t * dst,XXH32_hash_t hash)802 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
803 {
804     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
805     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
806     ZSTD_memcpy(dst, &hash, sizeof(*dst));
807 }
808 
XXH64_canonicalFromHash(XXH64_canonical_t * dst,XXH64_hash_t hash)809 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
810 {
811     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
812     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
813     ZSTD_memcpy(dst, &hash, sizeof(*dst));
814 }
815 
XXH32_hashFromCanonical(const XXH32_canonical_t * src)816 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
817 {
818     return XXH_readBE32(src);
819 }
820 
XXH64_hashFromCanonical(const XXH64_canonical_t * src)821 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
822 {
823     return XXH_readBE64(src);
824 }
825