1 /*
2  * jchuff.c
3  *
4  * Copyright (C) 1991-1997, Thomas G. Lane.
5  * Modified 2006-2013 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains Huffman entropy encoding routines.
10  * Both sequential and progressive modes are supported in this single module.
11  *
12  * Much of the complexity here has to do with supporting output suspension.
13  * If the data destination module demands suspension, we want to be able to
14  * back up to the start of the current MCU.  To do this, we copy state
15  * variables into local working storage, and update them back to the
16  * permanent JPEG objects only upon successful completion of an MCU.
17  *
18  * We do not support output suspension for the progressive JPEG mode, since
19  * the library currently does not allow multiple-scan files to be written
20  * with output suspension.
21  */
22 
23 #define JPEG_INTERNALS
24 #include "jinclude.h"
25 #include "jpeglib.h"
26 
27 
28 /* The legal range of a DCT coefficient is
29  *  -1024 .. +1023  for 8-bit data;
30  * -16384 .. +16383 for 12-bit data.
31  * Hence the magnitude should always fit in 10 or 14 bits respectively.
32  */
33 
34 #if BITS_IN_JSAMPLE == 8
35 #define MAX_COEF_BITS 10
36 #else
37 #define MAX_COEF_BITS 14
38 #endif
39 
40 /* Derived data constructed for each Huffman table */
41 
42 typedef struct {
43   unsigned int ehufco[256];	/* code for each symbol */
44   char ehufsi[256];		/* length of code for each symbol */
45   /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
46 } c_derived_tbl;
47 
48 
49 /* Expanded entropy encoder object for Huffman encoding.
50  *
51  * The savable_state subrecord contains fields that change within an MCU,
52  * but must not be updated permanently until we complete the MCU.
53  */
54 
55 typedef struct {
56   INT32 put_buffer;		/* current bit-accumulation buffer */
57   int put_bits;			/* # of bits now in it */
58   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
59 } savable_state;
60 
61 /* This macro is to work around compilers with missing or broken
62  * structure assignment.  You'll need to fix this code if you have
63  * such a compiler and you change MAX_COMPS_IN_SCAN.
64  */
65 
66 #ifndef NO_STRUCT_ASSIGN
67 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
68 #else
69 #if MAX_COMPS_IN_SCAN == 4
70 #define ASSIGN_STATE(dest,src)  \
71 	((dest).put_buffer = (src).put_buffer, \
72 	 (dest).put_bits = (src).put_bits, \
73 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
74 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
75 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
76 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
77 #endif
78 #endif
79 
80 
81 typedef struct {
82   struct jpeg_entropy_encoder pub; /* public fields */
83 
84   savable_state saved;		/* Bit buffer & DC state at start of MCU */
85 
86   /* These fields are NOT loaded into local working state. */
87   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
88   int next_restart_num;		/* next restart number to write (0-7) */
89 
90   /* Pointers to derived tables (these workspaces have image lifespan) */
91   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
92   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
93 
94   /* Statistics tables for optimization */
95   long * dc_count_ptrs[NUM_HUFF_TBLS];
96   long * ac_count_ptrs[NUM_HUFF_TBLS];
97 
98   /* Following fields used only in progressive mode */
99 
100   /* Mode flag: TRUE for optimization, FALSE for actual data output */
101   boolean gather_statistics;
102 
103   /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
104    */
105   JOCTET * next_output_byte;	/* => next byte to write in buffer */
106   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
107   j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
108 
109   /* Coding status for AC components */
110   int ac_tbl_no;		/* the table number of the single component */
111   unsigned int EOBRUN;		/* run length of EOBs */
112   unsigned int BE;		/* # of buffered correction bits before MCU */
113   char * bit_buffer;		/* buffer for correction bits (1 per char) */
114   /* packing correction bits tightly would save some space but cost time... */
115 } huff_entropy_encoder;
116 
117 typedef huff_entropy_encoder * huff_entropy_ptr;
118 
119 /* Working state while writing an MCU (sequential mode).
120  * This struct contains all the fields that are needed by subroutines.
121  */
122 
123 typedef struct {
124   JOCTET * next_output_byte;	/* => next byte to write in buffer */
125   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
126   savable_state cur;		/* Current bit buffer & DC state */
127   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
128 } working_state;
129 
130 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
131  * buffer can hold.  Larger sizes may slightly improve compression, but
132  * 1000 is already well into the realm of overkill.
133  * The minimum safe size is 64 bits.
134  */
135 
136 #define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
137 
138 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
139  * We assume that int right shift is unsigned if INT32 right shift is,
140  * which should be safe.
141  */
142 
143 #ifdef RIGHT_SHIFT_IS_UNSIGNED
144 #define ISHIFT_TEMPS	int ishift_temp;
145 #define IRIGHT_SHIFT(x,shft)  \
146 	((ishift_temp = (x)) < 0 ? \
147 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
148 	 (ishift_temp >> (shft)))
149 #else
150 #define ISHIFT_TEMPS
151 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
152 #endif
153 
154 
155 /*
156  * Compute the derived values for a Huffman table.
157  * This routine also performs some validation checks on the table.
158  */
159 
160 LOCAL(void)
jpeg_make_c_derived_tbl(j_compress_ptr cinfo,boolean isDC,int tblno,c_derived_tbl ** pdtbl)161 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
162 			 c_derived_tbl ** pdtbl)
163 {
164   JHUFF_TBL *htbl;
165   c_derived_tbl *dtbl;
166   int p, i, l, lastp, si, maxsymbol;
167   char huffsize[257];
168   unsigned int huffcode[257];
169   unsigned int code;
170 
171   /* Note that huffsize[] and huffcode[] are filled in code-length order,
172    * paralleling the order of the symbols themselves in htbl->huffval[].
173    */
174 
175   /* Find the input Huffman table */
176   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
177     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
178   htbl =
179     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
180   if (htbl == NULL)
181     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
182 
183   /* Allocate a workspace if we haven't already done so. */
184   if (*pdtbl == NULL)
185     *pdtbl = (c_derived_tbl *)
186       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
187 				  SIZEOF(c_derived_tbl));
188   dtbl = *pdtbl;
189 
190   /* Figure C.1: make table of Huffman code length for each symbol */
191 
192   p = 0;
193   for (l = 1; l <= 16; l++) {
194     i = (int) htbl->bits[l];
195     if (i < 0 || p + i > 256)	/* protect against table overrun */
196       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
197     while (i--)
198       huffsize[p++] = (char) l;
199   }
200   huffsize[p] = 0;
201   lastp = p;
202 
203   /* Figure C.2: generate the codes themselves */
204   /* We also validate that the counts represent a legal Huffman code tree. */
205 
206   code = 0;
207   si = huffsize[0];
208   p = 0;
209   while (huffsize[p]) {
210     while (((int) huffsize[p]) == si) {
211       huffcode[p++] = code;
212       code++;
213     }
214     /* code is now 1 more than the last code used for codelength si; but
215      * it must still fit in si bits, since no code is allowed to be all ones.
216      */
217     if (((INT32) code) >= (((INT32) 1) << si))
218       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
219     code <<= 1;
220     si++;
221   }
222 
223   /* Figure C.3: generate encoding tables */
224   /* These are code and size indexed by symbol value */
225 
226   /* Set all codeless symbols to have code length 0;
227    * this lets us detect duplicate VAL entries here, and later
228    * allows emit_bits to detect any attempt to emit such symbols.
229    */
230   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
231 
232   /* This is also a convenient place to check for out-of-range
233    * and duplicated VAL entries.  We allow 0..255 for AC symbols
234    * but only 0..15 for DC.  (We could constrain them further
235    * based on data depth and mode, but this seems enough.)
236    */
237   maxsymbol = isDC ? 15 : 255;
238 
239   for (p = 0; p < lastp; p++) {
240     i = htbl->huffval[p];
241     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
242       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
243     dtbl->ehufco[i] = huffcode[p];
244     dtbl->ehufsi[i] = huffsize[p];
245   }
246 }
247 
248 
249 /* Outputting bytes to the file.
250  * NB: these must be called only when actually outputting,
251  * that is, entropy->gather_statistics == FALSE.
252  */
253 
254 /* Emit a byte, taking 'action' if must suspend. */
255 #define emit_byte_s(state,val,action)  \
256 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
257 	  if (--(state)->free_in_buffer == 0)  \
258 	    if (! dump_buffer_s(state))  \
259 	      { action; } }
260 
261 /* Emit a byte */
262 #define emit_byte_e(entropy,val)  \
263 	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \
264 	  if (--(entropy)->free_in_buffer == 0)  \
265 	    dump_buffer_e(entropy); }
266 
267 
268 LOCAL(boolean)
dump_buffer_s(working_state * state)269 dump_buffer_s (working_state * state)
270 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
271 {
272   struct jpeg_destination_mgr * dest = state->cinfo->dest;
273 
274   if (! (*dest->empty_output_buffer) (state->cinfo))
275     return FALSE;
276   /* After a successful buffer dump, must reset buffer pointers */
277   state->next_output_byte = dest->next_output_byte;
278   state->free_in_buffer = dest->free_in_buffer;
279   return TRUE;
280 }
281 
282 
283 LOCAL(void)
dump_buffer_e(huff_entropy_ptr entropy)284 dump_buffer_e (huff_entropy_ptr entropy)
285 /* Empty the output buffer; we do not support suspension in this case. */
286 {
287   struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
288 
289   if (! (*dest->empty_output_buffer) (entropy->cinfo))
290     ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
291   /* After a successful buffer dump, must reset buffer pointers */
292   entropy->next_output_byte = dest->next_output_byte;
293   entropy->free_in_buffer = dest->free_in_buffer;
294 }
295 
296 
297 /* Outputting bits to the file */
298 
299 /* Only the right 24 bits of put_buffer are used; the valid bits are
300  * left-justified in this part.  At most 16 bits can be passed to emit_bits
301  * in one call, and we never retain more than 7 bits in put_buffer
302  * between calls, so 24 bits are sufficient.
303  */
304 
305 INLINE
LOCAL(boolean)306 LOCAL(boolean)
307 emit_bits_s (working_state * state, unsigned int code, int size)
308 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
309 {
310   /* This routine is heavily used, so it's worth coding tightly. */
311   register INT32 put_buffer;
312   register int put_bits;
313 
314   /* if size is 0, caller used an invalid Huffman table entry */
315   if (size == 0)
316     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
317 
318   /* mask off any extra bits in code */
319   put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
320 
321   /* new number of bits in buffer */
322   put_bits = size + state->cur.put_bits;
323 
324   put_buffer <<= 24 - put_bits; /* align incoming bits */
325 
326   /* and merge with old buffer contents */
327   put_buffer |= state->cur.put_buffer;
328 
329   while (put_bits >= 8) {
330     int c = (int) ((put_buffer >> 16) & 0xFF);
331 
332     emit_byte_s(state, c, return FALSE);
333     if (c == 0xFF) {		/* need to stuff a zero byte? */
334       emit_byte_s(state, 0, return FALSE);
335     }
336     put_buffer <<= 8;
337     put_bits -= 8;
338   }
339 
340   state->cur.put_buffer = put_buffer; /* update state variables */
341   state->cur.put_bits = put_bits;
342 
343   return TRUE;
344 }
345 
346 
347 INLINE
LOCAL(void)348 LOCAL(void)
349 emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
350 /* Emit some bits, unless we are in gather mode */
351 {
352   /* This routine is heavily used, so it's worth coding tightly. */
353   register INT32 put_buffer;
354   register int put_bits;
355 
356   /* if size is 0, caller used an invalid Huffman table entry */
357   if (size == 0)
358     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
359 
360   if (entropy->gather_statistics)
361     return;			/* do nothing if we're only getting stats */
362 
363   /* mask off any extra bits in code */
364   put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
365 
366   /* new number of bits in buffer */
367   put_bits = size + entropy->saved.put_bits;
368 
369   put_buffer <<= 24 - put_bits; /* align incoming bits */
370 
371   /* and merge with old buffer contents */
372   put_buffer |= entropy->saved.put_buffer;
373 
374   while (put_bits >= 8) {
375     int c = (int) ((put_buffer >> 16) & 0xFF);
376 
377     emit_byte_e(entropy, c);
378     if (c == 0xFF) {		/* need to stuff a zero byte? */
379       emit_byte_e(entropy, 0);
380     }
381     put_buffer <<= 8;
382     put_bits -= 8;
383   }
384 
385   entropy->saved.put_buffer = put_buffer; /* update variables */
386   entropy->saved.put_bits = put_bits;
387 }
388 
389 
390 LOCAL(boolean)
flush_bits_s(working_state * state)391 flush_bits_s (working_state * state)
392 {
393   if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
394     return FALSE;
395   state->cur.put_buffer = 0;	     /* and reset bit-buffer to empty */
396   state->cur.put_bits = 0;
397   return TRUE;
398 }
399 
400 
401 LOCAL(void)
flush_bits_e(huff_entropy_ptr entropy)402 flush_bits_e (huff_entropy_ptr entropy)
403 {
404   emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
405   entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
406   entropy->saved.put_bits = 0;
407 }
408 
409 
410 /*
411  * Emit (or just count) a Huffman symbol.
412  */
413 
414 INLINE
LOCAL(void)415 LOCAL(void)
416 emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
417 {
418   if (entropy->gather_statistics)
419     entropy->dc_count_ptrs[tbl_no][symbol]++;
420   else {
421     c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
422     emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
423   }
424 }
425 
426 
427 INLINE
LOCAL(void)428 LOCAL(void)
429 emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
430 {
431   if (entropy->gather_statistics)
432     entropy->ac_count_ptrs[tbl_no][symbol]++;
433   else {
434     c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
435     emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
436   }
437 }
438 
439 
440 /*
441  * Emit bits from a correction bit buffer.
442  */
443 
444 LOCAL(void)
emit_buffered_bits(huff_entropy_ptr entropy,char * bufstart,unsigned int nbits)445 emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
446 		    unsigned int nbits)
447 {
448   if (entropy->gather_statistics)
449     return;			/* no real work */
450 
451   while (nbits > 0) {
452     emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
453     bufstart++;
454     nbits--;
455   }
456 }
457 
458 
459 /*
460  * Emit any pending EOBRUN symbol.
461  */
462 
463 LOCAL(void)
emit_eobrun(huff_entropy_ptr entropy)464 emit_eobrun (huff_entropy_ptr entropy)
465 {
466   register int temp, nbits;
467 
468   if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
469     temp = entropy->EOBRUN;
470     nbits = 0;
471     while ((temp >>= 1))
472       nbits++;
473     /* safety check: shouldn't happen given limited correction-bit buffer */
474     if (nbits > 14)
475       ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
476 
477     emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
478     if (nbits)
479       emit_bits_e(entropy, entropy->EOBRUN, nbits);
480 
481     entropy->EOBRUN = 0;
482 
483     /* Emit any buffered correction bits */
484     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
485     entropy->BE = 0;
486   }
487 }
488 
489 
490 /*
491  * Emit a restart marker & resynchronize predictions.
492  */
493 
494 LOCAL(boolean)
emit_restart_s(working_state * state,int restart_num)495 emit_restart_s (working_state * state, int restart_num)
496 {
497   int ci;
498 
499   if (! flush_bits_s(state))
500     return FALSE;
501 
502   emit_byte_s(state, 0xFF, return FALSE);
503   emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
504 
505   /* Re-initialize DC predictions to 0 */
506   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
507     state->cur.last_dc_val[ci] = 0;
508 
509   /* The restart counter is not updated until we successfully write the MCU. */
510 
511   return TRUE;
512 }
513 
514 
515 LOCAL(void)
emit_restart_e(huff_entropy_ptr entropy,int restart_num)516 emit_restart_e (huff_entropy_ptr entropy, int restart_num)
517 {
518   int ci;
519 
520   emit_eobrun(entropy);
521 
522   if (! entropy->gather_statistics) {
523     flush_bits_e(entropy);
524     emit_byte_e(entropy, 0xFF);
525     emit_byte_e(entropy, JPEG_RST0 + restart_num);
526   }
527 
528   if (entropy->cinfo->Ss == 0) {
529     /* Re-initialize DC predictions to 0 */
530     for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
531       entropy->saved.last_dc_val[ci] = 0;
532   } else {
533     /* Re-initialize all AC-related fields to 0 */
534     entropy->EOBRUN = 0;
535     entropy->BE = 0;
536   }
537 }
538 
539 
540 /*
541  * MCU encoding for DC initial scan (either spectral selection,
542  * or first pass of successive approximation).
543  */
544 
545 METHODDEF(boolean)
encode_mcu_DC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)546 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
547 {
548   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
549   register int temp, temp2;
550   register int nbits;
551   int blkn, ci, tbl;
552   ISHIFT_TEMPS
553 
554   entropy->next_output_byte = cinfo->dest->next_output_byte;
555   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
556 
557   /* Emit restart marker if needed */
558   if (cinfo->restart_interval)
559     if (entropy->restarts_to_go == 0)
560       emit_restart_e(entropy, entropy->next_restart_num);
561 
562   /* Encode the MCU data blocks */
563   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
564     ci = cinfo->MCU_membership[blkn];
565     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
566 
567     /* Compute the DC value after the required point transform by Al.
568      * This is simply an arithmetic right shift.
569      */
570     temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
571 
572     /* DC differences are figured on the point-transformed values. */
573     temp2 = temp - entropy->saved.last_dc_val[ci];
574     entropy->saved.last_dc_val[ci] = temp;
575 
576     /* Encode the DC coefficient difference per section G.1.2.1 */
577     temp = temp2;
578     if (temp < 0) {
579       temp = -temp;		/* temp is abs value of input */
580       /* For a negative input, want temp2 = bitwise complement of abs(input) */
581       /* This code assumes we are on a two's complement machine */
582       temp2--;
583     }
584 
585     /* Find the number of bits needed for the magnitude of the coefficient */
586     nbits = 0;
587     while (temp) {
588       nbits++;
589       temp >>= 1;
590     }
591     /* Check for out-of-range coefficient values.
592      * Since we're encoding a difference, the range limit is twice as much.
593      */
594     if (nbits > MAX_COEF_BITS+1)
595       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
596 
597     /* Count/emit the Huffman-coded symbol for the number of bits */
598     emit_dc_symbol(entropy, tbl, nbits);
599 
600     /* Emit that number of bits of the value, if positive, */
601     /* or the complement of its magnitude, if negative. */
602     if (nbits)			/* emit_bits rejects calls with size 0 */
603       emit_bits_e(entropy, (unsigned int) temp2, nbits);
604   }
605 
606   cinfo->dest->next_output_byte = entropy->next_output_byte;
607   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
608 
609   /* Update restart-interval state too */
610   if (cinfo->restart_interval) {
611     if (entropy->restarts_to_go == 0) {
612       entropy->restarts_to_go = cinfo->restart_interval;
613       entropy->next_restart_num++;
614       entropy->next_restart_num &= 7;
615     }
616     entropy->restarts_to_go--;
617   }
618 
619   return TRUE;
620 }
621 
622 
623 /*
624  * MCU encoding for AC initial scan (either spectral selection,
625  * or first pass of successive approximation).
626  */
627 
628 METHODDEF(boolean)
encode_mcu_AC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)629 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
630 {
631   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
632   const int * natural_order;
633   JBLOCKROW block;
634   register int temp, temp2;
635   register int nbits;
636   register int r, k;
637   int Se, Al;
638 
639   entropy->next_output_byte = cinfo->dest->next_output_byte;
640   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
641 
642   /* Emit restart marker if needed */
643   if (cinfo->restart_interval)
644     if (entropy->restarts_to_go == 0)
645       emit_restart_e(entropy, entropy->next_restart_num);
646 
647   Se = cinfo->Se;
648   Al = cinfo->Al;
649   natural_order = cinfo->natural_order;
650 
651   /* Encode the MCU data block */
652   block = MCU_data[0];
653 
654   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
655 
656   r = 0;			/* r = run length of zeros */
657 
658   for (k = cinfo->Ss; k <= Se; k++) {
659     if ((temp = (*block)[natural_order[k]]) == 0) {
660       r++;
661       continue;
662     }
663     /* We must apply the point transform by Al.  For AC coefficients this
664      * is an integer division with rounding towards 0.  To do this portably
665      * in C, we shift after obtaining the absolute value; so the code is
666      * interwoven with finding the abs value (temp) and output bits (temp2).
667      */
668     if (temp < 0) {
669       temp = -temp;		/* temp is abs value of input */
670       temp >>= Al;		/* apply the point transform */
671       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
672       temp2 = ~temp;
673     } else {
674       temp >>= Al;		/* apply the point transform */
675       temp2 = temp;
676     }
677     /* Watch out for case that nonzero coef is zero after point transform */
678     if (temp == 0) {
679       r++;
680       continue;
681     }
682 
683     /* Emit any pending EOBRUN */
684     if (entropy->EOBRUN > 0)
685       emit_eobrun(entropy);
686     /* if run length > 15, must emit special run-length-16 codes (0xF0) */
687     while (r > 15) {
688       emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
689       r -= 16;
690     }
691 
692     /* Find the number of bits needed for the magnitude of the coefficient */
693     nbits = 1;			/* there must be at least one 1 bit */
694     while ((temp >>= 1))
695       nbits++;
696     /* Check for out-of-range coefficient values */
697     if (nbits > MAX_COEF_BITS)
698       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
699 
700     /* Count/emit Huffman symbol for run length / number of bits */
701     emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
702 
703     /* Emit that number of bits of the value, if positive, */
704     /* or the complement of its magnitude, if negative. */
705     emit_bits_e(entropy, (unsigned int) temp2, nbits);
706 
707     r = 0;			/* reset zero run length */
708   }
709 
710   if (r > 0) {			/* If there are trailing zeroes, */
711     entropy->EOBRUN++;		/* count an EOB */
712     if (entropy->EOBRUN == 0x7FFF)
713       emit_eobrun(entropy);	/* force it out to avoid overflow */
714   }
715 
716   cinfo->dest->next_output_byte = entropy->next_output_byte;
717   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
718 
719   /* Update restart-interval state too */
720   if (cinfo->restart_interval) {
721     if (entropy->restarts_to_go == 0) {
722       entropy->restarts_to_go = cinfo->restart_interval;
723       entropy->next_restart_num++;
724       entropy->next_restart_num &= 7;
725     }
726     entropy->restarts_to_go--;
727   }
728 
729   return TRUE;
730 }
731 
732 
733 /*
734  * MCU encoding for DC successive approximation refinement scan.
735  * Note: we assume such scans can be multi-component,
736  * although the spec is not very clear on the point.
737  */
738 
739 METHODDEF(boolean)
encode_mcu_DC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)740 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
741 {
742   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
743   int Al, blkn;
744 
745   entropy->next_output_byte = cinfo->dest->next_output_byte;
746   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
747 
748   /* Emit restart marker if needed */
749   if (cinfo->restart_interval)
750     if (entropy->restarts_to_go == 0)
751       emit_restart_e(entropy, entropy->next_restart_num);
752 
753   Al = cinfo->Al;
754 
755   /* Encode the MCU data blocks */
756   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
757     /* We simply emit the Al'th bit of the DC coefficient value. */
758     emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1);
759   }
760 
761   cinfo->dest->next_output_byte = entropy->next_output_byte;
762   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
763 
764   /* Update restart-interval state too */
765   if (cinfo->restart_interval) {
766     if (entropy->restarts_to_go == 0) {
767       entropy->restarts_to_go = cinfo->restart_interval;
768       entropy->next_restart_num++;
769       entropy->next_restart_num &= 7;
770     }
771     entropy->restarts_to_go--;
772   }
773 
774   return TRUE;
775 }
776 
777 
778 /*
779  * MCU encoding for AC successive approximation refinement scan.
780  */
781 
782 METHODDEF(boolean)
encode_mcu_AC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)783 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
784 {
785   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
786   const int * natural_order;
787   JBLOCKROW block;
788   register int temp;
789   register int r, k;
790   int Se, Al;
791   int EOB;
792   char *BR_buffer;
793   unsigned int BR;
794   int absvalues[DCTSIZE2];
795 
796   entropy->next_output_byte = cinfo->dest->next_output_byte;
797   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
798 
799   /* Emit restart marker if needed */
800   if (cinfo->restart_interval)
801     if (entropy->restarts_to_go == 0)
802       emit_restart_e(entropy, entropy->next_restart_num);
803 
804   Se = cinfo->Se;
805   Al = cinfo->Al;
806   natural_order = cinfo->natural_order;
807 
808   /* Encode the MCU data block */
809   block = MCU_data[0];
810 
811   /* It is convenient to make a pre-pass to determine the transformed
812    * coefficients' absolute values and the EOB position.
813    */
814   EOB = 0;
815   for (k = cinfo->Ss; k <= Se; k++) {
816     temp = (*block)[natural_order[k]];
817     /* We must apply the point transform by Al.  For AC coefficients this
818      * is an integer division with rounding towards 0.  To do this portably
819      * in C, we shift after obtaining the absolute value.
820      */
821     if (temp < 0)
822       temp = -temp;		/* temp is abs value of input */
823     temp >>= Al;		/* apply the point transform */
824     absvalues[k] = temp;	/* save abs value for main pass */
825     if (temp == 1)
826       EOB = k;			/* EOB = index of last newly-nonzero coef */
827   }
828 
829   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
830 
831   r = 0;			/* r = run length of zeros */
832   BR = 0;			/* BR = count of buffered bits added now */
833   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
834 
835   for (k = cinfo->Ss; k <= Se; k++) {
836     if ((temp = absvalues[k]) == 0) {
837       r++;
838       continue;
839     }
840 
841     /* Emit any required ZRLs, but not if they can be folded into EOB */
842     while (r > 15 && k <= EOB) {
843       /* emit any pending EOBRUN and the BE correction bits */
844       emit_eobrun(entropy);
845       /* Emit ZRL */
846       emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
847       r -= 16;
848       /* Emit buffered correction bits that must be associated with ZRL */
849       emit_buffered_bits(entropy, BR_buffer, BR);
850       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
851       BR = 0;
852     }
853 
854     /* If the coef was previously nonzero, it only needs a correction bit.
855      * NOTE: a straight translation of the spec's figure G.7 would suggest
856      * that we also need to test r > 15.  But if r > 15, we can only get here
857      * if k > EOB, which implies that this coefficient is not 1.
858      */
859     if (temp > 1) {
860       /* The correction bit is the next bit of the absolute value. */
861       BR_buffer[BR++] = (char) (temp & 1);
862       continue;
863     }
864 
865     /* Emit any pending EOBRUN and the BE correction bits */
866     emit_eobrun(entropy);
867 
868     /* Count/emit Huffman symbol for run length / number of bits */
869     emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
870 
871     /* Emit output bit for newly-nonzero coef */
872     temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
873     emit_bits_e(entropy, (unsigned int) temp, 1);
874 
875     /* Emit buffered correction bits that must be associated with this code */
876     emit_buffered_bits(entropy, BR_buffer, BR);
877     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
878     BR = 0;
879     r = 0;			/* reset zero run length */
880   }
881 
882   if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
883     entropy->EOBRUN++;		/* count an EOB */
884     entropy->BE += BR;		/* concat my correction bits to older ones */
885     /* We force out the EOB if we risk either:
886      * 1. overflow of the EOB counter;
887      * 2. overflow of the correction bit buffer during the next MCU.
888      */
889     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
890       emit_eobrun(entropy);
891   }
892 
893   cinfo->dest->next_output_byte = entropy->next_output_byte;
894   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
895 
896   /* Update restart-interval state too */
897   if (cinfo->restart_interval) {
898     if (entropy->restarts_to_go == 0) {
899       entropy->restarts_to_go = cinfo->restart_interval;
900       entropy->next_restart_num++;
901       entropy->next_restart_num &= 7;
902     }
903     entropy->restarts_to_go--;
904   }
905 
906   return TRUE;
907 }
908 
909 
910 /* Encode a single block's worth of coefficients */
911 
912 LOCAL(boolean)
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)913 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
914 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
915 {
916   register int temp, temp2;
917   register int nbits;
918   register int r, k;
919   int Se = state->cinfo->lim_Se;
920   const int * natural_order = state->cinfo->natural_order;
921 
922   /* Encode the DC coefficient difference per section F.1.2.1 */
923 
924   temp = temp2 = block[0] - last_dc_val;
925 
926   if (temp < 0) {
927     temp = -temp;		/* temp is abs value of input */
928     /* For a negative input, want temp2 = bitwise complement of abs(input) */
929     /* This code assumes we are on a two's complement machine */
930     temp2--;
931   }
932 
933   /* Find the number of bits needed for the magnitude of the coefficient */
934   nbits = 0;
935   while (temp) {
936     nbits++;
937     temp >>= 1;
938   }
939   /* Check for out-of-range coefficient values.
940    * Since we're encoding a difference, the range limit is twice as much.
941    */
942   if (nbits > MAX_COEF_BITS+1)
943     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
944 
945   /* Emit the Huffman-coded symbol for the number of bits */
946   if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
947     return FALSE;
948 
949   /* Emit that number of bits of the value, if positive, */
950   /* or the complement of its magnitude, if negative. */
951   if (nbits)			/* emit_bits rejects calls with size 0 */
952     if (! emit_bits_s(state, (unsigned int) temp2, nbits))
953       return FALSE;
954 
955   /* Encode the AC coefficients per section F.1.2.2 */
956 
957   r = 0;			/* r = run length of zeros */
958 
959   for (k = 1; k <= Se; k++) {
960     if ((temp2 = block[natural_order[k]]) == 0) {
961       r++;
962     } else {
963       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
964       while (r > 15) {
965 	if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
966 	  return FALSE;
967 	r -= 16;
968       }
969 
970       temp = temp2;
971       if (temp < 0) {
972 	temp = -temp;		/* temp is abs value of input */
973 	/* This code assumes we are on a two's complement machine */
974 	temp2--;
975       }
976 
977       /* Find the number of bits needed for the magnitude of the coefficient */
978       nbits = 1;		/* there must be at least one 1 bit */
979       while ((temp >>= 1))
980 	nbits++;
981       /* Check for out-of-range coefficient values */
982       if (nbits > MAX_COEF_BITS)
983 	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
984 
985       /* Emit Huffman symbol for run length / number of bits */
986       temp = (r << 4) + nbits;
987       if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp]))
988 	return FALSE;
989 
990       /* Emit that number of bits of the value, if positive, */
991       /* or the complement of its magnitude, if negative. */
992       if (! emit_bits_s(state, (unsigned int) temp2, nbits))
993 	return FALSE;
994 
995       r = 0;
996     }
997   }
998 
999   /* If the last coef(s) were zero, emit an end-of-block code */
1000   if (r > 0)
1001     if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
1002       return FALSE;
1003 
1004   return TRUE;
1005 }
1006 
1007 
1008 /*
1009  * Encode and output one MCU's worth of Huffman-compressed coefficients.
1010  */
1011 
1012 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)1013 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
1014 {
1015   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1016   working_state state;
1017   int blkn, ci;
1018   jpeg_component_info * compptr;
1019 
1020   /* Load up working state */
1021   state.next_output_byte = cinfo->dest->next_output_byte;
1022   state.free_in_buffer = cinfo->dest->free_in_buffer;
1023   ASSIGN_STATE(state.cur, entropy->saved);
1024   state.cinfo = cinfo;
1025 
1026   /* Emit restart marker if needed */
1027   if (cinfo->restart_interval) {
1028     if (entropy->restarts_to_go == 0)
1029       if (! emit_restart_s(&state, entropy->next_restart_num))
1030 	return FALSE;
1031   }
1032 
1033   /* Encode the MCU data blocks */
1034   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1035     ci = cinfo->MCU_membership[blkn];
1036     compptr = cinfo->cur_comp_info[ci];
1037     if (! encode_one_block(&state,
1038 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
1039 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
1040 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
1041       return FALSE;
1042     /* Update last_dc_val */
1043     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
1044   }
1045 
1046   /* Completed MCU, so update state */
1047   cinfo->dest->next_output_byte = state.next_output_byte;
1048   cinfo->dest->free_in_buffer = state.free_in_buffer;
1049   ASSIGN_STATE(entropy->saved, state.cur);
1050 
1051   /* Update restart-interval state too */
1052   if (cinfo->restart_interval) {
1053     if (entropy->restarts_to_go == 0) {
1054       entropy->restarts_to_go = cinfo->restart_interval;
1055       entropy->next_restart_num++;
1056       entropy->next_restart_num &= 7;
1057     }
1058     entropy->restarts_to_go--;
1059   }
1060 
1061   return TRUE;
1062 }
1063 
1064 
1065 /*
1066  * Finish up at the end of a Huffman-compressed scan.
1067  */
1068 
1069 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)1070 finish_pass_huff (j_compress_ptr cinfo)
1071 {
1072   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1073   working_state state;
1074 
1075   if (cinfo->progressive_mode) {
1076     entropy->next_output_byte = cinfo->dest->next_output_byte;
1077     entropy->free_in_buffer = cinfo->dest->free_in_buffer;
1078 
1079     /* Flush out any buffered data */
1080     emit_eobrun(entropy);
1081     flush_bits_e(entropy);
1082 
1083     cinfo->dest->next_output_byte = entropy->next_output_byte;
1084     cinfo->dest->free_in_buffer = entropy->free_in_buffer;
1085   } else {
1086     /* Load up working state ... flush_bits needs it */
1087     state.next_output_byte = cinfo->dest->next_output_byte;
1088     state.free_in_buffer = cinfo->dest->free_in_buffer;
1089     ASSIGN_STATE(state.cur, entropy->saved);
1090     state.cinfo = cinfo;
1091 
1092     /* Flush out the last data */
1093     if (! flush_bits_s(&state))
1094       ERREXIT(cinfo, JERR_CANT_SUSPEND);
1095 
1096     /* Update state */
1097     cinfo->dest->next_output_byte = state.next_output_byte;
1098     cinfo->dest->free_in_buffer = state.free_in_buffer;
1099     ASSIGN_STATE(entropy->saved, state.cur);
1100   }
1101 }
1102 
1103 
1104 /*
1105  * Huffman coding optimization.
1106  *
1107  * We first scan the supplied data and count the number of uses of each symbol
1108  * that is to be Huffman-coded. (This process MUST agree with the code above.)
1109  * Then we build a Huffman coding tree for the observed counts.
1110  * Symbols which are not needed at all for the particular image are not
1111  * assigned any code, which saves space in the DHT marker as well as in
1112  * the compressed data.
1113  */
1114 
1115 
1116 /* Process a single block's worth of coefficients */
1117 
1118 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])1119 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
1120 		 long dc_counts[], long ac_counts[])
1121 {
1122   register int temp;
1123   register int nbits;
1124   register int r, k;
1125   int Se = cinfo->lim_Se;
1126   const int * natural_order = cinfo->natural_order;
1127 
1128   /* Encode the DC coefficient difference per section F.1.2.1 */
1129 
1130   temp = block[0] - last_dc_val;
1131   if (temp < 0)
1132     temp = -temp;
1133 
1134   /* Find the number of bits needed for the magnitude of the coefficient */
1135   nbits = 0;
1136   while (temp) {
1137     nbits++;
1138     temp >>= 1;
1139   }
1140   /* Check for out-of-range coefficient values.
1141    * Since we're encoding a difference, the range limit is twice as much.
1142    */
1143   if (nbits > MAX_COEF_BITS+1)
1144     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1145 
1146   /* Count the Huffman symbol for the number of bits */
1147   dc_counts[nbits]++;
1148 
1149   /* Encode the AC coefficients per section F.1.2.2 */
1150 
1151   r = 0;			/* r = run length of zeros */
1152 
1153   for (k = 1; k <= Se; k++) {
1154     if ((temp = block[natural_order[k]]) == 0) {
1155       r++;
1156     } else {
1157       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
1158       while (r > 15) {
1159 	ac_counts[0xF0]++;
1160 	r -= 16;
1161       }
1162 
1163       /* Find the number of bits needed for the magnitude of the coefficient */
1164       if (temp < 0)
1165 	temp = -temp;
1166 
1167       /* Find the number of bits needed for the magnitude of the coefficient */
1168       nbits = 1;		/* there must be at least one 1 bit */
1169       while ((temp >>= 1))
1170 	nbits++;
1171       /* Check for out-of-range coefficient values */
1172       if (nbits > MAX_COEF_BITS)
1173 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1174 
1175       /* Count Huffman symbol for run length / number of bits */
1176       ac_counts[(r << 4) + nbits]++;
1177 
1178       r = 0;
1179     }
1180   }
1181 
1182   /* If the last coef(s) were zero, emit an end-of-block code */
1183   if (r > 0)
1184     ac_counts[0]++;
1185 }
1186 
1187 
1188 /*
1189  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
1190  * No data is actually output, so no suspension return is possible.
1191  */
1192 
1193 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)1194 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
1195 {
1196   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1197   int blkn, ci;
1198   jpeg_component_info * compptr;
1199 
1200   /* Take care of restart intervals if needed */
1201   if (cinfo->restart_interval) {
1202     if (entropy->restarts_to_go == 0) {
1203       /* Re-initialize DC predictions to 0 */
1204       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
1205 	entropy->saved.last_dc_val[ci] = 0;
1206       /* Update restart state */
1207       entropy->restarts_to_go = cinfo->restart_interval;
1208     }
1209     entropy->restarts_to_go--;
1210   }
1211 
1212   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1213     ci = cinfo->MCU_membership[blkn];
1214     compptr = cinfo->cur_comp_info[ci];
1215     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
1216 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
1217 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
1218     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
1219   }
1220 
1221   return TRUE;
1222 }
1223 
1224 
1225 /*
1226  * Generate the best Huffman code table for the given counts, fill htbl.
1227  *
1228  * The JPEG standard requires that no symbol be assigned a codeword of all
1229  * one bits (so that padding bits added at the end of a compressed segment
1230  * can't look like a valid code).  Because of the canonical ordering of
1231  * codewords, this just means that there must be an unused slot in the
1232  * longest codeword length category.  Section K.2 of the JPEG spec suggests
1233  * reserving such a slot by pretending that symbol 256 is a valid symbol
1234  * with count 1.  In theory that's not optimal; giving it count zero but
1235  * including it in the symbol set anyway should give a better Huffman code.
1236  * But the theoretically better code actually seems to come out worse in
1237  * practice, because it produces more all-ones bytes (which incur stuffed
1238  * zero bytes in the final file).  In any case the difference is tiny.
1239  *
1240  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
1241  * If some symbols have a very small but nonzero probability, the Huffman tree
1242  * must be adjusted to meet the code length restriction.  We currently use
1243  * the adjustment method suggested in JPEG section K.2.  This method is *not*
1244  * optimal; it may not choose the best possible limited-length code.  But
1245  * typically only very-low-frequency symbols will be given less-than-optimal
1246  * lengths, so the code is almost optimal.  Experimental comparisons against
1247  * an optimal limited-length-code algorithm indicate that the difference is
1248  * microscopic --- usually less than a hundredth of a percent of total size.
1249  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
1250  */
1251 
1252 LOCAL(void)
jpeg_gen_optimal_table(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])1253 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
1254 {
1255 #define MAX_CLEN 32		/* assumed maximum initial code length */
1256   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
1257   int codesize[257];		/* codesize[k] = code length of symbol k */
1258   int others[257];		/* next symbol in current branch of tree */
1259   int c1, c2;
1260   int p, i, j;
1261   long v;
1262 
1263   /* This algorithm is explained in section K.2 of the JPEG standard */
1264 
1265   MEMZERO(bits, SIZEOF(bits));
1266   MEMZERO(codesize, SIZEOF(codesize));
1267   for (i = 0; i < 257; i++)
1268     others[i] = -1;		/* init links to empty */
1269 
1270   freq[256] = 1;		/* make sure 256 has a nonzero count */
1271   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
1272    * that no real symbol is given code-value of all ones, because 256
1273    * will be placed last in the largest codeword category.
1274    */
1275 
1276   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
1277 
1278   for (;;) {
1279     /* Find the smallest nonzero frequency, set c1 = its symbol */
1280     /* In case of ties, take the larger symbol number */
1281     c1 = -1;
1282     v = 1000000000L;
1283     for (i = 0; i <= 256; i++) {
1284       if (freq[i] && freq[i] <= v) {
1285 	v = freq[i];
1286 	c1 = i;
1287       }
1288     }
1289 
1290     /* Find the next smallest nonzero frequency, set c2 = its symbol */
1291     /* In case of ties, take the larger symbol number */
1292     c2 = -1;
1293     v = 1000000000L;
1294     for (i = 0; i <= 256; i++) {
1295       if (freq[i] && freq[i] <= v && i != c1) {
1296 	v = freq[i];
1297 	c2 = i;
1298       }
1299     }
1300 
1301     /* Done if we've merged everything into one frequency */
1302     if (c2 < 0)
1303       break;
1304 
1305     /* Else merge the two counts/trees */
1306     freq[c1] += freq[c2];
1307     freq[c2] = 0;
1308 
1309     /* Increment the codesize of everything in c1's tree branch */
1310     codesize[c1]++;
1311     while (others[c1] >= 0) {
1312       c1 = others[c1];
1313       codesize[c1]++;
1314     }
1315 
1316     others[c1] = c2;		/* chain c2 onto c1's tree branch */
1317 
1318     /* Increment the codesize of everything in c2's tree branch */
1319     codesize[c2]++;
1320     while (others[c2] >= 0) {
1321       c2 = others[c2];
1322       codesize[c2]++;
1323     }
1324   }
1325 
1326   /* Now count the number of symbols of each code length */
1327   for (i = 0; i <= 256; i++) {
1328     if (codesize[i]) {
1329       /* The JPEG standard seems to think that this can't happen, */
1330       /* but I'm paranoid... */
1331       if (codesize[i] > MAX_CLEN)
1332 	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
1333 
1334       bits[codesize[i]]++;
1335     }
1336   }
1337 
1338   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1339    * Huffman procedure assigned any such lengths, we must adjust the coding.
1340    * Here is what the JPEG spec says about how this next bit works:
1341    * Since symbols are paired for the longest Huffman code, the symbols are
1342    * removed from this length category two at a time.  The prefix for the pair
1343    * (which is one bit shorter) is allocated to one of the pair; then,
1344    * skipping the BITS entry for that prefix length, a code word from the next
1345    * shortest nonzero BITS entry is converted into a prefix for two code words
1346    * one bit longer.
1347    */
1348 
1349   for (i = MAX_CLEN; i > 16; i--) {
1350     while (bits[i] > 0) {
1351       j = i - 2;		/* find length of new prefix to be used */
1352       while (bits[j] == 0)
1353 	j--;
1354 
1355       bits[i] -= 2;		/* remove two symbols */
1356       bits[i-1]++;		/* one goes in this length */
1357       bits[j+1] += 2;		/* two new symbols in this length */
1358       bits[j]--;		/* symbol of this length is now a prefix */
1359     }
1360   }
1361 
1362   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
1363   while (bits[i] == 0)		/* find largest codelength still in use */
1364     i--;
1365   bits[i]--;
1366 
1367   /* Return final symbol counts (only for lengths 0..16) */
1368   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
1369 
1370   /* Return a list of the symbols sorted by code length */
1371   /* It's not real clear to me why we don't need to consider the codelength
1372    * changes made above, but the JPEG spec seems to think this works.
1373    */
1374   p = 0;
1375   for (i = 1; i <= MAX_CLEN; i++) {
1376     for (j = 0; j <= 255; j++) {
1377       if (codesize[j] == i) {
1378 	htbl->huffval[p] = (UINT8) j;
1379 	p++;
1380       }
1381     }
1382   }
1383 
1384   /* Set sent_table FALSE so updated table will be written to JPEG file. */
1385   htbl->sent_table = FALSE;
1386 }
1387 
1388 
1389 /*
1390  * Finish up a statistics-gathering pass and create the new Huffman tables.
1391  */
1392 
1393 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)1394 finish_pass_gather (j_compress_ptr cinfo)
1395 {
1396   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1397   int ci, tbl;
1398   jpeg_component_info * compptr;
1399   JHUFF_TBL **htblptr;
1400   boolean did_dc[NUM_HUFF_TBLS];
1401   boolean did_ac[NUM_HUFF_TBLS];
1402 
1403   /* It's important not to apply jpeg_gen_optimal_table more than once
1404    * per table, because it clobbers the input frequency counts!
1405    */
1406   if (cinfo->progressive_mode)
1407     /* Flush out buffered data (all we care about is counting the EOB symbol) */
1408     emit_eobrun(entropy);
1409 
1410   MEMZERO(did_dc, SIZEOF(did_dc));
1411   MEMZERO(did_ac, SIZEOF(did_ac));
1412 
1413   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1414     compptr = cinfo->cur_comp_info[ci];
1415     /* DC needs no table for refinement scan */
1416     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
1417       tbl = compptr->dc_tbl_no;
1418       if (! did_dc[tbl]) {
1419 	htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
1420 	if (*htblptr == NULL)
1421 	  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1422 	jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
1423 	did_dc[tbl] = TRUE;
1424       }
1425     }
1426     /* AC needs no table when not present */
1427     if (cinfo->Se) {
1428       tbl = compptr->ac_tbl_no;
1429       if (! did_ac[tbl]) {
1430 	htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
1431 	if (*htblptr == NULL)
1432 	  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1433 	jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
1434 	did_ac[tbl] = TRUE;
1435       }
1436     }
1437   }
1438 }
1439 
1440 
1441 /*
1442  * Initialize for a Huffman-compressed scan.
1443  * If gather_statistics is TRUE, we do not output anything during the scan,
1444  * just count the Huffman symbols used and generate Huffman code tables.
1445  */
1446 
1447 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)1448 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
1449 {
1450   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1451   int ci, tbl;
1452   jpeg_component_info * compptr;
1453 
1454   if (gather_statistics)
1455     entropy->pub.finish_pass = finish_pass_gather;
1456   else
1457     entropy->pub.finish_pass = finish_pass_huff;
1458 
1459   if (cinfo->progressive_mode) {
1460     entropy->cinfo = cinfo;
1461     entropy->gather_statistics = gather_statistics;
1462 
1463     /* We assume jcmaster.c already validated the scan parameters. */
1464 
1465     /* Select execution routine */
1466     if (cinfo->Ah == 0) {
1467       if (cinfo->Ss == 0)
1468 	entropy->pub.encode_mcu = encode_mcu_DC_first;
1469       else
1470 	entropy->pub.encode_mcu = encode_mcu_AC_first;
1471     } else {
1472       if (cinfo->Ss == 0)
1473 	entropy->pub.encode_mcu = encode_mcu_DC_refine;
1474       else {
1475 	entropy->pub.encode_mcu = encode_mcu_AC_refine;
1476 	/* AC refinement needs a correction bit buffer */
1477 	if (entropy->bit_buffer == NULL)
1478 	  entropy->bit_buffer = (char *)
1479 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1480 					MAX_CORR_BITS * SIZEOF(char));
1481       }
1482     }
1483 
1484     /* Initialize AC stuff */
1485     entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
1486     entropy->EOBRUN = 0;
1487     entropy->BE = 0;
1488   } else {
1489     if (gather_statistics)
1490       entropy->pub.encode_mcu = encode_mcu_gather;
1491     else
1492       entropy->pub.encode_mcu = encode_mcu_huff;
1493   }
1494 
1495   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1496     compptr = cinfo->cur_comp_info[ci];
1497     /* DC needs no table for refinement scan */
1498     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
1499       tbl = compptr->dc_tbl_no;
1500       if (gather_statistics) {
1501 	/* Check for invalid table index */
1502 	/* (make_c_derived_tbl does this in the other path) */
1503 	if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
1504 	  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
1505 	/* Allocate and zero the statistics tables */
1506 	/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
1507 	if (entropy->dc_count_ptrs[tbl] == NULL)
1508 	  entropy->dc_count_ptrs[tbl] = (long *)
1509 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1510 					257 * SIZEOF(long));
1511 	MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
1512       } else {
1513 	/* Compute derived values for Huffman tables */
1514 	/* We may do this more than once for a table, but it's not expensive */
1515 	jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
1516 				& entropy->dc_derived_tbls[tbl]);
1517       }
1518       /* Initialize DC predictions to 0 */
1519       entropy->saved.last_dc_val[ci] = 0;
1520     }
1521     /* AC needs no table when not present */
1522     if (cinfo->Se) {
1523       tbl = compptr->ac_tbl_no;
1524       if (gather_statistics) {
1525 	if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
1526 	  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
1527 	if (entropy->ac_count_ptrs[tbl] == NULL)
1528 	  entropy->ac_count_ptrs[tbl] = (long *)
1529 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1530 					257 * SIZEOF(long));
1531 	MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
1532       } else {
1533 	jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
1534 				& entropy->ac_derived_tbls[tbl]);
1535       }
1536     }
1537   }
1538 
1539   /* Initialize bit buffer to empty */
1540   entropy->saved.put_buffer = 0;
1541   entropy->saved.put_bits = 0;
1542 
1543   /* Initialize restart stuff */
1544   entropy->restarts_to_go = cinfo->restart_interval;
1545   entropy->next_restart_num = 0;
1546 }
1547 
1548 
1549 /*
1550  * Module initialization routine for Huffman entropy encoding.
1551  */
1552 
1553 GLOBAL(void)
jinit_huff_encoder(j_compress_ptr cinfo)1554 jinit_huff_encoder (j_compress_ptr cinfo)
1555 {
1556   huff_entropy_ptr entropy;
1557   int i;
1558 
1559   entropy = (huff_entropy_ptr)
1560     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1561 				SIZEOF(huff_entropy_encoder));
1562   cinfo->entropy = &entropy->pub;
1563   entropy->pub.start_pass = start_pass_huff;
1564 
1565   /* Mark tables unallocated */
1566   for (i = 0; i < NUM_HUFF_TBLS; i++) {
1567     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1568     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1569   }
1570 
1571   if (cinfo->progressive_mode)
1572     entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
1573 }
1574