1 // `Add`/`Sub` ops may flip from `BigInt` to its `BigUint` magnitude
2 #![allow(clippy::suspicious_arithmetic_impl)]
3 
4 use crate::std_alloc::{String, Vec};
5 use core::cmp::Ordering::{self, Equal};
6 use core::default::Default;
7 use core::fmt;
8 use core::hash;
9 use core::ops::{Neg, Not};
10 use core::str;
11 use core::{i128, u128};
12 use core::{i64, u64};
13 
14 use num_integer::{Integer, Roots};
15 use num_traits::{Num, One, Pow, Signed, Zero};
16 
17 use self::Sign::{Minus, NoSign, Plus};
18 
19 use crate::big_digit::BigDigit;
20 use crate::biguint::to_str_radix_reversed;
21 use crate::biguint::{BigUint, IntDigits, U32Digits, U64Digits};
22 
23 mod addition;
24 mod division;
25 mod multiplication;
26 mod subtraction;
27 
28 mod bits;
29 mod convert;
30 mod power;
31 mod shift;
32 
33 #[cfg(any(feature = "quickcheck", feature = "arbitrary"))]
34 mod arbitrary;
35 
36 #[cfg(feature = "serde")]
37 mod serde;
38 
39 /// A Sign is a `BigInt`'s composing element.
40 #[derive(PartialEq, PartialOrd, Eq, Ord, Copy, Clone, Debug, Hash)]
41 pub enum Sign {
42     Minus,
43     NoSign,
44     Plus,
45 }
46 
47 impl Neg for Sign {
48     type Output = Sign;
49 
50     /// Negate Sign value.
51     #[inline]
neg(self) -> Sign52     fn neg(self) -> Sign {
53         match self {
54             Minus => Plus,
55             NoSign => NoSign,
56             Plus => Minus,
57         }
58     }
59 }
60 
61 /// A big signed integer type.
62 pub struct BigInt {
63     sign: Sign,
64     data: BigUint,
65 }
66 
67 // Note: derived `Clone` doesn't specialize `clone_from`,
68 // but we want to keep the allocation in `data`.
69 impl Clone for BigInt {
70     #[inline]
clone(&self) -> Self71     fn clone(&self) -> Self {
72         BigInt {
73             sign: self.sign,
74             data: self.data.clone(),
75         }
76     }
77 
78     #[inline]
clone_from(&mut self, other: &Self)79     fn clone_from(&mut self, other: &Self) {
80         self.sign = other.sign;
81         self.data.clone_from(&other.data);
82     }
83 }
84 
85 impl hash::Hash for BigInt {
86     #[inline]
hash<H: hash::Hasher>(&self, state: &mut H)87     fn hash<H: hash::Hasher>(&self, state: &mut H) {
88         debug_assert!((self.sign != NoSign) ^ self.data.is_zero());
89         self.sign.hash(state);
90         if self.sign != NoSign {
91             self.data.hash(state);
92         }
93     }
94 }
95 
96 impl PartialEq for BigInt {
97     #[inline]
eq(&self, other: &BigInt) -> bool98     fn eq(&self, other: &BigInt) -> bool {
99         debug_assert!((self.sign != NoSign) ^ self.data.is_zero());
100         debug_assert!((other.sign != NoSign) ^ other.data.is_zero());
101         self.sign == other.sign && (self.sign == NoSign || self.data == other.data)
102     }
103 }
104 
105 impl Eq for BigInt {}
106 
107 impl PartialOrd for BigInt {
108     #[inline]
partial_cmp(&self, other: &BigInt) -> Option<Ordering>109     fn partial_cmp(&self, other: &BigInt) -> Option<Ordering> {
110         Some(self.cmp(other))
111     }
112 }
113 
114 impl Ord for BigInt {
115     #[inline]
cmp(&self, other: &BigInt) -> Ordering116     fn cmp(&self, other: &BigInt) -> Ordering {
117         debug_assert!((self.sign != NoSign) ^ self.data.is_zero());
118         debug_assert!((other.sign != NoSign) ^ other.data.is_zero());
119         let scmp = self.sign.cmp(&other.sign);
120         if scmp != Equal {
121             return scmp;
122         }
123 
124         match self.sign {
125             NoSign => Equal,
126             Plus => self.data.cmp(&other.data),
127             Minus => other.data.cmp(&self.data),
128         }
129     }
130 }
131 
132 impl Default for BigInt {
133     #[inline]
default() -> BigInt134     fn default() -> BigInt {
135         Zero::zero()
136     }
137 }
138 
139 impl fmt::Debug for BigInt {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result140     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
141         fmt::Display::fmt(self, f)
142     }
143 }
144 
145 impl fmt::Display for BigInt {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result146     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
147         f.pad_integral(!self.is_negative(), "", &self.data.to_str_radix(10))
148     }
149 }
150 
151 impl fmt::Binary for BigInt {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result152     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
153         f.pad_integral(!self.is_negative(), "0b", &self.data.to_str_radix(2))
154     }
155 }
156 
157 impl fmt::Octal for BigInt {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result158     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
159         f.pad_integral(!self.is_negative(), "0o", &self.data.to_str_radix(8))
160     }
161 }
162 
163 impl fmt::LowerHex for BigInt {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result164     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
165         f.pad_integral(!self.is_negative(), "0x", &self.data.to_str_radix(16))
166     }
167 }
168 
169 impl fmt::UpperHex for BigInt {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result170     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
171         let mut s = self.data.to_str_radix(16);
172         s.make_ascii_uppercase();
173         f.pad_integral(!self.is_negative(), "0x", &s)
174     }
175 }
176 
177 // !-2 = !...f fe = ...0 01 = +1
178 // !-1 = !...f ff = ...0 00 =  0
179 // ! 0 = !...0 00 = ...f ff = -1
180 // !+1 = !...0 01 = ...f fe = -2
181 impl Not for BigInt {
182     type Output = BigInt;
183 
not(mut self) -> BigInt184     fn not(mut self) -> BigInt {
185         match self.sign {
186             NoSign | Plus => {
187                 self.data += 1u32;
188                 self.sign = Minus;
189             }
190             Minus => {
191                 self.data -= 1u32;
192                 self.sign = if self.data.is_zero() { NoSign } else { Plus };
193             }
194         }
195         self
196     }
197 }
198 
199 impl<'a> Not for &'a BigInt {
200     type Output = BigInt;
201 
not(self) -> BigInt202     fn not(self) -> BigInt {
203         match self.sign {
204             NoSign => -BigInt::one(),
205             Plus => -BigInt::from(&self.data + 1u32),
206             Minus => BigInt::from(&self.data - 1u32),
207         }
208     }
209 }
210 
211 impl Zero for BigInt {
212     #[inline]
zero() -> BigInt213     fn zero() -> BigInt {
214         BigInt {
215             sign: NoSign,
216             data: BigUint::zero(),
217         }
218     }
219 
220     #[inline]
set_zero(&mut self)221     fn set_zero(&mut self) {
222         self.data.set_zero();
223         self.sign = NoSign;
224     }
225 
226     #[inline]
is_zero(&self) -> bool227     fn is_zero(&self) -> bool {
228         self.sign == NoSign
229     }
230 }
231 
232 impl One for BigInt {
233     #[inline]
one() -> BigInt234     fn one() -> BigInt {
235         BigInt {
236             sign: Plus,
237             data: BigUint::one(),
238         }
239     }
240 
241     #[inline]
set_one(&mut self)242     fn set_one(&mut self) {
243         self.data.set_one();
244         self.sign = Plus;
245     }
246 
247     #[inline]
is_one(&self) -> bool248     fn is_one(&self) -> bool {
249         self.sign == Plus && self.data.is_one()
250     }
251 }
252 
253 impl Signed for BigInt {
254     #[inline]
abs(&self) -> BigInt255     fn abs(&self) -> BigInt {
256         match self.sign {
257             Plus | NoSign => self.clone(),
258             Minus => BigInt::from(self.data.clone()),
259         }
260     }
261 
262     #[inline]
abs_sub(&self, other: &BigInt) -> BigInt263     fn abs_sub(&self, other: &BigInt) -> BigInt {
264         if *self <= *other {
265             Zero::zero()
266         } else {
267             self - other
268         }
269     }
270 
271     #[inline]
signum(&self) -> BigInt272     fn signum(&self) -> BigInt {
273         match self.sign {
274             Plus => BigInt::one(),
275             Minus => -BigInt::one(),
276             NoSign => BigInt::zero(),
277         }
278     }
279 
280     #[inline]
is_positive(&self) -> bool281     fn is_positive(&self) -> bool {
282         self.sign == Plus
283     }
284 
285     #[inline]
is_negative(&self) -> bool286     fn is_negative(&self) -> bool {
287         self.sign == Minus
288     }
289 }
290 
291 trait UnsignedAbs {
292     type Unsigned;
293 
294     /// A convenience method for getting the absolute value of a signed primitive as unsigned
295     /// See also `unsigned_abs`: https://github.com/rust-lang/rust/issues/74913
uabs(self) -> Self::Unsigned296     fn uabs(self) -> Self::Unsigned;
297 
checked_uabs(self) -> CheckedUnsignedAbs<Self::Unsigned>298     fn checked_uabs(self) -> CheckedUnsignedAbs<Self::Unsigned>;
299 }
300 
301 enum CheckedUnsignedAbs<T> {
302     Positive(T),
303     Negative(T),
304 }
305 use self::CheckedUnsignedAbs::{Negative, Positive};
306 
307 macro_rules! impl_unsigned_abs {
308     ($Signed:ty, $Unsigned:ty) => {
309         impl UnsignedAbs for $Signed {
310             type Unsigned = $Unsigned;
311 
312             #[inline]
313             fn uabs(self) -> $Unsigned {
314                 self.wrapping_abs() as $Unsigned
315             }
316 
317             #[inline]
318             fn checked_uabs(self) -> CheckedUnsignedAbs<Self::Unsigned> {
319                 if self >= 0 {
320                     Positive(self as $Unsigned)
321                 } else {
322                     Negative(self.wrapping_neg() as $Unsigned)
323                 }
324             }
325         }
326     };
327 }
328 impl_unsigned_abs!(i8, u8);
329 impl_unsigned_abs!(i16, u16);
330 impl_unsigned_abs!(i32, u32);
331 impl_unsigned_abs!(i64, u64);
332 impl_unsigned_abs!(i128, u128);
333 impl_unsigned_abs!(isize, usize);
334 
335 impl Neg for BigInt {
336     type Output = BigInt;
337 
338     #[inline]
neg(mut self) -> BigInt339     fn neg(mut self) -> BigInt {
340         self.sign = -self.sign;
341         self
342     }
343 }
344 
345 impl<'a> Neg for &'a BigInt {
346     type Output = BigInt;
347 
348     #[inline]
neg(self) -> BigInt349     fn neg(self) -> BigInt {
350         -self.clone()
351     }
352 }
353 
354 impl Integer for BigInt {
355     #[inline]
div_rem(&self, other: &BigInt) -> (BigInt, BigInt)356     fn div_rem(&self, other: &BigInt) -> (BigInt, BigInt) {
357         // r.sign == self.sign
358         let (d_ui, r_ui) = self.data.div_rem(&other.data);
359         let d = BigInt::from_biguint(self.sign, d_ui);
360         let r = BigInt::from_biguint(self.sign, r_ui);
361         if other.is_negative() {
362             (-d, r)
363         } else {
364             (d, r)
365         }
366     }
367 
368     #[inline]
div_floor(&self, other: &BigInt) -> BigInt369     fn div_floor(&self, other: &BigInt) -> BigInt {
370         let (d_ui, m) = self.data.div_mod_floor(&other.data);
371         let d = BigInt::from(d_ui);
372         match (self.sign, other.sign) {
373             (Plus, Plus) | (NoSign, Plus) | (Minus, Minus) => d,
374             (Plus, Minus) | (NoSign, Minus) | (Minus, Plus) => {
375                 if m.is_zero() {
376                     -d
377                 } else {
378                     -d - 1u32
379                 }
380             }
381             (_, NoSign) => unreachable!(),
382         }
383     }
384 
385     #[inline]
mod_floor(&self, other: &BigInt) -> BigInt386     fn mod_floor(&self, other: &BigInt) -> BigInt {
387         // m.sign == other.sign
388         let m_ui = self.data.mod_floor(&other.data);
389         let m = BigInt::from_biguint(other.sign, m_ui);
390         match (self.sign, other.sign) {
391             (Plus, Plus) | (NoSign, Plus) | (Minus, Minus) => m,
392             (Plus, Minus) | (NoSign, Minus) | (Minus, Plus) => {
393                 if m.is_zero() {
394                     m
395                 } else {
396                     other - m
397                 }
398             }
399             (_, NoSign) => unreachable!(),
400         }
401     }
402 
div_mod_floor(&self, other: &BigInt) -> (BigInt, BigInt)403     fn div_mod_floor(&self, other: &BigInt) -> (BigInt, BigInt) {
404         // m.sign == other.sign
405         let (d_ui, m_ui) = self.data.div_mod_floor(&other.data);
406         let d = BigInt::from(d_ui);
407         let m = BigInt::from_biguint(other.sign, m_ui);
408         match (self.sign, other.sign) {
409             (Plus, Plus) | (NoSign, Plus) | (Minus, Minus) => (d, m),
410             (Plus, Minus) | (NoSign, Minus) | (Minus, Plus) => {
411                 if m.is_zero() {
412                     (-d, m)
413                 } else {
414                     (-d - 1u32, other - m)
415                 }
416             }
417             (_, NoSign) => unreachable!(),
418         }
419     }
420 
421     #[inline]
div_ceil(&self, other: &Self) -> Self422     fn div_ceil(&self, other: &Self) -> Self {
423         let (d_ui, m) = self.data.div_mod_floor(&other.data);
424         let d = BigInt::from(d_ui);
425         match (self.sign, other.sign) {
426             (Plus, Minus) | (NoSign, Minus) | (Minus, Plus) => -d,
427             (Plus, Plus) | (NoSign, Plus) | (Minus, Minus) => {
428                 if m.is_zero() {
429                     d
430                 } else {
431                     d + 1u32
432                 }
433             }
434             (_, NoSign) => unreachable!(),
435         }
436     }
437 
438     /// Calculates the Greatest Common Divisor (GCD) of the number and `other`.
439     ///
440     /// The result is always positive.
441     #[inline]
gcd(&self, other: &BigInt) -> BigInt442     fn gcd(&self, other: &BigInt) -> BigInt {
443         BigInt::from(self.data.gcd(&other.data))
444     }
445 
446     /// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
447     #[inline]
lcm(&self, other: &BigInt) -> BigInt448     fn lcm(&self, other: &BigInt) -> BigInt {
449         BigInt::from(self.data.lcm(&other.data))
450     }
451 
452     /// Calculates the Greatest Common Divisor (GCD) and
453     /// Lowest Common Multiple (LCM) together.
454     #[inline]
gcd_lcm(&self, other: &BigInt) -> (BigInt, BigInt)455     fn gcd_lcm(&self, other: &BigInt) -> (BigInt, BigInt) {
456         let (gcd, lcm) = self.data.gcd_lcm(&other.data);
457         (BigInt::from(gcd), BigInt::from(lcm))
458     }
459 
460     /// Greatest common divisor, least common multiple, and Bézout coefficients.
461     #[inline]
extended_gcd_lcm(&self, other: &BigInt) -> (num_integer::ExtendedGcd<BigInt>, BigInt)462     fn extended_gcd_lcm(&self, other: &BigInt) -> (num_integer::ExtendedGcd<BigInt>, BigInt) {
463         let egcd = self.extended_gcd(other);
464         let lcm = if egcd.gcd.is_zero() {
465             BigInt::zero()
466         } else {
467             BigInt::from(&self.data / &egcd.gcd.data * &other.data)
468         };
469         (egcd, lcm)
470     }
471 
472     /// Deprecated, use `is_multiple_of` instead.
473     #[inline]
divides(&self, other: &BigInt) -> bool474     fn divides(&self, other: &BigInt) -> bool {
475         self.is_multiple_of(other)
476     }
477 
478     /// Returns `true` if the number is a multiple of `other`.
479     #[inline]
is_multiple_of(&self, other: &BigInt) -> bool480     fn is_multiple_of(&self, other: &BigInt) -> bool {
481         self.data.is_multiple_of(&other.data)
482     }
483 
484     /// Returns `true` if the number is divisible by `2`.
485     #[inline]
is_even(&self) -> bool486     fn is_even(&self) -> bool {
487         self.data.is_even()
488     }
489 
490     /// Returns `true` if the number is not divisible by `2`.
491     #[inline]
is_odd(&self) -> bool492     fn is_odd(&self) -> bool {
493         self.data.is_odd()
494     }
495 
496     /// Rounds up to nearest multiple of argument.
497     #[inline]
next_multiple_of(&self, other: &Self) -> Self498     fn next_multiple_of(&self, other: &Self) -> Self {
499         let m = self.mod_floor(other);
500         if m.is_zero() {
501             self.clone()
502         } else {
503             self + (other - m)
504         }
505     }
506     /// Rounds down to nearest multiple of argument.
507     #[inline]
prev_multiple_of(&self, other: &Self) -> Self508     fn prev_multiple_of(&self, other: &Self) -> Self {
509         self - self.mod_floor(other)
510     }
511 }
512 
513 impl Roots for BigInt {
nth_root(&self, n: u32) -> Self514     fn nth_root(&self, n: u32) -> Self {
515         assert!(
516             !(self.is_negative() && n.is_even()),
517             "root of degree {} is imaginary",
518             n
519         );
520 
521         BigInt::from_biguint(self.sign, self.data.nth_root(n))
522     }
523 
sqrt(&self) -> Self524     fn sqrt(&self) -> Self {
525         assert!(!self.is_negative(), "square root is imaginary");
526 
527         BigInt::from_biguint(self.sign, self.data.sqrt())
528     }
529 
cbrt(&self) -> Self530     fn cbrt(&self) -> Self {
531         BigInt::from_biguint(self.sign, self.data.cbrt())
532     }
533 }
534 
535 impl IntDigits for BigInt {
536     #[inline]
digits(&self) -> &[BigDigit]537     fn digits(&self) -> &[BigDigit] {
538         self.data.digits()
539     }
540     #[inline]
digits_mut(&mut self) -> &mut Vec<BigDigit>541     fn digits_mut(&mut self) -> &mut Vec<BigDigit> {
542         self.data.digits_mut()
543     }
544     #[inline]
normalize(&mut self)545     fn normalize(&mut self) {
546         self.data.normalize();
547         if self.data.is_zero() {
548             self.sign = NoSign;
549         }
550     }
551     #[inline]
capacity(&self) -> usize552     fn capacity(&self) -> usize {
553         self.data.capacity()
554     }
555     #[inline]
len(&self) -> usize556     fn len(&self) -> usize {
557         self.data.len()
558     }
559 }
560 
561 /// A generic trait for converting a value to a `BigInt`. This may return
562 /// `None` when converting from `f32` or `f64`, and will always succeed
563 /// when converting from any integer or unsigned primitive, or `BigUint`.
564 pub trait ToBigInt {
565     /// Converts the value of `self` to a `BigInt`.
to_bigint(&self) -> Option<BigInt>566     fn to_bigint(&self) -> Option<BigInt>;
567 }
568 
569 impl BigInt {
570     /// Creates and initializes a BigInt.
571     ///
572     /// The base 2<sup>32</sup> digits are ordered least significant digit first.
573     #[inline]
new(sign: Sign, digits: Vec<u32>) -> BigInt574     pub fn new(sign: Sign, digits: Vec<u32>) -> BigInt {
575         BigInt::from_biguint(sign, BigUint::new(digits))
576     }
577 
578     /// Creates and initializes a `BigInt`.
579     ///
580     /// The base 2<sup>32</sup> digits are ordered least significant digit first.
581     #[inline]
from_biguint(mut sign: Sign, mut data: BigUint) -> BigInt582     pub fn from_biguint(mut sign: Sign, mut data: BigUint) -> BigInt {
583         if sign == NoSign {
584             data.assign_from_slice(&[]);
585         } else if data.is_zero() {
586             sign = NoSign;
587         }
588 
589         BigInt { sign, data }
590     }
591 
592     /// Creates and initializes a `BigInt`.
593     ///
594     /// The base 2<sup>32</sup> digits are ordered least significant digit first.
595     #[inline]
from_slice(sign: Sign, slice: &[u32]) -> BigInt596     pub fn from_slice(sign: Sign, slice: &[u32]) -> BigInt {
597         BigInt::from_biguint(sign, BigUint::from_slice(slice))
598     }
599 
600     /// Reinitializes a `BigInt`.
601     ///
602     /// The base 2<sup>32</sup> digits are ordered least significant digit first.
603     #[inline]
assign_from_slice(&mut self, sign: Sign, slice: &[u32])604     pub fn assign_from_slice(&mut self, sign: Sign, slice: &[u32]) {
605         if sign == NoSign {
606             self.set_zero();
607         } else {
608             self.data.assign_from_slice(slice);
609             self.sign = if self.data.is_zero() { NoSign } else { sign };
610         }
611     }
612 
613     /// Creates and initializes a `BigInt`.
614     ///
615     /// The bytes are in big-endian byte order.
616     ///
617     /// # Examples
618     ///
619     /// ```
620     /// use num_bigint::{BigInt, Sign};
621     ///
622     /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"A"),
623     ///            BigInt::parse_bytes(b"65", 10).unwrap());
624     /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AA"),
625     ///            BigInt::parse_bytes(b"16705", 10).unwrap());
626     /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AB"),
627     ///            BigInt::parse_bytes(b"16706", 10).unwrap());
628     /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"Hello world!"),
629     ///            BigInt::parse_bytes(b"22405534230753963835153736737", 10).unwrap());
630     /// ```
631     #[inline]
from_bytes_be(sign: Sign, bytes: &[u8]) -> BigInt632     pub fn from_bytes_be(sign: Sign, bytes: &[u8]) -> BigInt {
633         BigInt::from_biguint(sign, BigUint::from_bytes_be(bytes))
634     }
635 
636     /// Creates and initializes a `BigInt`.
637     ///
638     /// The bytes are in little-endian byte order.
639     #[inline]
from_bytes_le(sign: Sign, bytes: &[u8]) -> BigInt640     pub fn from_bytes_le(sign: Sign, bytes: &[u8]) -> BigInt {
641         BigInt::from_biguint(sign, BigUint::from_bytes_le(bytes))
642     }
643 
644     /// Creates and initializes a `BigInt` from an array of bytes in
645     /// two's complement binary representation.
646     ///
647     /// The digits are in big-endian base 2<sup>8</sup>.
648     #[inline]
from_signed_bytes_be(digits: &[u8]) -> BigInt649     pub fn from_signed_bytes_be(digits: &[u8]) -> BigInt {
650         convert::from_signed_bytes_be(digits)
651     }
652 
653     /// Creates and initializes a `BigInt` from an array of bytes in two's complement.
654     ///
655     /// The digits are in little-endian base 2<sup>8</sup>.
656     #[inline]
from_signed_bytes_le(digits: &[u8]) -> BigInt657     pub fn from_signed_bytes_le(digits: &[u8]) -> BigInt {
658         convert::from_signed_bytes_le(digits)
659     }
660 
661     /// Creates and initializes a `BigInt`.
662     ///
663     /// # Examples
664     ///
665     /// ```
666     /// use num_bigint::{BigInt, ToBigInt};
667     ///
668     /// assert_eq!(BigInt::parse_bytes(b"1234", 10), ToBigInt::to_bigint(&1234));
669     /// assert_eq!(BigInt::parse_bytes(b"ABCD", 16), ToBigInt::to_bigint(&0xABCD));
670     /// assert_eq!(BigInt::parse_bytes(b"G", 16), None);
671     /// ```
672     #[inline]
parse_bytes(buf: &[u8], radix: u32) -> Option<BigInt>673     pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigInt> {
674         let s = str::from_utf8(buf).ok()?;
675         BigInt::from_str_radix(s, radix).ok()
676     }
677 
678     /// Creates and initializes a `BigInt`. Each u8 of the input slice is
679     /// interpreted as one digit of the number
680     /// and must therefore be less than `radix`.
681     ///
682     /// The bytes are in big-endian byte order.
683     /// `radix` must be in the range `2...256`.
684     ///
685     /// # Examples
686     ///
687     /// ```
688     /// use num_bigint::{BigInt, Sign};
689     ///
690     /// let inbase190 = vec![15, 33, 125, 12, 14];
691     /// let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap();
692     /// assert_eq!(a.to_radix_be(190), (Sign:: Minus, inbase190));
693     /// ```
from_radix_be(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt>694     pub fn from_radix_be(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt> {
695         let u = BigUint::from_radix_be(buf, radix)?;
696         Some(BigInt::from_biguint(sign, u))
697     }
698 
699     /// Creates and initializes a `BigInt`. Each u8 of the input slice is
700     /// interpreted as one digit of the number
701     /// and must therefore be less than `radix`.
702     ///
703     /// The bytes are in little-endian byte order.
704     /// `radix` must be in the range `2...256`.
705     ///
706     /// # Examples
707     ///
708     /// ```
709     /// use num_bigint::{BigInt, Sign};
710     ///
711     /// let inbase190 = vec![14, 12, 125, 33, 15];
712     /// let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap();
713     /// assert_eq!(a.to_radix_be(190), (Sign::Minus, inbase190));
714     /// ```
from_radix_le(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt>715     pub fn from_radix_le(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt> {
716         let u = BigUint::from_radix_le(buf, radix)?;
717         Some(BigInt::from_biguint(sign, u))
718     }
719 
720     /// Returns the sign and the byte representation of the `BigInt` in big-endian byte order.
721     ///
722     /// # Examples
723     ///
724     /// ```
725     /// use num_bigint::{ToBigInt, Sign};
726     ///
727     /// let i = -1125.to_bigint().unwrap();
728     /// assert_eq!(i.to_bytes_be(), (Sign::Minus, vec![4, 101]));
729     /// ```
730     #[inline]
to_bytes_be(&self) -> (Sign, Vec<u8>)731     pub fn to_bytes_be(&self) -> (Sign, Vec<u8>) {
732         (self.sign, self.data.to_bytes_be())
733     }
734 
735     /// Returns the sign and the byte representation of the `BigInt` in little-endian byte order.
736     ///
737     /// # Examples
738     ///
739     /// ```
740     /// use num_bigint::{ToBigInt, Sign};
741     ///
742     /// let i = -1125.to_bigint().unwrap();
743     /// assert_eq!(i.to_bytes_le(), (Sign::Minus, vec![101, 4]));
744     /// ```
745     #[inline]
to_bytes_le(&self) -> (Sign, Vec<u8>)746     pub fn to_bytes_le(&self) -> (Sign, Vec<u8>) {
747         (self.sign, self.data.to_bytes_le())
748     }
749 
750     /// Returns the sign and the `u32` digits representation of the `BigInt` ordered least
751     /// significant digit first.
752     ///
753     /// # Examples
754     ///
755     /// ```
756     /// use num_bigint::{BigInt, Sign};
757     ///
758     /// assert_eq!(BigInt::from(-1125).to_u32_digits(), (Sign::Minus, vec![1125]));
759     /// assert_eq!(BigInt::from(4294967295u32).to_u32_digits(), (Sign::Plus, vec![4294967295]));
760     /// assert_eq!(BigInt::from(4294967296u64).to_u32_digits(), (Sign::Plus, vec![0, 1]));
761     /// assert_eq!(BigInt::from(-112500000000i64).to_u32_digits(), (Sign::Minus, vec![830850304, 26]));
762     /// assert_eq!(BigInt::from(112500000000i64).to_u32_digits(), (Sign::Plus, vec![830850304, 26]));
763     /// ```
764     #[inline]
to_u32_digits(&self) -> (Sign, Vec<u32>)765     pub fn to_u32_digits(&self) -> (Sign, Vec<u32>) {
766         (self.sign, self.data.to_u32_digits())
767     }
768 
769     /// Returns the sign and the `u64` digits representation of the `BigInt` ordered least
770     /// significant digit first.
771     ///
772     /// # Examples
773     ///
774     /// ```
775     /// use num_bigint::{BigInt, Sign};
776     ///
777     /// assert_eq!(BigInt::from(-1125).to_u64_digits(), (Sign::Minus, vec![1125]));
778     /// assert_eq!(BigInt::from(4294967295u32).to_u64_digits(), (Sign::Plus, vec![4294967295]));
779     /// assert_eq!(BigInt::from(4294967296u64).to_u64_digits(), (Sign::Plus, vec![4294967296]));
780     /// assert_eq!(BigInt::from(-112500000000i64).to_u64_digits(), (Sign::Minus, vec![112500000000]));
781     /// assert_eq!(BigInt::from(112500000000i64).to_u64_digits(), (Sign::Plus, vec![112500000000]));
782     /// assert_eq!(BigInt::from(1u128 << 64).to_u64_digits(), (Sign::Plus, vec![0, 1]));
783     /// ```
784     #[inline]
to_u64_digits(&self) -> (Sign, Vec<u64>)785     pub fn to_u64_digits(&self) -> (Sign, Vec<u64>) {
786         (self.sign, self.data.to_u64_digits())
787     }
788 
789     /// Returns an iterator of `u32` digits representation of the `BigInt` ordered least
790     /// significant digit first.
791     ///
792     /// # Examples
793     ///
794     /// ```
795     /// use num_bigint::BigInt;
796     ///
797     /// assert_eq!(BigInt::from(-1125).iter_u32_digits().collect::<Vec<u32>>(), vec![1125]);
798     /// assert_eq!(BigInt::from(4294967295u32).iter_u32_digits().collect::<Vec<u32>>(), vec![4294967295]);
799     /// assert_eq!(BigInt::from(4294967296u64).iter_u32_digits().collect::<Vec<u32>>(), vec![0, 1]);
800     /// assert_eq!(BigInt::from(-112500000000i64).iter_u32_digits().collect::<Vec<u32>>(), vec![830850304, 26]);
801     /// assert_eq!(BigInt::from(112500000000i64).iter_u32_digits().collect::<Vec<u32>>(), vec![830850304, 26]);
802     /// ```
803     #[inline]
iter_u32_digits(&self) -> U32Digits<'_>804     pub fn iter_u32_digits(&self) -> U32Digits<'_> {
805         self.data.iter_u32_digits()
806     }
807 
808     /// Returns an iterator of `u64` digits representation of the `BigInt` ordered least
809     /// significant digit first.
810     ///
811     /// # Examples
812     ///
813     /// ```
814     /// use num_bigint::BigInt;
815     ///
816     /// assert_eq!(BigInt::from(-1125).iter_u64_digits().collect::<Vec<u64>>(), vec![1125u64]);
817     /// assert_eq!(BigInt::from(4294967295u32).iter_u64_digits().collect::<Vec<u64>>(), vec![4294967295u64]);
818     /// assert_eq!(BigInt::from(4294967296u64).iter_u64_digits().collect::<Vec<u64>>(), vec![4294967296u64]);
819     /// assert_eq!(BigInt::from(-112500000000i64).iter_u64_digits().collect::<Vec<u64>>(), vec![112500000000u64]);
820     /// assert_eq!(BigInt::from(112500000000i64).iter_u64_digits().collect::<Vec<u64>>(), vec![112500000000u64]);
821     /// assert_eq!(BigInt::from(1u128 << 64).iter_u64_digits().collect::<Vec<u64>>(), vec![0, 1]);
822     /// ```
823     #[inline]
iter_u64_digits(&self) -> U64Digits<'_>824     pub fn iter_u64_digits(&self) -> U64Digits<'_> {
825         self.data.iter_u64_digits()
826     }
827 
828     /// Returns the two's-complement byte representation of the `BigInt` in big-endian byte order.
829     ///
830     /// # Examples
831     ///
832     /// ```
833     /// use num_bigint::ToBigInt;
834     ///
835     /// let i = -1125.to_bigint().unwrap();
836     /// assert_eq!(i.to_signed_bytes_be(), vec![251, 155]);
837     /// ```
838     #[inline]
to_signed_bytes_be(&self) -> Vec<u8>839     pub fn to_signed_bytes_be(&self) -> Vec<u8> {
840         convert::to_signed_bytes_be(self)
841     }
842 
843     /// Returns the two's-complement byte representation of the `BigInt` in little-endian byte order.
844     ///
845     /// # Examples
846     ///
847     /// ```
848     /// use num_bigint::ToBigInt;
849     ///
850     /// let i = -1125.to_bigint().unwrap();
851     /// assert_eq!(i.to_signed_bytes_le(), vec![155, 251]);
852     /// ```
853     #[inline]
to_signed_bytes_le(&self) -> Vec<u8>854     pub fn to_signed_bytes_le(&self) -> Vec<u8> {
855         convert::to_signed_bytes_le(self)
856     }
857 
858     /// Returns the integer formatted as a string in the given radix.
859     /// `radix` must be in the range `2...36`.
860     ///
861     /// # Examples
862     ///
863     /// ```
864     /// use num_bigint::BigInt;
865     ///
866     /// let i = BigInt::parse_bytes(b"ff", 16).unwrap();
867     /// assert_eq!(i.to_str_radix(16), "ff");
868     /// ```
869     #[inline]
to_str_radix(&self, radix: u32) -> String870     pub fn to_str_radix(&self, radix: u32) -> String {
871         let mut v = to_str_radix_reversed(&self.data, radix);
872 
873         if self.is_negative() {
874             v.push(b'-');
875         }
876 
877         v.reverse();
878         unsafe { String::from_utf8_unchecked(v) }
879     }
880 
881     /// Returns the integer in the requested base in big-endian digit order.
882     /// The output is not given in a human readable alphabet but as a zero
883     /// based u8 number.
884     /// `radix` must be in the range `2...256`.
885     ///
886     /// # Examples
887     ///
888     /// ```
889     /// use num_bigint::{BigInt, Sign};
890     ///
891     /// assert_eq!(BigInt::from(-0xFFFFi64).to_radix_be(159),
892     ///            (Sign::Minus, vec![2, 94, 27]));
893     /// // 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27
894     /// ```
895     #[inline]
to_radix_be(&self, radix: u32) -> (Sign, Vec<u8>)896     pub fn to_radix_be(&self, radix: u32) -> (Sign, Vec<u8>) {
897         (self.sign, self.data.to_radix_be(radix))
898     }
899 
900     /// Returns the integer in the requested base in little-endian digit order.
901     /// The output is not given in a human readable alphabet but as a zero
902     /// based u8 number.
903     /// `radix` must be in the range `2...256`.
904     ///
905     /// # Examples
906     ///
907     /// ```
908     /// use num_bigint::{BigInt, Sign};
909     ///
910     /// assert_eq!(BigInt::from(-0xFFFFi64).to_radix_le(159),
911     ///            (Sign::Minus, vec![27, 94, 2]));
912     /// // 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2)
913     /// ```
914     #[inline]
to_radix_le(&self, radix: u32) -> (Sign, Vec<u8>)915     pub fn to_radix_le(&self, radix: u32) -> (Sign, Vec<u8>) {
916         (self.sign, self.data.to_radix_le(radix))
917     }
918 
919     /// Returns the sign of the `BigInt` as a `Sign`.
920     ///
921     /// # Examples
922     ///
923     /// ```
924     /// use num_bigint::{BigInt, Sign};
925     /// use num_traits::Zero;
926     ///
927     /// assert_eq!(BigInt::from(1234).sign(), Sign::Plus);
928     /// assert_eq!(BigInt::from(-4321).sign(), Sign::Minus);
929     /// assert_eq!(BigInt::zero().sign(), Sign::NoSign);
930     /// ```
931     #[inline]
sign(&self) -> Sign932     pub fn sign(&self) -> Sign {
933         self.sign
934     }
935 
936     /// Returns the magnitude of the `BigInt` as a `BigUint`.
937     ///
938     /// # Examples
939     ///
940     /// ```
941     /// use num_bigint::{BigInt, BigUint};
942     /// use num_traits::Zero;
943     ///
944     /// assert_eq!(BigInt::from(1234).magnitude(), &BigUint::from(1234u32));
945     /// assert_eq!(BigInt::from(-4321).magnitude(), &BigUint::from(4321u32));
946     /// assert!(BigInt::zero().magnitude().is_zero());
947     /// ```
948     #[inline]
magnitude(&self) -> &BigUint949     pub fn magnitude(&self) -> &BigUint {
950         &self.data
951     }
952 
953     /// Convert this `BigInt` into its `Sign` and `BigUint` magnitude,
954     /// the reverse of `BigInt::from_biguint`.
955     ///
956     /// # Examples
957     ///
958     /// ```
959     /// use num_bigint::{BigInt, BigUint, Sign};
960     /// use num_traits::Zero;
961     ///
962     /// assert_eq!(BigInt::from(1234).into_parts(), (Sign::Plus, BigUint::from(1234u32)));
963     /// assert_eq!(BigInt::from(-4321).into_parts(), (Sign::Minus, BigUint::from(4321u32)));
964     /// assert_eq!(BigInt::zero().into_parts(), (Sign::NoSign, BigUint::zero()));
965     /// ```
966     #[inline]
into_parts(self) -> (Sign, BigUint)967     pub fn into_parts(self) -> (Sign, BigUint) {
968         (self.sign, self.data)
969     }
970 
971     /// Determines the fewest bits necessary to express the `BigInt`,
972     /// not including the sign.
973     #[inline]
bits(&self) -> u64974     pub fn bits(&self) -> u64 {
975         self.data.bits()
976     }
977 
978     /// Converts this `BigInt` into a `BigUint`, if it's not negative.
979     #[inline]
to_biguint(&self) -> Option<BigUint>980     pub fn to_biguint(&self) -> Option<BigUint> {
981         match self.sign {
982             Plus => Some(self.data.clone()),
983             NoSign => Some(Zero::zero()),
984             Minus => None,
985         }
986     }
987 
988     #[inline]
checked_add(&self, v: &BigInt) -> Option<BigInt>989     pub fn checked_add(&self, v: &BigInt) -> Option<BigInt> {
990         Some(self + v)
991     }
992 
993     #[inline]
checked_sub(&self, v: &BigInt) -> Option<BigInt>994     pub fn checked_sub(&self, v: &BigInt) -> Option<BigInt> {
995         Some(self - v)
996     }
997 
998     #[inline]
checked_mul(&self, v: &BigInt) -> Option<BigInt>999     pub fn checked_mul(&self, v: &BigInt) -> Option<BigInt> {
1000         Some(self * v)
1001     }
1002 
1003     #[inline]
checked_div(&self, v: &BigInt) -> Option<BigInt>1004     pub fn checked_div(&self, v: &BigInt) -> Option<BigInt> {
1005         if v.is_zero() {
1006             return None;
1007         }
1008         Some(self / v)
1009     }
1010 
1011     /// Returns `self ^ exponent`.
pow(&self, exponent: u32) -> Self1012     pub fn pow(&self, exponent: u32) -> Self {
1013         Pow::pow(self, exponent)
1014     }
1015 
1016     /// Returns `(self ^ exponent) mod modulus`
1017     ///
1018     /// Note that this rounds like `mod_floor`, not like the `%` operator,
1019     /// which makes a difference when given a negative `self` or `modulus`.
1020     /// The result will be in the interval `[0, modulus)` for `modulus > 0`,
1021     /// or in the interval `(modulus, 0]` for `modulus < 0`
1022     ///
1023     /// Panics if the exponent is negative or the modulus is zero.
modpow(&self, exponent: &Self, modulus: &Self) -> Self1024     pub fn modpow(&self, exponent: &Self, modulus: &Self) -> Self {
1025         power::modpow(self, exponent, modulus)
1026     }
1027 
1028     /// Returns the truncated principal square root of `self` --
1029     /// see [Roots::sqrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.sqrt).
sqrt(&self) -> Self1030     pub fn sqrt(&self) -> Self {
1031         Roots::sqrt(self)
1032     }
1033 
1034     /// Returns the truncated principal cube root of `self` --
1035     /// see [Roots::cbrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.cbrt).
cbrt(&self) -> Self1036     pub fn cbrt(&self) -> Self {
1037         Roots::cbrt(self)
1038     }
1039 
1040     /// Returns the truncated principal `n`th root of `self` --
1041     /// See [Roots::nth_root](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#tymethod.nth_root).
nth_root(&self, n: u32) -> Self1042     pub fn nth_root(&self, n: u32) -> Self {
1043         Roots::nth_root(self, n)
1044     }
1045 
1046     /// Returns the number of least-significant bits that are zero,
1047     /// or `None` if the entire number is zero.
trailing_zeros(&self) -> Option<u64>1048     pub fn trailing_zeros(&self) -> Option<u64> {
1049         self.data.trailing_zeros()
1050     }
1051 
1052     /// Returns whether the bit in position `bit` is set,
1053     /// using the two's complement for negative numbers
bit(&self, bit: u64) -> bool1054     pub fn bit(&self, bit: u64) -> bool {
1055         if self.is_negative() {
1056             // Let the binary representation of a number be
1057             //   ... 0  x 1 0 ... 0
1058             // Then the two's complement is
1059             //   ... 1 !x 1 0 ... 0
1060             // where !x is obtained from x by flipping each bit
1061             if bit >= u64::from(crate::big_digit::BITS) * self.len() as u64 {
1062                 true
1063             } else {
1064                 let trailing_zeros = self.data.trailing_zeros().unwrap();
1065                 match Ord::cmp(&bit, &trailing_zeros) {
1066                     Ordering::Less => false,
1067                     Ordering::Equal => true,
1068                     Ordering::Greater => !self.data.bit(bit),
1069                 }
1070             }
1071         } else {
1072             self.data.bit(bit)
1073         }
1074     }
1075 
1076     /// Sets or clears the bit in the given position,
1077     /// using the two's complement for negative numbers
1078     ///
1079     /// Note that setting/clearing a bit (for positive/negative numbers,
1080     /// respectively) greater than the current bit length, a reallocation
1081     /// may be needed to store the new digits
set_bit(&mut self, bit: u64, value: bool)1082     pub fn set_bit(&mut self, bit: u64, value: bool) {
1083         match self.sign {
1084             Sign::Plus => self.data.set_bit(bit, value),
1085             Sign::Minus => bits::set_negative_bit(self, bit, value),
1086             Sign::NoSign => {
1087                 if value {
1088                     self.data.set_bit(bit, true);
1089                     self.sign = Sign::Plus;
1090                 } else {
1091                     // Clearing a bit for zero is a no-op
1092                 }
1093             }
1094         }
1095         // The top bit may have been cleared, so normalize
1096         self.normalize();
1097     }
1098 }
1099 
1100 #[test]
test_from_biguint()1101 fn test_from_biguint() {
1102     fn check(inp_s: Sign, inp_n: usize, ans_s: Sign, ans_n: usize) {
1103         let inp = BigInt::from_biguint(inp_s, BigUint::from(inp_n));
1104         let ans = BigInt {
1105             sign: ans_s,
1106             data: BigUint::from(ans_n),
1107         };
1108         assert_eq!(inp, ans);
1109     }
1110     check(Plus, 1, Plus, 1);
1111     check(Plus, 0, NoSign, 0);
1112     check(Minus, 1, Minus, 1);
1113     check(NoSign, 1, NoSign, 0);
1114 }
1115 
1116 #[test]
test_from_slice()1117 fn test_from_slice() {
1118     fn check(inp_s: Sign, inp_n: u32, ans_s: Sign, ans_n: u32) {
1119         let inp = BigInt::from_slice(inp_s, &[inp_n]);
1120         let ans = BigInt {
1121             sign: ans_s,
1122             data: BigUint::from(ans_n),
1123         };
1124         assert_eq!(inp, ans);
1125     }
1126     check(Plus, 1, Plus, 1);
1127     check(Plus, 0, NoSign, 0);
1128     check(Minus, 1, Minus, 1);
1129     check(NoSign, 1, NoSign, 0);
1130 }
1131 
1132 #[test]
test_assign_from_slice()1133 fn test_assign_from_slice() {
1134     fn check(inp_s: Sign, inp_n: u32, ans_s: Sign, ans_n: u32) {
1135         let mut inp = BigInt::from_slice(Minus, &[2627_u32, 0_u32, 9182_u32, 42_u32]);
1136         inp.assign_from_slice(inp_s, &[inp_n]);
1137         let ans = BigInt {
1138             sign: ans_s,
1139             data: BigUint::from(ans_n),
1140         };
1141         assert_eq!(inp, ans);
1142     }
1143     check(Plus, 1, Plus, 1);
1144     check(Plus, 0, NoSign, 0);
1145     check(Minus, 1, Minus, 1);
1146     check(NoSign, 1, NoSign, 0);
1147 }
1148