1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "av1/common/warped_motion.h"
13 
14 #include "av1/encoder/encodeframe.h"
15 #include "av1/encoder/encoder.h"
16 #include "av1/encoder/encoder_alloc.h"
17 #include "av1/encoder/ethread.h"
18 #if !CONFIG_REALTIME_ONLY
19 #include "av1/encoder/firstpass.h"
20 #endif
21 #include "av1/encoder/global_motion.h"
22 #include "av1/encoder/global_motion_facade.h"
23 #include "av1/encoder/rdopt.h"
24 #include "aom_dsp/aom_dsp_common.h"
25 #include "av1/encoder/temporal_filter.h"
26 #include "av1/encoder/tpl_model.h"
27 
accumulate_rd_opt(ThreadData * td,ThreadData * td_t)28 static AOM_INLINE void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
29   for (int i = 0; i < REFERENCE_MODES; i++)
30     td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i];
31 
32   td->rd_counts.compound_ref_used_flag |=
33       td_t->rd_counts.compound_ref_used_flag;
34   td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag;
35 
36   for (int i = 0; i < TX_SIZES_ALL; i++) {
37     for (int j = 0; j < TX_TYPES; j++)
38       td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j];
39   }
40 
41   for (int i = 0; i < BLOCK_SIZES_ALL; i++) {
42     for (int j = 0; j < 2; j++) {
43       td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j];
44     }
45   }
46 
47   for (int i = 0; i < 2; i++) {
48     td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i];
49   }
50 }
51 
update_delta_lf_for_row_mt(AV1_COMP * cpi)52 static AOM_INLINE void update_delta_lf_for_row_mt(AV1_COMP *cpi) {
53   AV1_COMMON *cm = &cpi->common;
54   MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
55   const int mib_size = cm->seq_params.mib_size;
56   const int frame_lf_count =
57       av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
58   for (int row = 0; row < cm->tiles.rows; row++) {
59     for (int col = 0; col < cm->tiles.cols; col++) {
60       TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col];
61       const TileInfo *const tile_info = &tile_data->tile_info;
62       for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
63            mi_row += mib_size) {
64         if (mi_row == tile_info->mi_row_start)
65           av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
66         for (int mi_col = tile_info->mi_col_start;
67              mi_col < tile_info->mi_col_end; mi_col += mib_size) {
68           const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col;
69           MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str;
70           MB_MODE_INFO *mbmi = mi[0];
71           if (mbmi->skip_txfm == 1 && (mbmi->bsize == cm->seq_params.sb_size)) {
72             for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
73               mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
74             mbmi->delta_lf_from_base = xd->delta_lf_from_base;
75           } else {
76             if (cm->delta_q_info.delta_lf_multi) {
77               for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
78                 xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
79             } else {
80               xd->delta_lf_from_base = mbmi->delta_lf_from_base;
81             }
82           }
83         }
84       }
85     }
86   }
87 }
88 
av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c)89 void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
90                                 int c) {
91   (void)row_mt_sync;
92   (void)r;
93   (void)c;
94   return;
95 }
96 
av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c,int cols)97 void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
98                                  int c, int cols) {
99   (void)row_mt_sync;
100   (void)r;
101   (void)c;
102   (void)cols;
103   return;
104 }
105 
av1_row_mt_sync_read(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c)106 void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) {
107 #if CONFIG_MULTITHREAD
108   const int nsync = row_mt_sync->sync_range;
109 
110   if (r) {
111     pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
112     pthread_mutex_lock(mutex);
113 
114     while (c > row_mt_sync->num_finished_cols[r - 1] - nsync) {
115       pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
116     }
117     pthread_mutex_unlock(mutex);
118   }
119 #else
120   (void)row_mt_sync;
121   (void)r;
122   (void)c;
123 #endif  // CONFIG_MULTITHREAD
124 }
125 
av1_row_mt_sync_write(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c,int cols)126 void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c,
127                            int cols) {
128 #if CONFIG_MULTITHREAD
129   const int nsync = row_mt_sync->sync_range;
130   int cur;
131   // Only signal when there are enough encoded blocks for next row to run.
132   int sig = 1;
133 
134   if (c < cols - 1) {
135     cur = c;
136     if (c % nsync) sig = 0;
137   } else {
138     cur = cols + nsync;
139   }
140 
141   if (sig) {
142     pthread_mutex_lock(&row_mt_sync->mutex_[r]);
143 
144     row_mt_sync->num_finished_cols[r] = cur;
145 
146     pthread_cond_signal(&row_mt_sync->cond_[r]);
147     pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
148   }
149 #else
150   (void)row_mt_sync;
151   (void)r;
152   (void)c;
153   (void)cols;
154 #endif  // CONFIG_MULTITHREAD
155 }
156 
157 // Allocate memory for row synchronization
row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync * row_mt_sync,AV1_COMMON * cm,int rows)158 static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync,
159                                   AV1_COMMON *cm, int rows) {
160 #if CONFIG_MULTITHREAD
161   int i;
162 
163   CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
164                   aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
165   if (row_mt_sync->mutex_) {
166     for (i = 0; i < rows; ++i) {
167       pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
168     }
169   }
170 
171   CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
172                   aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
173   if (row_mt_sync->cond_) {
174     for (i = 0; i < rows; ++i) {
175       pthread_cond_init(&row_mt_sync->cond_[i], NULL);
176     }
177   }
178 #endif  // CONFIG_MULTITHREAD
179 
180   CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols,
181                   aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows));
182 
183   row_mt_sync->rows = rows;
184   // Set up nsync.
185   row_mt_sync->sync_range = 1;
186 }
187 
188 // Deallocate row based multi-threading synchronization related mutex and data
row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync * row_mt_sync)189 static void row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) {
190   if (row_mt_sync != NULL) {
191 #if CONFIG_MULTITHREAD
192     int i;
193 
194     if (row_mt_sync->mutex_ != NULL) {
195       for (i = 0; i < row_mt_sync->rows; ++i) {
196         pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
197       }
198       aom_free(row_mt_sync->mutex_);
199     }
200     if (row_mt_sync->cond_ != NULL) {
201       for (i = 0; i < row_mt_sync->rows; ++i) {
202         pthread_cond_destroy(&row_mt_sync->cond_[i]);
203       }
204       aom_free(row_mt_sync->cond_);
205     }
206 #endif  // CONFIG_MULTITHREAD
207     aom_free(row_mt_sync->num_finished_cols);
208 
209     // clear the structure as the source of this call may be dynamic change
210     // in tiles in which case this call will be followed by an _alloc()
211     // which may fail.
212     av1_zero(*row_mt_sync);
213   }
214 }
215 
row_mt_mem_alloc(AV1_COMP * cpi,int max_rows,int max_cols,int alloc_row_ctx)216 static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols,
217                              int alloc_row_ctx) {
218   struct AV1Common *cm = &cpi->common;
219   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
220   const int tile_cols = cm->tiles.cols;
221   const int tile_rows = cm->tiles.rows;
222   int tile_col, tile_row;
223 
224   // Allocate memory for row based multi-threading
225   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
226     for (tile_col = 0; tile_col < tile_cols; tile_col++) {
227       int tile_index = tile_row * tile_cols + tile_col;
228       TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
229 
230       row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows);
231 
232       this_tile->row_ctx = NULL;
233       if (alloc_row_ctx) {
234         assert(max_cols > 0);
235         const int num_row_ctx = AOMMAX(1, (max_cols - 1));
236         CHECK_MEM_ERROR(cm, this_tile->row_ctx,
237                         (FRAME_CONTEXT *)aom_memalign(
238                             16, num_row_ctx * sizeof(*this_tile->row_ctx)));
239       }
240     }
241   }
242   enc_row_mt->allocated_tile_cols = tile_cols;
243   enc_row_mt->allocated_tile_rows = tile_rows;
244   enc_row_mt->allocated_rows = max_rows;
245   enc_row_mt->allocated_cols = max_cols - 1;
246 }
247 
av1_row_mt_mem_dealloc(AV1_COMP * cpi)248 void av1_row_mt_mem_dealloc(AV1_COMP *cpi) {
249   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
250   const int tile_cols = enc_row_mt->allocated_tile_cols;
251   const int tile_rows = enc_row_mt->allocated_tile_rows;
252   int tile_col, tile_row;
253 
254   // Free row based multi-threading sync memory
255   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
256     for (tile_col = 0; tile_col < tile_cols; tile_col++) {
257       int tile_index = tile_row * tile_cols + tile_col;
258       TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
259 
260       row_mt_sync_mem_dealloc(&this_tile->row_mt_sync);
261 
262       if (cpi->oxcf.algo_cfg.cdf_update_mode) aom_free(this_tile->row_ctx);
263     }
264   }
265   enc_row_mt->allocated_rows = 0;
266   enc_row_mt->allocated_cols = 0;
267   enc_row_mt->allocated_tile_cols = 0;
268   enc_row_mt->allocated_tile_rows = 0;
269 }
270 
assign_tile_to_thread(int * thread_id_to_tile_id,int num_tiles,int num_workers)271 static AOM_INLINE void assign_tile_to_thread(int *thread_id_to_tile_id,
272                                              int num_tiles, int num_workers) {
273   int tile_id = 0;
274   int i;
275 
276   for (i = 0; i < num_workers; i++) {
277     thread_id_to_tile_id[i] = tile_id++;
278     if (tile_id == num_tiles) tile_id = 0;
279   }
280 }
281 
get_next_job(TileDataEnc * const tile_data,int * current_mi_row,int mib_size)282 static AOM_INLINE int get_next_job(TileDataEnc *const tile_data,
283                                    int *current_mi_row, int mib_size) {
284   AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
285   const int mi_row_end = tile_data->tile_info.mi_row_end;
286 
287   if (row_mt_sync->next_mi_row < mi_row_end) {
288     *current_mi_row = row_mt_sync->next_mi_row;
289     row_mt_sync->num_threads_working++;
290     row_mt_sync->next_mi_row += mib_size;
291     return 1;
292   }
293   return 0;
294 }
295 
switch_tile_and_get_next_job(AV1_COMMON * const cm,TileDataEnc * const tile_data,int * cur_tile_id,int * current_mi_row,int * end_of_frame,int is_firstpass,const BLOCK_SIZE fp_block_size)296 static AOM_INLINE void switch_tile_and_get_next_job(
297     AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id,
298     int *current_mi_row, int *end_of_frame, int is_firstpass,
299     const BLOCK_SIZE fp_block_size) {
300   const int tile_cols = cm->tiles.cols;
301   const int tile_rows = cm->tiles.rows;
302 
303   int tile_id = -1;  // Stores the tile ID with minimum proc done
304   int max_mis_to_encode = 0;
305   int min_num_threads_working = INT_MAX;
306 
307   for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
308     for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
309       int tile_index = tile_row * tile_cols + tile_col;
310       TileDataEnc *const this_tile = &tile_data[tile_index];
311       AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
312 
313 #if CONFIG_REALTIME_ONLY
314       int num_b_rows_in_tile =
315           av1_get_sb_rows_in_tile(cm, this_tile->tile_info);
316       int num_b_cols_in_tile =
317           av1_get_sb_cols_in_tile(cm, this_tile->tile_info);
318 #else
319       int num_b_rows_in_tile =
320           is_firstpass
321               ? av1_get_unit_rows_in_tile(this_tile->tile_info, fp_block_size)
322               : av1_get_sb_rows_in_tile(cm, this_tile->tile_info);
323       int num_b_cols_in_tile =
324           is_firstpass
325               ? av1_get_unit_cols_in_tile(this_tile->tile_info, fp_block_size)
326               : av1_get_sb_cols_in_tile(cm, this_tile->tile_info);
327 #endif
328       int theoretical_limit_on_threads =
329           AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile);
330       int num_threads_working = row_mt_sync->num_threads_working;
331 
332       if (num_threads_working < theoretical_limit_on_threads) {
333         int num_mis_to_encode =
334             this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row;
335 
336         // Tile to be processed by this thread is selected on the basis of
337         // availability of jobs:
338         // 1) If jobs are available, tile to be processed is chosen on the
339         // basis of minimum number of threads working for that tile. If two or
340         // more tiles have same number of threads working for them, then the
341         // tile with maximum number of jobs available will be chosen.
342         // 2) If no jobs are available, then end_of_frame is reached.
343         if (num_mis_to_encode > 0) {
344           if (num_threads_working < min_num_threads_working) {
345             min_num_threads_working = num_threads_working;
346             max_mis_to_encode = 0;
347           }
348           if (num_threads_working == min_num_threads_working &&
349               num_mis_to_encode > max_mis_to_encode) {
350             tile_id = tile_index;
351             max_mis_to_encode = num_mis_to_encode;
352           }
353         }
354       }
355     }
356   }
357   if (tile_id == -1) {
358     *end_of_frame = 1;
359   } else {
360     // Update the current tile id to the tile id that will be processed next,
361     // which will be the least processed tile.
362     *cur_tile_id = tile_id;
363     const int unit_height = mi_size_high[fp_block_size];
364     get_next_job(&tile_data[tile_id], current_mi_row,
365                  is_firstpass ? unit_height : cm->seq_params.mib_size);
366   }
367 }
368 
369 #if !CONFIG_REALTIME_ONLY
fp_enc_row_mt_worker_hook(void * arg1,void * unused)370 static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) {
371   EncWorkerData *const thread_data = (EncWorkerData *)arg1;
372   AV1_COMP *const cpi = thread_data->cpi;
373   AV1_COMMON *const cm = &cpi->common;
374   int thread_id = thread_data->thread_id;
375   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
376   int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
377 #if CONFIG_MULTITHREAD
378   pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
379 #endif
380   (void)unused;
381 
382   assert(cur_tile_id != -1);
383 
384   const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
385   const int unit_height = mi_size_high[fp_block_size];
386   int end_of_frame = 0;
387   while (1) {
388     int current_mi_row = -1;
389 #if CONFIG_MULTITHREAD
390     pthread_mutex_lock(enc_row_mt_mutex_);
391 #endif
392     if (!get_next_job(&cpi->tile_data[cur_tile_id], &current_mi_row,
393                       unit_height)) {
394       // No jobs are available for the current tile. Query for the status of
395       // other tiles and get the next job if available
396       switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
397                                    &current_mi_row, &end_of_frame, 1,
398                                    fp_block_size);
399     }
400 #if CONFIG_MULTITHREAD
401     pthread_mutex_unlock(enc_row_mt_mutex_);
402 #endif
403     if (end_of_frame == 1) break;
404 
405     TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
406     AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
407     ThreadData *td = thread_data->td;
408 
409     assert(current_mi_row != -1 &&
410            current_mi_row <= this_tile->tile_info.mi_row_end);
411 
412     const int unit_height_log2 = mi_size_high_log2[fp_block_size];
413     av1_first_pass_row(cpi, td, this_tile, current_mi_row >> unit_height_log2,
414                        fp_block_size);
415 #if CONFIG_MULTITHREAD
416     pthread_mutex_lock(enc_row_mt_mutex_);
417 #endif
418     row_mt_sync->num_threads_working--;
419 #if CONFIG_MULTITHREAD
420     pthread_mutex_unlock(enc_row_mt_mutex_);
421 #endif
422   }
423 
424   return 1;
425 }
426 #endif
427 
enc_row_mt_worker_hook(void * arg1,void * unused)428 static int enc_row_mt_worker_hook(void *arg1, void *unused) {
429   EncWorkerData *const thread_data = (EncWorkerData *)arg1;
430   AV1_COMP *const cpi = thread_data->cpi;
431   AV1_COMMON *const cm = &cpi->common;
432   int thread_id = thread_data->thread_id;
433   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
434   int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
435 #if CONFIG_MULTITHREAD
436   pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
437 #endif
438   (void)unused;
439 
440   assert(cur_tile_id != -1);
441 
442   const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
443   int end_of_frame = 0;
444   while (1) {
445     int current_mi_row = -1;
446 #if CONFIG_MULTITHREAD
447     pthread_mutex_lock(enc_row_mt_mutex_);
448 #endif
449     if (!get_next_job(&cpi->tile_data[cur_tile_id], &current_mi_row,
450                       cm->seq_params.mib_size)) {
451       // No jobs are available for the current tile. Query for the status of
452       // other tiles and get the next job if available
453       switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
454                                    &current_mi_row, &end_of_frame, 0,
455                                    fp_block_size);
456     }
457 #if CONFIG_MULTITHREAD
458     pthread_mutex_unlock(enc_row_mt_mutex_);
459 #endif
460     if (end_of_frame == 1) break;
461 
462     TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
463     AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
464     const TileInfo *const tile_info = &this_tile->tile_info;
465     const int tile_row = tile_info->tile_row;
466     const int tile_col = tile_info->tile_col;
467     ThreadData *td = thread_data->td;
468 
469     assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end);
470 
471     td->mb.e_mbd.tile_ctx = td->tctx;
472     td->mb.tile_pb_ctx = &this_tile->tctx;
473 
474     if (this_tile->allow_update_cdf) {
475       td->mb.row_ctx = this_tile->row_ctx;
476       if (current_mi_row == tile_info->mi_row_start)
477         memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
478     } else {
479       memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
480     }
481 
482     av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
483                            &td->mb.e_mbd);
484 
485     cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params);
486     if (td->mb.txfm_search_info.txb_rd_records != NULL) {
487       av1_crc32c_calculator_init(
488           &td->mb.txfm_search_info.txb_rd_records->mb_rd_record.crc_calculator);
489     }
490 
491     av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row);
492 #if CONFIG_MULTITHREAD
493     pthread_mutex_lock(enc_row_mt_mutex_);
494 #endif
495     row_mt_sync->num_threads_working--;
496 #if CONFIG_MULTITHREAD
497     pthread_mutex_unlock(enc_row_mt_mutex_);
498 #endif
499   }
500 
501   return 1;
502 }
503 
enc_worker_hook(void * arg1,void * unused)504 static int enc_worker_hook(void *arg1, void *unused) {
505   EncWorkerData *const thread_data = (EncWorkerData *)arg1;
506   AV1_COMP *const cpi = thread_data->cpi;
507   const AV1_COMMON *const cm = &cpi->common;
508   const int tile_cols = cm->tiles.cols;
509   const int tile_rows = cm->tiles.rows;
510   int t;
511 
512   (void)unused;
513 
514   for (t = thread_data->start; t < tile_rows * tile_cols;
515        t += cpi->mt_info.num_workers) {
516     int tile_row = t / tile_cols;
517     int tile_col = t % tile_cols;
518 
519     TileDataEnc *const this_tile =
520         &cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
521     thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
522     thread_data->td->mb.tile_pb_ctx = &this_tile->tctx;
523     av1_encode_tile(cpi, thread_data->td, tile_row, tile_col);
524   }
525 
526   return 1;
527 }
528 
av1_create_second_pass_workers(AV1_COMP * cpi,int num_workers)529 void av1_create_second_pass_workers(AV1_COMP *cpi, int num_workers) {
530   AV1_COMMON *const cm = &cpi->common;
531   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
532   MultiThreadInfo *const mt_info = &cpi->mt_info;
533 
534   assert(mt_info->workers != NULL);
535   assert(mt_info->tile_thr_data != NULL);
536 
537 #if CONFIG_MULTITHREAD
538   if (cpi->oxcf.row_mt == 1) {
539     AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt;
540     if (enc_row_mt->mutex_ == NULL) {
541       CHECK_MEM_ERROR(cm, enc_row_mt->mutex_,
542                       aom_malloc(sizeof(*(enc_row_mt->mutex_))));
543       if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL);
544     }
545   }
546   AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync;
547   if (gm_sync->mutex_ == NULL) {
548     CHECK_MEM_ERROR(cm, gm_sync->mutex_,
549                     aom_malloc(sizeof(*(gm_sync->mutex_))));
550     if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL);
551   }
552   AV1TemporalFilterSync *tf_sync = &mt_info->tf_sync;
553   if (tf_sync->mutex_ == NULL) {
554     CHECK_MEM_ERROR(cm, tf_sync->mutex_, aom_malloc(sizeof(*tf_sync->mutex_)));
555     if (tf_sync->mutex_) pthread_mutex_init(tf_sync->mutex_, NULL);
556   }
557   AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
558   if (cdef_sync->mutex_ == NULL) {
559     CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
560                     aom_malloc(sizeof(*(cdef_sync->mutex_))));
561     if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
562   }
563 #endif
564 
565   for (int i = num_workers - 1; i >= 0; i--) {
566     AVxWorker *const worker = &mt_info->workers[i];
567     EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
568 
569     thread_data->cpi = cpi;
570     thread_data->thread_id = i;
571     // Set the starting tile for each thread.
572     thread_data->start = i;
573 
574     if (i > 0) {
575       // alloc_obmc_buffers(&thread_data->td->obmc_buffer, cm);
576 
577       // Create threads
578       if (!winterface->reset(worker))
579         aom_internal_error(&cm->error, AOM_CODEC_ERROR,
580                            "Tile encoder thread creation failed");
581     } else {
582       // Main thread acts as a worker and uses the thread data in cpi.
583       thread_data->td = &cpi->td;
584     }
585     winterface->sync(worker);
586   }
587 }
588 
create_enc_workers(AV1_COMP * cpi,int num_workers)589 static AOM_INLINE void create_enc_workers(AV1_COMP *cpi, int num_workers) {
590   AV1_COMMON *const cm = &cpi->common;
591   MultiThreadInfo *const mt_info = &cpi->mt_info;
592 
593   assert(mt_info->workers != NULL);
594   assert(mt_info->tile_thr_data != NULL);
595 
596   for (int i = num_workers - 1; i >= 0; i--) {
597     EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
598 
599     if (i > 0) {
600       // Set up sms_tree.
601       av1_setup_sms_tree(cpi, thread_data->td);
602 
603       alloc_obmc_buffers(&thread_data->td->obmc_buffer, cm);
604 
605       CHECK_MEM_ERROR(cm, thread_data->td->inter_modes_info,
606                       (InterModesInfo *)aom_malloc(
607                           sizeof(*thread_data->td->inter_modes_info)));
608 
609       for (int x = 0; x < 2; x++)
610         for (int y = 0; y < 2; y++)
611           CHECK_MEM_ERROR(
612               cm, thread_data->td->hash_value_buffer[x][y],
613               (uint32_t *)aom_malloc(
614                   AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
615                   sizeof(*thread_data->td->hash_value_buffer[0][0])));
616 
617       // Allocate frame counters in thread data.
618       CHECK_MEM_ERROR(cm, thread_data->td->counts,
619                       aom_calloc(1, sizeof(*thread_data->td->counts)));
620 
621       // Allocate buffers used by palette coding mode.
622       CHECK_MEM_ERROR(
623           cm, thread_data->td->palette_buffer,
624           aom_memalign(16, sizeof(*thread_data->td->palette_buffer)));
625 
626       alloc_compound_type_rd_buffers(cm, &thread_data->td->comp_rd_buffer);
627 
628       CHECK_MEM_ERROR(
629           cm, thread_data->td->tmp_conv_dst,
630           aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
631                                sizeof(*thread_data->td->tmp_conv_dst)));
632       for (int j = 0; j < 2; ++j) {
633         CHECK_MEM_ERROR(
634             cm, thread_data->td->tmp_pred_bufs[j],
635             aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
636                                  sizeof(*thread_data->td->tmp_pred_bufs[j])));
637       }
638 
639       if (cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) {
640         const int num_64x64_blocks =
641             (cm->seq_params.sb_size == BLOCK_64X64) ? 1 : 4;
642         CHECK_MEM_ERROR(
643             cm, thread_data->td->vt64x64,
644             aom_malloc(sizeof(*thread_data->td->vt64x64) * num_64x64_blocks));
645       }
646     } else {
647       thread_data->td = &cpi->td;
648     }
649     if (cpi->oxcf.row_mt == 1)
650       CHECK_MEM_ERROR(
651           cm, thread_data->td->tctx,
652           (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx)));
653   }
654   mt_info->enc_mt_buf_init_done = 1;
655 }
656 
av1_create_workers(AV1_COMP * cpi,int num_workers)657 void av1_create_workers(AV1_COMP *cpi, int num_workers) {
658   AV1_COMMON *const cm = &cpi->common;
659   MultiThreadInfo *const mt_info = &cpi->mt_info;
660   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
661 
662   CHECK_MEM_ERROR(cm, mt_info->workers,
663                   aom_malloc(num_workers * sizeof(*mt_info->workers)));
664 
665   CHECK_MEM_ERROR(cm, mt_info->tile_thr_data,
666                   aom_calloc(num_workers, sizeof(*mt_info->tile_thr_data)));
667 
668   for (int i = num_workers - 1; i >= 0; i--) {
669     AVxWorker *const worker = &mt_info->workers[i];
670     EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
671 
672     winterface->init(worker);
673     worker->thread_name = "aom enc worker";
674 
675     if (i > 0) {
676       // Allocate thread data.
677       CHECK_MEM_ERROR(cm, thread_data->td,
678                       aom_memalign(32, sizeof(*thread_data->td)));
679       av1_zero(*thread_data->td);
680 
681       // Set up shared coeff buffers.
682       av1_setup_shared_coeff_buffer(cm, &thread_data->td->shared_coeff_buf);
683     }
684     ++mt_info->num_workers;
685   }
686 }
687 
688 #if !CONFIG_REALTIME_ONLY
fp_create_enc_workers(AV1_COMP * cpi,int num_workers)689 static AOM_INLINE void fp_create_enc_workers(AV1_COMP *cpi, int num_workers) {
690   AV1_COMMON *const cm = &cpi->common;
691   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
692   MultiThreadInfo *const mt_info = &cpi->mt_info;
693   // For single-pass encode, threads are already created during call to
694   // av1_create_second_pass_workers(). Create threads only in the case of
695   // pass = 1.
696   const int create_workers = (mt_info->num_mod_workers[MOD_FP] == 0) ? 1 : 0;
697 
698   assert(mt_info->workers != NULL);
699   assert(mt_info->tile_thr_data != NULL);
700 
701 #if CONFIG_MULTITHREAD
702   AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt;
703   if (enc_row_mt->mutex_ == NULL) {
704     CHECK_MEM_ERROR(cm, enc_row_mt->mutex_,
705                     aom_malloc(sizeof(*(enc_row_mt->mutex_))));
706     if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL);
707   }
708 #endif
709 
710   for (int i = num_workers - 1; i >= 0; i--) {
711     AVxWorker *const worker = &mt_info->workers[i];
712     EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
713 
714     thread_data->cpi = cpi;
715     thread_data->thread_id = i;
716     // Set the starting tile for each thread.
717     thread_data->start = i;
718 
719     if (i > 0) {
720       // Set up firstpass PICK_MODE_CONTEXT.
721       thread_data->td->firstpass_ctx =
722           av1_alloc_pmc(cpi, BLOCK_16X16, &thread_data->td->shared_coeff_buf);
723 
724       if (create_workers) {
725         // Create threads
726         if (!winterface->reset(worker))
727           aom_internal_error(&cm->error, AOM_CODEC_ERROR,
728                              "Tile encoder thread creation failed");
729       }
730     } else {
731       // Main thread acts as a worker and uses the thread data in cpi.
732       thread_data->td = &cpi->td;
733     }
734     if (create_workers) {
735       winterface->sync(worker);
736       ++mt_info->num_mod_workers[MOD_FP];
737     }
738   }
739   mt_info->fp_mt_buf_init_done = 1;
740 }
741 #endif
742 
launch_workers(MultiThreadInfo * const mt_info,int num_workers)743 static AOM_INLINE void launch_workers(MultiThreadInfo *const mt_info,
744                                       int num_workers) {
745   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
746   for (int i = num_workers - 1; i >= 0; i--) {
747     AVxWorker *const worker = &mt_info->workers[i];
748     if (i == 0)
749       winterface->execute(worker);
750     else
751       winterface->launch(worker);
752   }
753 }
754 
sync_enc_workers(MultiThreadInfo * const mt_info,AV1_COMMON * const cm,int num_workers)755 static AOM_INLINE void sync_enc_workers(MultiThreadInfo *const mt_info,
756                                         AV1_COMMON *const cm, int num_workers) {
757   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
758   int had_error = 0;
759 
760   // Encoding ends.
761   for (int i = num_workers - 1; i >= 0; i--) {
762     AVxWorker *const worker = &mt_info->workers[i];
763     had_error |= !winterface->sync(worker);
764   }
765 
766   if (had_error)
767     aom_internal_error(&cm->error, AOM_CODEC_ERROR,
768                        "Failed to encode tile data");
769 }
770 
accumulate_counters_enc_workers(AV1_COMP * cpi,int num_workers)771 static AOM_INLINE void accumulate_counters_enc_workers(AV1_COMP *cpi,
772                                                        int num_workers) {
773   for (int i = num_workers - 1; i >= 0; i--) {
774     AVxWorker *const worker = &cpi->mt_info.workers[i];
775     EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
776     cpi->intrabc_used |= thread_data->td->intrabc_used;
777     cpi->deltaq_used |= thread_data->td->deltaq_used;
778     if (thread_data->td->mb.txfm_search_info.txb_rd_records) {
779       aom_free(thread_data->td->mb.txfm_search_info.txb_rd_records);
780       thread_data->td->mb.txfm_search_info.txb_rd_records = NULL;
781     }
782     if (thread_data->td != &cpi->td &&
783         cpi->oxcf.cost_upd_freq.mv < COST_UPD_OFF) {
784       aom_free(thread_data->td->mb.mv_costs);
785     }
786 
787     // Accumulate counters.
788     if (i > 0) {
789       av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts);
790       accumulate_rd_opt(&cpi->td, thread_data->td);
791       cpi->td.mb.txfm_search_info.txb_split_count +=
792           thread_data->td->mb.txfm_search_info.txb_split_count;
793 #if CONFIG_SPEED_STATS
794       cpi->td.mb.txfm_search_info.tx_search_count +=
795           thread_data->td->mb.txfm_search_info.tx_search_count;
796 #endif  // CONFIG_SPEED_STATS
797     }
798   }
799 }
800 
prepare_enc_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)801 static AOM_INLINE void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
802                                            int num_workers) {
803   MultiThreadInfo *const mt_info = &cpi->mt_info;
804   AV1_COMMON *const cm = &cpi->common;
805   for (int i = num_workers - 1; i >= 0; i--) {
806     AVxWorker *const worker = &mt_info->workers[i];
807     EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
808 
809     worker->hook = hook;
810     worker->data1 = thread_data;
811     worker->data2 = NULL;
812 
813     thread_data->cpi = cpi;
814     if (i == 0) {
815       thread_data->td = &cpi->td;
816     }
817 
818     thread_data->td->intrabc_used = 0;
819     thread_data->td->deltaq_used = 0;
820 
821     // Before encoding a frame, copy the thread data from cpi.
822     if (thread_data->td != &cpi->td) {
823       thread_data->td->mb = cpi->td.mb;
824       thread_data->td->rd_counts = cpi->td.rd_counts;
825       thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer;
826 
827       thread_data->td->mb.inter_modes_info = thread_data->td->inter_modes_info;
828       for (int x = 0; x < 2; x++) {
829         for (int y = 0; y < 2; y++) {
830           memcpy(thread_data->td->hash_value_buffer[x][y],
831                  cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y],
832                  AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
833                      sizeof(*thread_data->td->hash_value_buffer[0][0]));
834           thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] =
835               thread_data->td->hash_value_buffer[x][y];
836         }
837       }
838       if (cpi->oxcf.cost_upd_freq.mv < COST_UPD_OFF) {
839         CHECK_MEM_ERROR(cm, thread_data->td->mb.mv_costs,
840                         (MvCosts *)aom_malloc(sizeof(MvCosts)));
841         memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs,
842                sizeof(MvCosts));
843       }
844     }
845     if (!cpi->sf.rt_sf.use_nonrd_pick_mode) {
846       CHECK_MEM_ERROR(cm, thread_data->td->mb.txfm_search_info.txb_rd_records,
847                       (TxbRdRecords *)aom_malloc(sizeof(TxbRdRecords)));
848     }
849 
850     if (thread_data->td->counts != &cpi->counts) {
851       memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts));
852     }
853 
854     if (i > 0) {
855       thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer;
856       thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer;
857       thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
858       for (int j = 0; j < 2; ++j) {
859         thread_data->td->mb.tmp_pred_bufs[j] =
860             thread_data->td->tmp_pred_bufs[j];
861       }
862 
863       thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
864       for (int j = 0; j < 2; ++j) {
865         thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] =
866             thread_data->td->mb.tmp_pred_bufs[j];
867       }
868     }
869   }
870 }
871 
872 #if !CONFIG_REALTIME_ONLY
fp_prepare_enc_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)873 static AOM_INLINE void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
874                                               int num_workers) {
875   AV1_COMMON *const cm = &cpi->common;
876   MultiThreadInfo *const mt_info = &cpi->mt_info;
877   for (int i = num_workers - 1; i >= 0; i--) {
878     AVxWorker *const worker = &mt_info->workers[i];
879     EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
880 
881     worker->hook = hook;
882     worker->data1 = thread_data;
883     worker->data2 = NULL;
884 
885     thread_data->cpi = cpi;
886     if (i == 0) {
887       thread_data->td = &cpi->td;
888     }
889 
890     // Before encoding a frame, copy the thread data from cpi.
891     if (thread_data->td != &cpi->td) {
892       thread_data->td->mb = cpi->td.mb;
893       if (cpi->oxcf.cost_upd_freq.mv < COST_UPD_OFF) {
894         CHECK_MEM_ERROR(cm, thread_data->td->mb.mv_costs,
895                         (MvCosts *)aom_malloc(sizeof(MvCosts)));
896         memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs,
897                sizeof(MvCosts));
898       }
899     }
900     if (!cpi->sf.rt_sf.use_nonrd_pick_mode) {
901       CHECK_MEM_ERROR(cm, thread_data->td->mb.txfm_search_info.txb_rd_records,
902                       (TxbRdRecords *)aom_malloc(sizeof(TxbRdRecords)));
903     }
904   }
905 }
906 #endif
907 
908 // Computes the number of workers for row multi-threading of encoding stage
compute_num_enc_row_mt_workers(AV1_COMMON * const cm,int max_threads)909 static AOM_INLINE int compute_num_enc_row_mt_workers(AV1_COMMON *const cm,
910                                                      int max_threads) {
911   TileInfo tile_info;
912   const int tile_cols = cm->tiles.cols;
913   const int tile_rows = cm->tiles.rows;
914   int total_num_threads_row_mt = 0;
915   for (int row = 0; row < tile_rows; row++) {
916     for (int col = 0; col < tile_cols; col++) {
917       av1_tile_init(&tile_info, cm, row, col);
918       const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, tile_info);
919       const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
920       total_num_threads_row_mt +=
921           AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
922     }
923   }
924   return AOMMIN(max_threads, total_num_threads_row_mt);
925 }
926 
927 // Computes the number of workers for tile multi-threading of encoding stage
compute_num_enc_tile_mt_workers(AV1_COMMON * const cm,int max_threads)928 static AOM_INLINE int compute_num_enc_tile_mt_workers(AV1_COMMON *const cm,
929                                                       int max_threads) {
930   const int tile_cols = cm->tiles.cols;
931   const int tile_rows = cm->tiles.rows;
932   return AOMMIN(max_threads, tile_cols * tile_rows);
933 }
934 
935 // Find max worker of all MT stages
av1_get_max_num_workers(AV1_COMP * cpi)936 int av1_get_max_num_workers(AV1_COMP *cpi) {
937   int max_num_workers = 0;
938   for (int i = MOD_FP; i < NUM_MT_MODULES; i++)
939     max_num_workers = AOMMAX(cpi->mt_info.num_mod_workers[i], max_num_workers);
940   assert(max_num_workers >= 1);
941   return AOMMIN(max_num_workers, cpi->oxcf.max_threads);
942 }
943 
944 // Computes the number of workers for encoding stage (row/tile multi-threading)
compute_num_enc_workers(AV1_COMP * cpi,int max_workers)945 static AOM_INLINE int compute_num_enc_workers(AV1_COMP *cpi, int max_workers) {
946   if (max_workers <= 1) return 1;
947   if (cpi->oxcf.row_mt)
948     return compute_num_enc_row_mt_workers(&cpi->common, max_workers);
949   else
950     return compute_num_enc_tile_mt_workers(&cpi->common, max_workers);
951 }
952 
av1_encode_tiles_mt(AV1_COMP * cpi)953 void av1_encode_tiles_mt(AV1_COMP *cpi) {
954   AV1_COMMON *const cm = &cpi->common;
955   MultiThreadInfo *const mt_info = &cpi->mt_info;
956   const int tile_cols = cm->tiles.cols;
957   const int tile_rows = cm->tiles.rows;
958   int num_workers = mt_info->num_mod_workers[MOD_ENC];
959 
960   assert(IMPLIES(cpi->tile_data == NULL,
961                  cpi->allocated_tiles < tile_cols * tile_rows));
962   if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi);
963 
964   av1_init_tile_data(cpi);
965   // Only run once to create threads and allocate thread data.
966   if (mt_info->enc_mt_buf_init_done == 0) {
967     create_enc_workers(cpi, num_workers);
968   } else {
969     num_workers = AOMMIN(num_workers, mt_info->num_workers);
970   }
971   prepare_enc_workers(cpi, enc_worker_hook, num_workers);
972   launch_workers(&cpi->mt_info, num_workers);
973   sync_enc_workers(&cpi->mt_info, cm, num_workers);
974   accumulate_counters_enc_workers(cpi, num_workers);
975 }
976 
977 // Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
978 // members, so we treat it as an array, and sum over the whole length.
av1_accumulate_frame_counts(FRAME_COUNTS * acc_counts,const FRAME_COUNTS * counts)979 void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
980                                  const FRAME_COUNTS *counts) {
981   unsigned int *const acc = (unsigned int *)acc_counts;
982   const unsigned int *const cnt = (const unsigned int *)counts;
983 
984   const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
985 
986   for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i];
987 }
988 
989 // Computes the maximum number of sb_rows for row multi-threading of encoding
990 // stage
compute_max_sb_rows_cols(AV1_COMP * cpi,int * max_sb_rows,int * max_sb_cols)991 static AOM_INLINE void compute_max_sb_rows_cols(AV1_COMP *cpi, int *max_sb_rows,
992                                                 int *max_sb_cols) {
993   AV1_COMMON *const cm = &cpi->common;
994   const int tile_cols = cm->tiles.cols;
995   const int tile_rows = cm->tiles.rows;
996   for (int row = 0; row < tile_rows; row++) {
997     for (int col = 0; col < tile_cols; col++) {
998       const int tile_index = row * cm->tiles.cols + col;
999       TileInfo tile_info = cpi->tile_data[tile_index].tile_info;
1000       const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, tile_info);
1001       const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
1002       *max_sb_rows = AOMMAX(*max_sb_rows, num_sb_rows_in_tile);
1003       *max_sb_cols = AOMMAX(*max_sb_cols, num_sb_cols_in_tile);
1004     }
1005   }
1006 }
1007 
1008 #if !CONFIG_REALTIME_ONLY
1009 // Computes the number of workers for firstpass stage (row/tile multi-threading)
av1_fp_compute_num_enc_workers(AV1_COMP * cpi)1010 int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) {
1011   AV1_COMMON *cm = &cpi->common;
1012   const int tile_cols = cm->tiles.cols;
1013   const int tile_rows = cm->tiles.rows;
1014   int total_num_threads_row_mt = 0;
1015   TileInfo tile_info;
1016 
1017   if (cpi->oxcf.max_threads <= 1) return 1;
1018 
1019   for (int row = 0; row < tile_rows; row++) {
1020     for (int col = 0; col < tile_cols; col++) {
1021       av1_tile_init(&tile_info, cm, row, col);
1022       const int num_mb_rows_in_tile =
1023           av1_get_unit_rows_in_tile(tile_info, cpi->fp_block_size);
1024       const int num_mb_cols_in_tile =
1025           av1_get_unit_cols_in_tile(tile_info, cpi->fp_block_size);
1026       total_num_threads_row_mt +=
1027           AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile);
1028     }
1029   }
1030   return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt);
1031 }
1032 
1033 // Computes the maximum number of mb_rows for row multi-threading of firstpass
1034 // stage
fp_compute_max_mb_rows(const AV1_COMMON * const cm,const TileDataEnc * const tile_data,const BLOCK_SIZE fp_block_size)1035 static AOM_INLINE int fp_compute_max_mb_rows(const AV1_COMMON *const cm,
1036                                              const TileDataEnc *const tile_data,
1037                                              const BLOCK_SIZE fp_block_size) {
1038   const int tile_cols = cm->tiles.cols;
1039   const int tile_rows = cm->tiles.rows;
1040   int max_mb_rows = 0;
1041   for (int row = 0; row < tile_rows; row++) {
1042     for (int col = 0; col < tile_cols; col++) {
1043       const int tile_index = row * cm->tiles.cols + col;
1044       TileInfo tile_info = tile_data[tile_index].tile_info;
1045       const int num_mb_rows_in_tile =
1046           av1_get_unit_rows_in_tile(tile_info, fp_block_size);
1047       max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile);
1048     }
1049   }
1050   return max_mb_rows;
1051 }
1052 #endif
1053 
av1_encode_tiles_row_mt(AV1_COMP * cpi)1054 void av1_encode_tiles_row_mt(AV1_COMP *cpi) {
1055   AV1_COMMON *const cm = &cpi->common;
1056   MultiThreadInfo *const mt_info = &cpi->mt_info;
1057   AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1058   const int tile_cols = cm->tiles.cols;
1059   const int tile_rows = cm->tiles.rows;
1060   int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
1061   int max_sb_rows = 0, max_sb_cols = 0;
1062   int num_workers = mt_info->num_mod_workers[MOD_ENC];
1063 
1064   assert(IMPLIES(cpi->tile_data == NULL,
1065                  cpi->allocated_tiles < tile_cols * tile_rows));
1066   if (cpi->allocated_tiles < tile_cols * tile_rows) {
1067     av1_row_mt_mem_dealloc(cpi);
1068     av1_alloc_tile_data(cpi);
1069   }
1070 
1071   av1_init_tile_data(cpi);
1072 
1073   compute_max_sb_rows_cols(cpi, &max_sb_rows, &max_sb_cols);
1074 
1075   if (enc_row_mt->allocated_tile_cols != tile_cols ||
1076       enc_row_mt->allocated_tile_rows != tile_rows ||
1077       enc_row_mt->allocated_rows != max_sb_rows ||
1078       enc_row_mt->allocated_cols != (max_sb_cols - 1)) {
1079     av1_row_mt_mem_dealloc(cpi);
1080     row_mt_mem_alloc(cpi, max_sb_rows, max_sb_cols,
1081                      cpi->oxcf.algo_cfg.cdf_update_mode);
1082   }
1083 
1084   memset(thread_id_to_tile_id, -1,
1085          sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
1086 
1087   for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
1088     for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
1089       int tile_index = tile_row * tile_cols + tile_col;
1090       TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
1091       AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
1092 
1093       // Initialize num_finished_cols to -1 for all rows.
1094       memset(row_mt_sync->num_finished_cols, -1,
1095              sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows);
1096       row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
1097       row_mt_sync->num_threads_working = 0;
1098 
1099       av1_inter_mode_data_init(this_tile);
1100       av1_zero_above_context(cm, &cpi->td.mb.e_mbd,
1101                              this_tile->tile_info.mi_col_start,
1102                              this_tile->tile_info.mi_col_end, tile_row);
1103     }
1104   }
1105 
1106   // Only run once to create threads and allocate thread data.
1107   if (mt_info->enc_mt_buf_init_done == 0) {
1108     create_enc_workers(cpi, num_workers);
1109   } else {
1110     num_workers = AOMMIN(num_workers, mt_info->num_workers);
1111   }
1112   assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
1113                         num_workers);
1114   prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers);
1115   launch_workers(&cpi->mt_info, num_workers);
1116   sync_enc_workers(&cpi->mt_info, cm, num_workers);
1117   if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi);
1118   accumulate_counters_enc_workers(cpi, num_workers);
1119 }
1120 
1121 #if !CONFIG_REALTIME_ONLY
av1_fp_encode_tiles_row_mt(AV1_COMP * cpi)1122 void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) {
1123   AV1_COMMON *const cm = &cpi->common;
1124   MultiThreadInfo *const mt_info = &cpi->mt_info;
1125   AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1126   const int tile_cols = cm->tiles.cols;
1127   const int tile_rows = cm->tiles.rows;
1128   int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
1129   int num_workers = 0;
1130   int max_mb_rows = 0;
1131 
1132   assert(IMPLIES(cpi->tile_data == NULL,
1133                  cpi->allocated_tiles < tile_cols * tile_rows));
1134   if (cpi->allocated_tiles < tile_cols * tile_rows) {
1135     av1_row_mt_mem_dealloc(cpi);
1136     av1_alloc_tile_data(cpi);
1137   }
1138 
1139   av1_init_tile_data(cpi);
1140 
1141   const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
1142   max_mb_rows = fp_compute_max_mb_rows(cm, cpi->tile_data, fp_block_size);
1143 
1144   // For pass = 1, compute the no. of workers needed. For single-pass encode
1145   // (pass = 0), no. of workers are already computed.
1146   if (mt_info->num_mod_workers[MOD_FP] == 0)
1147     num_workers = av1_fp_compute_num_enc_workers(cpi);
1148   else
1149     num_workers = mt_info->num_mod_workers[MOD_FP];
1150 
1151   if (enc_row_mt->allocated_tile_cols != tile_cols ||
1152       enc_row_mt->allocated_tile_rows != tile_rows ||
1153       enc_row_mt->allocated_rows != max_mb_rows) {
1154     av1_row_mt_mem_dealloc(cpi);
1155     row_mt_mem_alloc(cpi, max_mb_rows, -1, 0);
1156   }
1157 
1158   memset(thread_id_to_tile_id, -1,
1159          sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
1160 
1161   for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
1162     for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
1163       int tile_index = tile_row * tile_cols + tile_col;
1164       TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
1165       AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
1166 
1167       // Initialize num_finished_cols to -1 for all rows.
1168       memset(row_mt_sync->num_finished_cols, -1,
1169              sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows);
1170       row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
1171       row_mt_sync->num_threads_working = 0;
1172     }
1173   }
1174 
1175   num_workers = AOMMIN(num_workers, mt_info->num_workers);
1176   // Only run once to create threads and allocate thread data.
1177   if (mt_info->fp_mt_buf_init_done == 0)
1178     fp_create_enc_workers(cpi, num_workers);
1179   assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
1180                         num_workers);
1181   fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers);
1182   launch_workers(&cpi->mt_info, num_workers);
1183   sync_enc_workers(&cpi->mt_info, cm, num_workers);
1184   for (int i = num_workers - 1; i >= 0; i--) {
1185     EncWorkerData *const thread_data = &cpi->mt_info.tile_thr_data[i];
1186     if (thread_data->td != &cpi->td &&
1187         cpi->oxcf.cost_upd_freq.mv < COST_UPD_OFF) {
1188       aom_free(thread_data->td->mb.mv_costs);
1189     }
1190     if (thread_data->td->mb.txfm_search_info.txb_rd_records) {
1191       aom_free(thread_data->td->mb.txfm_search_info.txb_rd_records);
1192     }
1193   }
1194 }
1195 
av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync * tpl_mt_sync,int r,int c)1196 void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
1197                                     int r, int c) {
1198   (void)tpl_mt_sync;
1199   (void)r;
1200   (void)c;
1201   return;
1202 }
1203 
av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync * tpl_mt_sync,int r,int c,int cols)1204 void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
1205                                      int r, int c, int cols) {
1206   (void)tpl_mt_sync;
1207   (void)r;
1208   (void)c;
1209   (void)cols;
1210   return;
1211 }
1212 
av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync * tpl_row_mt_sync,int r,int c)1213 void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
1214                               int c) {
1215 #if CONFIG_MULTITHREAD
1216   int nsync = tpl_row_mt_sync->sync_range;
1217 
1218   if (r) {
1219     pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1];
1220     pthread_mutex_lock(mutex);
1221 
1222     while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync)
1223       pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex);
1224     pthread_mutex_unlock(mutex);
1225   }
1226 #else
1227   (void)tpl_row_mt_sync;
1228   (void)r;
1229   (void)c;
1230 #endif  // CONFIG_MULTITHREAD
1231 }
1232 
av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync * tpl_row_mt_sync,int r,int c,int cols)1233 void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
1234                                int c, int cols) {
1235 #if CONFIG_MULTITHREAD
1236   int nsync = tpl_row_mt_sync->sync_range;
1237   int cur;
1238   // Only signal when there are enough encoded blocks for next row to run.
1239   int sig = 1;
1240 
1241   if (c < cols - 1) {
1242     cur = c;
1243     if (c % nsync) sig = 0;
1244   } else {
1245     cur = cols + nsync;
1246   }
1247 
1248   if (sig) {
1249     pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]);
1250 
1251     tpl_row_mt_sync->num_finished_cols[r] = cur;
1252 
1253     pthread_cond_signal(&tpl_row_mt_sync->cond_[r]);
1254     pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]);
1255   }
1256 #else
1257   (void)tpl_row_mt_sync;
1258   (void)r;
1259   (void)c;
1260   (void)cols;
1261 #endif  // CONFIG_MULTITHREAD
1262 }
1263 
1264 // Each worker calls tpl_worker_hook() and computes the tpl data.
tpl_worker_hook(void * arg1,void * unused)1265 static int tpl_worker_hook(void *arg1, void *unused) {
1266   (void)unused;
1267   EncWorkerData *thread_data = (EncWorkerData *)arg1;
1268   AV1_COMP *cpi = thread_data->cpi;
1269   AV1_COMMON *cm = &cpi->common;
1270   MACROBLOCK *x = &thread_data->td->mb;
1271   MACROBLOCKD *xd = &x->e_mbd;
1272   CommonModeInfoParams *mi_params = &cm->mi_params;
1273   BLOCK_SIZE bsize = convert_length_to_bsize(cpi->tpl_data.tpl_bsize_1d);
1274   TX_SIZE tx_size = max_txsize_lookup[bsize];
1275   int mi_height = mi_size_high[bsize];
1276   int num_active_workers = cpi->tpl_data.tpl_mt_sync.num_threads_working;
1277   for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows;
1278        mi_row += num_active_workers * mi_height) {
1279     // Motion estimation row boundary
1280     av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
1281                           cpi->oxcf.border_in_pixels);
1282     xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1283     xd->mb_to_bottom_edge =
1284         GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
1285     av1_mc_flow_dispenser_row(cpi, x, mi_row, bsize, tx_size);
1286   }
1287   return 1;
1288 }
1289 
1290 // Deallocate tpl synchronization related mutex and data.
av1_tpl_dealloc(AV1TplRowMultiThreadSync * tpl_sync)1291 void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) {
1292   assert(tpl_sync != NULL);
1293 
1294 #if CONFIG_MULTITHREAD
1295   if (tpl_sync->mutex_ != NULL) {
1296     for (int i = 0; i < tpl_sync->rows; ++i)
1297       pthread_mutex_destroy(&tpl_sync->mutex_[i]);
1298     aom_free(tpl_sync->mutex_);
1299   }
1300   if (tpl_sync->cond_ != NULL) {
1301     for (int i = 0; i < tpl_sync->rows; ++i)
1302       pthread_cond_destroy(&tpl_sync->cond_[i]);
1303     aom_free(tpl_sync->cond_);
1304   }
1305 #endif  // CONFIG_MULTITHREAD
1306 
1307   aom_free(tpl_sync->num_finished_cols);
1308   // clear the structure as the source of this call may be a resize in which
1309   // case this call will be followed by an _alloc() which may fail.
1310   av1_zero(*tpl_sync);
1311 }
1312 
1313 // Allocate memory for tpl row synchronization.
av1_tpl_alloc(AV1TplRowMultiThreadSync * tpl_sync,AV1_COMMON * cm,int mb_rows)1314 void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm,
1315                    int mb_rows) {
1316   tpl_sync->rows = mb_rows;
1317 #if CONFIG_MULTITHREAD
1318   {
1319     CHECK_MEM_ERROR(cm, tpl_sync->mutex_,
1320                     aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows));
1321     if (tpl_sync->mutex_) {
1322       for (int i = 0; i < mb_rows; ++i)
1323         pthread_mutex_init(&tpl_sync->mutex_[i], NULL);
1324     }
1325 
1326     CHECK_MEM_ERROR(cm, tpl_sync->cond_,
1327                     aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows));
1328     if (tpl_sync->cond_) {
1329       for (int i = 0; i < mb_rows; ++i)
1330         pthread_cond_init(&tpl_sync->cond_[i], NULL);
1331     }
1332   }
1333 #endif  // CONFIG_MULTITHREAD
1334   CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols,
1335                   aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows));
1336 
1337   // Set up nsync.
1338   tpl_sync->sync_range = 1;
1339 }
1340 
1341 // Each worker is prepared by assigning the hook function and individual thread
1342 // data.
prepare_tpl_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)1343 static AOM_INLINE void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1344                                            int num_workers) {
1345   MultiThreadInfo *mt_info = &cpi->mt_info;
1346   for (int i = num_workers - 1; i >= 0; i--) {
1347     AVxWorker *worker = &mt_info->workers[i];
1348     EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
1349 
1350     worker->hook = hook;
1351     worker->data1 = thread_data;
1352     worker->data2 = NULL;
1353 
1354     thread_data->cpi = cpi;
1355     if (i == 0) {
1356       thread_data->td = &cpi->td;
1357     }
1358 
1359     // Before encoding a frame, copy the thread data from cpi.
1360     if (thread_data->td != &cpi->td) {
1361       thread_data->td->mb = cpi->td.mb;
1362       // OBMC buffers are used only to init MS params and remain unused when
1363       // called from tpl, hence set the buffers to defaults.
1364       av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
1365     }
1366   }
1367 }
1368 
1369 // Implements multi-threading for tpl.
av1_mc_flow_dispenser_mt(AV1_COMP * cpi)1370 void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) {
1371   AV1_COMMON *cm = &cpi->common;
1372   CommonModeInfoParams *mi_params = &cm->mi_params;
1373   MultiThreadInfo *mt_info = &cpi->mt_info;
1374   TplParams *tpl_data = &cpi->tpl_data;
1375   AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync;
1376   int mb_rows = mi_params->mb_rows;
1377   int num_workers =
1378       AOMMIN(mt_info->num_mod_workers[MOD_TPL], mt_info->num_workers);
1379 
1380   if (mb_rows != tpl_sync->rows) {
1381     av1_tpl_dealloc(tpl_sync);
1382     av1_tpl_alloc(tpl_sync, cm, mb_rows);
1383   }
1384   tpl_sync->num_threads_working = num_workers;
1385 
1386   // Initialize cur_mb_col to -1 for all MB rows.
1387   memset(tpl_sync->num_finished_cols, -1,
1388          sizeof(*tpl_sync->num_finished_cols) * mb_rows);
1389 
1390   prepare_tpl_workers(cpi, tpl_worker_hook, num_workers);
1391   launch_workers(&cpi->mt_info, num_workers);
1392   sync_enc_workers(&cpi->mt_info, cm, num_workers);
1393 }
1394 
1395 // Deallocate memory for temporal filter multi-thread synchronization.
av1_tf_mt_dealloc(AV1TemporalFilterSync * tf_sync)1396 void av1_tf_mt_dealloc(AV1TemporalFilterSync *tf_sync) {
1397   assert(tf_sync != NULL);
1398 #if CONFIG_MULTITHREAD
1399   if (tf_sync->mutex_ != NULL) {
1400     pthread_mutex_destroy(tf_sync->mutex_);
1401     aom_free(tf_sync->mutex_);
1402   }
1403 #endif  // CONFIG_MULTITHREAD
1404   tf_sync->next_tf_row = 0;
1405 }
1406 
1407 // Checks if a job is available. If job is available,
1408 // populates next_tf_row and returns 1, else returns 0.
tf_get_next_job(AV1TemporalFilterSync * tf_mt_sync,int * current_mb_row,int mb_rows)1409 static AOM_INLINE int tf_get_next_job(AV1TemporalFilterSync *tf_mt_sync,
1410                                       int *current_mb_row, int mb_rows) {
1411   int do_next_row = 0;
1412 #if CONFIG_MULTITHREAD
1413   pthread_mutex_t *tf_mutex_ = tf_mt_sync->mutex_;
1414   pthread_mutex_lock(tf_mutex_);
1415 #endif
1416   if (tf_mt_sync->next_tf_row < mb_rows) {
1417     *current_mb_row = tf_mt_sync->next_tf_row;
1418     tf_mt_sync->next_tf_row++;
1419     do_next_row = 1;
1420   }
1421 #if CONFIG_MULTITHREAD
1422   pthread_mutex_unlock(tf_mutex_);
1423 #endif
1424   return do_next_row;
1425 }
1426 
1427 // Hook function for each thread in temporal filter multi-threading.
tf_worker_hook(void * arg1,void * unused)1428 static int tf_worker_hook(void *arg1, void *unused) {
1429   (void)unused;
1430   EncWorkerData *thread_data = (EncWorkerData *)arg1;
1431   AV1_COMP *cpi = thread_data->cpi;
1432   ThreadData *td = thread_data->td;
1433   TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
1434   AV1TemporalFilterSync *tf_sync = &cpi->mt_info.tf_sync;
1435   const struct scale_factors *scale = &cpi->tf_ctx.sf;
1436   const int num_planes = av1_num_planes(&cpi->common);
1437   assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
1438 
1439   MACROBLOCKD *mbd = &td->mb.e_mbd;
1440   uint8_t *input_buffer[MAX_MB_PLANE];
1441   MB_MODE_INFO **input_mb_mode_info;
1442   tf_save_state(mbd, &input_mb_mode_info, input_buffer, num_planes);
1443   tf_setup_macroblockd(mbd, &td->tf_data, scale);
1444 
1445   int current_mb_row = -1;
1446 
1447   while (tf_get_next_job(tf_sync, &current_mb_row, tf_ctx->mb_rows))
1448     av1_tf_do_filtering_row(cpi, td, current_mb_row);
1449 
1450   tf_restore_state(mbd, input_mb_mode_info, input_buffer, num_planes);
1451 
1452   return 1;
1453 }
1454 
1455 // Assigns temporal filter hook function and thread data to each worker.
prepare_tf_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers,int is_highbitdepth)1456 static void prepare_tf_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1457                                int num_workers, int is_highbitdepth) {
1458   MultiThreadInfo *mt_info = &cpi->mt_info;
1459   mt_info->tf_sync.next_tf_row = 0;
1460   for (int i = num_workers - 1; i >= 0; i--) {
1461     AVxWorker *worker = &mt_info->workers[i];
1462     EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
1463 
1464     worker->hook = hook;
1465     worker->data1 = thread_data;
1466     worker->data2 = NULL;
1467 
1468     thread_data->cpi = cpi;
1469     if (i == 0) {
1470       thread_data->td = &cpi->td;
1471     }
1472 
1473     // Before encoding a frame, copy the thread data from cpi.
1474     if (thread_data->td != &cpi->td) {
1475       thread_data->td->mb = cpi->td.mb;
1476       // OBMC buffers are used only to init MS params and remain unused when
1477       // called from tf, hence set the buffers to defaults.
1478       av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
1479       tf_alloc_and_reset_data(&thread_data->td->tf_data, cpi->tf_ctx.num_pels,
1480                               is_highbitdepth);
1481     }
1482   }
1483 }
1484 
1485 // Deallocate thread specific data for temporal filter.
tf_dealloc_thread_data(AV1_COMP * cpi,int num_workers,int is_highbitdepth)1486 static void tf_dealloc_thread_data(AV1_COMP *cpi, int num_workers,
1487                                    int is_highbitdepth) {
1488   MultiThreadInfo *mt_info = &cpi->mt_info;
1489   for (int i = num_workers - 1; i >= 0; i--) {
1490     EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
1491     ThreadData *td = thread_data->td;
1492     if (td != &cpi->td) tf_dealloc_data(&td->tf_data, is_highbitdepth);
1493   }
1494 }
1495 
1496 // Accumulate sse and sum after temporal filtering.
tf_accumulate_frame_diff(AV1_COMP * cpi,int num_workers)1497 static void tf_accumulate_frame_diff(AV1_COMP *cpi, int num_workers) {
1498   FRAME_DIFF *total_diff = &cpi->td.tf_data.diff;
1499   for (int i = num_workers - 1; i >= 0; i--) {
1500     AVxWorker *const worker = &cpi->mt_info.workers[i];
1501     EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
1502     ThreadData *td = thread_data->td;
1503     FRAME_DIFF *diff = &td->tf_data.diff;
1504     if (td != &cpi->td) {
1505       total_diff->sse += diff->sse;
1506       total_diff->sum += diff->sum;
1507     }
1508   }
1509 }
1510 
1511 // Implements multi-threading for temporal filter.
av1_tf_do_filtering_mt(AV1_COMP * cpi)1512 void av1_tf_do_filtering_mt(AV1_COMP *cpi) {
1513   AV1_COMMON *cm = &cpi->common;
1514   MultiThreadInfo *mt_info = &cpi->mt_info;
1515   const int is_highbitdepth = cpi->tf_ctx.is_highbitdepth;
1516 
1517   int num_workers =
1518       AOMMIN(mt_info->num_mod_workers[MOD_TF], mt_info->num_workers);
1519 
1520   prepare_tf_workers(cpi, tf_worker_hook, num_workers, is_highbitdepth);
1521   launch_workers(mt_info, num_workers);
1522   sync_enc_workers(mt_info, cm, num_workers);
1523   tf_accumulate_frame_diff(cpi, num_workers);
1524   tf_dealloc_thread_data(cpi, num_workers, is_highbitdepth);
1525 }
1526 
1527 // Checks if a job is available in the current direction. If a job is available,
1528 // frame_idx will be populated and returns 1, else returns 0.
get_next_gm_job(AV1_COMP * cpi,int * frame_idx,int cur_dir)1529 static AOM_INLINE int get_next_gm_job(AV1_COMP *cpi, int *frame_idx,
1530                                       int cur_dir) {
1531   GlobalMotionInfo *gm_info = &cpi->gm_info;
1532   JobInfo *job_info = &cpi->mt_info.gm_sync.job_info;
1533 
1534   int total_refs = gm_info->num_ref_frames[cur_dir];
1535   int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir];
1536 
1537   if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) {
1538     *frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame;
1539     job_info->next_frame_to_process[cur_dir] += 1;
1540     return 1;
1541   }
1542   return 0;
1543 }
1544 
1545 // Switches the current direction and calls the function get_next_gm_job() if
1546 // the speed feature 'prune_ref_frame_for_gm_search' is not set.
switch_direction(AV1_COMP * cpi,int * frame_idx,int * cur_dir)1547 static AOM_INLINE void switch_direction(AV1_COMP *cpi, int *frame_idx,
1548                                         int *cur_dir) {
1549   if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return;
1550   // Switch the direction and get next job
1551   *cur_dir = !(*cur_dir);
1552   get_next_gm_job(cpi, frame_idx, *(cur_dir));
1553 }
1554 
1555 // Initializes inliers, num_inliers and segment_map.
init_gm_thread_data(const GlobalMotionInfo * gm_info,GlobalMotionThreadData * thread_data)1556 static AOM_INLINE void init_gm_thread_data(
1557     const GlobalMotionInfo *gm_info, GlobalMotionThreadData *thread_data) {
1558   for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
1559     MotionModel motion_params = thread_data->params_by_motion[m];
1560     av1_zero(motion_params.params);
1561     motion_params.num_inliers = 0;
1562   }
1563 
1564   av1_zero_array(thread_data->segment_map,
1565                  gm_info->segment_map_w * gm_info->segment_map_h);
1566 }
1567 
1568 // Hook function for each thread in global motion multi-threading.
gm_mt_worker_hook(void * arg1,void * unused)1569 static int gm_mt_worker_hook(void *arg1, void *unused) {
1570   (void)unused;
1571 
1572   EncWorkerData *thread_data = (EncWorkerData *)arg1;
1573   AV1_COMP *cpi = thread_data->cpi;
1574   GlobalMotionInfo *gm_info = &cpi->gm_info;
1575   MultiThreadInfo *mt_info = &cpi->mt_info;
1576   JobInfo *job_info = &mt_info->gm_sync.job_info;
1577   int thread_id = thread_data->thread_id;
1578   GlobalMotionThreadData *gm_thread_data =
1579       &mt_info->gm_sync.thread_data[thread_id];
1580   int cur_dir = job_info->thread_id_to_dir[thread_id];
1581 #if CONFIG_MULTITHREAD
1582   pthread_mutex_t *gm_mt_mutex_ = mt_info->gm_sync.mutex_;
1583 #endif
1584 
1585   while (1) {
1586     int ref_buf_idx = -1;
1587     int ref_frame_idx = -1;
1588 
1589 #if CONFIG_MULTITHREAD
1590     pthread_mutex_lock(gm_mt_mutex_);
1591 #endif
1592 
1593     // Populates ref_buf_idx(the reference frame type) for which global motion
1594     // estimation will be done.
1595     if (!get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) {
1596       // No jobs are available for the current direction. Switch
1597       // to other direction and get the next job, if available.
1598       switch_direction(cpi, &ref_buf_idx, &cur_dir);
1599     }
1600 
1601     // 'ref_frame_idx' holds the index of the current reference frame type in
1602     // gm_info->reference_frames. job_info->next_frame_to_process will be
1603     // incremented in get_next_gm_job() and hence subtracting by 1.
1604     ref_frame_idx = job_info->next_frame_to_process[cur_dir] - 1;
1605 
1606 #if CONFIG_MULTITHREAD
1607     pthread_mutex_unlock(gm_mt_mutex_);
1608 #endif
1609 
1610     if (ref_buf_idx == -1) break;
1611 
1612     init_gm_thread_data(gm_info, gm_thread_data);
1613 
1614     // Compute global motion for the given ref_buf_idx.
1615     av1_compute_gm_for_valid_ref_frames(
1616         cpi, gm_info->ref_buf, ref_buf_idx, gm_info->num_src_corners,
1617         gm_info->src_corners, gm_info->src_buffer,
1618         gm_thread_data->params_by_motion, gm_thread_data->segment_map,
1619         gm_info->segment_map_w, gm_info->segment_map_h);
1620 
1621 #if CONFIG_MULTITHREAD
1622     pthread_mutex_lock(gm_mt_mutex_);
1623 #endif
1624     assert(ref_frame_idx != -1);
1625     // If global motion w.r.t. current ref frame is
1626     // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t
1627     // the remaining ref frames in that direction. The below exit is disabled
1628     // when ref frame distance w.r.t. current frame is zero. E.g.:
1629     // source_alt_ref_frame w.r.t. ARF frames.
1630     if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search &&
1631         gm_info->reference_frames[cur_dir][ref_frame_idx].distance != 0 &&
1632         cpi->common.global_motion[ref_buf_idx].wmtype != ROTZOOM)
1633       job_info->early_exit[cur_dir] = 1;
1634 
1635 #if CONFIG_MULTITHREAD
1636     pthread_mutex_unlock(gm_mt_mutex_);
1637 #endif
1638   }
1639   return 1;
1640 }
1641 
1642 // Assigns global motion hook function and thread data to each worker.
prepare_gm_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)1643 static AOM_INLINE void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1644                                           int num_workers) {
1645   MultiThreadInfo *mt_info = &cpi->mt_info;
1646   for (int i = num_workers - 1; i >= 0; i--) {
1647     AVxWorker *worker = &mt_info->workers[i];
1648     EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
1649 
1650     worker->hook = hook;
1651     worker->data1 = thread_data;
1652     worker->data2 = NULL;
1653 
1654     thread_data->cpi = cpi;
1655   }
1656 }
1657 
1658 // Assigns available threads to past/future direction.
assign_thread_to_dir(int8_t * thread_id_to_dir,int num_workers)1659 static AOM_INLINE void assign_thread_to_dir(int8_t *thread_id_to_dir,
1660                                             int num_workers) {
1661   int8_t frame_dir_idx = 0;
1662 
1663   for (int i = 0; i < num_workers; i++) {
1664     thread_id_to_dir[i] = frame_dir_idx++;
1665     if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0;
1666   }
1667 }
1668 
1669 // Computes number of workers for global motion multi-threading.
compute_gm_workers(const AV1_COMP * cpi)1670 static AOM_INLINE int compute_gm_workers(const AV1_COMP *cpi) {
1671   int total_refs =
1672       cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1];
1673   int num_gm_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search
1674                            ? AOMMIN(MAX_DIRECTIONS, total_refs)
1675                            : total_refs;
1676   num_gm_workers = AOMMIN(num_gm_workers, cpi->mt_info.num_workers);
1677   return (num_gm_workers);
1678 }
1679 
1680 // Frees the memory allocated for each worker in global motion multi-threading.
av1_gm_dealloc(AV1GlobalMotionSync * gm_sync_data)1681 void av1_gm_dealloc(AV1GlobalMotionSync *gm_sync_data) {
1682   if (gm_sync_data->thread_data != NULL) {
1683     for (int j = 0; j < gm_sync_data->allocated_workers; j++) {
1684       GlobalMotionThreadData *thread_data = &gm_sync_data->thread_data[j];
1685       aom_free(thread_data->segment_map);
1686 
1687       for (int m = 0; m < RANSAC_NUM_MOTIONS; m++)
1688         aom_free(thread_data->params_by_motion[m].inliers);
1689     }
1690     aom_free(gm_sync_data->thread_data);
1691   }
1692 }
1693 
1694 // Allocates memory for inliers and segment_map for each worker in global motion
1695 // multi-threading.
gm_alloc(AV1_COMP * cpi,int num_workers)1696 static AOM_INLINE void gm_alloc(AV1_COMP *cpi, int num_workers) {
1697   AV1_COMMON *cm = &cpi->common;
1698   AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
1699   GlobalMotionInfo *gm_info = &cpi->gm_info;
1700 
1701   gm_sync->allocated_workers = num_workers;
1702   gm_sync->allocated_width = cpi->source->y_width;
1703   gm_sync->allocated_height = cpi->source->y_height;
1704 
1705   CHECK_MEM_ERROR(cm, gm_sync->thread_data,
1706                   aom_malloc(sizeof(*gm_sync->thread_data) * num_workers));
1707 
1708   for (int i = 0; i < num_workers; i++) {
1709     GlobalMotionThreadData *thread_data = &gm_sync->thread_data[i];
1710     CHECK_MEM_ERROR(
1711         cm, thread_data->segment_map,
1712         aom_malloc(sizeof(*thread_data->segment_map) * gm_info->segment_map_w *
1713                    gm_info->segment_map_h));
1714 
1715     for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
1716       CHECK_MEM_ERROR(
1717           cm, thread_data->params_by_motion[m].inliers,
1718           aom_malloc(sizeof(*thread_data->params_by_motion[m].inliers) * 2 *
1719                      MAX_CORNERS));
1720     }
1721   }
1722 }
1723 
1724 // Implements multi-threading for global motion.
av1_global_motion_estimation_mt(AV1_COMP * cpi)1725 void av1_global_motion_estimation_mt(AV1_COMP *cpi) {
1726   AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
1727   JobInfo *job_info = &gm_sync->job_info;
1728 
1729   av1_zero(*job_info);
1730 
1731   int num_workers = compute_gm_workers(cpi);
1732 
1733   if (num_workers > gm_sync->allocated_workers ||
1734       cpi->source->y_width != gm_sync->allocated_width ||
1735       cpi->source->y_height != gm_sync->allocated_height) {
1736     av1_gm_dealloc(gm_sync);
1737     gm_alloc(cpi, num_workers);
1738   }
1739 
1740   assign_thread_to_dir(job_info->thread_id_to_dir, num_workers);
1741   prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers);
1742   launch_workers(&cpi->mt_info, num_workers);
1743   sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers);
1744 }
1745 #endif  // !CONFIG_REALTIME_ONLY
1746 
1747 // Deallocate memory for CDEF search multi-thread synchronization.
av1_cdef_mt_dealloc(AV1CdefSync * cdef_sync)1748 void av1_cdef_mt_dealloc(AV1CdefSync *cdef_sync) {
1749   (void)cdef_sync;
1750   assert(cdef_sync != NULL);
1751 #if CONFIG_MULTITHREAD
1752   if (cdef_sync->mutex_ != NULL) {
1753     pthread_mutex_destroy(cdef_sync->mutex_);
1754     aom_free(cdef_sync->mutex_);
1755   }
1756 #endif  // CONFIG_MULTITHREAD
1757 }
1758 
1759 // Updates the row and column indices of the next job to be processed.
1760 // Also updates end_of_frame flag when the processing of all blocks is complete.
update_next_job_info(AV1CdefSync * cdef_sync,int nvfb,int nhfb)1761 static void update_next_job_info(AV1CdefSync *cdef_sync, int nvfb, int nhfb) {
1762   cdef_sync->fbc++;
1763   if (cdef_sync->fbc == nhfb) {
1764     cdef_sync->fbr++;
1765     if (cdef_sync->fbr == nvfb) {
1766       cdef_sync->end_of_frame = 1;
1767     } else {
1768       cdef_sync->fbc = 0;
1769     }
1770   }
1771 }
1772 
1773 // Initializes cdef_sync parameters.
cdef_reset_job_info(AV1CdefSync * cdef_sync)1774 static AOM_INLINE void cdef_reset_job_info(AV1CdefSync *cdef_sync) {
1775   cdef_sync->end_of_frame = 0;
1776   cdef_sync->fbr = 0;
1777   cdef_sync->fbc = 0;
1778 }
1779 
1780 // Checks if a job is available. If job is available,
1781 // populates next job information and returns 1, else returns 0.
cdef_get_next_job(AV1CdefSync * cdef_sync,CdefSearchCtx * cdef_search_ctx,int * cur_fbr,int * cur_fbc,int * sb_count)1782 static AOM_INLINE int cdef_get_next_job(AV1CdefSync *cdef_sync,
1783                                         CdefSearchCtx *cdef_search_ctx,
1784                                         int *cur_fbr, int *cur_fbc,
1785                                         int *sb_count) {
1786 #if CONFIG_MULTITHREAD
1787   pthread_mutex_lock(cdef_sync->mutex_);
1788 #endif  // CONFIG_MULTITHREAD
1789   int do_next_block = 0;
1790   const int nvfb = cdef_search_ctx->nvfb;
1791   const int nhfb = cdef_search_ctx->nhfb;
1792 
1793   // If a block is skip, do not process the block and
1794   // check the skip condition for the next block.
1795   while ((!cdef_sync->end_of_frame) &&
1796          (cdef_sb_skip(cdef_search_ctx->mi_params, cdef_sync->fbr,
1797                        cdef_sync->fbc))) {
1798     update_next_job_info(cdef_sync, nvfb, nhfb);
1799   }
1800 
1801   // Populates information needed for current job and update the row,
1802   // column indices of the next block to be processed.
1803   if (cdef_sync->end_of_frame == 0) {
1804     do_next_block = 1;
1805     *cur_fbr = cdef_sync->fbr;
1806     *cur_fbc = cdef_sync->fbc;
1807     *sb_count = cdef_search_ctx->sb_count;
1808     cdef_search_ctx->sb_count++;
1809     update_next_job_info(cdef_sync, nvfb, nhfb);
1810   }
1811 #if CONFIG_MULTITHREAD
1812   pthread_mutex_unlock(cdef_sync->mutex_);
1813 #endif  // CONFIG_MULTITHREAD
1814   return do_next_block;
1815 }
1816 
1817 // Hook function for each thread in CDEF search multi-threading.
cdef_filter_block_worker_hook(void * arg1,void * arg2)1818 static int cdef_filter_block_worker_hook(void *arg1, void *arg2) {
1819   AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1;
1820   CdefSearchCtx *cdef_search_ctx = (CdefSearchCtx *)arg2;
1821   int cur_fbr, cur_fbc, sb_count;
1822   while (cdef_get_next_job(cdef_sync, cdef_search_ctx, &cur_fbr, &cur_fbc,
1823                            &sb_count)) {
1824     av1_cdef_mse_calc_block(cdef_search_ctx, cur_fbr, cur_fbc, sb_count);
1825   }
1826   return 1;
1827 }
1828 
1829 // Assigns CDEF search hook function and thread data to each worker.
prepare_cdef_workers(MultiThreadInfo * mt_info,CdefSearchCtx * cdef_search_ctx,AVxWorkerHook hook,int num_workers)1830 static void prepare_cdef_workers(MultiThreadInfo *mt_info,
1831                                  CdefSearchCtx *cdef_search_ctx,
1832                                  AVxWorkerHook hook, int num_workers) {
1833   for (int i = num_workers - 1; i >= 0; i--) {
1834     AVxWorker *worker = &mt_info->workers[i];
1835     worker->hook = hook;
1836     worker->data1 = &mt_info->cdef_sync;
1837     worker->data2 = cdef_search_ctx;
1838   }
1839 }
1840 
1841 // Implements multi-threading for CDEF search.
av1_cdef_mse_calc_frame_mt(AV1_COMMON * cm,MultiThreadInfo * mt_info,CdefSearchCtx * cdef_search_ctx)1842 void av1_cdef_mse_calc_frame_mt(AV1_COMMON *cm, MultiThreadInfo *mt_info,
1843                                 CdefSearchCtx *cdef_search_ctx) {
1844   AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
1845   const int num_workers = mt_info->num_mod_workers[MOD_CDEF_SEARCH];
1846 
1847   cdef_reset_job_info(cdef_sync);
1848   prepare_cdef_workers(mt_info, cdef_search_ctx, cdef_filter_block_worker_hook,
1849                        num_workers);
1850   launch_workers(mt_info, num_workers);
1851   sync_enc_workers(mt_info, cm, num_workers);
1852 }
1853 
1854 // Computes num_workers for temporal filter multi-threading.
compute_num_tf_workers(AV1_COMP * cpi)1855 static AOM_INLINE int compute_num_tf_workers(AV1_COMP *cpi) {
1856   // For single-pass encode, using no. of workers as per tf block size was not
1857   // found to improve speed. Hence the thread assignment for single-pass encode
1858   // is kept based on compute_num_enc_workers().
1859   if (cpi->oxcf.pass != 2)
1860     return (compute_num_enc_workers(cpi, cpi->oxcf.max_threads));
1861 
1862   if (cpi->oxcf.max_threads <= 1) return 1;
1863 
1864   const int frame_height = cpi->common.height;
1865   const BLOCK_SIZE block_size = TF_BLOCK_SIZE;
1866   const int mb_height = block_size_high[block_size];
1867   const int mb_rows = get_num_blocks(frame_height, mb_height);
1868   return AOMMIN(cpi->oxcf.max_threads, mb_rows);
1869 }
1870 
1871 // Computes num_workers for tpl multi-threading.
compute_num_tpl_workers(AV1_COMP * cpi)1872 static AOM_INLINE int compute_num_tpl_workers(AV1_COMP *cpi) {
1873   return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
1874 }
1875 
1876 // Computes num_workers for loop filter multi-threading.
compute_num_lf_workers(AV1_COMP * cpi)1877 static AOM_INLINE int compute_num_lf_workers(AV1_COMP *cpi) {
1878   return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
1879 }
1880 
1881 // Computes num_workers for cdef multi-threading.
compute_num_cdef_workers(AV1_COMP * cpi)1882 static AOM_INLINE int compute_num_cdef_workers(AV1_COMP *cpi) {
1883   return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
1884 }
1885 
1886 // Computes num_workers for loop-restoration multi-threading.
compute_num_lr_workers(AV1_COMP * cpi)1887 static AOM_INLINE int compute_num_lr_workers(AV1_COMP *cpi) {
1888   return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
1889 }
1890 
compute_num_mod_workers(AV1_COMP * cpi,MULTI_THREADED_MODULES mod_name)1891 int compute_num_mod_workers(AV1_COMP *cpi, MULTI_THREADED_MODULES mod_name) {
1892   int num_mod_workers = 0;
1893   switch (mod_name) {
1894     case MOD_FP:
1895       if (cpi->oxcf.pass == 2)
1896         num_mod_workers = 0;
1897       else
1898         num_mod_workers = compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
1899       break;
1900     case MOD_TF: num_mod_workers = compute_num_tf_workers(cpi); break;
1901     case MOD_TPL: num_mod_workers = compute_num_tpl_workers(cpi); break;
1902     case MOD_GME: num_mod_workers = 1; break;
1903     case MOD_ENC:
1904       num_mod_workers = compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
1905       break;
1906     case MOD_LPF: num_mod_workers = compute_num_lf_workers(cpi); break;
1907     case MOD_CDEF_SEARCH:
1908       num_mod_workers = compute_num_cdef_workers(cpi);
1909       break;
1910     case MOD_LR: num_mod_workers = compute_num_lr_workers(cpi); break;
1911     default: assert(0); break;
1912   }
1913   return (num_mod_workers);
1914 }
1915 // Computes the number of workers for each MT modules in the encoder
av1_compute_num_workers_for_mt(AV1_COMP * cpi)1916 void av1_compute_num_workers_for_mt(AV1_COMP *cpi) {
1917   for (int i = MOD_FP; i < NUM_MT_MODULES; i++)
1918     cpi->mt_info.num_mod_workers[i] =
1919         compute_num_mod_workers(cpi, (MULTI_THREADED_MODULES)i);
1920 }
1921