1 /**
2  *
3  * This is a simple Reed-Solomon encoder
4  * (C) Cliff Hones 2004
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
19  *
20  */
21 
22 // It is not written with high efficiency in mind, so is probably
23 // not suitable for real-time encoding.  The aim was to keep it
24 // simple, general and clear.
25 //
26 // <Some notes on the theory and implementation need to be added here>
27 
28 // Usage:
29 // First call rs_init_gf(poly) to set up the Galois Field parameters.
30 // Then  call rs_init_code(size, index) to set the encoding size
31 // Then  call rs_encode(datasize, data, out) to encode the data.
32 //
33 // These can be called repeatedly as required - but note that
34 // rs_init_code must be called following any rs_init_gf call.
35 //
36 // If the parameters are fixed, some of the statics below can be
37 // replaced with constants in the obvious way, and additionally
38 // malloc/free can be avoided by using static arrays of a suitable
39 // size.
40 
41 #include <stdio.h>		// only needed for debug (main)
42 #include <stdlib.h>		// only needed for malloc/free
43 #include <string.h>             // only needed for memset
44 #include "reedsol.h"
45 
46 static int gfpoly;
47 static int symsize;		// in bits
48 static int logmod;		// 2**symsize - 1
49 static int rlen;
50 
51 static int *log = NULL, *alog = NULL, *rspoly = NULL;
52 
53 // rs_init_gf(poly) initialises the parameters for the Galois Field.
54 // The symbol size is determined from the highest bit set in poly
55 // This implementation will support sizes up to 30 bits (though that
56 // will result in very large log/antilog tables) - bit sizes of
57 // 8 or 4 are typical
58 //
59 // The poly is the bit pattern representing the GF characteristic
60 // polynomial.  e.g. for ECC200 (8-bit symbols) the polynomial is
61 // a**8 + a**5 + a**3 + a**2 + 1, which translates to 0x12d.
62 
rs_init_gf(int poly)63 void rs_init_gf(int poly)
64 {
65 	int m, b, p, v;
66 
67 	// Return storage from previous setup
68 	if (log) {
69 		free(log);
70 		free(alog);
71 		free(rspoly);
72 		rspoly = NULL;
73 	}
74 	// Find the top bit, and hence the symbol size
75 	for (b = 2, m = 0; b <= poly; b <<= 1)
76 		m++;
77 	b >>= 1;
78 	gfpoly = poly;
79 	symsize = m;
80 
81 	// Calculate the log/alog tables
82 	logmod = (1 << m) - 1;
83 	log = (int *)calloc(logmod + 1, sizeof(*log));
84 	alog = (int *)calloc(logmod, sizeof(*alog));
85 
86 	for (p = 1, v = 0; v < logmod; v++) {
87 		alog[v] = p;
88 		log[p] = v;
89 		p <<= 1;
90 		if (p & b)
91 			p ^= poly;
92 	}
93 }
94 
95 // rs_init_code(nsym, index) initialises the Reed-Solomon encoder
96 // nsym is the number of symbols to be generated (to be appended
97 // to the input data).  index is usually 1 - it is the index of
98 // the constant in the first term (i) of the RS generator polynomial:
99 // (x + 2**i)*(x + 2**(i+1))*...   [nsym terms]
100 // For ECC200, index is 1.
101 
rs_init_code(int nsym,int index)102 void rs_init_code(int nsym, int index)
103 {
104 	int i, k;
105 
106 	if (rspoly)
107 		free(rspoly);
108 	rspoly = (int *)malloc(sizeof(int) * (nsym + 1));
109 
110 	rlen = nsym;
111 
112 	rspoly[0] = 1;
113 	for (i = 1; i <= nsym; i++) {
114 		rspoly[i] = 1;
115 		for (k = i - 1; k > 0; k--) {
116 			if (rspoly[k])
117 				rspoly[k] =
118 				    alog[(log[rspoly[k]] + index) % logmod];
119 			rspoly[k] ^= rspoly[k - 1];
120 		}
121 		rspoly[0] = alog[(log[rspoly[0]] + index) % logmod];
122 		index++;
123 	}
124 }
125 
126 // Note that the following uses byte arrays, so is only suitable for
127 // symbol sizes up to 8 bits.  Just change the data type of data and res
128 // to unsigned int * for larger symbols.
129 
rs_encode(int len,const unsigned char * data,unsigned char * res)130 void rs_encode(int len, const unsigned char *data, unsigned char *res)
131 {
132 	int i, k, m;
133 	memset(res, 0, rlen);
134 	for (i = 0; i < len; i++) {
135 		m = res[rlen - 1] ^ data[i];
136 		for (k = rlen - 1; k > 0; k--) {
137 			if (m && rspoly[k])
138 				res[k] =
139 				    res[k -
140 					1] ^ alog[(log[m] +
141 						   log[rspoly[k]]) % logmod];
142 			else
143 				res[k] = res[k - 1];
144 		}
145 		if (m && rspoly[0])
146 			res[0] = alog[(log[m] + log[rspoly[0]]) % logmod];
147 		else
148 			res[0] = 0;
149 	}
150 }
151 
152 #ifdef TEST
153 // The following tests the routines with the ISO/IEC 16022 Annexe R data
reedsol_main(void)154 int reedsol_main(void)
155 {
156 	register int i;
157 
158 	static const unsigned char data[9] = { 142, 164, 186 };
159 	unsigned char out[5];
160 
161 	rs_init_gf(0x12d);
162 	rs_init_code(5, 1);
163 
164 	rs_encode(3, data, out);
165 
166 	printf("Result of Annexe R encoding:\n");
167 	for (i = 4; i >= 0; i--)
168 		printf("  %d\n", out[i]);
169 
170 	return 0;
171 }
172 #endif
173