1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_QUATERNION_H
12 #define EIGEN_QUATERNION_H
13 namespace Eigen {
14 
15 
16 /***************************************************************************
17 * Definition of QuaternionBase<Derived>
18 * The implementation is at the end of the file
19 ***************************************************************************/
20 
21 namespace internal {
22 template<typename Other,
23          int OtherRows=Other::RowsAtCompileTime,
24          int OtherCols=Other::ColsAtCompileTime>
25 struct quaternionbase_assign_impl;
26 }
27 
28 /** \geometry_module \ingroup Geometry_Module
29   * \class QuaternionBase
30   * \brief Base class for quaternion expressions
31   * \tparam Derived derived type (CRTP)
32   * \sa class Quaternion
33   */
34 template<class Derived>
35 class QuaternionBase : public RotationBase<Derived, 3>
36 {
37  public:
38   typedef RotationBase<Derived, 3> Base;
39 
40   using Base::operator*;
41   using Base::derived;
42 
43   typedef typename internal::traits<Derived>::Scalar Scalar;
44   typedef typename NumTraits<Scalar>::Real RealScalar;
45   typedef typename internal::traits<Derived>::Coefficients Coefficients;
46   enum {
47     Flags = Eigen::internal::traits<Derived>::Flags
48   };
49 
50  // typedef typename Matrix<Scalar,4,1> Coefficients;
51   /** the type of a 3D vector */
52   typedef Matrix<Scalar,3,1> Vector3;
53   /** the equivalent rotation matrix type */
54   typedef Matrix<Scalar,3,3> Matrix3;
55   /** the equivalent angle-axis type */
56   typedef AngleAxis<Scalar> AngleAxisType;
57 
58 
59 
60   /** \returns the \c x coefficient */
x()61   EIGEN_DEVICE_FUNC inline Scalar x() const { return this->derived().coeffs().coeff(0); }
62   /** \returns the \c y coefficient */
y()63   EIGEN_DEVICE_FUNC inline Scalar y() const { return this->derived().coeffs().coeff(1); }
64   /** \returns the \c z coefficient */
z()65   EIGEN_DEVICE_FUNC inline Scalar z() const { return this->derived().coeffs().coeff(2); }
66   /** \returns the \c w coefficient */
w()67   EIGEN_DEVICE_FUNC inline Scalar w() const { return this->derived().coeffs().coeff(3); }
68 
69   /** \returns a reference to the \c x coefficient */
x()70   EIGEN_DEVICE_FUNC inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
71   /** \returns a reference to the \c y coefficient */
y()72   EIGEN_DEVICE_FUNC inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
73   /** \returns a reference to the \c z coefficient */
z()74   EIGEN_DEVICE_FUNC inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
75   /** \returns a reference to the \c w coefficient */
w()76   EIGEN_DEVICE_FUNC inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
77 
78   /** \returns a read-only vector expression of the imaginary part (x,y,z) */
vec()79   EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
80 
81   /** \returns a vector expression of the imaginary part (x,y,z) */
vec()82   EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
83 
84   /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
coeffs()85   EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
86 
87   /** \returns a vector expression of the coefficients (x,y,z,w) */
coeffs()88   EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
89 
90   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
91   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
92 
93 // disabled this copy operator as it is giving very strange compilation errors when compiling
94 // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
95 // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
96 // we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
97 //  Derived& operator=(const QuaternionBase& other)
98 //  { return operator=<Derived>(other); }
99 
100   EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa);
101   template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m);
102 
103   /** \returns a quaternion representing an identity rotation
104     * \sa MatrixBase::Identity()
105     */
Identity()106   EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
107 
108   /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
109     */
setIdentity()110   EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
111 
112   /** \returns the squared norm of the quaternion's coefficients
113     * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
114     */
squaredNorm()115   EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
116 
117   /** \returns the norm of the quaternion's coefficients
118     * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
119     */
norm()120   EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); }
121 
122   /** Normalizes the quaternion \c *this
123     * \sa normalized(), MatrixBase::normalize() */
normalize()124   EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); }
125   /** \returns a normalized copy of \c *this
126     * \sa normalize(), MatrixBase::normalized() */
normalized()127   EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
128 
129     /** \returns the dot product of \c *this and \a other
130     * Geometrically speaking, the dot product of two unit quaternions
131     * corresponds to the cosine of half the angle between the two rotations.
132     * \sa angularDistance()
133     */
dot(const QuaternionBase<OtherDerived> & other)134   template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
135 
136   template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
137 
138   /** \returns an equivalent 3x3 rotation matrix */
139   EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const;
140 
141   /** \returns the quaternion which transform \a a into \a b through a rotation */
142   template<typename Derived1, typename Derived2>
143   EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
144 
145   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
146   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
147 
148   /** \returns the quaternion describing the inverse rotation */
149   EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const;
150 
151   /** \returns the conjugated quaternion */
152   EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const;
153 
154   template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
155 
156   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
157     * determined by \a prec.
158     *
159     * \sa MatrixBase::isApprox() */
160   template<class OtherDerived>
161   EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
162   { return coeffs().isApprox(other.coeffs(), prec); }
163 
164   /** return the result vector of \a v through the rotation*/
165   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
166 
167   /** \returns \c *this with scalar type casted to \a NewScalarType
168     *
169     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
170     * then this function smartly returns a const reference to \c *this.
171     */
172   template<typename NewScalarType>
cast()173   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
174   {
175     return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
176   }
177 
178 #ifdef EIGEN_QUATERNIONBASE_PLUGIN
179 # include EIGEN_QUATERNIONBASE_PLUGIN
180 #endif
181 };
182 
183 /***************************************************************************
184 * Definition/implementation of Quaternion<Scalar>
185 ***************************************************************************/
186 
187 /** \geometry_module \ingroup Geometry_Module
188   *
189   * \class Quaternion
190   *
191   * \brief The quaternion class used to represent 3D orientations and rotations
192   *
193   * \tparam _Scalar the scalar type, i.e., the type of the coefficients
194   * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
195   *
196   * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
197   * orientations and rotations of objects in three dimensions. Compared to other representations
198   * like Euler angles or 3x3 matrices, quaternions offer the following advantages:
199   * \li \b compact storage (4 scalars)
200   * \li \b efficient to compose (28 flops),
201   * \li \b stable spherical interpolation
202   *
203   * The following two typedefs are provided for convenience:
204   * \li \c Quaternionf for \c float
205   * \li \c Quaterniond for \c double
206   *
207   * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
208   *
209   * \sa  class AngleAxis, class Transform
210   */
211 
212 namespace internal {
213 template<typename _Scalar,int _Options>
214 struct traits<Quaternion<_Scalar,_Options> >
215 {
216   typedef Quaternion<_Scalar,_Options> PlainObject;
217   typedef _Scalar Scalar;
218   typedef Matrix<_Scalar,4,1,_Options> Coefficients;
219   enum{
220     Alignment = internal::traits<Coefficients>::Alignment,
221     Flags = LvalueBit
222   };
223 };
224 }
225 
226 template<typename _Scalar, int _Options>
227 class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
228 {
229 public:
230   typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
231   enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 };
232 
233   typedef _Scalar Scalar;
234 
235   EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
236   using Base::operator*=;
237 
238   typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
239   typedef typename Base::AngleAxisType AngleAxisType;
240 
241   /** Default constructor leaving the quaternion uninitialized. */
242   EIGEN_DEVICE_FUNC inline Quaternion() {}
243 
244   /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
245     * its four coefficients \a w, \a x, \a y and \a z.
246     *
247     * \warning Note the order of the arguments: the real \a w coefficient first,
248     * while internally the coefficients are stored in the following order:
249     * [\c x, \c y, \c z, \c w]
250     */
251   EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
252 
253   /** Constructs and initialize a quaternion from the array data */
254   EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {}
255 
256   /** Copy constructor */
257   template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
258 
259   /** Constructs and initializes a quaternion from the angle-axis \a aa */
260   EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
261 
262   /** Constructs and initializes a quaternion from either:
263     *  - a rotation matrix expression,
264     *  - a 4D vector expression representing quaternion coefficients.
265     */
266   template<typename Derived>
267   EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
268 
269   /** Explicit copy constructor with scalar conversion */
270   template<typename OtherScalar, int OtherOptions>
271   EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
272   { m_coeffs = other.coeffs().template cast<Scalar>(); }
273 
274   EIGEN_DEVICE_FUNC static Quaternion UnitRandom();
275 
276   template<typename Derived1, typename Derived2>
277   EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
278 
279   EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;}
280   EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
281 
282   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment))
283 
284 #ifdef EIGEN_QUATERNION_PLUGIN
285 # include EIGEN_QUATERNION_PLUGIN
286 #endif
287 
288 protected:
289   Coefficients m_coeffs;
290 
291 #ifndef EIGEN_PARSED_BY_DOXYGEN
292     static EIGEN_STRONG_INLINE void _check_template_params()
293     {
294       EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
295         INVALID_MATRIX_TEMPLATE_PARAMETERS)
296     }
297 #endif
298 };
299 
300 /** \ingroup Geometry_Module
301   * single precision quaternion type */
302 typedef Quaternion<float> Quaternionf;
303 /** \ingroup Geometry_Module
304   * double precision quaternion type */
305 typedef Quaternion<double> Quaterniond;
306 
307 /***************************************************************************
308 * Specialization of Map<Quaternion<Scalar>>
309 ***************************************************************************/
310 
311 namespace internal {
312   template<typename _Scalar, int _Options>
313   struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
314   {
315     typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
316   };
317 }
318 
319 namespace internal {
320   template<typename _Scalar, int _Options>
321   struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
322   {
323     typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
324     typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
325     enum {
326       Flags = TraitsBase::Flags & ~LvalueBit
327     };
328   };
329 }
330 
331 /** \ingroup Geometry_Module
332   * \brief Quaternion expression mapping a constant memory buffer
333   *
334   * \tparam _Scalar the type of the Quaternion coefficients
335   * \tparam _Options see class Map
336   *
337   * This is a specialization of class Map for Quaternion. This class allows to view
338   * a 4 scalar memory buffer as an Eigen's Quaternion object.
339   *
340   * \sa class Map, class Quaternion, class QuaternionBase
341   */
342 template<typename _Scalar, int _Options>
343 class Map<const Quaternion<_Scalar>, _Options >
344   : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
345 {
346   public:
347     typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
348 
349     typedef _Scalar Scalar;
350     typedef typename internal::traits<Map>::Coefficients Coefficients;
351     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
352     using Base::operator*=;
353 
354     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
355       *
356       * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
357       * \code *coeffs == {x, y, z, w} \endcode
358       *
359       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
360     EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
361 
362     EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
363 
364   protected:
365     const Coefficients m_coeffs;
366 };
367 
368 /** \ingroup Geometry_Module
369   * \brief Expression of a quaternion from a memory buffer
370   *
371   * \tparam _Scalar the type of the Quaternion coefficients
372   * \tparam _Options see class Map
373   *
374   * This is a specialization of class Map for Quaternion. This class allows to view
375   * a 4 scalar memory buffer as an Eigen's  Quaternion object.
376   *
377   * \sa class Map, class Quaternion, class QuaternionBase
378   */
379 template<typename _Scalar, int _Options>
380 class Map<Quaternion<_Scalar>, _Options >
381   : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
382 {
383   public:
384     typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
385 
386     typedef _Scalar Scalar;
387     typedef typename internal::traits<Map>::Coefficients Coefficients;
388     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
389     using Base::operator*=;
390 
391     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
392       *
393       * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
394       * \code *coeffs == {x, y, z, w} \endcode
395       *
396       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
397     EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
398 
399     EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
400     EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
401 
402   protected:
403     Coefficients m_coeffs;
404 };
405 
406 /** \ingroup Geometry_Module
407   * Map an unaligned array of single precision scalars as a quaternion */
408 typedef Map<Quaternion<float>, 0>         QuaternionMapf;
409 /** \ingroup Geometry_Module
410   * Map an unaligned array of double precision scalars as a quaternion */
411 typedef Map<Quaternion<double>, 0>        QuaternionMapd;
412 /** \ingroup Geometry_Module
413   * Map a 16-byte aligned array of single precision scalars as a quaternion */
414 typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
415 /** \ingroup Geometry_Module
416   * Map a 16-byte aligned array of double precision scalars as a quaternion */
417 typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;
418 
419 /***************************************************************************
420 * Implementation of QuaternionBase methods
421 ***************************************************************************/
422 
423 // Generic Quaternion * Quaternion product
424 // This product can be specialized for a given architecture via the Arch template argument.
425 namespace internal {
426 template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
427 {
428   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
429     return Quaternion<Scalar>
430     (
431       a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
432       a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
433       a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
434       a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
435     );
436   }
437 };
438 }
439 
440 /** \returns the concatenation of two rotations as a quaternion-quaternion product */
441 template <class Derived>
442 template <class OtherDerived>
443 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
444 QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
445 {
446   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
447    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
448   return internal::quat_product<Architecture::Target, Derived, OtherDerived,
449                          typename internal::traits<Derived>::Scalar,
450                          EIGEN_PLAIN_ENUM_MIN(internal::traits<Derived>::Alignment, internal::traits<OtherDerived>::Alignment)>::run(*this, other);
451 }
452 
453 /** \sa operator*(Quaternion) */
454 template <class Derived>
455 template <class OtherDerived>
456 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
457 {
458   derived() = derived() * other.derived();
459   return derived();
460 }
461 
462 /** Rotation of a vector by a quaternion.
463   * \remarks If the quaternion is used to rotate several points (>1)
464   * then it is much more efficient to first convert it to a 3x3 Matrix.
465   * Comparison of the operation cost for n transformations:
466   *   - Quaternion2:    30n
467   *   - Via a Matrix3: 24 + 15n
468   */
469 template <class Derived>
470 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
471 QuaternionBase<Derived>::_transformVector(const Vector3& v) const
472 {
473     // Note that this algorithm comes from the optimization by hand
474     // of the conversion to a Matrix followed by a Matrix/Vector product.
475     // It appears to be much faster than the common algorithm found
476     // in the literature (30 versus 39 flops). It also requires two
477     // Vector3 as temporaries.
478     Vector3 uv = this->vec().cross(v);
479     uv += uv;
480     return v + this->w() * uv + this->vec().cross(uv);
481 }
482 
483 template<class Derived>
484 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
485 {
486   coeffs() = other.coeffs();
487   return derived();
488 }
489 
490 template<class Derived>
491 template<class OtherDerived>
492 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
493 {
494   coeffs() = other.coeffs();
495   return derived();
496 }
497 
498 /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
499   */
500 template<class Derived>
501 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
502 {
503   EIGEN_USING_STD_MATH(cos)
504   EIGEN_USING_STD_MATH(sin)
505   Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
506   this->w() = cos(ha);
507   this->vec() = sin(ha) * aa.axis();
508   return derived();
509 }
510 
511 /** Set \c *this from the expression \a xpr:
512   *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
513   *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
514   *     and \a xpr is converted to a quaternion
515   */
516 
517 template<class Derived>
518 template<class MatrixDerived>
519 EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
520 {
521   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
522    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
523   internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
524   return derived();
525 }
526 
527 /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
528   * be normalized, otherwise the result is undefined.
529   */
530 template<class Derived>
531 EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3
532 QuaternionBase<Derived>::toRotationMatrix(void) const
533 {
534   // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
535   // if not inlined then the cost of the return by value is huge ~ +35%,
536   // however, not inlining this function is an order of magnitude slower, so
537   // it has to be inlined, and so the return by value is not an issue
538   Matrix3 res;
539 
540   const Scalar tx  = Scalar(2)*this->x();
541   const Scalar ty  = Scalar(2)*this->y();
542   const Scalar tz  = Scalar(2)*this->z();
543   const Scalar twx = tx*this->w();
544   const Scalar twy = ty*this->w();
545   const Scalar twz = tz*this->w();
546   const Scalar txx = tx*this->x();
547   const Scalar txy = ty*this->x();
548   const Scalar txz = tz*this->x();
549   const Scalar tyy = ty*this->y();
550   const Scalar tyz = tz*this->y();
551   const Scalar tzz = tz*this->z();
552 
553   res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
554   res.coeffRef(0,1) = txy-twz;
555   res.coeffRef(0,2) = txz+twy;
556   res.coeffRef(1,0) = txy+twz;
557   res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
558   res.coeffRef(1,2) = tyz-twx;
559   res.coeffRef(2,0) = txz-twy;
560   res.coeffRef(2,1) = tyz+twx;
561   res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
562 
563   return res;
564 }
565 
566 /** Sets \c *this to be a quaternion representing a rotation between
567   * the two arbitrary vectors \a a and \a b. In other words, the built
568   * rotation represent a rotation sending the line of direction \a a
569   * to the line of direction \a b, both lines passing through the origin.
570   *
571   * \returns a reference to \c *this.
572   *
573   * Note that the two input vectors do \b not have to be normalized, and
574   * do not need to have the same norm.
575   */
576 template<class Derived>
577 template<typename Derived1, typename Derived2>
578 EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
579 {
580   EIGEN_USING_STD_MATH(sqrt)
581   Vector3 v0 = a.normalized();
582   Vector3 v1 = b.normalized();
583   Scalar c = v1.dot(v0);
584 
585   // if dot == -1, vectors are nearly opposites
586   // => accurately compute the rotation axis by computing the
587   //    intersection of the two planes. This is done by solving:
588   //       x^T v0 = 0
589   //       x^T v1 = 0
590   //    under the constraint:
591   //       ||x|| = 1
592   //    which yields a singular value problem
593   if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
594   {
595     c = numext::maxi(c,Scalar(-1));
596     Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
597     JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
598     Vector3 axis = svd.matrixV().col(2);
599 
600     Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
601     this->w() = sqrt(w2);
602     this->vec() = axis * sqrt(Scalar(1) - w2);
603     return derived();
604   }
605   Vector3 axis = v0.cross(v1);
606   Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
607   Scalar invs = Scalar(1)/s;
608   this->vec() = axis * invs;
609   this->w() = s * Scalar(0.5);
610 
611   return derived();
612 }
613 
614 /** \returns a random unit quaternion following a uniform distribution law on SO(3)
615   *
616   * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html
617   */
618 template<typename Scalar, int Options>
619 EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom()
620 {
621   EIGEN_USING_STD_MATH(sqrt)
622   EIGEN_USING_STD_MATH(sin)
623   EIGEN_USING_STD_MATH(cos)
624   const Scalar u1 = internal::random<Scalar>(0, 1),
625                u2 = internal::random<Scalar>(0, 2*EIGEN_PI),
626                u3 = internal::random<Scalar>(0, 2*EIGEN_PI);
627   const Scalar a = sqrt(1 - u1),
628                b = sqrt(u1);
629   return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3));
630 }
631 
632 
633 /** Returns a quaternion representing a rotation between
634   * the two arbitrary vectors \a a and \a b. In other words, the built
635   * rotation represent a rotation sending the line of direction \a a
636   * to the line of direction \a b, both lines passing through the origin.
637   *
638   * \returns resulting quaternion
639   *
640   * Note that the two input vectors do \b not have to be normalized, and
641   * do not need to have the same norm.
642   */
643 template<typename Scalar, int Options>
644 template<typename Derived1, typename Derived2>
645 EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
646 {
647     Quaternion quat;
648     quat.setFromTwoVectors(a, b);
649     return quat;
650 }
651 
652 
653 /** \returns the multiplicative inverse of \c *this
654   * Note that in most cases, i.e., if you simply want the opposite rotation,
655   * and/or the quaternion is normalized, then it is enough to use the conjugate.
656   *
657   * \sa QuaternionBase::conjugate()
658   */
659 template <class Derived>
660 EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
661 {
662   // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
663   Scalar n2 = this->squaredNorm();
664   if (n2 > Scalar(0))
665     return Quaternion<Scalar>(conjugate().coeffs() / n2);
666   else
667   {
668     // return an invalid result to flag the error
669     return Quaternion<Scalar>(Coefficients::Zero());
670   }
671 }
672 
673 // Generic conjugate of a Quaternion
674 namespace internal {
675 template<int Arch, class Derived, typename Scalar, int _Options> struct quat_conj
676 {
677   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){
678     return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z());
679   }
680 };
681 }
682 
683 /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
684   * if the quaternion is normalized.
685   * The conjugate of a quaternion represents the opposite rotation.
686   *
687   * \sa Quaternion2::inverse()
688   */
689 template <class Derived>
690 EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar>
691 QuaternionBase<Derived>::conjugate() const
692 {
693   return internal::quat_conj<Architecture::Target, Derived,
694                          typename internal::traits<Derived>::Scalar,
695                          internal::traits<Derived>::Alignment>::run(*this);
696 
697 }
698 
699 /** \returns the angle (in radian) between two rotations
700   * \sa dot()
701   */
702 template <class Derived>
703 template <class OtherDerived>
704 EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar
705 QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
706 {
707   EIGEN_USING_STD_MATH(atan2)
708   Quaternion<Scalar> d = (*this) * other.conjugate();
709   return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) );
710 }
711 
712 
713 
714 /** \returns the spherical linear interpolation between the two quaternions
715   * \c *this and \a other at the parameter \a t in [0;1].
716   *
717   * This represents an interpolation for a constant motion between \c *this and \a other,
718   * see also http://en.wikipedia.org/wiki/Slerp.
719   */
720 template <class Derived>
721 template <class OtherDerived>
722 EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar>
723 QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
724 {
725   EIGEN_USING_STD_MATH(acos)
726   EIGEN_USING_STD_MATH(sin)
727   const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
728   Scalar d = this->dot(other);
729   Scalar absD = numext::abs(d);
730 
731   Scalar scale0;
732   Scalar scale1;
733 
734   if(absD>=one)
735   {
736     scale0 = Scalar(1) - t;
737     scale1 = t;
738   }
739   else
740   {
741     // theta is the angle between the 2 quaternions
742     Scalar theta = acos(absD);
743     Scalar sinTheta = sin(theta);
744 
745     scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
746     scale1 = sin( ( t * theta) ) / sinTheta;
747   }
748   if(d<Scalar(0)) scale1 = -scale1;
749 
750   return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
751 }
752 
753 namespace internal {
754 
755 // set from a rotation matrix
756 template<typename Other>
757 struct quaternionbase_assign_impl<Other,3,3>
758 {
759   typedef typename Other::Scalar Scalar;
760   template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat)
761   {
762     const typename internal::nested_eval<Other,2>::type mat(a_mat);
763     EIGEN_USING_STD_MATH(sqrt)
764     // This algorithm comes from  "Quaternion Calculus and Fast Animation",
765     // Ken Shoemake, 1987 SIGGRAPH course notes
766     Scalar t = mat.trace();
767     if (t > Scalar(0))
768     {
769       t = sqrt(t + Scalar(1.0));
770       q.w() = Scalar(0.5)*t;
771       t = Scalar(0.5)/t;
772       q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
773       q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
774       q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
775     }
776     else
777     {
778       Index i = 0;
779       if (mat.coeff(1,1) > mat.coeff(0,0))
780         i = 1;
781       if (mat.coeff(2,2) > mat.coeff(i,i))
782         i = 2;
783       Index j = (i+1)%3;
784       Index k = (j+1)%3;
785 
786       t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
787       q.coeffs().coeffRef(i) = Scalar(0.5) * t;
788       t = Scalar(0.5)/t;
789       q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
790       q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
791       q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
792     }
793   }
794 };
795 
796 // set from a vector of coefficients assumed to be a quaternion
797 template<typename Other>
798 struct quaternionbase_assign_impl<Other,4,1>
799 {
800   typedef typename Other::Scalar Scalar;
801   template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec)
802   {
803     q.coeffs() = vec;
804   }
805 };
806 
807 } // end namespace internal
808 
809 } // end namespace Eigen
810 
811 #endif // EIGEN_QUATERNION_H
812