1 /*
2  * Copyright (c) 2018, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <immintrin.h>
13 #include <assert.h>
14 
15 #include "config/av1_rtcd.h"
16 
17 #include "av1/common/convolve.h"
18 #include "aom_dsp/aom_dsp_common.h"
19 #include "aom_dsp/aom_filter.h"
20 #include "aom_dsp/x86/convolve_avx2.h"
21 #include "aom_dsp/x86/synonyms.h"
22 #include "aom_dsp/x86/synonyms_avx2.h"
23 
24 // 128-bit xmmwords are written as [ ... ] with the MSB on the left.
25 // 256-bit ymmwords are written as two xmmwords, [ ... ][ ... ] with the MSB
26 // on the left.
27 // A row of, say, 8-bit pixels with values p0, p1, p2, ..., p30, p31 will be
28 // loaded and stored as [ p31 ... p17 p16 ][ p15 ... p1 p0 ].
29 
30 // Exploiting the range of wiener filter coefficients,
31 // horizontal filtering can be done in 16 bit intermediate precision.
32 // The details are as follows :
33 // Consider the horizontal wiener filter coefficients of the following form :
34 //      [C0, C1, C2, 2^(FILTER_BITS) -2 * (C0 + C1 + C2), C2, C1, C0]
35 // Subtracting  2^(FILTER_BITS) from the centre tap we get the following  :
36 //      [C0, C1, C2,     -2 * (C0 + C1 + C2),             C2, C1, C0]
37 // The sum of the product "C0 * p0 + C1 * p1 + C2 * p2 -2 * (C0 + C1 + C2) * p3
38 // + C2 * p4 + C1 * p5 + C0 * p6" would be in the range of signed 16 bit
39 // precision. Finally, after rounding the above result by round_0, we multiply
40 // the centre pixel by 2^(FILTER_BITS - round_0) and add it to get the
41 // horizontal filter output.
42 
av1_wiener_convolve_add_src_avx2(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,const int16_t * filter_x,int x_step_q4,const int16_t * filter_y,int y_step_q4,int w,int h,const ConvolveParams * conv_params)43 void av1_wiener_convolve_add_src_avx2(const uint8_t *src, ptrdiff_t src_stride,
44                                       uint8_t *dst, ptrdiff_t dst_stride,
45                                       const int16_t *filter_x, int x_step_q4,
46                                       const int16_t *filter_y, int y_step_q4,
47                                       int w, int h,
48                                       const ConvolveParams *conv_params) {
49   const int bd = 8;
50   assert(x_step_q4 == 16 && y_step_q4 == 16);
51   assert(!(w & 7));
52   (void)x_step_q4;
53   (void)y_step_q4;
54 
55   DECLARE_ALIGNED(32, int16_t, im_block[(MAX_SB_SIZE + SUBPEL_TAPS) * 8]);
56   int im_h = h + SUBPEL_TAPS - 2;
57   int im_stride = 8;
58   memset(im_block + (im_h * im_stride), 0, MAX_SB_SIZE);
59   int i, j;
60   const int center_tap = (SUBPEL_TAPS - 1) / 2;
61   const uint8_t *const src_ptr = src - center_tap * src_stride - center_tap;
62 
63   __m256i filt[4], coeffs_h[4], coeffs_v[4], filt_center;
64 
65   assert(conv_params->round_0 > 0);
66 
67   filt[0] = _mm256_load_si256((__m256i const *)filt1_global_avx2);
68   filt[1] = _mm256_load_si256((__m256i const *)filt2_global_avx2);
69   filt[2] = _mm256_load_si256((__m256i const *)filt3_global_avx2);
70   filt[3] = _mm256_load_si256((__m256i const *)filt4_global_avx2);
71 
72   filt_center = _mm256_load_si256((__m256i const *)filt_center_global_avx2);
73 
74   const __m128i coeffs_x = _mm_loadu_si128((__m128i *)filter_x);
75   const __m256i filter_coeffs_x = _mm256_broadcastsi128_si256(coeffs_x);
76 
77   // coeffs 0 1 0 1 0 1 0 1
78   coeffs_h[0] =
79       _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0200u));
80   // coeffs 2 3 2 3 2 3 2 3
81   coeffs_h[1] =
82       _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0604u));
83   // coeffs 4 5 4 5 4 5 4 5
84   coeffs_h[2] =
85       _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0a08u));
86   // coeffs 6 7 6 7 6 7 6 7
87   coeffs_h[3] =
88       _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0e0cu));
89 
90   const __m256i round_const_h =
91       _mm256_set1_epi16((1 << (conv_params->round_0 - 1)));
92   const __m256i round_const_horz =
93       _mm256_set1_epi16((1 << (bd + FILTER_BITS - conv_params->round_0 - 1)));
94   const __m256i clamp_low = _mm256_setzero_si256();
95   const __m256i clamp_high =
96       _mm256_set1_epi16(WIENER_CLAMP_LIMIT(conv_params->round_0, bd) - 1);
97   const __m128i round_shift_h = _mm_cvtsi32_si128(conv_params->round_0);
98 
99   // Add an offset to account for the "add_src" part of the convolve function.
100   const __m128i zero_128 = _mm_setzero_si128();
101   const __m128i offset_0 = _mm_insert_epi16(zero_128, 1 << FILTER_BITS, 3);
102   const __m128i coeffs_y = _mm_add_epi16(xx_loadu_128(filter_y), offset_0);
103 
104   const __m256i filter_coeffs_y = _mm256_broadcastsi128_si256(coeffs_y);
105 
106   // coeffs 0 1 0 1 0 1 0 1
107   coeffs_v[0] = _mm256_shuffle_epi32(filter_coeffs_y, 0x00);
108   // coeffs 2 3 2 3 2 3 2 3
109   coeffs_v[1] = _mm256_shuffle_epi32(filter_coeffs_y, 0x55);
110   // coeffs 4 5 4 5 4 5 4 5
111   coeffs_v[2] = _mm256_shuffle_epi32(filter_coeffs_y, 0xaa);
112   // coeffs 6 7 6 7 6 7 6 7
113   coeffs_v[3] = _mm256_shuffle_epi32(filter_coeffs_y, 0xff);
114 
115   const __m256i round_const_v =
116       _mm256_set1_epi32((1 << (conv_params->round_1 - 1)) -
117                         (1 << (bd + conv_params->round_1 - 1)));
118   const __m128i round_shift_v = _mm_cvtsi32_si128(conv_params->round_1);
119 
120   for (j = 0; j < w; j += 8) {
121     for (i = 0; i < im_h; i += 2) {
122       __m256i data = _mm256_castsi128_si256(
123           _mm_loadu_si128((__m128i *)&src_ptr[(i * src_stride) + j]));
124 
125       // Load the next line
126       if (i + 1 < im_h)
127         data = _mm256_inserti128_si256(
128             data,
129             _mm_loadu_si128(
130                 (__m128i *)&src_ptr[(i * src_stride) + j + src_stride]),
131             1);
132 
133       __m256i res = convolve_lowbd_x(data, coeffs_h, filt);
134 
135       res =
136           _mm256_sra_epi16(_mm256_add_epi16(res, round_const_h), round_shift_h);
137 
138       __m256i data_0 = _mm256_shuffle_epi8(data, filt_center);
139 
140       // multiply the center pixel by 2^(FILTER_BITS - round_0) and add it to
141       // the result
142       data_0 = _mm256_slli_epi16(data_0, FILTER_BITS - conv_params->round_0);
143       res = _mm256_add_epi16(res, data_0);
144       res = _mm256_add_epi16(res, round_const_horz);
145       const __m256i res_clamped =
146           _mm256_min_epi16(_mm256_max_epi16(res, clamp_low), clamp_high);
147       _mm256_store_si256((__m256i *)&im_block[i * im_stride], res_clamped);
148     }
149 
150     /* Vertical filter */
151     {
152       __m256i src_0 = _mm256_loadu_si256((__m256i *)(im_block + 0 * im_stride));
153       __m256i src_1 = _mm256_loadu_si256((__m256i *)(im_block + 1 * im_stride));
154       __m256i src_2 = _mm256_loadu_si256((__m256i *)(im_block + 2 * im_stride));
155       __m256i src_3 = _mm256_loadu_si256((__m256i *)(im_block + 3 * im_stride));
156       __m256i src_4 = _mm256_loadu_si256((__m256i *)(im_block + 4 * im_stride));
157       __m256i src_5 = _mm256_loadu_si256((__m256i *)(im_block + 5 * im_stride));
158 
159       __m256i s[8];
160       s[0] = _mm256_unpacklo_epi16(src_0, src_1);
161       s[1] = _mm256_unpacklo_epi16(src_2, src_3);
162       s[2] = _mm256_unpacklo_epi16(src_4, src_5);
163 
164       s[4] = _mm256_unpackhi_epi16(src_0, src_1);
165       s[5] = _mm256_unpackhi_epi16(src_2, src_3);
166       s[6] = _mm256_unpackhi_epi16(src_4, src_5);
167 
168       for (i = 0; i < h - 1; i += 2) {
169         const int16_t *data = &im_block[i * im_stride];
170 
171         const __m256i s6 =
172             _mm256_loadu_si256((__m256i *)(data + 6 * im_stride));
173         const __m256i s7 =
174             _mm256_loadu_si256((__m256i *)(data + 7 * im_stride));
175 
176         s[3] = _mm256_unpacklo_epi16(s6, s7);
177         s[7] = _mm256_unpackhi_epi16(s6, s7);
178 
179         __m256i res_a = convolve(s, coeffs_v);
180         __m256i res_b = convolve(s + 4, coeffs_v);
181 
182         const __m256i res_a_round = _mm256_sra_epi32(
183             _mm256_add_epi32(res_a, round_const_v), round_shift_v);
184         const __m256i res_b_round = _mm256_sra_epi32(
185             _mm256_add_epi32(res_b, round_const_v), round_shift_v);
186 
187         /* rounding code */
188         // 16 bit conversion
189         const __m256i res_16bit = _mm256_packs_epi32(res_a_round, res_b_round);
190         // 8 bit conversion and saturation to uint8
191         const __m256i res_8b = _mm256_packus_epi16(res_16bit, res_16bit);
192 
193         const __m128i res_0 = _mm256_castsi256_si128(res_8b);
194         const __m128i res_1 = _mm256_extracti128_si256(res_8b, 1);
195 
196         // Store values into the destination buffer
197         __m128i *const p_0 = (__m128i *)&dst[i * dst_stride + j];
198         __m128i *const p_1 = (__m128i *)&dst[i * dst_stride + j + dst_stride];
199 
200         _mm_storel_epi64(p_0, res_0);
201         _mm_storel_epi64(p_1, res_1);
202 
203         s[0] = s[1];
204         s[1] = s[2];
205         s[2] = s[3];
206 
207         s[4] = s[5];
208         s[5] = s[6];
209         s[6] = s[7];
210       }
211       if (h - i) {
212         s[0] = _mm256_permute2x128_si256(s[0], s[4], 0x20);
213         s[1] = _mm256_permute2x128_si256(s[1], s[5], 0x20);
214         s[2] = _mm256_permute2x128_si256(s[2], s[6], 0x20);
215 
216         const int16_t *data = &im_block[i * im_stride];
217         const __m128i s6_ = _mm_loadu_si128((__m128i *)(data + 6 * im_stride));
218         const __m128i s7_ = _mm_loadu_si128((__m128i *)(data + 7 * im_stride));
219 
220         __m128i s3 = _mm_unpacklo_epi16(s6_, s7_);
221         __m128i s7 = _mm_unpackhi_epi16(s6_, s7_);
222 
223         s[3] = _mm256_inserti128_si256(_mm256_castsi128_si256(s3), s7, 1);
224         __m256i convolveres = convolve(s, coeffs_v);
225 
226         const __m256i res_round = _mm256_sra_epi32(
227             _mm256_add_epi32(convolveres, round_const_v), round_shift_v);
228 
229         /* rounding code */
230         // 16 bit conversion
231         __m128i reslo = _mm256_castsi256_si128(res_round);
232         __m128i reshi = _mm256_extracti128_si256(res_round, 1);
233         const __m128i res_16bit = _mm_packus_epi32(reslo, reshi);
234 
235         // 8 bit conversion and saturation to uint8
236         const __m128i res_8b = _mm_packus_epi16(res_16bit, res_16bit);
237         __m128i *const p_0 = (__m128i *)&dst[i * dst_stride + j];
238         _mm_storel_epi64(p_0, res_8b);
239       }
240     }
241   }
242 }
243