1 /*
2  * jmemmgr.c
3  *
4  * Copyright (C) 1991-1998, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains the JPEG system-independent memory management
9  * routines.  This code is usable across a wide variety of machines; most
10  * of the system dependencies have been isolated in a separate file.
11  * The major functions provided here are:
12  *   * pool-based allocation and freeing of memory;
13  *   * policy decisions about how to divide available memory among the
14  *     virtual arrays;
15  *   * control logic for swapping virtual arrays between main memory and
16  *     backing storage.
17  * The separate system-dependent file provides the actual backing-storage
18  * access code, and it contains the policy decision about how much total
19  * main memory to use.
20  * This file is system-dependent in the sense that some of its functions
21  * are unnecessary in some systems.  For example, if there is enough virtual
22  * memory so that backing storage will never be used, much of the virtual
23  * array control logic could be removed.  (Of course, if you have that much
24  * memory then you shouldn't care about a little bit of unused code...)
25  */
26 
27 #define JPEG_INTERNALS
28 #define AM_MEMORY_MANAGER   /* we define jvirt_Xarray_control structs */
29 #include "jinclude16.h"
30 #include "jpeglib16.h"
31 #include "jmemsys16.h"      /* import the system-dependent declarations */
32 
33 #ifndef NO_GETENV
34 #ifndef HAVE_STDLIB_H       /* <stdlib.h> should declare getenv() */
35 extern char * getenv JPP((const char * name));
36 #endif
37 #endif
38 
39 
40 /*
41  * Some important notes:
42  *   The allocation routines provided here must never return NULL.
43  *   They should exit to error_exit if unsuccessful.
44  *
45  *   It's not a good idea to try to merge the sarray, barray and darray
46  *   routines, even though they are textually almost the same, because
47  *   samples are usually stored as bytes while coefficients and differenced
48  *   are shorts or ints.  Thus, in machines where byte pointers have a
49  *   different representation from word pointers, the resulting machine
50  *   code could not be the same.
51  */
52 
53 
54 /*
55  * Many machines require storage alignment: longs must start on 4-byte
56  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
57  * always returns pointers that are multiples of the worst-case alignment
58  * requirement, and we had better do so too.
59  * There isn't any really portable way to determine the worst-case alignment
60  * requirement.  This module assumes that the alignment requirement is
61  * multiples of sizeof(ALIGN_TYPE).
62  * By default, we define ALIGN_TYPE as double.  This is necessary on some
63  * workstations (where doubles really do need 8-byte alignment) and will work
64  * fine on nearly everything.  If your machine has lesser alignment needs,
65  * you can save a few bytes by making ALIGN_TYPE smaller.
66  * The only place I know of where this will NOT work is certain Macintosh
67  * 680x0 compilers that define double as a 10-byte IEEE extended float.
68  * Doing 10-byte alignment is counterproductive because longwords won't be
69  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
70  * such a compiler.
71  */
72 
73 #ifndef ALIGN_TYPE      /* so can override from jconfig.h */
74 #define ALIGN_TYPE  double
75 #endif
76 
77 
78 /*
79  * We allocate objects from "pools", where each pool is gotten with a single
80  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
81  * overhead within a pool, except for alignment padding.  Each pool has a
82  * header with a link to the next pool of the same class.
83  * Small and large pool headers are identical except that the latter's
84  * link pointer must be FAR on 80x86 machines.
85  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
86  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
87  * of the alignment requirement of ALIGN_TYPE.
88  */
89 
90 typedef union small_pool_struct * small_pool_ptr;
91 
92 typedef union small_pool_struct {
93   struct {
94     small_pool_ptr next;    /* next in list of pools */
95     size_t bytes_used;      /* how many bytes already used within pool */
96     size_t bytes_left;      /* bytes still available in this pool */
97   } hdr;
98   ALIGN_TYPE dummy;     /* included in union to ensure alignment */
99 } small_pool_hdr;
100 
101 typedef union large_pool_struct FAR * large_pool_ptr;
102 
103 typedef union large_pool_struct {
104   struct {
105     large_pool_ptr next;    /* next in list of pools */
106     size_t bytes_used;      /* how many bytes already used within pool */
107     size_t bytes_left;      /* bytes still available in this pool */
108   } hdr;
109   ALIGN_TYPE dummy;     /* included in union to ensure alignment */
110 } large_pool_hdr;
111 
112 
113 /*
114  * Here is the full definition of a memory manager object.
115  */
116 
117 typedef struct {
118   struct jpeg_memory_mgr pub;   /* public fields */
119 
120   /* Each pool identifier (lifetime class) names a linked list of pools. */
121   small_pool_ptr small_list[JPOOL_NUMPOOLS];
122   large_pool_ptr large_list[JPOOL_NUMPOOLS];
123 
124   /* Since we only have one lifetime class of virtual arrays, only one
125    * linked list is necessary (for each datatype).  Note that the virtual
126    * array control blocks being linked together are actually stored somewhere
127    * in the small-pool list.
128    */
129   jvirt_sarray_ptr virt_sarray_list;
130   jvirt_barray_ptr virt_barray_list;
131 
132   /* This counts total space obtained from jpeg_get_small/large */
133   long total_space_allocated;
134 
135   /* alloc_sarray and alloc_barray set this value for use by virtual
136    * array routines.
137    */
138   JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
139 } my_memory_mgr;
140 
141 typedef my_memory_mgr * my_mem_ptr;
142 
143 
144 /*
145  * The control blocks for virtual arrays.
146  * Note that these blocks are allocated in the "small" pool area.
147  * System-dependent info for the associated backing store (if any) is hidden
148  * inside the backing_store_info struct.
149  */
150 
151 struct jvirt_sarray_control {
152   JSAMPARRAY mem_buffer;    /* => the in-memory buffer */
153   JDIMENSION rows_in_array; /* total virtual array height */
154   JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
155   JDIMENSION maxaccess;     /* max rows accessed by access_virt_sarray */
156   JDIMENSION rows_in_mem;   /* height of memory buffer */
157   JDIMENSION rowsperchunk;  /* allocation chunk size in mem_buffer */
158   JDIMENSION cur_start_row; /* first logical row # in the buffer */
159   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
160   boolean pre_zero;     /* pre-zero mode requested? */
161   boolean dirty;        /* do current buffer contents need written? */
162   boolean b_s_open;     /* is backing-store data valid? */
163   jvirt_sarray_ptr next;    /* link to next virtual sarray control block */
164   backing_store_info b_s_info;  /* System-dependent control info */
165 };
166 
167 struct jvirt_barray_control {
168   JBLOCKARRAY mem_buffer;   /* => the in-memory buffer */
169   JDIMENSION rows_in_array; /* total virtual array height */
170   JDIMENSION blocksperrow;  /* width of array (and of memory buffer) */
171   JDIMENSION maxaccess;     /* max rows accessed by access_virt_barray */
172   JDIMENSION rows_in_mem;   /* height of memory buffer */
173   JDIMENSION rowsperchunk;  /* allocation chunk size in mem_buffer */
174   JDIMENSION cur_start_row; /* first logical row # in the buffer */
175   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
176   boolean pre_zero;     /* pre-zero mode requested? */
177   boolean dirty;        /* do current buffer contents need written? */
178   boolean b_s_open;     /* is backing-store data valid? */
179   jvirt_barray_ptr next;    /* link to next virtual barray control block */
180   backing_store_info b_s_info;  /* System-dependent control info */
181 };
182 
183 
184 #ifdef MEM_STATS        /* optional extra stuff for statistics */
185 
186 LOCAL(void)
print_mem_stats(j_common_ptr cinfo,int pool_id)187 print_mem_stats (j_common_ptr cinfo, int pool_id)
188 {
189   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
190   small_pool_ptr shdr_ptr;
191   large_pool_ptr lhdr_ptr;
192 
193   /* Since this is only a debugging stub, we can cheat a little by using
194    * fprintf directly rather than going through the trace message code.
195    * This is helpful because message parm array can't handle longs.
196    */
197   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
198       pool_id, mem->total_space_allocated);
199 
200   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
201        lhdr_ptr = lhdr_ptr->hdr.next) {
202     fprintf(stderr, "  Large chunk used %ld\n",
203         (long) lhdr_ptr->hdr.bytes_used);
204   }
205 
206   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
207        shdr_ptr = shdr_ptr->hdr.next) {
208     fprintf(stderr, "  Small chunk used %ld free %ld\n",
209         (long) shdr_ptr->hdr.bytes_used,
210         (long) shdr_ptr->hdr.bytes_left);
211   }
212 }
213 
214 #endif /* MEM_STATS */
215 
216 
217 LOCAL(void)
out_of_memory(j_common_ptr cinfo,int which)218 out_of_memory (j_common_ptr cinfo, int which)
219 /* Report an out-of-memory error and stop execution */
220 /* If we compiled MEM_STATS support, report alloc requests before dying */
221 {
222 #ifdef MEM_STATS
223   cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
224 #endif
225   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
226 }
227 
228 
229 /*
230  * Allocation of "small" objects.
231  *
232  * For these, we use pooled storage.  When a new pool must be created,
233  * we try to get enough space for the current request plus a "slop" factor,
234  * where the slop will be the amount of leftover space in the new pool.
235  * The speed vs. space tradeoff is largely determined by the slop values.
236  * A different slop value is provided for each pool class (lifetime),
237  * and we also distinguish the first pool of a class from later ones.
238  * NOTE: the values given work fairly well on both 16- and 32-bit-int
239  * machines, but may be too small if longs are 64 bits or more.
240  */
241 
242 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
243 {
244     1600,           /* first PERMANENT pool */
245     16000           /* first IMAGE pool */
246 };
247 
248 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
249 {
250     0,          /* additional PERMANENT pools */
251     5000            /* additional IMAGE pools */
252 };
253 
254 #define MIN_SLOP  50        /* greater than 0 to avoid futile looping */
255 
256 
257 METHODDEF(void *)
alloc_small(j_common_ptr cinfo,int pool_id,size_t sizeofobject)258 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
259 /* Allocate a "small" object */
260 {
261   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
262   small_pool_ptr hdr_ptr, prev_hdr_ptr;
263   char * data_ptr;
264   size_t odd_bytes, min_request, slop;
265 
266   /* Check for unsatisfiable request (do now to ensure no overflow below) */
267   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
268     out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
269 
270   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
271   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
272   if (odd_bytes > 0)
273     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
274 
275   /* See if space is available in any existing pool */
276   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
277     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
278   prev_hdr_ptr = NULL;
279   hdr_ptr = mem->small_list[pool_id];
280   while (hdr_ptr != NULL) {
281     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
282       break;            /* found pool with enough space */
283     prev_hdr_ptr = hdr_ptr;
284     hdr_ptr = hdr_ptr->hdr.next;
285   }
286 
287   /* Time to make a new pool? */
288   if (hdr_ptr == NULL) {
289     /* min_request is what we need now, slop is what will be leftover */
290     min_request = sizeofobject + SIZEOF(small_pool_hdr);
291     if (prev_hdr_ptr == NULL)   /* first pool in class? */
292       slop = first_pool_slop[pool_id];
293     else
294       slop = extra_pool_slop[pool_id];
295     /* Don't ask for more than MAX_ALLOC_CHUNK */
296     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
297       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
298     /* Try to get space, if fail reduce slop and try again */
299     for (;;) {
300       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
301       if (hdr_ptr != NULL)
302     break;
303       slop /= 2;
304       if (slop < MIN_SLOP)  /* give up when it gets real small */
305     out_of_memory(cinfo, 2); /* jpeg_get_small failed */
306     }
307     mem->total_space_allocated += (long)(min_request + slop);
308     /* Success, initialize the new pool header and add to end of list */
309     hdr_ptr->hdr.next = NULL;
310     hdr_ptr->hdr.bytes_used = 0;
311     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
312     if (prev_hdr_ptr == NULL)   /* first pool in class? */
313       mem->small_list[pool_id] = hdr_ptr;
314     else
315       prev_hdr_ptr->hdr.next = hdr_ptr;
316   }
317 
318   /* OK, allocate the object from the current pool */
319   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
320   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
321   hdr_ptr->hdr.bytes_used += sizeofobject;
322   hdr_ptr->hdr.bytes_left -= sizeofobject;
323 
324   return (void *) data_ptr;
325 }
326 
327 
328 /*
329  * Allocation of "large" objects.
330  *
331  * The external semantics of these are the same as "small" objects,
332  * except that FAR pointers are used on 80x86.  However the pool
333  * management heuristics are quite different.  We assume that each
334  * request is large enough that it may as well be passed directly to
335  * jpeg_get_large; the pool management just links everything together
336  * so that we can free it all on demand.
337  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
338  * structures.  The routines that create these structures (see below)
339  * deliberately bunch rows together to ensure a large request size.
340  */
341 
342 METHODDEF(void FAR *)
alloc_large(j_common_ptr cinfo,int pool_id,size_t sizeofobject)343 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
344 /* Allocate a "large" object */
345 {
346   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
347   large_pool_ptr hdr_ptr;
348   size_t odd_bytes;
349 
350   /* Check for unsatisfiable request (do now to ensure no overflow below) */
351   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
352     out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
353 
354   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
355   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
356   if (odd_bytes > 0)
357     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
358 
359   /* Always make a new pool */
360   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
361     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
362 
363   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
364                         SIZEOF(large_pool_hdr));
365   if (hdr_ptr == NULL)
366     out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
367   mem->total_space_allocated += (long)(sizeofobject + SIZEOF(large_pool_hdr));
368 
369   /* Success, initialize the new pool header and add to list */
370   hdr_ptr->hdr.next = mem->large_list[pool_id];
371   /* We maintain space counts in each pool header for statistical purposes,
372    * even though they are not needed for allocation.
373    */
374   hdr_ptr->hdr.bytes_used = sizeofobject;
375   hdr_ptr->hdr.bytes_left = 0;
376   mem->large_list[pool_id] = hdr_ptr;
377 
378   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
379 }
380 
381 
382 /*
383  * Creation of 2-D sample arrays.
384  * The pointers are in near heap, the samples themselves in FAR heap.
385  *
386  * To minimize allocation overhead and to allow I/O of large contiguous
387  * blocks, we allocate the sample rows in groups of as many rows as possible
388  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
389  * NB: the virtual array control routines, later in this file, know about
390  * this chunking of rows.  The rowsperchunk value is left in the mem manager
391  * object so that it can be saved away if this sarray is the workspace for
392  * a virtual array.
393  */
394 
395 METHODDEF(JSAMPARRAY)
alloc_sarray(j_common_ptr cinfo,int pool_id,JDIMENSION samplesperrow,JDIMENSION numrows)396 alloc_sarray (j_common_ptr cinfo, int pool_id,
397           JDIMENSION samplesperrow, JDIMENSION numrows)
398 /* Allocate a 2-D sample array */
399 {
400   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
401   JSAMPARRAY result;
402   JSAMPROW workspace;
403   JDIMENSION rowsperchunk, currow, i;
404   size_t ltemp;
405 
406   /* Calculate max # of rows allowed in one allocation chunk */
407   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
408       ((size_t) samplesperrow * SIZEOF(JSAMPLE));
409   if (ltemp <= 0)
410     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
411   if (ltemp < numrows)
412     rowsperchunk = (JDIMENSION) ltemp;
413   else
414     rowsperchunk = numrows;
415   mem->last_rowsperchunk = rowsperchunk;
416 
417   /* Get space for row pointers (small object) */
418   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
419                     (size_t) (numrows * SIZEOF(JSAMPROW)));
420 
421   /* Get the rows themselves (large objects) */
422   currow = 0;
423   while (currow < numrows) {
424     rowsperchunk = MIN(rowsperchunk, numrows - currow);
425     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
426     (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
427           * SIZEOF(JSAMPLE)));
428     for (i = rowsperchunk; i > 0; i--) {
429       result[currow++] = workspace;
430       workspace += samplesperrow;
431     }
432   }
433 
434   return result;
435 }
436 
437 
438 /*
439  * Creation of 2-D coefficient-block arrays.
440  * This is essentially the same as the code for sample arrays, above.
441  */
442 
443 METHODDEF(JBLOCKARRAY)
alloc_barray(j_common_ptr cinfo,int pool_id,JDIMENSION blocksperrow,JDIMENSION numrows)444 alloc_barray (j_common_ptr cinfo, int pool_id,
445           JDIMENSION blocksperrow, JDIMENSION numrows)
446 /* Allocate a 2-D coefficient-block array */
447 {
448   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
449   JBLOCKARRAY result;
450   JBLOCKROW workspace;
451   JDIMENSION rowsperchunk, currow, i;
452   size_t ltemp;
453 
454   /* Calculate max # of rows allowed in one allocation chunk */
455   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
456       ((size_t) blocksperrow * SIZEOF(JBLOCK));
457   if (ltemp <= 0)
458     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
459   if (ltemp < numrows)
460     rowsperchunk = (JDIMENSION) ltemp;
461   else
462     rowsperchunk = numrows;
463   mem->last_rowsperchunk = rowsperchunk;
464 
465   /* Get space for row pointers (small object) */
466   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
467                      (size_t) (numrows * SIZEOF(JBLOCKROW)));
468 
469   /* Get the rows themselves (large objects) */
470   currow = 0;
471   while (currow < numrows) {
472     rowsperchunk = MIN(rowsperchunk, numrows - currow);
473     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
474     (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
475           * SIZEOF(JBLOCK)));
476     for (i = rowsperchunk; i > 0; i--) {
477       result[currow++] = workspace;
478       workspace += blocksperrow;
479     }
480   }
481 
482   return result;
483 }
484 
485 
486 #ifdef NEED_DARRAY
487 
488 /*
489  * Creation of 2-D difference arrays.
490  * This is essentially the same as the code for sample arrays, above.
491  */
492 
493 METHODDEF(JDIFFARRAY)
alloc_darray(j_common_ptr cinfo,int pool_id,JDIMENSION diffsperrow,JDIMENSION numrows)494 alloc_darray (j_common_ptr cinfo, int pool_id,
495           JDIMENSION diffsperrow, JDIMENSION numrows)
496 /* Allocate a 2-D difference array */
497 {
498   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
499   JDIFFARRAY result;
500   JDIFFROW workspace;
501   JDIMENSION rowsperchunk, currow, i;
502   size_t ltemp;
503 
504   /* Calculate max # of rows allowed in one allocation chunk */
505   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
506       ((size_t) diffsperrow * SIZEOF(JDIFF));
507   if (ltemp <= 0)
508     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
509   if (ltemp < numrows)
510     rowsperchunk = (JDIMENSION) ltemp;
511   else
512     rowsperchunk = numrows;
513   mem->last_rowsperchunk = rowsperchunk;
514 
515   /* Get space for row pointers (small object) */
516   result = (JDIFFARRAY) alloc_small(cinfo, pool_id,
517                     (size_t) (numrows * SIZEOF(JDIFFROW)));
518 
519   /* Get the rows themselves (large objects) */
520   currow = 0;
521   while (currow < numrows) {
522     rowsperchunk = MIN(rowsperchunk, numrows - currow);
523     workspace = (JDIFFROW) alloc_large(cinfo, pool_id,
524     (size_t) ((size_t) rowsperchunk * (size_t) diffsperrow
525           * SIZEOF(JDIFF)));
526     for (i = rowsperchunk; i > 0; i--) {
527       result[currow++] = workspace;
528       workspace += diffsperrow;
529     }
530   }
531 
532   return result;
533 }
534 
535 #endif
536 
537 
538 /*
539  * About virtual array management:
540  *
541  * The above "normal" array routines are only used to allocate strip buffers
542  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
543  * are handled as "virtual" arrays.  The array is still accessed a strip at a
544  * time, but the memory manager must save the whole array for repeated
545  * accesses.  The intended implementation is that there is a strip buffer in
546  * memory (as high as is possible given the desired memory limit), plus a
547  * backing file that holds the rest of the array.
548  *
549  * The request_virt_array routines are told the total size of the image and
550  * the maximum number of rows that will be accessed at once.  The in-memory
551  * buffer must be at least as large as the maxaccess value.
552  *
553  * The request routines create control blocks but not the in-memory buffers.
554  * That is postponed until realize_virt_arrays is called.  At that time the
555  * total amount of space needed is known (approximately, anyway), so free
556  * memory can be divided up fairly.
557  *
558  * The access_virt_array routines are responsible for making a specific strip
559  * area accessible (after reading or writing the backing file, if necessary).
560  * Note that the access routines are told whether the caller intends to modify
561  * the accessed strip; during a read-only pass this saves having to rewrite
562  * data to disk.  The access routines are also responsible for pre-zeroing
563  * any newly accessed rows, if pre-zeroing was requested.
564  *
565  * In current usage, the access requests are usually for nonoverlapping
566  * strips; that is, successive access start_row numbers differ by exactly
567  * num_rows = maxaccess.  This means we can get good performance with simple
568  * buffer dump/reload logic, by making the in-memory buffer be a multiple
569  * of the access height; then there will never be accesses across bufferload
570  * boundaries.  The code will still work with overlapping access requests,
571  * but it doesn't handle bufferload overlaps very efficiently.
572  */
573 
574 
575 METHODDEF(jvirt_sarray_ptr)
request_virt_sarray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION samplesperrow,JDIMENSION numrows,JDIMENSION maxaccess)576 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
577              JDIMENSION samplesperrow, JDIMENSION numrows,
578              JDIMENSION maxaccess)
579 /* Request a virtual 2-D sample array */
580 {
581   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
582   jvirt_sarray_ptr result;
583 
584   /* Only IMAGE-lifetime virtual arrays are currently supported */
585   if (pool_id != JPOOL_IMAGE)
586     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
587 
588   /* get control block */
589   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
590                       SIZEOF(struct jvirt_sarray_control));
591 
592   result->mem_buffer = NULL;    /* marks array not yet realized */
593   result->rows_in_array = numrows;
594   result->samplesperrow = samplesperrow;
595   result->maxaccess = maxaccess;
596   result->pre_zero = pre_zero;
597   result->b_s_open = FALSE; /* no associated backing-store object */
598   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
599   mem->virt_sarray_list = result;
600 
601   return result;
602 }
603 
604 
605 METHODDEF(jvirt_barray_ptr)
request_virt_barray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION blocksperrow,JDIMENSION numrows,JDIMENSION maxaccess)606 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
607              JDIMENSION blocksperrow, JDIMENSION numrows,
608              JDIMENSION maxaccess)
609 /* Request a virtual 2-D coefficient-block array */
610 {
611   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
612   jvirt_barray_ptr result;
613 
614   /* Only IMAGE-lifetime virtual arrays are currently supported */
615   if (pool_id != JPOOL_IMAGE)
616     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
617 
618   /* get control block */
619   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
620                       SIZEOF(struct jvirt_barray_control));
621 
622   result->mem_buffer = NULL;    /* marks array not yet realized */
623   result->rows_in_array = numrows;
624   result->blocksperrow = blocksperrow;
625   result->maxaccess = maxaccess;
626   result->pre_zero = pre_zero;
627   result->b_s_open = FALSE; /* no associated backing-store object */
628   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
629   mem->virt_barray_list = result;
630 
631   return result;
632 }
633 
634 
635 METHODDEF(void)
realize_virt_arrays(j_common_ptr cinfo)636 realize_virt_arrays (j_common_ptr cinfo)
637 /* Allocate the in-memory buffers for any unrealized virtual arrays */
638 {
639   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
640   size_t space_per_minheight, maximum_space, avail_mem;
641   size_t minheights, max_minheights;
642   jvirt_sarray_ptr sptr;
643   jvirt_barray_ptr bptr;
644 
645   /* Compute the minimum space needed (maxaccess rows in each buffer)
646    * and the maximum space needed (full image height in each buffer).
647    * These may be of use to the system-dependent jpeg_mem_available routine.
648    */
649   space_per_minheight = 0;
650   maximum_space = 0;
651   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
652     if (sptr->mem_buffer == NULL) { /* if not realized yet */
653       space_per_minheight += sptr->maxaccess *
654                  sptr->samplesperrow * SIZEOF(JSAMPLE);
655       maximum_space += sptr->rows_in_array *
656                sptr->samplesperrow * SIZEOF(JSAMPLE);
657     }
658   }
659   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
660     if (bptr->mem_buffer == NULL) { /* if not realized yet */
661       space_per_minheight += bptr->maxaccess *
662                  bptr->blocksperrow * SIZEOF(JBLOCK);
663       maximum_space += bptr->rows_in_array *
664                bptr->blocksperrow * SIZEOF(JBLOCK);
665     }
666   }
667 
668   if (space_per_minheight <= 0)
669     return;         /* no unrealized arrays, no work */
670 
671   /* Determine amount of memory to actually use; this is system-dependent. */
672   avail_mem = (size_t)jpeg_mem_available(cinfo, (long)space_per_minheight, (long)maximum_space,
673                  mem->total_space_allocated);
674 
675   /* If the maximum space needed is available, make all the buffers full
676    * height; otherwise parcel it out with the same number of minheights
677    * in each buffer.
678    */
679   if (avail_mem >= maximum_space)
680     max_minheights = 1000000000L;
681   else {
682     max_minheights = avail_mem / space_per_minheight;
683     /* If there doesn't seem to be enough space, try to get the minimum
684      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
685      */
686     if (max_minheights <= 0)
687       max_minheights = 1;
688   }
689 
690   /* Allocate the in-memory buffers and initialize backing store as needed. */
691 
692   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
693     if (sptr->mem_buffer == NULL) { /* if not realized yet */
694       minheights = (size_t)((sptr->rows_in_array - 1L) / sptr->maxaccess + 1L);
695       if (minheights <= max_minheights) {
696     /* This buffer fits in memory */
697     sptr->rows_in_mem = sptr->rows_in_array;
698       } else {
699     /* It doesn't fit in memory, create backing store. */
700     sptr->rows_in_mem = (JDIMENSION)max_minheights * sptr->maxaccess;
701     jpeg_open_backing_store(cinfo, & sptr->b_s_info,
702                 (long) sptr->rows_in_array *
703                 (long) sptr->samplesperrow *
704                 (long) SIZEOF(JSAMPLE));
705     sptr->b_s_open = TRUE;
706       }
707       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
708                       sptr->samplesperrow, sptr->rows_in_mem);
709       sptr->rowsperchunk = mem->last_rowsperchunk;
710       sptr->cur_start_row = 0;
711       sptr->first_undef_row = 0;
712       sptr->dirty = FALSE;
713     }
714   }
715 
716   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
717     if (bptr->mem_buffer == NULL) { /* if not realized yet */
718       minheights = (size_t)((bptr->rows_in_array - 1L) / bptr->maxaccess + 1L);
719       if (minheights <= max_minheights) {
720     /* This buffer fits in memory */
721     bptr->rows_in_mem = bptr->rows_in_array;
722       } else {
723     /* It doesn't fit in memory, create backing store. */
724     bptr->rows_in_mem = (JDIMENSION)max_minheights * bptr->maxaccess;
725     jpeg_open_backing_store(cinfo, & bptr->b_s_info,
726                 (long) bptr->rows_in_array *
727                 (long) bptr->blocksperrow *
728                 (long) SIZEOF(JBLOCK));
729     bptr->b_s_open = TRUE;
730       }
731       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
732                       bptr->blocksperrow, bptr->rows_in_mem);
733       bptr->rowsperchunk = mem->last_rowsperchunk;
734       bptr->cur_start_row = 0;
735       bptr->first_undef_row = 0;
736       bptr->dirty = FALSE;
737     }
738   }
739 }
740 
741 
742 LOCAL(void)
do_sarray_io(j_common_ptr cinfo,jvirt_sarray_ptr ptr,boolean writing)743 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
744 /* Do backing store read or write of a virtual sample array */
745 {
746   size_t bytesperrow, file_offset, byte_count, rows, thisrow, i;
747 
748   bytesperrow = ptr->samplesperrow * SIZEOF(JSAMPLE);
749   file_offset = ptr->cur_start_row * bytesperrow;
750   /* Loop to read or write each allocation chunk in mem_buffer */
751   for (i = 0; i < ptr->rows_in_mem; i += ptr->rowsperchunk) {
752     /* One chunk, but check for short chunk at end of buffer */
753     rows = MIN(ptr->rowsperchunk, ptr->rows_in_mem - i);
754     /* Transfer no more than is currently defined */
755     thisrow = ptr->cur_start_row + i;
756     rows = MIN(rows, ptr->first_undef_row - thisrow);
757     /* Transfer no more than fits in file */
758     rows = MIN(rows, ptr->rows_in_array - thisrow);
759     if (rows <= 0)      /* this chunk might be past end of file! */
760       break;
761     byte_count = rows * bytesperrow;
762     if (writing)
763       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
764                         (void FAR *) ptr->mem_buffer[i],
765                         (long)file_offset, (long)byte_count);
766     else
767       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
768                        (void FAR *) ptr->mem_buffer[i],
769                        (long)file_offset, (long)byte_count);
770     file_offset += byte_count;
771   }
772 }
773 
774 
775 LOCAL(void)
do_barray_io(j_common_ptr cinfo,jvirt_barray_ptr ptr,boolean writing)776 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
777 /* Do backing store read or write of a virtual coefficient-block array */
778 {
779   size_t bytesperrow, file_offset, byte_count, rows, thisrow, i;
780 
781   bytesperrow = ptr->blocksperrow * SIZEOF(JBLOCK);
782   file_offset = ptr->cur_start_row * bytesperrow;
783   /* Loop to read or write each allocation chunk in mem_buffer */
784   for (i = 0; i < ptr->rows_in_mem; i += ptr->rowsperchunk) {
785     /* One chunk, but check for short chunk at end of buffer */
786     rows = MIN(ptr->rowsperchunk, ptr->rows_in_mem - i);
787     /* Transfer no more than is currently defined */
788     thisrow = ptr->cur_start_row + i;
789     rows = MIN(rows, ptr->first_undef_row - thisrow);
790     /* Transfer no more than fits in file */
791     rows = MIN(rows, ptr->rows_in_array - thisrow);
792     if (rows <= 0)      /* this chunk might be past end of file! */
793       break;
794     byte_count = rows * bytesperrow;
795     if (writing)
796       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
797                         (void FAR *) ptr->mem_buffer[i],
798                         (long)file_offset, (long)byte_count);
799     else
800       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
801                        (void FAR *) ptr->mem_buffer[i],
802                        (long)file_offset, (long)byte_count);
803     file_offset += byte_count;
804   }
805 }
806 
807 
808 METHODDEF(JSAMPARRAY)
access_virt_sarray(j_common_ptr cinfo,jvirt_sarray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)809 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
810             JDIMENSION start_row, JDIMENSION num_rows,
811             boolean writable)
812 /* Access the part of a virtual sample array starting at start_row */
813 /* and extending for num_rows rows.  writable is true if  */
814 /* caller intends to modify the accessed area. */
815 {
816   JDIMENSION end_row = start_row + num_rows;
817   JDIMENSION undef_row;
818 
819   /* debugging check */
820   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
821       ptr->mem_buffer == NULL)
822     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
823 
824   /* Make the desired part of the virtual array accessible */
825   if (start_row < ptr->cur_start_row ||
826       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
827     if (! ptr->b_s_open)
828       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
829     /* Flush old buffer contents if necessary */
830     if (ptr->dirty) {
831       do_sarray_io(cinfo, ptr, TRUE);
832       ptr->dirty = FALSE;
833     }
834     /* Decide what part of virtual array to access.
835      * Algorithm: if target address > current window, assume forward scan,
836      * load starting at target address.  If target address < current window,
837      * assume backward scan, load so that target area is top of window.
838      * Note that when switching from forward write to forward read, will have
839      * start_row = 0, so the limiting case applies and we load from 0 anyway.
840      */
841     if (start_row > ptr->cur_start_row) {
842       ptr->cur_start_row = start_row;
843     } else {
844       /* use long arithmetic here to avoid overflow & unsigned problems */
845       long ltemp;
846 
847       ltemp = (long) end_row - (long) ptr->rows_in_mem;
848       if (ltemp < 0)
849     ltemp = 0;      /* don't fall off front end of file */
850       ptr->cur_start_row = (JDIMENSION) ltemp;
851     }
852     /* Read in the selected part of the array.
853      * During the initial write pass, we will do no actual read
854      * because the selected part is all undefined.
855      */
856     do_sarray_io(cinfo, ptr, FALSE);
857   }
858   /* Ensure the accessed part of the array is defined; prezero if needed.
859    * To improve locality of access, we only prezero the part of the array
860    * that the caller is about to access, not the entire in-memory array.
861    */
862   if (ptr->first_undef_row < end_row) {
863     if (ptr->first_undef_row < start_row) {
864       if (writable)     /* writer skipped over a section of array */
865     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
866       undef_row = start_row;    /* but reader is allowed to read ahead */
867     } else {
868       undef_row = ptr->first_undef_row;
869     }
870     if (writable)
871       ptr->first_undef_row = end_row;
872     if (ptr->pre_zero) {
873       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
874       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
875       end_row -= ptr->cur_start_row;
876       while (undef_row < end_row) {
877     jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
878     undef_row++;
879       }
880     } else {
881       if (! writable)       /* reader looking at undefined data */
882     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
883     }
884   }
885   /* Flag the buffer dirty if caller will write in it */
886   if (writable)
887     ptr->dirty = TRUE;
888   /* Return address of proper part of the buffer */
889   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
890 }
891 
892 
893 METHODDEF(JBLOCKARRAY)
access_virt_barray(j_common_ptr cinfo,jvirt_barray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)894 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
895             JDIMENSION start_row, JDIMENSION num_rows,
896             boolean writable)
897 /* Access the part of a virtual block array starting at start_row */
898 /* and extending for num_rows rows.  writable is true if  */
899 /* caller intends to modify the accessed area. */
900 {
901   JDIMENSION end_row = start_row + num_rows;
902   JDIMENSION undef_row;
903 
904   /* debugging check */
905   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
906       ptr->mem_buffer == NULL)
907     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
908 
909   /* Make the desired part of the virtual array accessible */
910   if (start_row < ptr->cur_start_row ||
911       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
912     if (! ptr->b_s_open)
913       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
914     /* Flush old buffer contents if necessary */
915     if (ptr->dirty) {
916       do_barray_io(cinfo, ptr, TRUE);
917       ptr->dirty = FALSE;
918     }
919     /* Decide what part of virtual array to access.
920      * Algorithm: if target address > current window, assume forward scan,
921      * load starting at target address.  If target address < current window,
922      * assume backward scan, load so that target area is top of window.
923      * Note that when switching from forward write to forward read, will have
924      * start_row = 0, so the limiting case applies and we load from 0 anyway.
925      */
926     if (start_row > ptr->cur_start_row) {
927       ptr->cur_start_row = start_row;
928     } else {
929       /* use long arithmetic here to avoid overflow & unsigned problems */
930       long ltemp;
931 
932       ltemp = (long) end_row - (long) ptr->rows_in_mem;
933       if (ltemp < 0)
934     ltemp = 0;      /* don't fall off front end of file */
935       ptr->cur_start_row = (JDIMENSION) ltemp;
936     }
937     /* Read in the selected part of the array.
938      * During the initial write pass, we will do no actual read
939      * because the selected part is all undefined.
940      */
941     do_barray_io(cinfo, ptr, FALSE);
942   }
943   /* Ensure the accessed part of the array is defined; prezero if needed.
944    * To improve locality of access, we only prezero the part of the array
945    * that the caller is about to access, not the entire in-memory array.
946    */
947   if (ptr->first_undef_row < end_row) {
948     if (ptr->first_undef_row < start_row) {
949       if (writable)     /* writer skipped over a section of array */
950     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
951       undef_row = start_row;    /* but reader is allowed to read ahead */
952     } else {
953       undef_row = ptr->first_undef_row;
954     }
955     if (writable)
956       ptr->first_undef_row = end_row;
957     if (ptr->pre_zero) {
958       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
959       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
960       end_row -= ptr->cur_start_row;
961       while (undef_row < end_row) {
962     jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
963     undef_row++;
964       }
965     } else {
966       if (! writable)       /* reader looking at undefined data */
967     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
968     }
969   }
970   /* Flag the buffer dirty if caller will write in it */
971   if (writable)
972     ptr->dirty = TRUE;
973   /* Return address of proper part of the buffer */
974   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
975 }
976 
977 
978 /*
979  * Release all objects belonging to a specified pool.
980  */
981 
982 METHODDEF(void)
free_pool(j_common_ptr cinfo,int pool_id)983 free_pool (j_common_ptr cinfo, int pool_id)
984 {
985   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
986   small_pool_ptr shdr_ptr;
987   large_pool_ptr lhdr_ptr;
988   size_t space_freed;
989 
990   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
991     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
992 
993 #ifdef MEM_STATS
994   if (cinfo->err->trace_level > 1)
995     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
996 #endif
997 
998   /* If freeing IMAGE pool, close any virtual arrays first */
999   if (pool_id == JPOOL_IMAGE) {
1000     jvirt_sarray_ptr sptr;
1001     jvirt_barray_ptr bptr;
1002 
1003     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
1004       if (sptr->b_s_open) { /* there may be no backing store */
1005     sptr->b_s_open = FALSE; /* prevent recursive close if error */
1006     (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
1007       }
1008     }
1009     mem->virt_sarray_list = NULL;
1010     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
1011       if (bptr->b_s_open) { /* there may be no backing store */
1012     bptr->b_s_open = FALSE; /* prevent recursive close if error */
1013     (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
1014       }
1015     }
1016     mem->virt_barray_list = NULL;
1017   }
1018 
1019   /* Release large objects */
1020   lhdr_ptr = mem->large_list[pool_id];
1021   mem->large_list[pool_id] = NULL;
1022 
1023   while (lhdr_ptr != NULL) {
1024     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
1025     space_freed = lhdr_ptr->hdr.bytes_used +
1026           lhdr_ptr->hdr.bytes_left +
1027           SIZEOF(large_pool_hdr);
1028     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
1029     mem->total_space_allocated -= (long)space_freed;
1030     lhdr_ptr = next_lhdr_ptr;
1031   }
1032 
1033   /* Release small objects */
1034   shdr_ptr = mem->small_list[pool_id];
1035   mem->small_list[pool_id] = NULL;
1036 
1037   while (shdr_ptr != NULL) {
1038     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
1039     space_freed = shdr_ptr->hdr.bytes_used +
1040           shdr_ptr->hdr.bytes_left +
1041           SIZEOF(small_pool_hdr);
1042     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1043     mem->total_space_allocated -= (long)space_freed;
1044     shdr_ptr = next_shdr_ptr;
1045   }
1046 }
1047 
1048 
1049 /*
1050  * Close up shop entirely.
1051  * Note that this cannot be called unless cinfo->mem is non-NULL.
1052  */
1053 
1054 METHODDEF(void)
self_destruct(j_common_ptr cinfo)1055 self_destruct (j_common_ptr cinfo)
1056 {
1057   int pool;
1058 
1059   /* Close all backing store, release all memory.
1060    * Releasing pools in reverse order might help avoid fragmentation
1061    * with some (brain-damaged) malloc libraries.
1062    */
1063   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1064     free_pool(cinfo, pool);
1065   }
1066 
1067   /* Release the memory manager control block too. */
1068   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1069   cinfo->mem = NULL;        /* ensures I will be called only once */
1070 
1071   jpeg_mem_term(cinfo);     /* system-dependent cleanup */
1072 }
1073 
1074 
1075 /*
1076  * Memory manager initialization.
1077  * When this is called, only the error manager pointer is valid in cinfo!
1078  */
1079 
1080 GLOBAL(void)
jinit_memory_mgr(j_common_ptr cinfo)1081 jinit_memory_mgr (j_common_ptr cinfo)
1082 {
1083   my_mem_ptr mem;
1084   long max_to_use;
1085   int pool;
1086   size_t test_mac;
1087 
1088   cinfo->mem = NULL;        /* for safety if init fails */
1089 
1090   /* Check for configuration errors.
1091    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1092    * doesn't reflect any real hardware alignment requirement.
1093    * The test is a little tricky: for X>0, X and X-1 have no one-bits
1094    * in common if and only if X is a power of 2, ie has only one one-bit.
1095    * Some compilers may give an "unreachable code" warning here; ignore it.
1096    */
1097   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1098     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1099   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1100    * a multiple of SIZEOF(ALIGN_TYPE).
1101    * Again, an "unreachable code" warning may be ignored here.
1102    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1103    */
1104   test_mac = (size_t) MAX_ALLOC_CHUNK;
1105   if ((long) test_mac != MAX_ALLOC_CHUNK ||
1106       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1107     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1108 
1109   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1110 
1111   /* Attempt to allocate memory manager's control block */
1112   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1113 
1114   if (mem == NULL) {
1115     jpeg_mem_term(cinfo);   /* system-dependent cleanup */
1116     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1117   }
1118 
1119   /* OK, fill in the method pointers */
1120   mem->pub.alloc_small = alloc_small;
1121   mem->pub.alloc_large = alloc_large;
1122   mem->pub.alloc_sarray = alloc_sarray;
1123   mem->pub.alloc_barray = alloc_barray;
1124 #ifdef NEED_DARRAY
1125   mem->pub.alloc_darray = alloc_darray;
1126 #endif
1127   mem->pub.request_virt_sarray = request_virt_sarray;
1128   mem->pub.request_virt_barray = request_virt_barray;
1129   mem->pub.realize_virt_arrays = realize_virt_arrays;
1130   mem->pub.access_virt_sarray = access_virt_sarray;
1131   mem->pub.access_virt_barray = access_virt_barray;
1132   mem->pub.free_pool = free_pool;
1133   mem->pub.self_destruct = self_destruct;
1134 
1135   /* Make MAX_ALLOC_CHUNK accessible to other modules */
1136   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1137 
1138   /* Initialize working state */
1139   mem->pub.max_memory_to_use = max_to_use;
1140 
1141   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1142     mem->small_list[pool] = NULL;
1143     mem->large_list[pool] = NULL;
1144   }
1145   mem->virt_sarray_list = NULL;
1146   mem->virt_barray_list = NULL;
1147 
1148   mem->total_space_allocated = SIZEOF(my_memory_mgr);
1149 
1150   /* Declare ourselves open for business */
1151   cinfo->mem = & mem->pub;
1152 
1153   /* Check for an environment variable JPEGMEM; if found, override the
1154    * default max_memory setting from jpeg_mem_init.  Note that the
1155    * surrounding application may again override this value.
1156    * If your system doesn't support getenv(), define NO_GETENV to disable
1157    * this feature.
1158    */
1159 #ifndef NO_GETENV
1160   { char * memenv;
1161 
1162     if ((memenv = getenv("JPEGMEM")) != NULL) {
1163       char ch = 'x';
1164 
1165       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1166     if (ch == 'm' || ch == 'M')
1167       max_to_use *= 1000L;
1168     mem->pub.max_memory_to_use = max_to_use * 1000L;
1169       }
1170     }
1171   }
1172 #endif
1173 
1174 }
1175