1 /*
2  * jcarith.c
3  *
4  * Developed 1997-2013 by Guido Vollbeding.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains portable arithmetic entropy encoding routines for JPEG
9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10  *
11  * Both sequential and progressive modes are supported in this single module.
12  *
13  * Suspension is not currently supported in this module.
14  */
15 
16 #define JPEG_INTERNALS
17 #include "jinclude.h"
18 #include "jpeglib.h"
19 
20 
21 /* Expanded entropy encoder object for arithmetic encoding. */
22 
23 typedef struct {
24   struct jpeg_entropy_encoder pub; /* public fields */
25 
26   INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
27   INT32 a;               /* A register, normalized size of coding interval */
28   INT32 sc;        /* counter for stacked 0xFF values which might overflow */
29   INT32 zc;          /* counter for pending 0x00 output values which might *
30                           * be discarded at the end ("Pacman" termination) */
31   int ct;  /* bit shift counter, determines when next byte will be written */
32   int buffer;                /* buffer for most recent output byte != 0xFF */
33 
34   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
36 
37   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
38   int next_restart_num;		/* next restart number to write (0-7) */
39 
40   /* Pointers to statistics areas (these workspaces have image lifespan) */
41   unsigned char * dc_stats[NUM_ARITH_TBLS];
42   unsigned char * ac_stats[NUM_ARITH_TBLS];
43 
44   /* Statistics bin for coding with fixed probability 0.5 */
45   unsigned char fixed_bin[4];
46 } arith_entropy_encoder;
47 
48 typedef arith_entropy_encoder * arith_entropy_ptr;
49 
50 /* The following two definitions specify the allocation chunk size
51  * for the statistics area.
52  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
53  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
54  *
55  * We use a compact representation with 1 byte per statistics bin,
56  * thus the numbers directly represent byte sizes.
57  * This 1 byte per statistics bin contains the meaning of the MPS
58  * (more probable symbol) in the highest bit (mask 0x80), and the
59  * index into the probability estimation state machine table
60  * in the lower bits (mask 0x7F).
61  */
62 
63 #define DC_STAT_BINS 64
64 #define AC_STAT_BINS 256
65 
66 /* NOTE: Uncomment the following #define if you want to use the
67  * given formula for calculating the AC conditioning parameter Kx
68  * for spectral selection progressive coding in section G.1.3.2
69  * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
70  * Although the spec and P&M authors claim that this "has proven
71  * to give good results for 8 bit precision samples", I'm not
72  * convinced yet that this is really beneficial.
73  * Early tests gave only very marginal compression enhancements
74  * (a few - around 5 or so - bytes even for very large files),
75  * which would turn out rather negative if we'd suppress the
76  * DAC (Define Arithmetic Conditioning) marker segments for
77  * the default parameters in the future.
78  * Note that currently the marker writing module emits 12-byte
79  * DAC segments for a full-component scan in a color image.
80  * This is not worth worrying about IMHO. However, since the
81  * spec defines the default values to be used if the tables
82  * are omitted (unlike Huffman tables, which are required
83  * anyway), one might optimize this behaviour in the future,
84  * and then it would be disadvantageous to use custom tables if
85  * they don't provide sufficient gain to exceed the DAC size.
86  *
87  * On the other hand, I'd consider it as a reasonable result
88  * that the conditioning has no significant influence on the
89  * compression performance. This means that the basic
90  * statistical model is already rather stable.
91  *
92  * Thus, at the moment, we use the default conditioning values
93  * anyway, and do not use the custom formula.
94  *
95 #define CALCULATE_SPECTRAL_CONDITIONING
96  */
97 
98 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
99  * We assume that int right shift is unsigned if INT32 right shift is,
100  * which should be safe.
101  */
102 
103 #ifdef RIGHT_SHIFT_IS_UNSIGNED
104 #define ISHIFT_TEMPS	int ishift_temp;
105 #define IRIGHT_SHIFT(x,shft)  \
106 	((ishift_temp = (x)) < 0 ? \
107 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
108 	 (ishift_temp >> (shft)))
109 #else
110 #define ISHIFT_TEMPS
111 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
112 #endif
113 
114 
115 LOCAL(void)
emit_byte(int val,j_compress_ptr cinfo)116 emit_byte (int val, j_compress_ptr cinfo)
117 /* Write next output byte; we do not support suspension in this module. */
118 {
119   struct jpeg_destination_mgr * dest = cinfo->dest;
120 
121   *dest->next_output_byte++ = (JOCTET) val;
122   if (--dest->free_in_buffer == 0)
123     if (! (*dest->empty_output_buffer) (cinfo))
124       ERREXIT(cinfo, JERR_CANT_SUSPEND);
125 }
126 
127 
128 /*
129  * Finish up at the end of an arithmetic-compressed scan.
130  */
131 
132 METHODDEF(void)
finish_pass(j_compress_ptr cinfo)133 finish_pass (j_compress_ptr cinfo)
134 {
135   arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
136   INT32 temp;
137 
138   /* Section D.1.8: Termination of encoding */
139 
140   /* Find the e->c in the coding interval with the largest
141    * number of trailing zero bits */
142   if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
143     e->c = temp + 0x8000L;
144   else
145     e->c = temp;
146   /* Send remaining bytes to output */
147   e->c <<= e->ct;
148   if (e->c & 0xF8000000L) {
149     /* One final overflow has to be handled */
150     if (e->buffer >= 0) {
151       if (e->zc)
152 	do emit_byte(0x00, cinfo);
153 	while (--e->zc);
154       emit_byte(e->buffer + 1, cinfo);
155       if (e->buffer + 1 == 0xFF)
156 	emit_byte(0x00, cinfo);
157     }
158     e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
159     e->sc = 0;
160   } else {
161     if (e->buffer == 0)
162       ++e->zc;
163     else if (e->buffer >= 0) {
164       if (e->zc)
165 	do emit_byte(0x00, cinfo);
166 	while (--e->zc);
167       emit_byte(e->buffer, cinfo);
168     }
169     if (e->sc) {
170       if (e->zc)
171 	do emit_byte(0x00, cinfo);
172 	while (--e->zc);
173       do {
174 	emit_byte(0xFF, cinfo);
175 	emit_byte(0x00, cinfo);
176       } while (--e->sc);
177     }
178   }
179   /* Output final bytes only if they are not 0x00 */
180   if (e->c & 0x7FFF800L) {
181     if (e->zc)  /* output final pending zero bytes */
182       do emit_byte(0x00, cinfo);
183       while (--e->zc);
184     emit_byte((e->c >> 19) & 0xFF, cinfo);
185     if (((e->c >> 19) & 0xFF) == 0xFF)
186       emit_byte(0x00, cinfo);
187     if (e->c & 0x7F800L) {
188       emit_byte((e->c >> 11) & 0xFF, cinfo);
189       if (((e->c >> 11) & 0xFF) == 0xFF)
190 	emit_byte(0x00, cinfo);
191     }
192   }
193 }
194 
195 
196 /*
197  * The core arithmetic encoding routine (common in JPEG and JBIG).
198  * This needs to go as fast as possible.
199  * Machine-dependent optimization facilities
200  * are not utilized in this portable implementation.
201  * However, this code should be fairly efficient and
202  * may be a good base for further optimizations anyway.
203  *
204  * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
205  *
206  * Note: I've added full "Pacman" termination support to the
207  * byte output routines, which is equivalent to the optional
208  * Discard_final_zeros procedure (Figure D.15) in the spec.
209  * Thus, we always produce the shortest possible output
210  * stream compliant to the spec (no trailing zero bytes,
211  * except for FF stuffing).
212  *
213  * I've also introduced a new scheme for accessing
214  * the probability estimation state machine table,
215  * derived from Markus Kuhn's JBIG implementation.
216  */
217 
218 LOCAL(void)
arith_encode(j_compress_ptr cinfo,unsigned char * st,int val)219 arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
220 {
221   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
222   register unsigned char nl, nm;
223   register INT32 qe, temp;
224   register int sv;
225 
226   /* Fetch values from our compact representation of Table D.3(D.2):
227    * Qe values and probability estimation state machine
228    */
229   sv = *st;
230   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
231   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
232   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
233 
234   /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
235   e->a -= qe;
236   if (val != (sv >> 7)) {
237     /* Encode the less probable symbol */
238     if (e->a >= qe) {
239       /* If the interval size (qe) for the less probable symbol (LPS)
240        * is larger than the interval size for the MPS, then exchange
241        * the two symbols for coding efficiency, otherwise code the LPS
242        * as usual: */
243       e->c += e->a;
244       e->a = qe;
245     }
246     *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
247   } else {
248     /* Encode the more probable symbol */
249     if (e->a >= 0x8000L)
250       return;  /* A >= 0x8000 -> ready, no renormalization required */
251     if (e->a < qe) {
252       /* If the interval size (qe) for the less probable symbol (LPS)
253        * is larger than the interval size for the MPS, then exchange
254        * the two symbols for coding efficiency: */
255       e->c += e->a;
256       e->a = qe;
257     }
258     *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
259   }
260 
261   /* Renormalization & data output per section D.1.6 */
262   do {
263     e->a <<= 1;
264     e->c <<= 1;
265     if (--e->ct == 0) {
266       /* Another byte is ready for output */
267       temp = e->c >> 19;
268       if (temp > 0xFF) {
269 	/* Handle overflow over all stacked 0xFF bytes */
270 	if (e->buffer >= 0) {
271 	  if (e->zc)
272 	    do emit_byte(0x00, cinfo);
273 	    while (--e->zc);
274 	  emit_byte(e->buffer + 1, cinfo);
275 	  if (e->buffer + 1 == 0xFF)
276 	    emit_byte(0x00, cinfo);
277 	}
278 	e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
279 	e->sc = 0;
280 	/* Note: The 3 spacer bits in the C register guarantee
281 	 * that the new buffer byte can't be 0xFF here
282 	 * (see page 160 in the P&M JPEG book). */
283 	e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
284       } else if (temp == 0xFF) {
285 	++e->sc;  /* stack 0xFF byte (which might overflow later) */
286       } else {
287 	/* Output all stacked 0xFF bytes, they will not overflow any more */
288 	if (e->buffer == 0)
289 	  ++e->zc;
290 	else if (e->buffer >= 0) {
291 	  if (e->zc)
292 	    do emit_byte(0x00, cinfo);
293 	    while (--e->zc);
294 	  emit_byte(e->buffer, cinfo);
295 	}
296 	if (e->sc) {
297 	  if (e->zc)
298 	    do emit_byte(0x00, cinfo);
299 	    while (--e->zc);
300 	  do {
301 	    emit_byte(0xFF, cinfo);
302 	    emit_byte(0x00, cinfo);
303 	  } while (--e->sc);
304 	}
305 	e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
306       }
307       e->c &= 0x7FFFFL;
308       e->ct += 8;
309     }
310   } while (e->a < 0x8000L);
311 }
312 
313 
314 /*
315  * Emit a restart marker & resynchronize predictions.
316  */
317 
318 LOCAL(void)
emit_restart(j_compress_ptr cinfo,int restart_num)319 emit_restart (j_compress_ptr cinfo, int restart_num)
320 {
321   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
322   int ci;
323   jpeg_component_info * compptr;
324 
325   finish_pass(cinfo);
326 
327   emit_byte(0xFF, cinfo);
328   emit_byte(JPEG_RST0 + restart_num, cinfo);
329 
330   /* Re-initialize statistics areas */
331   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
332     compptr = cinfo->cur_comp_info[ci];
333     /* DC needs no table for refinement scan */
334     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
335       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
336       /* Reset DC predictions to 0 */
337       entropy->last_dc_val[ci] = 0;
338       entropy->dc_context[ci] = 0;
339     }
340     /* AC needs no table when not present */
341     if (cinfo->Se) {
342       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
343     }
344   }
345 
346   /* Reset arithmetic encoding variables */
347   entropy->c = 0;
348   entropy->a = 0x10000L;
349   entropy->sc = 0;
350   entropy->zc = 0;
351   entropy->ct = 11;
352   entropy->buffer = -1;  /* empty */
353 }
354 
355 
356 /*
357  * MCU encoding for DC initial scan (either spectral selection,
358  * or first pass of successive approximation).
359  */
360 
361 METHODDEF(boolean)
encode_mcu_DC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)362 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
363 {
364   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
365   unsigned char *st;
366   int blkn, ci, tbl;
367   int v, v2, m;
368   ISHIFT_TEMPS
369 
370   /* Emit restart marker if needed */
371   if (cinfo->restart_interval) {
372     if (entropy->restarts_to_go == 0) {
373       emit_restart(cinfo, entropy->next_restart_num);
374       entropy->restarts_to_go = cinfo->restart_interval;
375       entropy->next_restart_num++;
376       entropy->next_restart_num &= 7;
377     }
378     entropy->restarts_to_go--;
379   }
380 
381   /* Encode the MCU data blocks */
382   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
383     ci = cinfo->MCU_membership[blkn];
384     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
385 
386     /* Compute the DC value after the required point transform by Al.
387      * This is simply an arithmetic right shift.
388      */
389     m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
390 
391     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
392 
393     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
394     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
395 
396     /* Figure F.4: Encode_DC_DIFF */
397     if ((v = m - entropy->last_dc_val[ci]) == 0) {
398       arith_encode(cinfo, st, 0);
399       entropy->dc_context[ci] = 0;	/* zero diff category */
400     } else {
401       entropy->last_dc_val[ci] = m;
402       arith_encode(cinfo, st, 1);
403       /* Figure F.6: Encoding nonzero value v */
404       /* Figure F.7: Encoding the sign of v */
405       if (v > 0) {
406 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
407 	st += 2;			/* Table F.4: SP = S0 + 2 */
408 	entropy->dc_context[ci] = 4;	/* small positive diff category */
409       } else {
410 	v = -v;
411 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
412 	st += 3;			/* Table F.4: SN = S0 + 3 */
413 	entropy->dc_context[ci] = 8;	/* small negative diff category */
414       }
415       /* Figure F.8: Encoding the magnitude category of v */
416       m = 0;
417       if (v -= 1) {
418 	arith_encode(cinfo, st, 1);
419 	m = 1;
420 	v2 = v;
421 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
422 	while (v2 >>= 1) {
423 	  arith_encode(cinfo, st, 1);
424 	  m <<= 1;
425 	  st += 1;
426 	}
427       }
428       arith_encode(cinfo, st, 0);
429       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
430       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
431 	entropy->dc_context[ci] = 0;	/* zero diff category */
432       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
433 	entropy->dc_context[ci] += 8;	/* large diff category */
434       /* Figure F.9: Encoding the magnitude bit pattern of v */
435       st += 14;
436       while (m >>= 1)
437 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
438     }
439   }
440 
441   return TRUE;
442 }
443 
444 
445 /*
446  * MCU encoding for AC initial scan (either spectral selection,
447  * or first pass of successive approximation).
448  */
449 
450 METHODDEF(boolean)
encode_mcu_AC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)451 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
452 {
453   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
454   const int * natural_order;
455   JBLOCKROW block;
456   unsigned char *st;
457   int tbl, k, ke;
458   int v, v2, m;
459 
460   /* Emit restart marker if needed */
461   if (cinfo->restart_interval) {
462     if (entropy->restarts_to_go == 0) {
463       emit_restart(cinfo, entropy->next_restart_num);
464       entropy->restarts_to_go = cinfo->restart_interval;
465       entropy->next_restart_num++;
466       entropy->next_restart_num &= 7;
467     }
468     entropy->restarts_to_go--;
469   }
470 
471   natural_order = cinfo->natural_order;
472 
473   /* Encode the MCU data block */
474   block = MCU_data[0];
475   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
476 
477   /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
478 
479   /* Establish EOB (end-of-block) index */
480   ke = cinfo->Se;
481   do {
482     /* We must apply the point transform by Al.  For AC coefficients this
483      * is an integer division with rounding towards 0.  To do this portably
484      * in C, we shift after obtaining the absolute value.
485      */
486     if ((v = (*block)[natural_order[ke]]) >= 0) {
487       if (v >>= cinfo->Al) break;
488     } else {
489       v = -v;
490       if (v >>= cinfo->Al) break;
491     }
492   } while (--ke);
493 
494   /* Figure F.5: Encode_AC_Coefficients */
495   for (k = cinfo->Ss - 1; k < ke;) {
496     st = entropy->ac_stats[tbl] + 3 * k;
497     arith_encode(cinfo, st, 0);		/* EOB decision */
498     for (;;) {
499       if ((v = (*block)[natural_order[++k]]) >= 0) {
500 	if (v >>= cinfo->Al) {
501 	  arith_encode(cinfo, st + 1, 1);
502 	  arith_encode(cinfo, entropy->fixed_bin, 0);
503 	  break;
504 	}
505       } else {
506 	v = -v;
507 	if (v >>= cinfo->Al) {
508 	  arith_encode(cinfo, st + 1, 1);
509 	  arith_encode(cinfo, entropy->fixed_bin, 1);
510 	  break;
511 	}
512       }
513       arith_encode(cinfo, st + 1, 0);
514       st += 3;
515     }
516     st += 2;
517     /* Figure F.8: Encoding the magnitude category of v */
518     m = 0;
519     if (v -= 1) {
520       arith_encode(cinfo, st, 1);
521       m = 1;
522       v2 = v;
523       if (v2 >>= 1) {
524 	arith_encode(cinfo, st, 1);
525 	m <<= 1;
526 	st = entropy->ac_stats[tbl] +
527 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
528 	while (v2 >>= 1) {
529 	  arith_encode(cinfo, st, 1);
530 	  m <<= 1;
531 	  st += 1;
532 	}
533       }
534     }
535     arith_encode(cinfo, st, 0);
536     /* Figure F.9: Encoding the magnitude bit pattern of v */
537     st += 14;
538     while (m >>= 1)
539       arith_encode(cinfo, st, (m & v) ? 1 : 0);
540   }
541   /* Encode EOB decision only if k < cinfo->Se */
542   if (k < cinfo->Se) {
543     st = entropy->ac_stats[tbl] + 3 * k;
544     arith_encode(cinfo, st, 1);
545   }
546 
547   return TRUE;
548 }
549 
550 
551 /*
552  * MCU encoding for DC successive approximation refinement scan.
553  * Note: we assume such scans can be multi-component,
554  * although the spec is not very clear on the point.
555  */
556 
557 METHODDEF(boolean)
encode_mcu_DC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)558 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
559 {
560   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
561   unsigned char *st;
562   int Al, blkn;
563 
564   /* Emit restart marker if needed */
565   if (cinfo->restart_interval) {
566     if (entropy->restarts_to_go == 0) {
567       emit_restart(cinfo, entropy->next_restart_num);
568       entropy->restarts_to_go = cinfo->restart_interval;
569       entropy->next_restart_num++;
570       entropy->next_restart_num &= 7;
571     }
572     entropy->restarts_to_go--;
573   }
574 
575   st = entropy->fixed_bin;	/* use fixed probability estimation */
576   Al = cinfo->Al;
577 
578   /* Encode the MCU data blocks */
579   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
580     /* We simply emit the Al'th bit of the DC coefficient value. */
581     arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
582   }
583 
584   return TRUE;
585 }
586 
587 
588 /*
589  * MCU encoding for AC successive approximation refinement scan.
590  */
591 
592 METHODDEF(boolean)
encode_mcu_AC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)593 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
594 {
595   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
596   const int * natural_order;
597   JBLOCKROW block;
598   unsigned char *st;
599   int tbl, k, ke, kex;
600   int v;
601 
602   /* Emit restart marker if needed */
603   if (cinfo->restart_interval) {
604     if (entropy->restarts_to_go == 0) {
605       emit_restart(cinfo, entropy->next_restart_num);
606       entropy->restarts_to_go = cinfo->restart_interval;
607       entropy->next_restart_num++;
608       entropy->next_restart_num &= 7;
609     }
610     entropy->restarts_to_go--;
611   }
612 
613   natural_order = cinfo->natural_order;
614 
615   /* Encode the MCU data block */
616   block = MCU_data[0];
617   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
618 
619   /* Section G.1.3.3: Encoding of AC coefficients */
620 
621   /* Establish EOB (end-of-block) index */
622   ke = cinfo->Se;
623   do {
624     /* We must apply the point transform by Al.  For AC coefficients this
625      * is an integer division with rounding towards 0.  To do this portably
626      * in C, we shift after obtaining the absolute value.
627      */
628     if ((v = (*block)[natural_order[ke]]) >= 0) {
629       if (v >>= cinfo->Al) break;
630     } else {
631       v = -v;
632       if (v >>= cinfo->Al) break;
633     }
634   } while (--ke);
635 
636   /* Establish EOBx (previous stage end-of-block) index */
637   for (kex = ke; kex > 0; kex--)
638     if ((v = (*block)[natural_order[kex]]) >= 0) {
639       if (v >>= cinfo->Ah) break;
640     } else {
641       v = -v;
642       if (v >>= cinfo->Ah) break;
643     }
644 
645   /* Figure G.10: Encode_AC_Coefficients_SA */
646   for (k = cinfo->Ss - 1; k < ke;) {
647     st = entropy->ac_stats[tbl] + 3 * k;
648     if (k >= kex)
649       arith_encode(cinfo, st, 0);	/* EOB decision */
650     for (;;) {
651       if ((v = (*block)[natural_order[++k]]) >= 0) {
652 	if (v >>= cinfo->Al) {
653 	  if (v >> 1)			/* previously nonzero coef */
654 	    arith_encode(cinfo, st + 2, (v & 1));
655 	  else {			/* newly nonzero coef */
656 	    arith_encode(cinfo, st + 1, 1);
657 	    arith_encode(cinfo, entropy->fixed_bin, 0);
658 	  }
659 	  break;
660 	}
661       } else {
662 	v = -v;
663 	if (v >>= cinfo->Al) {
664 	  if (v >> 1)			/* previously nonzero coef */
665 	    arith_encode(cinfo, st + 2, (v & 1));
666 	  else {			/* newly nonzero coef */
667 	    arith_encode(cinfo, st + 1, 1);
668 	    arith_encode(cinfo, entropy->fixed_bin, 1);
669 	  }
670 	  break;
671 	}
672       }
673       arith_encode(cinfo, st + 1, 0);
674       st += 3;
675     }
676   }
677   /* Encode EOB decision only if k < cinfo->Se */
678   if (k < cinfo->Se) {
679     st = entropy->ac_stats[tbl] + 3 * k;
680     arith_encode(cinfo, st, 1);
681   }
682 
683   return TRUE;
684 }
685 
686 
687 /*
688  * Encode and output one MCU's worth of arithmetic-compressed coefficients.
689  */
690 
691 METHODDEF(boolean)
encode_mcu(j_compress_ptr cinfo,JBLOCKROW * MCU_data)692 encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
693 {
694   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
695   const int * natural_order;
696   JBLOCKROW block;
697   unsigned char *st;
698   int tbl, k, ke;
699   int v, v2, m;
700   int blkn, ci;
701   jpeg_component_info * compptr;
702 
703   /* Emit restart marker if needed */
704   if (cinfo->restart_interval) {
705     if (entropy->restarts_to_go == 0) {
706       emit_restart(cinfo, entropy->next_restart_num);
707       entropy->restarts_to_go = cinfo->restart_interval;
708       entropy->next_restart_num++;
709       entropy->next_restart_num &= 7;
710     }
711     entropy->restarts_to_go--;
712   }
713 
714   natural_order = cinfo->natural_order;
715 
716   /* Encode the MCU data blocks */
717   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
718     block = MCU_data[blkn];
719     ci = cinfo->MCU_membership[blkn];
720     compptr = cinfo->cur_comp_info[ci];
721 
722     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
723 
724     tbl = compptr->dc_tbl_no;
725 
726     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
727     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
728 
729     /* Figure F.4: Encode_DC_DIFF */
730     if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
731       arith_encode(cinfo, st, 0);
732       entropy->dc_context[ci] = 0;	/* zero diff category */
733     } else {
734       entropy->last_dc_val[ci] = (*block)[0];
735       arith_encode(cinfo, st, 1);
736       /* Figure F.6: Encoding nonzero value v */
737       /* Figure F.7: Encoding the sign of v */
738       if (v > 0) {
739 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
740 	st += 2;			/* Table F.4: SP = S0 + 2 */
741 	entropy->dc_context[ci] = 4;	/* small positive diff category */
742       } else {
743 	v = -v;
744 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
745 	st += 3;			/* Table F.4: SN = S0 + 3 */
746 	entropy->dc_context[ci] = 8;	/* small negative diff category */
747       }
748       /* Figure F.8: Encoding the magnitude category of v */
749       m = 0;
750       if (v -= 1) {
751 	arith_encode(cinfo, st, 1);
752 	m = 1;
753 	v2 = v;
754 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
755 	while (v2 >>= 1) {
756 	  arith_encode(cinfo, st, 1);
757 	  m <<= 1;
758 	  st += 1;
759 	}
760       }
761       arith_encode(cinfo, st, 0);
762       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
763       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
764 	entropy->dc_context[ci] = 0;	/* zero diff category */
765       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
766 	entropy->dc_context[ci] += 8;	/* large diff category */
767       /* Figure F.9: Encoding the magnitude bit pattern of v */
768       st += 14;
769       while (m >>= 1)
770 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
771     }
772 
773     /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
774 
775     if ((ke = cinfo->lim_Se) == 0) continue;
776     tbl = compptr->ac_tbl_no;
777 
778     /* Establish EOB (end-of-block) index */
779     do {
780       if ((*block)[natural_order[ke]]) break;
781     } while (--ke);
782 
783     /* Figure F.5: Encode_AC_Coefficients */
784     for (k = 0; k < ke;) {
785       st = entropy->ac_stats[tbl] + 3 * k;
786       arith_encode(cinfo, st, 0);	/* EOB decision */
787       while ((v = (*block)[natural_order[++k]]) == 0) {
788 	arith_encode(cinfo, st + 1, 0);
789 	st += 3;
790       }
791       arith_encode(cinfo, st + 1, 1);
792       /* Figure F.6: Encoding nonzero value v */
793       /* Figure F.7: Encoding the sign of v */
794       if (v > 0) {
795 	arith_encode(cinfo, entropy->fixed_bin, 0);
796       } else {
797 	v = -v;
798 	arith_encode(cinfo, entropy->fixed_bin, 1);
799       }
800       st += 2;
801       /* Figure F.8: Encoding the magnitude category of v */
802       m = 0;
803       if (v -= 1) {
804 	arith_encode(cinfo, st, 1);
805 	m = 1;
806 	v2 = v;
807 	if (v2 >>= 1) {
808 	  arith_encode(cinfo, st, 1);
809 	  m <<= 1;
810 	  st = entropy->ac_stats[tbl] +
811 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
812 	  while (v2 >>= 1) {
813 	    arith_encode(cinfo, st, 1);
814 	    m <<= 1;
815 	    st += 1;
816 	  }
817 	}
818       }
819       arith_encode(cinfo, st, 0);
820       /* Figure F.9: Encoding the magnitude bit pattern of v */
821       st += 14;
822       while (m >>= 1)
823 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
824     }
825     /* Encode EOB decision only if k < cinfo->lim_Se */
826     if (k < cinfo->lim_Se) {
827       st = entropy->ac_stats[tbl] + 3 * k;
828       arith_encode(cinfo, st, 1);
829     }
830   }
831 
832   return TRUE;
833 }
834 
835 
836 /*
837  * Initialize for an arithmetic-compressed scan.
838  */
839 
840 METHODDEF(void)
start_pass(j_compress_ptr cinfo,boolean gather_statistics)841 start_pass (j_compress_ptr cinfo, boolean gather_statistics)
842 {
843   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
844   int ci, tbl;
845   jpeg_component_info * compptr;
846 
847   if (gather_statistics)
848     /* Make sure to avoid that in the master control logic!
849      * We are fully adaptive here and need no extra
850      * statistics gathering pass!
851      */
852     ERREXIT(cinfo, JERR_NOT_COMPILED);
853 
854   /* We assume jcmaster.c already validated the progressive scan parameters. */
855 
856   /* Select execution routines */
857   if (cinfo->progressive_mode) {
858     if (cinfo->Ah == 0) {
859       if (cinfo->Ss == 0)
860 	entropy->pub.encode_mcu = encode_mcu_DC_first;
861       else
862 	entropy->pub.encode_mcu = encode_mcu_AC_first;
863     } else {
864       if (cinfo->Ss == 0)
865 	entropy->pub.encode_mcu = encode_mcu_DC_refine;
866       else
867 	entropy->pub.encode_mcu = encode_mcu_AC_refine;
868     }
869   } else
870     entropy->pub.encode_mcu = encode_mcu;
871 
872   /* Allocate & initialize requested statistics areas */
873   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
874     compptr = cinfo->cur_comp_info[ci];
875     /* DC needs no table for refinement scan */
876     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
877       tbl = compptr->dc_tbl_no;
878       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
879 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
880       if (entropy->dc_stats[tbl] == NULL)
881 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
882 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
883       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
884       /* Initialize DC predictions to 0 */
885       entropy->last_dc_val[ci] = 0;
886       entropy->dc_context[ci] = 0;
887     }
888     /* AC needs no table when not present */
889     if (cinfo->Se) {
890       tbl = compptr->ac_tbl_no;
891       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
892 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
893       if (entropy->ac_stats[tbl] == NULL)
894 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
895 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
896       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
897 #ifdef CALCULATE_SPECTRAL_CONDITIONING
898       if (cinfo->progressive_mode)
899 	/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
900 	cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
901 #endif
902     }
903   }
904 
905   /* Initialize arithmetic encoding variables */
906   entropy->c = 0;
907   entropy->a = 0x10000L;
908   entropy->sc = 0;
909   entropy->zc = 0;
910   entropy->ct = 11;
911   entropy->buffer = -1;  /* empty */
912 
913   /* Initialize restart stuff */
914   entropy->restarts_to_go = cinfo->restart_interval;
915   entropy->next_restart_num = 0;
916 }
917 
918 
919 /*
920  * Module initialization routine for arithmetic entropy encoding.
921  */
922 
923 GLOBAL(void)
jinit_arith_encoder(j_compress_ptr cinfo)924 jinit_arith_encoder (j_compress_ptr cinfo)
925 {
926   arith_entropy_ptr entropy;
927   int i;
928 
929   entropy = (arith_entropy_ptr)
930     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
931 				SIZEOF(arith_entropy_encoder));
932   cinfo->entropy = &entropy->pub;
933   entropy->pub.start_pass = start_pass;
934   entropy->pub.finish_pass = finish_pass;
935 
936   /* Mark tables unallocated */
937   for (i = 0; i < NUM_ARITH_TBLS; i++) {
938     entropy->dc_stats[i] = NULL;
939     entropy->ac_stats[i] = NULL;
940   }
941 
942   /* Initialize index for fixed probability estimation */
943   entropy->fixed_bin[0] = 113;
944 }
945