1 ///////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
4 // Digital Ltd. LLC
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 // *       Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // *       Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other materials provided with the
16 // distribution.
17 // *       Neither the name of Industrial Light & Magic nor the names of
18 // its contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 //
33 ///////////////////////////////////////////////////////////////////////////
34 
35 
36 #ifndef INCLUDED_IMATHMATRIXALGO_H
37 #define INCLUDED_IMATHMATRIXALGO_H
38 
39 //-------------------------------------------------------------------------
40 //
41 //  This file contains algorithms applied to or in conjunction with
42 //  transformation matrices (Imath::Matrix33 and Imath::Matrix44).
43 //  The assumption made is that these functions are called much less
44 //  often than the basic point functions or these functions require
45 //  more support classes.
46 //
47 //  This file also defines a few predefined constant matrices.
48 //
49 //-------------------------------------------------------------------------
50 
51 #include "ImathExport.h"
52 #include "ImathMatrix.h"
53 #include "ImathQuat.h"
54 #include "ImathEuler.h"
55 #include "ImathExc.h"
56 #include "ImathVec.h"
57 #include "ImathLimits.h"
58 #include "ImathNamespace.h"
59 #include <math.h>
60 
61 IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
62 
63 //------------------
64 // Identity matrices
65 //------------------
66 
67 IMATH_EXPORT_CONST M33f identity33f;
68 IMATH_EXPORT_CONST M44f identity44f;
69 IMATH_EXPORT_CONST M33d identity33d;
70 IMATH_EXPORT_CONST M44d identity44d;
71 
72 //----------------------------------------------------------------------
73 // Extract scale, shear, rotation, and translation values from a matrix:
74 //
75 // Notes:
76 //
77 // This implementation follows the technique described in the paper by
78 // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
79 // Matrix into Simple Transformations", p. 320.
80 //
81 // - Some of the functions below have an optional exc parameter
82 //   that determines the functions' behavior when the matrix'
83 //   scaling is very close to zero:
84 //
85 //   If exc is true, the functions throw an Imath::ZeroScale exception.
86 //
87 //   If exc is false:
88 //
89 //      extractScaling (m, s)            returns false, s is invalid
90 //	sansScaling (m)		         returns m
91 //	removeScaling (m)	         returns false, m is unchanged
92 //      sansScalingAndShear (m)          returns m
93 //      removeScalingAndShear (m)        returns false, m is unchanged
94 //      extractAndRemoveScalingAndShear (m, s, h)
95 //                                       returns false, m is unchanged,
96 //                                                      (sh) are invalid
97 //      checkForZeroScaleInRow ()        returns false
98 //	extractSHRT (m, s, h, r, t)      returns false, (shrt) are invalid
99 //
100 // - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX()
101 //   assume that the matrix does not include shear or non-uniform scaling,
102 //   but they do not examine the matrix to verify this assumption.
103 //   Matrices with shear or non-uniform scaling are likely to produce
104 //   meaningless results.  Therefore, you should use the
105 //   removeScalingAndShear() routine, if necessary, prior to calling
106 //   extractEuler...() .
107 //
108 // - All functions assume that the matrix does not include perspective
109 //   transformation(s), but they do not examine the matrix to verify
110 //   this assumption.  Matrices with perspective transformations are
111 //   likely to produce meaningless results.
112 //
113 //----------------------------------------------------------------------
114 
115 
116 //
117 // Declarations for 4x4 matrix.
118 //
119 
120 template <class T>  bool        extractScaling
121                                             (const Matrix44<T> &mat,
122 					     Vec3<T> &scl,
123 					     bool exc = true);
124 
125 template <class T>  Matrix44<T> sansScaling (const Matrix44<T> &mat,
126 					     bool exc = true);
127 
128 template <class T>  bool        removeScaling
129                                             (Matrix44<T> &mat,
130 					     bool exc = true);
131 
132 template <class T>  bool        extractScalingAndShear
133                                             (const Matrix44<T> &mat,
134 					     Vec3<T> &scl,
135 					     Vec3<T> &shr,
136 					     bool exc = true);
137 
138 template <class T>  Matrix44<T> sansScalingAndShear
139                                             (const Matrix44<T> &mat,
140 					     bool exc = true);
141 
142 template <class T>  void        sansScalingAndShear
143                                             (Matrix44<T> &result,
144                                              const Matrix44<T> &mat,
145 					     bool exc = true);
146 
147 template <class T>  bool        removeScalingAndShear
148                                             (Matrix44<T> &mat,
149 					     bool exc = true);
150 
151 template <class T>  bool        extractAndRemoveScalingAndShear
152                                             (Matrix44<T> &mat,
153 					     Vec3<T>     &scl,
154 					     Vec3<T>     &shr,
155 					     bool exc = true);
156 
157 template <class T>  void	extractEulerXYZ
158                                             (const Matrix44<T> &mat,
159 					     Vec3<T> &rot);
160 
161 template <class T>  void	extractEulerZYX
162                                             (const Matrix44<T> &mat,
163 					     Vec3<T> &rot);
164 
165 template <class T>  Quat<T>	extractQuat (const Matrix44<T> &mat);
166 
167 template <class T>  bool	extractSHRT
168                                     (const Matrix44<T> &mat,
169 				     Vec3<T> &s,
170 				     Vec3<T> &h,
171 				     Vec3<T> &r,
172 				     Vec3<T> &t,
173 				     bool exc /*= true*/,
174 				     typename Euler<T>::Order rOrder);
175 
176 template <class T>  bool	extractSHRT
177                                     (const Matrix44<T> &mat,
178 				     Vec3<T> &s,
179 				     Vec3<T> &h,
180 				     Vec3<T> &r,
181 				     Vec3<T> &t,
182 				     bool exc = true);
183 
184 template <class T>  bool	extractSHRT
185                                     (const Matrix44<T> &mat,
186 				     Vec3<T> &s,
187 				     Vec3<T> &h,
188 				     Euler<T> &r,
189 				     Vec3<T> &t,
190 				     bool exc = true);
191 
192 //
193 // Internal utility function.
194 //
195 
196 template <class T>  bool	checkForZeroScaleInRow
197                                             (const T       &scl,
198 					     const Vec3<T> &row,
199 					     bool exc = true);
200 
201 template <class T>  Matrix44<T> outerProduct
202                                             ( const Vec4<T> &a,
203                                               const Vec4<T> &b);
204 
205 
206 //
207 // Returns a matrix that rotates "fromDirection" vector to "toDirection"
208 // vector.
209 //
210 
211 template <class T> Matrix44<T>	rotationMatrix (const Vec3<T> &fromDirection,
212 						const Vec3<T> &toDirection);
213 
214 
215 
216 //
217 // Returns a matrix that rotates the "fromDir" vector
218 // so that it points towards "toDir".  You may also
219 // specify that you want the up vector to be pointing
220 // in a certain direction "upDir".
221 //
222 
223 template <class T> Matrix44<T>	rotationMatrixWithUpDir
224                                             (const Vec3<T> &fromDir,
225 					     const Vec3<T> &toDir,
226 					     const Vec3<T> &upDir);
227 
228 
229 //
230 // Constructs a matrix that rotates the z-axis so that it
231 // points towards "targetDir".  You must also specify
232 // that you want the up vector to be pointing in a
233 // certain direction "upDir".
234 //
235 // Notes: The following degenerate cases are handled:
236 //        (a) when the directions given by "toDir" and "upDir"
237 //            are parallel or opposite;
238 //            (the direction vectors must have a non-zero cross product)
239 //        (b) when any of the given direction vectors have zero length
240 //
241 
242 template <class T> void	alignZAxisWithTargetDir
243                                             (Matrix44<T> &result,
244                                              Vec3<T>      targetDir,
245 					     Vec3<T>      upDir);
246 
247 
248 // Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
249 // If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
250 // Inputs are :
251 //     -the position of the frame
252 //     -the x axis direction of the frame
253 //     -a normal to the y axis of the frame
254 // Return is the orthonormal frame
255 template <class T> Matrix44<T> computeLocalFrame( const Vec3<T>& p,
256                                                   const Vec3<T>& xDir,
257                                                   const Vec3<T>& normal);
258 
259 // Add a translate/rotate/scale offset to an input frame
260 // and put it in another frame of reference
261 // Inputs are :
262 //     - input frame
263 //     - translate offset
264 //     - rotate    offset in degrees
265 //     - scale     offset
266 //     - frame of reference
267 // Output is the offsetted frame
268 template <class T> Matrix44<T> addOffset( const Matrix44<T>& inMat,
269                                           const Vec3<T>&     tOffset,
270                                           const Vec3<T>&     rOffset,
271                                           const Vec3<T>&     sOffset,
272                                           const Vec3<T>&     ref);
273 
274 // Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
275 // Inputs are :
276 //      -keepRotateA : if true keep rotate from matrix A, use B otherwise
277 //      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
278 //      -Matrix A
279 //      -Matrix B
280 // Return Matrix A with tweaked rotation/scale
281 template <class T> Matrix44<T> computeRSMatrix( bool               keepRotateA,
282                                                 bool               keepScaleA,
283                                                 const Matrix44<T>& A,
284                                                 const Matrix44<T>& B);
285 
286 
287 //----------------------------------------------------------------------
288 
289 
290 //
291 // Declarations for 3x3 matrix.
292 //
293 
294 
295 template <class T>  bool        extractScaling
296                                             (const Matrix33<T> &mat,
297 					     Vec2<T> &scl,
298 					     bool exc = true);
299 
300 template <class T>  Matrix33<T> sansScaling (const Matrix33<T> &mat,
301 					     bool exc = true);
302 
303 template <class T>  bool        removeScaling
304                                             (Matrix33<T> &mat,
305 					     bool exc = true);
306 
307 template <class T>  bool        extractScalingAndShear
308                                             (const Matrix33<T> &mat,
309 					     Vec2<T> &scl,
310 					     T &h,
311 					     bool exc = true);
312 
313 template <class T>  Matrix33<T> sansScalingAndShear
314                                             (const Matrix33<T> &mat,
315 					     bool exc = true);
316 
317 template <class T>  bool        removeScalingAndShear
318                                             (Matrix33<T> &mat,
319 					     bool exc = true);
320 
321 template <class T>  bool        extractAndRemoveScalingAndShear
322                                             (Matrix33<T> &mat,
323 					     Vec2<T>     &scl,
324 					     T           &shr,
325 					     bool exc = true);
326 
327 template <class T>  void	extractEuler
328                                             (const Matrix33<T> &mat,
329 					     T       &rot);
330 
331 template <class T>  bool	extractSHRT (const Matrix33<T> &mat,
332 					     Vec2<T> &s,
333 					     T       &h,
334 					     T       &r,
335 					     Vec2<T> &t,
336 					     bool exc = true);
337 
338 template <class T>  bool	checkForZeroScaleInRow
339                                             (const T       &scl,
340 					     const Vec2<T> &row,
341 					     bool exc = true);
342 
343 template <class T>  Matrix33<T> outerProduct
344                                             ( const Vec3<T> &a,
345                                               const Vec3<T> &b);
346 
347 
348 //-----------------------------------------------------------------------------
349 // Implementation for 4x4 Matrix
350 //------------------------------
351 
352 
353 template <class T>
354 bool
extractScaling(const Matrix44<T> & mat,Vec3<T> & scl,bool exc)355 extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc)
356 {
357     Vec3<T> shr;
358     Matrix44<T> M (mat);
359 
360     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
361 	return false;
362 
363     return true;
364 }
365 
366 
367 template <class T>
368 Matrix44<T>
sansScaling(const Matrix44<T> & mat,bool exc)369 sansScaling (const Matrix44<T> &mat, bool exc)
370 {
371     Vec3<T> scl;
372     Vec3<T> shr;
373     Vec3<T> rot;
374     Vec3<T> tran;
375 
376     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
377 	return mat;
378 
379     Matrix44<T> M;
380 
381     M.translate (tran);
382     M.rotate (rot);
383     M.shear (shr);
384 
385     return M;
386 }
387 
388 
389 template <class T>
390 bool
removeScaling(Matrix44<T> & mat,bool exc)391 removeScaling (Matrix44<T> &mat, bool exc)
392 {
393     Vec3<T> scl;
394     Vec3<T> shr;
395     Vec3<T> rot;
396     Vec3<T> tran;
397 
398     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
399 	return false;
400 
401     mat.makeIdentity ();
402     mat.translate (tran);
403     mat.rotate (rot);
404     mat.shear (shr);
405 
406     return true;
407 }
408 
409 
410 template <class T>
411 bool
extractScalingAndShear(const Matrix44<T> & mat,Vec3<T> & scl,Vec3<T> & shr,bool exc)412 extractScalingAndShear (const Matrix44<T> &mat,
413 			Vec3<T> &scl, Vec3<T> &shr, bool exc)
414 {
415     Matrix44<T> M (mat);
416 
417     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
418 	return false;
419 
420     return true;
421 }
422 
423 
424 template <class T>
425 Matrix44<T>
sansScalingAndShear(const Matrix44<T> & mat,bool exc)426 sansScalingAndShear (const Matrix44<T> &mat, bool exc)
427 {
428     Vec3<T> scl;
429     Vec3<T> shr;
430     Matrix44<T> M (mat);
431 
432     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
433 	return mat;
434 
435     return M;
436 }
437 
438 
439 template <class T>
440 void
sansScalingAndShear(Matrix44<T> & result,const Matrix44<T> & mat,bool exc)441 sansScalingAndShear (Matrix44<T> &result, const Matrix44<T> &mat, bool exc)
442 {
443     Vec3<T> scl;
444     Vec3<T> shr;
445 
446     if (! extractAndRemoveScalingAndShear (result, scl, shr, exc))
447 	result = mat;
448 }
449 
450 
451 template <class T>
452 bool
removeScalingAndShear(Matrix44<T> & mat,bool exc)453 removeScalingAndShear (Matrix44<T> &mat, bool exc)
454 {
455     Vec3<T> scl;
456     Vec3<T> shr;
457 
458     if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
459 	return false;
460 
461     return true;
462 }
463 
464 
465 template <class T>
466 bool
extractAndRemoveScalingAndShear(Matrix44<T> & mat,Vec3<T> & scl,Vec3<T> & shr,bool exc)467 extractAndRemoveScalingAndShear (Matrix44<T> &mat,
468 				 Vec3<T> &scl, Vec3<T> &shr, bool exc)
469 {
470     //
471     // This implementation follows the technique described in the paper by
472     // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
473     // Matrix into Simple Transformations", p. 320.
474     //
475 
476     Vec3<T> row[3];
477 
478     row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]);
479     row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]);
480     row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]);
481 
482     T maxVal = 0;
483     for (int i=0; i < 3; i++)
484 	for (int j=0; j < 3; j++)
485 	    if (IMATH_INTERNAL_NAMESPACE::abs (row[i][j]) > maxVal)
486 		maxVal = IMATH_INTERNAL_NAMESPACE::abs (row[i][j]);
487 
488     //
489     // We normalize the 3x3 matrix here.
490     // It was noticed that this can improve numerical stability significantly,
491     // especially when many of the upper 3x3 matrix's coefficients are very
492     // close to zero; we correct for this step at the end by multiplying the
493     // scaling factors by maxVal at the end (shear and rotation are not
494     // affected by the normalization).
495 
496     if (maxVal != 0)
497     {
498 	for (int i=0; i < 3; i++)
499 	    if (! checkForZeroScaleInRow (maxVal, row[i], exc))
500 		return false;
501 	    else
502 		row[i] /= maxVal;
503     }
504 
505     // Compute X scale factor.
506     scl.x = row[0].length ();
507     if (! checkForZeroScaleInRow (scl.x, row[0], exc))
508 	return false;
509 
510     // Normalize first row.
511     row[0] /= scl.x;
512 
513     // An XY shear factor will shear the X coord. as the Y coord. changes.
514     // There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only
515     // extract the first 3 because we can effect the last 3 by shearing in
516     // XY, XZ, YZ combined rotations and scales.
517     //
518     // shear matrix <   1,  YX,  ZX,  0,
519     //                 XY,   1,  ZY,  0,
520     //                 XZ,  YZ,   1,  0,
521     //                  0,   0,   0,  1 >
522 
523     // Compute XY shear factor and make 2nd row orthogonal to 1st.
524     shr[0]  = row[0].dot (row[1]);
525     row[1] -= shr[0] * row[0];
526 
527     // Now, compute Y scale.
528     scl.y = row[1].length ();
529     if (! checkForZeroScaleInRow (scl.y, row[1], exc))
530 	return false;
531 
532     // Normalize 2nd row and correct the XY shear factor for Y scaling.
533     row[1] /= scl.y;
534     shr[0] /= scl.y;
535 
536     // Compute XZ and YZ shears, orthogonalize 3rd row.
537     shr[1]  = row[0].dot (row[2]);
538     row[2] -= shr[1] * row[0];
539     shr[2]  = row[1].dot (row[2]);
540     row[2] -= shr[2] * row[1];
541 
542     // Next, get Z scale.
543     scl.z = row[2].length ();
544     if (! checkForZeroScaleInRow (scl.z, row[2], exc))
545 	return false;
546 
547     // Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling.
548     row[2] /= scl.z;
549     shr[1] /= scl.z;
550     shr[2] /= scl.z;
551 
552     // At this point, the upper 3x3 matrix in mat is orthonormal.
553     // Check for a coordinate system flip. If the determinant
554     // is less than zero, then negate the matrix and the scaling factors.
555     if (row[0].dot (row[1].cross (row[2])) < 0)
556 	for (int  i=0; i < 3; i++)
557 	{
558 	    scl[i] *= -1;
559 	    row[i] *= -1;
560 	}
561 
562     // Copy over the orthonormal rows into the returned matrix.
563     // The upper 3x3 matrix in mat is now a rotation matrix.
564     for (int i=0; i < 3; i++)
565     {
566 	mat[i][0] = row[i][0];
567 	mat[i][1] = row[i][1];
568 	mat[i][2] = row[i][2];
569     }
570 
571     // Correct the scaling factors for the normalization step that we
572     // performed above; shear and rotation are not affected by the
573     // normalization.
574     scl *= maxVal;
575 
576     return true;
577 }
578 
579 
580 template <class T>
581 void
extractEulerXYZ(const Matrix44<T> & mat,Vec3<T> & rot)582 extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot)
583 {
584     //
585     // Normalize the local x, y and z axes to remove scaling.
586     //
587 
588     Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
589     Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
590     Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
591 
592     i.normalize();
593     j.normalize();
594     k.normalize();
595 
596     Matrix44<T> M (i[0], i[1], i[2], 0,
597 		   j[0], j[1], j[2], 0,
598 		   k[0], k[1], k[2], 0,
599 		   0,    0,    0,    1);
600 
601     //
602     // Extract the first angle, rot.x.
603     //
604 
605     rot.x = Math<T>::atan2 (M[1][2], M[2][2]);
606 
607     //
608     // Remove the rot.x rotation from M, so that the remaining
609     // rotation, N, is only around two axes, and gimbal lock
610     // cannot occur.
611     //
612 
613     Matrix44<T> N;
614     N.rotate (Vec3<T> (-rot.x, 0, 0));
615     N = N * M;
616 
617     //
618     // Extract the other two angles, rot.y and rot.z, from N.
619     //
620 
621     T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]);
622     rot.y = Math<T>::atan2 (-N[0][2], cy);
623     rot.z = Math<T>::atan2 (-N[1][0], N[1][1]);
624 }
625 
626 
627 template <class T>
628 void
extractEulerZYX(const Matrix44<T> & mat,Vec3<T> & rot)629 extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot)
630 {
631     //
632     // Normalize the local x, y and z axes to remove scaling.
633     //
634 
635     Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
636     Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
637     Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
638 
639     i.normalize();
640     j.normalize();
641     k.normalize();
642 
643     Matrix44<T> M (i[0], i[1], i[2], 0,
644 		   j[0], j[1], j[2], 0,
645 		   k[0], k[1], k[2], 0,
646 		   0,    0,    0,    1);
647 
648     //
649     // Extract the first angle, rot.x.
650     //
651 
652     rot.x = -Math<T>::atan2 (M[1][0], M[0][0]);
653 
654     //
655     // Remove the x rotation from M, so that the remaining
656     // rotation, N, is only around two axes, and gimbal lock
657     // cannot occur.
658     //
659 
660     Matrix44<T> N;
661     N.rotate (Vec3<T> (0, 0, -rot.x));
662     N = N * M;
663 
664     //
665     // Extract the other two angles, rot.y and rot.z, from N.
666     //
667 
668     T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]);
669     rot.y = -Math<T>::atan2 (-N[2][0], cy);
670     rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]);
671 }
672 
673 
674 template <class T>
675 Quat<T>
extractQuat(const Matrix44<T> & mat)676 extractQuat (const Matrix44<T> &mat)
677 {
678   Matrix44<T> rot;
679 
680   T        tr, s;
681   T         q[4];
682   int    i, j, k;
683   Quat<T>   quat;
684 
685   int nxt[3] = {1, 2, 0};
686   tr = mat[0][0] + mat[1][1] + mat[2][2];
687 
688   // check the diagonal
689   if (tr > 0.0) {
690      s = Math<T>::sqrt (tr + T(1.0));
691      quat.r = s / T(2.0);
692      s = T(0.5) / s;
693 
694      quat.v.x = (mat[1][2] - mat[2][1]) * s;
695      quat.v.y = (mat[2][0] - mat[0][2]) * s;
696      quat.v.z = (mat[0][1] - mat[1][0]) * s;
697   }
698   else {
699      // diagonal is negative
700      i = 0;
701      if (mat[1][1] > mat[0][0])
702         i=1;
703      if (mat[2][2] > mat[i][i])
704         i=2;
705 
706      j = nxt[i];
707      k = nxt[j];
708      s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + T(1.0));
709 
710      q[i] = s * T(0.5);
711      if (s != T(0.0))
712         s = T(0.5) / s;
713 
714      q[3] = (mat[j][k] - mat[k][j]) * s;
715      q[j] = (mat[i][j] + mat[j][i]) * s;
716      q[k] = (mat[i][k] + mat[k][i]) * s;
717 
718      quat.v.x = q[0];
719      quat.v.y = q[1];
720      quat.v.z = q[2];
721      quat.r = q[3];
722  }
723 
724   return quat;
725 }
726 
727 template <class T>
728 bool
extractSHRT(const Matrix44<T> & mat,Vec3<T> & s,Vec3<T> & h,Vec3<T> & r,Vec3<T> & t,bool exc,typename Euler<T>::Order rOrder)729 extractSHRT (const Matrix44<T> &mat,
730 	     Vec3<T> &s,
731 	     Vec3<T> &h,
732 	     Vec3<T> &r,
733 	     Vec3<T> &t,
734 	     bool exc /* = true */ ,
735 	     typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ )
736 {
737     Matrix44<T> rot;
738 
739     rot = mat;
740     if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
741 	return false;
742 
743     extractEulerXYZ (rot, r);
744 
745     t.x = mat[3][0];
746     t.y = mat[3][1];
747     t.z = mat[3][2];
748 
749     if (rOrder != Euler<T>::XYZ)
750     {
751 	IMATH_INTERNAL_NAMESPACE::Euler<T> eXYZ (r, IMATH_INTERNAL_NAMESPACE::Euler<T>::XYZ);
752 	IMATH_INTERNAL_NAMESPACE::Euler<T> e (eXYZ, rOrder);
753 	r = e.toXYZVector ();
754     }
755 
756     return true;
757 }
758 
759 template <class T>
760 bool
extractSHRT(const Matrix44<T> & mat,Vec3<T> & s,Vec3<T> & h,Vec3<T> & r,Vec3<T> & t,bool exc)761 extractSHRT (const Matrix44<T> &mat,
762 	     Vec3<T> &s,
763 	     Vec3<T> &h,
764 	     Vec3<T> &r,
765 	     Vec3<T> &t,
766 	     bool exc)
767 {
768     return extractSHRT(mat, s, h, r, t, exc, IMATH_INTERNAL_NAMESPACE::Euler<T>::XYZ);
769 }
770 
771 template <class T>
772 bool
extractSHRT(const Matrix44<T> & mat,Vec3<T> & s,Vec3<T> & h,Euler<T> & r,Vec3<T> & t,bool exc)773 extractSHRT (const Matrix44<T> &mat,
774 	     Vec3<T> &s,
775 	     Vec3<T> &h,
776 	     Euler<T> &r,
777 	     Vec3<T> &t,
778 	     bool exc /* = true */)
779 {
780     return extractSHRT (mat, s, h, r, t, exc, r.order ());
781 }
782 
783 
784 template <class T>
785 bool
checkForZeroScaleInRow(const T & scl,const Vec3<T> & row,bool exc)786 checkForZeroScaleInRow (const T& scl,
787 			const Vec3<T> &row,
788 			bool exc /* = true */ )
789 {
790     for (int i = 0; i < 3; i++)
791     {
792 	if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
793 	{
794 	    if (exc)
795 		throw IMATH_INTERNAL_NAMESPACE::ZeroScaleExc ("Cannot remove zero scaling "
796 					   "from matrix.");
797 	    else
798 		return false;
799 	}
800     }
801 
802     return true;
803 }
804 
805 template <class T>
806 Matrix44<T>
outerProduct(const Vec4<T> & a,const Vec4<T> & b)807 outerProduct (const Vec4<T> &a, const Vec4<T> &b )
808 {
809     return Matrix44<T> (a.x*b.x, a.x*b.y, a.x*b.z, a.x*b.w,
810                         a.y*b.x, a.y*b.y, a.y*b.z, a.x*b.w,
811                         a.z*b.x, a.z*b.y, a.z*b.z, a.x*b.w,
812                         a.w*b.x, a.w*b.y, a.w*b.z, a.w*b.w);
813 }
814 
815 template <class T>
816 Matrix44<T>
rotationMatrix(const Vec3<T> & from,const Vec3<T> & to)817 rotationMatrix (const Vec3<T> &from, const Vec3<T> &to)
818 {
819     Quat<T> q;
820     q.setRotation(from, to);
821     return q.toMatrix44();
822 }
823 
824 
825 template <class T>
826 Matrix44<T>
rotationMatrixWithUpDir(const Vec3<T> & fromDir,const Vec3<T> & toDir,const Vec3<T> & upDir)827 rotationMatrixWithUpDir (const Vec3<T> &fromDir,
828 			 const Vec3<T> &toDir,
829 			 const Vec3<T> &upDir)
830 {
831     //
832     // The goal is to obtain a rotation matrix that takes
833     // "fromDir" to "toDir".  We do this in two steps and
834     // compose the resulting rotation matrices;
835     //    (a) rotate "fromDir" into the z-axis
836     //    (b) rotate the z-axis into "toDir"
837     //
838 
839     // The from direction must be non-zero; but we allow zero to and up dirs.
840     if (fromDir.length () == 0)
841 	return Matrix44<T> ();
842 
843     else
844     {
845 	Matrix44<T> zAxis2FromDir( IMATH_INTERNAL_NAMESPACE::UNINITIALIZED );
846 	alignZAxisWithTargetDir (zAxis2FromDir, fromDir, Vec3<T> (0, 1, 0));
847 
848 	Matrix44<T> fromDir2zAxis  = zAxis2FromDir.transposed ();
849 
850 	Matrix44<T> zAxis2ToDir( IMATH_INTERNAL_NAMESPACE::UNINITIALIZED );
851 	alignZAxisWithTargetDir (zAxis2ToDir, toDir, upDir);
852 
853 	return fromDir2zAxis * zAxis2ToDir;
854     }
855 }
856 
857 
858 template <class T>
859 void
alignZAxisWithTargetDir(Matrix44<T> & result,Vec3<T> targetDir,Vec3<T> upDir)860 alignZAxisWithTargetDir (Matrix44<T> &result, Vec3<T> targetDir, Vec3<T> upDir)
861 {
862     //
863     // Ensure that the target direction is non-zero.
864     //
865 
866     if ( targetDir.length () == 0 )
867 	targetDir = Vec3<T> (0, 0, 1);
868 
869     //
870     // Ensure that the up direction is non-zero.
871     //
872 
873     if ( upDir.length () == 0 )
874 	upDir = Vec3<T> (0, 1, 0);
875 
876     //
877     // Check for degeneracies.  If the upDir and targetDir are parallel
878     // or opposite, then compute a new, arbitrary up direction that is
879     // not parallel or opposite to the targetDir.
880     //
881 
882     if (upDir.cross (targetDir).length () == 0)
883     {
884 	upDir = targetDir.cross (Vec3<T> (1, 0, 0));
885 	if (upDir.length() == 0)
886 	    upDir = targetDir.cross(Vec3<T> (0, 0, 1));
887     }
888 
889     //
890     // Compute the x-, y-, and z-axis vectors of the new coordinate system.
891     //
892 
893     Vec3<T> targetPerpDir = upDir.cross (targetDir);
894     Vec3<T> targetUpDir   = targetDir.cross (targetPerpDir);
895 
896     //
897     // Rotate the x-axis into targetPerpDir (row 0),
898     // rotate the y-axis into targetUpDir   (row 1),
899     // rotate the z-axis into targetDir     (row 2).
900     //
901 
902     Vec3<T> row[3];
903     row[0] = targetPerpDir.normalized ();
904     row[1] = targetUpDir  .normalized ();
905     row[2] = targetDir    .normalized ();
906 
907     result.x[0][0] = row[0][0];
908     result.x[0][1] = row[0][1];
909     result.x[0][2] = row[0][2];
910     result.x[0][3] = (T)0;
911 
912     result.x[1][0] = row[1][0];
913     result.x[1][1] = row[1][1];
914     result.x[1][2] = row[1][2];
915     result.x[1][3] = (T)0;
916 
917     result.x[2][0] = row[2][0];
918     result.x[2][1] = row[2][1];
919     result.x[2][2] = row[2][2];
920     result.x[2][3] = (T)0;
921 
922     result.x[3][0] = (T)0;
923     result.x[3][1] = (T)0;
924     result.x[3][2] = (T)0;
925     result.x[3][3] = (T)1;
926 }
927 
928 
929 // Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
930 // If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
931 // Inputs are :
932 //     -the position of the frame
933 //     -the x axis direction of the frame
934 //     -a normal to the y axis of the frame
935 // Return is the orthonormal frame
936 template <class T>
937 Matrix44<T>
computeLocalFrame(const Vec3<T> & p,const Vec3<T> & xDir,const Vec3<T> & normal)938 computeLocalFrame( const Vec3<T>& p,
939                    const Vec3<T>& xDir,
940                    const Vec3<T>& normal)
941 {
942     Vec3<T> _xDir(xDir);
943     Vec3<T> x = _xDir.normalize();
944     Vec3<T> y = (normal % x).normalize();
945     Vec3<T> z = (x % y).normalize();
946 
947     Matrix44<T> L;
948     L[0][0] = x[0];
949     L[0][1] = x[1];
950     L[0][2] = x[2];
951     L[0][3] = 0.0;
952 
953     L[1][0] = y[0];
954     L[1][1] = y[1];
955     L[1][2] = y[2];
956     L[1][3] = 0.0;
957 
958     L[2][0] = z[0];
959     L[2][1] = z[1];
960     L[2][2] = z[2];
961     L[2][3] = 0.0;
962 
963     L[3][0] = p[0];
964     L[3][1] = p[1];
965     L[3][2] = p[2];
966     L[3][3] = 1.0;
967 
968     return L;
969 }
970 
971 // Add a translate/rotate/scale offset to an input frame
972 // and put it in another frame of reference
973 // Inputs are :
974 //     - input frame
975 //     - translate offset
976 //     - rotate    offset in degrees
977 //     - scale     offset
978 //     - frame of reference
979 // Output is the offsetted frame
980 template <class T>
981 Matrix44<T>
addOffset(const Matrix44<T> & inMat,const Vec3<T> & tOffset,const Vec3<T> & rOffset,const Vec3<T> & sOffset,const Matrix44<T> & ref)982 addOffset( const Matrix44<T>& inMat,
983            const Vec3<T>&     tOffset,
984            const Vec3<T>&     rOffset,
985            const Vec3<T>&     sOffset,
986            const Matrix44<T>& ref)
987 {
988     Matrix44<T> O;
989 
990     Vec3<T> _rOffset(rOffset);
991     _rOffset *= M_PI / 180.0;
992     O.rotate (_rOffset);
993 
994     O[3][0] = tOffset[0];
995     O[3][1] = tOffset[1];
996     O[3][2] = tOffset[2];
997 
998     Matrix44<T> S;
999     S.scale (sOffset);
1000 
1001     Matrix44<T> X = S * O * inMat * ref;
1002 
1003     return X;
1004 }
1005 
1006 // Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
1007 // Inputs are :
1008 //      -keepRotateA : if true keep rotate from matrix A, use B otherwise
1009 //      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
1010 //      -Matrix A
1011 //      -Matrix B
1012 // Return Matrix A with tweaked rotation/scale
1013 template <class T>
1014 Matrix44<T>
computeRSMatrix(bool keepRotateA,bool keepScaleA,const Matrix44<T> & A,const Matrix44<T> & B)1015 computeRSMatrix( bool               keepRotateA,
1016                  bool               keepScaleA,
1017                  const Matrix44<T>& A,
1018                  const Matrix44<T>& B)
1019 {
1020     Vec3<T> as, ah, ar, at;
1021     extractSHRT (A, as, ah, ar, at);
1022 
1023     Vec3<T> bs, bh, br, bt;
1024     extractSHRT (B, bs, bh, br, bt);
1025 
1026     if (!keepRotateA)
1027         ar = br;
1028 
1029     if (!keepScaleA)
1030         as = bs;
1031 
1032     Matrix44<T> mat;
1033     mat.makeIdentity();
1034     mat.translate (at);
1035     mat.rotate (ar);
1036     mat.scale (as);
1037 
1038     return mat;
1039 }
1040 
1041 
1042 
1043 //-----------------------------------------------------------------------------
1044 // Implementation for 3x3 Matrix
1045 //------------------------------
1046 
1047 
1048 template <class T>
1049 bool
extractScaling(const Matrix33<T> & mat,Vec2<T> & scl,bool exc)1050 extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc)
1051 {
1052     T shr;
1053     Matrix33<T> M (mat);
1054 
1055     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1056 	return false;
1057 
1058     return true;
1059 }
1060 
1061 
1062 template <class T>
1063 Matrix33<T>
sansScaling(const Matrix33<T> & mat,bool exc)1064 sansScaling (const Matrix33<T> &mat, bool exc)
1065 {
1066     Vec2<T> scl;
1067     T shr;
1068     T rot;
1069     Vec2<T> tran;
1070 
1071     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
1072 	return mat;
1073 
1074     Matrix33<T> M;
1075 
1076     M.translate (tran);
1077     M.rotate (rot);
1078     M.shear (shr);
1079 
1080     return M;
1081 }
1082 
1083 
1084 template <class T>
1085 bool
removeScaling(Matrix33<T> & mat,bool exc)1086 removeScaling (Matrix33<T> &mat, bool exc)
1087 {
1088     Vec2<T> scl;
1089     T shr;
1090     T rot;
1091     Vec2<T> tran;
1092 
1093     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
1094 	return false;
1095 
1096     mat.makeIdentity ();
1097     mat.translate (tran);
1098     mat.rotate (rot);
1099     mat.shear (shr);
1100 
1101     return true;
1102 }
1103 
1104 
1105 template <class T>
1106 bool
extractScalingAndShear(const Matrix33<T> & mat,Vec2<T> & scl,T & shr,bool exc)1107 extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc)
1108 {
1109     Matrix33<T> M (mat);
1110 
1111     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1112 	return false;
1113 
1114     return true;
1115 }
1116 
1117 
1118 template <class T>
1119 Matrix33<T>
sansScalingAndShear(const Matrix33<T> & mat,bool exc)1120 sansScalingAndShear (const Matrix33<T> &mat, bool exc)
1121 {
1122     Vec2<T> scl;
1123     T shr;
1124     Matrix33<T> M (mat);
1125 
1126     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1127 	return mat;
1128 
1129     return M;
1130 }
1131 
1132 
1133 template <class T>
1134 bool
removeScalingAndShear(Matrix33<T> & mat,bool exc)1135 removeScalingAndShear (Matrix33<T> &mat, bool exc)
1136 {
1137     Vec2<T> scl;
1138     T shr;
1139 
1140     if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
1141 	return false;
1142 
1143     return true;
1144 }
1145 
1146 template <class T>
1147 bool
extractAndRemoveScalingAndShear(Matrix33<T> & mat,Vec2<T> & scl,T & shr,bool exc)1148 extractAndRemoveScalingAndShear (Matrix33<T> &mat,
1149 				 Vec2<T> &scl, T &shr, bool exc)
1150 {
1151     Vec2<T> row[2];
1152 
1153     row[0] = Vec2<T> (mat[0][0], mat[0][1]);
1154     row[1] = Vec2<T> (mat[1][0], mat[1][1]);
1155 
1156     T maxVal = 0;
1157     for (int i=0; i < 2; i++)
1158 	for (int j=0; j < 2; j++)
1159 	    if (IMATH_INTERNAL_NAMESPACE::abs (row[i][j]) > maxVal)
1160 		maxVal = IMATH_INTERNAL_NAMESPACE::abs (row[i][j]);
1161 
1162     //
1163     // We normalize the 2x2 matrix here.
1164     // It was noticed that this can improve numerical stability significantly,
1165     // especially when many of the upper 2x2 matrix's coefficients are very
1166     // close to zero; we correct for this step at the end by multiplying the
1167     // scaling factors by maxVal at the end (shear and rotation are not
1168     // affected by the normalization).
1169 
1170     if (maxVal != 0)
1171     {
1172 	for (int i=0; i < 2; i++)
1173 	    if (! checkForZeroScaleInRow (maxVal, row[i], exc))
1174 		return false;
1175 	    else
1176 		row[i] /= maxVal;
1177     }
1178 
1179     // Compute X scale factor.
1180     scl.x = row[0].length ();
1181     if (! checkForZeroScaleInRow (scl.x, row[0], exc))
1182 	return false;
1183 
1184     // Normalize first row.
1185     row[0] /= scl.x;
1186 
1187     // An XY shear factor will shear the X coord. as the Y coord. changes.
1188     // There are 2 combinations (XY, YX), although we only extract the XY
1189     // shear factor because we can effect the an YX shear factor by
1190     // shearing in XY combined with rotations and scales.
1191     //
1192     // shear matrix <   1,  YX,  0,
1193     //                 XY,   1,  0,
1194     //                  0,   0,  1 >
1195 
1196     // Compute XY shear factor and make 2nd row orthogonal to 1st.
1197     shr     = row[0].dot (row[1]);
1198     row[1] -= shr * row[0];
1199 
1200     // Now, compute Y scale.
1201     scl.y = row[1].length ();
1202     if (! checkForZeroScaleInRow (scl.y, row[1], exc))
1203 	return false;
1204 
1205     // Normalize 2nd row and correct the XY shear factor for Y scaling.
1206     row[1] /= scl.y;
1207     shr    /= scl.y;
1208 
1209     // At this point, the upper 2x2 matrix in mat is orthonormal.
1210     // Check for a coordinate system flip. If the determinant
1211     // is -1, then flip the rotation matrix and adjust the scale(Y)
1212     // and shear(XY) factors to compensate.
1213     if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0)
1214     {
1215 	row[1][0] *= -1;
1216 	row[1][1] *= -1;
1217 	scl[1] *= -1;
1218 	shr *= -1;
1219     }
1220 
1221     // Copy over the orthonormal rows into the returned matrix.
1222     // The upper 2x2 matrix in mat is now a rotation matrix.
1223     for (int i=0; i < 2; i++)
1224     {
1225 	mat[i][0] = row[i][0];
1226 	mat[i][1] = row[i][1];
1227     }
1228 
1229     scl *= maxVal;
1230 
1231     return true;
1232 }
1233 
1234 
1235 template <class T>
1236 void
extractEuler(const Matrix33<T> & mat,T & rot)1237 extractEuler (const Matrix33<T> &mat, T &rot)
1238 {
1239     //
1240     // Normalize the local x and y axes to remove scaling.
1241     //
1242 
1243     Vec2<T> i (mat[0][0], mat[0][1]);
1244     Vec2<T> j (mat[1][0], mat[1][1]);
1245 
1246     i.normalize();
1247     j.normalize();
1248 
1249     //
1250     // Extract the angle, rot.
1251     //
1252 
1253     rot = - Math<T>::atan2 (j[0], i[0]);
1254 }
1255 
1256 
1257 template <class T>
1258 bool
extractSHRT(const Matrix33<T> & mat,Vec2<T> & s,T & h,T & r,Vec2<T> & t,bool exc)1259 extractSHRT (const Matrix33<T> &mat,
1260 	     Vec2<T> &s,
1261 	     T       &h,
1262 	     T       &r,
1263 	     Vec2<T> &t,
1264 	     bool    exc)
1265 {
1266     Matrix33<T> rot;
1267 
1268     rot = mat;
1269     if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
1270 	return false;
1271 
1272     extractEuler (rot, r);
1273 
1274     t.x = mat[2][0];
1275     t.y = mat[2][1];
1276 
1277     return true;
1278 }
1279 
1280 
1281 template <class T>
1282 bool
checkForZeroScaleInRow(const T & scl,const Vec2<T> & row,bool exc)1283 checkForZeroScaleInRow (const T& scl,
1284                         const Vec2<T> &row,
1285                         bool exc /* = true */ )
1286 {
1287     for (int i = 0; i < 2; i++)
1288     {
1289         if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
1290         {
1291             if (exc)
1292                 throw IMATH_INTERNAL_NAMESPACE::ZeroScaleExc (
1293                         "Cannot remove zero scaling from matrix.");
1294             else
1295                 return false;
1296         }
1297     }
1298 
1299     return true;
1300 }
1301 
1302 
1303 template <class T>
1304 Matrix33<T>
outerProduct(const Vec3<T> & a,const Vec3<T> & b)1305 outerProduct (const Vec3<T> &a, const Vec3<T> &b )
1306 {
1307     return Matrix33<T> (a.x*b.x, a.x*b.y, a.x*b.z,
1308                         a.y*b.x, a.y*b.y, a.y*b.z,
1309                         a.z*b.x, a.z*b.y, a.z*b.z );
1310 }
1311 
1312 
1313 // Computes the translation and rotation that brings the 'from' points
1314 // as close as possible to the 'to' points under the Frobenius norm.
1315 // To be more specific, let x be the matrix of 'from' points and y be
1316 // the matrix of 'to' points, we want to find the matrix A of the form
1317 //    [ R t ]
1318 //    [ 0 1 ]
1319 // that minimizes
1320 //     || (A*x - y)^T * W * (A*x - y) ||_F
1321 // If doScaling is true, then a uniform scale is allowed also.
1322 template <typename T>
1323 IMATH_INTERNAL_NAMESPACE::M44d
1324 procrustesRotationAndTranslation (const IMATH_INTERNAL_NAMESPACE::Vec3<T>* A,  // From these
1325                                   const IMATH_INTERNAL_NAMESPACE::Vec3<T>* B,  // To these
1326                                   const T* weights,
1327                                   const size_t numPoints,
1328                                   const bool doScaling = false);
1329 
1330 // Unweighted:
1331 template <typename T>
1332 IMATH_INTERNAL_NAMESPACE::M44d
1333 procrustesRotationAndTranslation (const IMATH_INTERNAL_NAMESPACE::Vec3<T>* A,
1334                                   const IMATH_INTERNAL_NAMESPACE::Vec3<T>* B,
1335                                   const size_t numPoints,
1336                                   const bool doScaling = false);
1337 
1338 // Compute the SVD of a 3x3 matrix using Jacobi transformations.  This method
1339 // should be quite accurate (competitive with LAPACK) even for poorly
1340 // conditioned matrices, and because it has been written specifically for the
1341 // 3x3/4x4 case it is much faster than calling out to LAPACK.
1342 //
1343 // The SVD of a 3x3/4x4 matrix A is defined as follows:
1344 //     A = U * S * V^T
1345 // where S is the diagonal matrix of singular values and both U and V are
1346 // orthonormal.  By convention, the entries S are all positive and sorted from
1347 // the largest to the smallest.  However, some uses of this function may
1348 // require that the matrix U*V^T have positive determinant; in this case, we
1349 // may make the smallest singular value negative to ensure that this is
1350 // satisfied.
1351 //
1352 // Currently only available for single- and double-precision matrices.
1353 template <typename T>
1354 void
1355 jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix33<T>& A,
1356            IMATH_INTERNAL_NAMESPACE::Matrix33<T>& U,
1357            IMATH_INTERNAL_NAMESPACE::Vec3<T>& S,
1358            IMATH_INTERNAL_NAMESPACE::Matrix33<T>& V,
1359            const T tol = IMATH_INTERNAL_NAMESPACE::limits<T>::epsilon(),
1360            const bool forcePositiveDeterminant = false);
1361 
1362 template <typename T>
1363 void
1364 jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix44<T>& A,
1365            IMATH_INTERNAL_NAMESPACE::Matrix44<T>& U,
1366            IMATH_INTERNAL_NAMESPACE::Vec4<T>& S,
1367            IMATH_INTERNAL_NAMESPACE::Matrix44<T>& V,
1368            const T tol = IMATH_INTERNAL_NAMESPACE::limits<T>::epsilon(),
1369            const bool forcePositiveDeterminant = false);
1370 
1371 // Compute the eigenvalues (S) and the eigenvectors (V) of
1372 // a real symmetric matrix using Jacobi transformation.
1373 //
1374 // Jacobi transformation of a 3x3/4x4 matrix A outputs S and V:
1375 // 	A = V * S * V^T
1376 // where V is orthonormal and S is the diagonal matrix of eigenvalues.
1377 // Input matrix A must be symmetric. A is also modified during
1378 // the computation so that upper diagonal entries of A become zero.
1379 //
1380 template <typename T>
1381 void
1382 jacobiEigenSolver (Matrix33<T>& A,
1383                    Vec3<T>& S,
1384                    Matrix33<T>& V,
1385                    const T tol);
1386 
1387 template <typename T>
1388 inline
1389 void
jacobiEigenSolver(Matrix33<T> & A,Vec3<T> & S,Matrix33<T> & V)1390 jacobiEigenSolver (Matrix33<T>& A,
1391                    Vec3<T>& S,
1392                    Matrix33<T>& V)
1393 {
1394     jacobiEigenSolver(A,S,V,limits<T>::epsilon());
1395 }
1396 
1397 template <typename T>
1398 void
1399 jacobiEigenSolver (Matrix44<T>& A,
1400                    Vec4<T>& S,
1401                    Matrix44<T>& V,
1402                    const T tol);
1403 
1404 template <typename T>
1405 inline
1406 void
jacobiEigenSolver(Matrix44<T> & A,Vec4<T> & S,Matrix44<T> & V)1407 jacobiEigenSolver (Matrix44<T>& A,
1408                    Vec4<T>& S,
1409                    Matrix44<T>& V)
1410 {
1411     jacobiEigenSolver(A,S,V,limits<T>::epsilon());
1412 }
1413 
1414 // Compute a eigenvector corresponding to the abs max/min eigenvalue
1415 // of a real symmetric matrix using Jacobi transformation.
1416 template <typename TM, typename TV>
1417 void
1418 maxEigenVector (TM& A, TV& S);
1419 template <typename TM, typename TV>
1420 void
1421 minEigenVector (TM& A, TV& S);
1422 
1423 IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
1424 
1425 #endif // INCLUDED_IMATHMATRIXALGO_H
1426