1 /* Libart_LGPL - library of basic graphic primitives
2  * Copyright (C) 1998 Raph Levien
3  *
4  * This library is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU Library General Public
6  * License as published by the Free Software Foundation; either
7  * version 2 of the License, or (at your option) any later version.
8  *
9  * This library is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * Library General Public License for more details.
13  *
14  * You should have received a copy of the GNU Library General Public
15  * License along with this library; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 02111-1307, USA.
18  */
19 
20 /* Simple manipulations with affine transformations */
21 
22 #include "config.h"
23 #include "art_affine.h"
24 #include "art_misc.h" /* for M_PI */
25 
26 #include <math.h>
27 #include <stdio.h> /* for sprintf */
28 #include <string.h> /* for strcpy */
29 
30 
31 /* According to a strict interpretation of the libart structure, this
32    routine should go into its own module, art_point_affine.  However,
33    it's only two lines of code, and it can be argued that it is one of
34    the natural basic functions of an affine transformation.
35 */
36 
37 /**
38  * art_affine_point: Do an affine transformation of a point.
39  * @dst: Where the result point is stored.
40  * @src: The original point.
41  @ @affine: The affine transformation.
42  **/
43 void
art_affine_point(ArtPoint * dst,const ArtPoint * src,const double affine[6])44 art_affine_point (ArtPoint *dst, const ArtPoint *src,
45 		  const double affine[6])
46 {
47   double x, y;
48 
49   x = src->x;
50   y = src->y;
51   dst->x = x * affine[0] + y * affine[2] + affine[4];
52   dst->y = x * affine[1] + y * affine[3] + affine[5];
53 }
54 
55 /**
56  * art_affine_invert: Find the inverse of an affine transformation.
57  * @dst: Where the resulting affine is stored.
58  * @src: The original affine transformation.
59  *
60  * All non-degenerate affine transforms are invertible. If the original
61  * affine is degenerate or nearly so, expect numerical instability and
62  * very likely core dumps on Alpha and other fp-picky architectures.
63  * Otherwise, @dst multiplied with @src, or @src multiplied with @dst
64  * will be (to within roundoff error) the identity affine.
65  **/
66 void
art_affine_invert(double dst[6],const double src[6])67 art_affine_invert (double dst[6], const double src[6])
68 {
69   double r_det;
70 
71   r_det = 1.0 / (src[0] * src[3] - src[1] * src[2]);
72   dst[0] = src[3] * r_det;
73   dst[1] = -src[1] * r_det;
74   dst[2] = -src[2] * r_det;
75   dst[3] = src[0] * r_det;
76   dst[4] = -src[4] * dst[0] - src[5] * dst[2];
77   dst[5] = -src[4] * dst[1] - src[5] * dst[3];
78 }
79 
80 /**
81  * art_affine_flip: Flip an affine transformation horizontally and/or vertically.
82  * @dst_affine: Where the resulting affine is stored.
83  * @src_affine: The original affine transformation.
84  * @horiz: Whether or not to flip horizontally.
85  * @vert: Whether or not to flip horizontally.
86  *
87  * Flips the affine transform. FALSE for both @horiz and @vert implements
88  * a simple copy operation. TRUE for both @horiz and @vert is a
89  * 180 degree rotation. It is ok for @src_affine and @dst_affine to
90  * be equal pointers.
91  **/
92 void
art_affine_flip(double dst_affine[6],const double src_affine[6],int horz,int vert)93 art_affine_flip (double dst_affine[6], const double src_affine[6], int horz, int vert)
94 {
95   dst_affine[0] = horz ? - src_affine[0] : src_affine[0];
96   dst_affine[1] = horz ? - src_affine[1] : src_affine[1];
97   dst_affine[2] = vert ? - src_affine[2] : src_affine[2];
98   dst_affine[3] = vert ? - src_affine[3] : src_affine[3];
99   dst_affine[4] = horz ? - src_affine[4] : src_affine[4];
100   dst_affine[5] = vert ? - src_affine[5] : src_affine[5];
101 }
102 
103 #define EPSILON 1e-6
104 
105 /* It's ridiculous I have to write this myself. This is hardcoded to
106    six digits of precision, which is good enough for PostScript.
107 
108    The return value is the number of characters (i.e. strlen (str)).
109    It is no more than 12. */
110 static int
art_ftoa(char str[80],double x)111 art_ftoa (char str[80], double x)
112 {
113   char *p = str;
114   int i, j;
115 
116   p = str;
117   if (fabs (x) < EPSILON / 2)
118     {
119       strcpy (str, "0");
120       return 1;
121     }
122   if (x < 0)
123     {
124       *p++ = '-';
125       x = -x;
126     }
127   if ((int)floor ((x + EPSILON / 2) < 1))
128     {
129       *p++ = '0';
130       *p++ = '.';
131       i = sprintf (p, "%06d", (int)floor ((x + EPSILON / 2) * 1e6));
132       while (i && p[i - 1] == '0')
133 	i--;
134       if (i == 0)
135 	i--;
136       p += i;
137     }
138   else if (x < 1e6)
139     {
140       i = sprintf (p, "%d", (int)floor (x + EPSILON / 2));
141       p += i;
142       if (i < 6)
143 	{
144 	  int ix;
145 
146 	  *p++ = '.';
147 	  x -= floor (x + EPSILON / 2);
148 	  for (j = i; j < 6; j++)
149 	    x *= 10;
150 	  ix = floor (x + 0.5);
151 
152 	  for (j = 0; j < i; j++)
153 	    ix *= 10;
154 
155 	  /* A cheap hack, this routine can round wrong for fractions
156 	     near one. */
157 	  if (ix == 1000000)
158 	    ix = 999999;
159 
160 	  sprintf (p, "%06d", ix);
161 	  i = 6 - i;
162 	  while (i && p[i - 1] == '0')
163 	    i--;
164 	  if (i == 0)
165 	    i--;
166 	  p += i;
167 	}
168     }
169   else
170     p += sprintf (p, "%g", x);
171 
172   *p = '\0';
173   return p - str;
174 }
175 
176 
177 
178 #include <stdlib.h>
179 /**
180  * art_affine_to_string: Convert affine transformation to concise PostScript string representation.
181  * @str: Where to store the resulting string.
182  * @src: The affine transform.
183  *
184  * Converts an affine transform into a bit of PostScript code that
185  * implements the transform. Special cases of scaling, rotation, and
186  * translation are detected, and the corresponding PostScript
187  * operators used (this greatly aids understanding the output
188  * generated). The identity transform is mapped to the null string.
189  **/
190 void
art_affine_to_string(char str[128],const double src[6])191 art_affine_to_string (char str[128], const double src[6])
192 {
193   char tmp[80];
194   int i, ix;
195 
196 #if 0
197   for (i = 0; i < 1000; i++)
198     {
199       double d = rand () * .1 / RAND_MAX;
200       art_ftoa (tmp, d);
201       printf ("%g %f %s\n", d, d, tmp);
202     }
203 #endif
204   if (fabs (src[4]) < EPSILON && fabs (src[5]) < EPSILON)
205     {
206       /* could be scale or rotate */
207       if (fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON)
208 	{
209 	  /* scale */
210 	  if (fabs (src[0] - 1) < EPSILON && fabs (src[3] - 1) < EPSILON)
211 	    {
212 	      /* identity transform */
213 	      str[0] = '\0';
214 	      return;
215 	    }
216 	  else
217 	    {
218 	      ix = 0;
219 	      ix += art_ftoa (str + ix, src[0]);
220 	      str[ix++] = ' ';
221 	      ix += art_ftoa (str + ix, src[3]);
222 	      strcpy (str + ix, " scale");
223 	      return;
224 	    }
225 	}
226       else
227 	{
228 	  /* could be rotate */
229 	  if (fabs (src[0] - src[3]) < EPSILON &&
230 	      fabs (src[1] + src[2]) < EPSILON &&
231 	      fabs (src[0] * src[0] + src[1] * src[1] - 1) < 2 * EPSILON)
232 	    {
233 	      double theta;
234 
235 	      theta = (180 / M_PI) * atan2 (src[1], src[0]);
236 	      art_ftoa (tmp, theta);
237 	      sprintf (str, "%s rotate", tmp);
238 	      return;
239 	    }
240 	}
241     }
242   else
243     {
244       /* could be translate */
245       if (fabs (src[0] - 1) < EPSILON && fabs (src[1]) < EPSILON &&
246 	  fabs (src[2]) < EPSILON && fabs (src[3] - 1) < EPSILON)
247 	{
248 	  ix = 0;
249 	  ix += art_ftoa (str + ix, src[4]);
250 	  str[ix++] = ' ';
251 	  ix += art_ftoa (str + ix, src[5]);
252 	  strcpy (str + ix, " translate");
253 	  return;
254 	}
255     }
256 
257   ix = 0;
258   str[ix++] = '[';
259   str[ix++] = ' ';
260   for (i = 0; i < 6; i++)
261     {
262       ix += art_ftoa (str + ix, src[i]);
263       str[ix++] = ' ';
264     }
265   strcpy (str + ix, "] concat");
266 }
267 
268 /**
269  * art_affine_multiply: Multiply two affine transformation matrices.
270  * @dst: Where to store the result.
271  * @src1: The first affine transform to multiply.
272  * @src2: The second affine transform to multiply.
273  *
274  * Multiplies two affine transforms together, i.e. the resulting @dst
275  * is equivalent to doing first @src1 then @src2. Note that the
276  * PostScript concat operator multiplies on the left, i.e.  "M concat"
277  * is equivalent to "CTM = multiply (M, CTM)";
278  *
279  * It is safe to call this function with @dst equal to @src1 or @src2.
280  **/
281 void
art_affine_multiply(double dst[6],const double src1[6],const double src2[6])282 art_affine_multiply (double dst[6], const double src1[6], const double src2[6])
283 {
284   double d0, d1, d2, d3, d4, d5;
285 
286   d0 = src1[0] * src2[0] + src1[1] * src2[2];
287   d1 = src1[0] * src2[1] + src1[1] * src2[3];
288   d2 = src1[2] * src2[0] + src1[3] * src2[2];
289   d3 = src1[2] * src2[1] + src1[3] * src2[3];
290   d4 = src1[4] * src2[0] + src1[5] * src2[2] + src2[4];
291   d5 = src1[4] * src2[1] + src1[5] * src2[3] + src2[5];
292   dst[0] = d0;
293   dst[1] = d1;
294   dst[2] = d2;
295   dst[3] = d3;
296   dst[4] = d4;
297   dst[5] = d5;
298 }
299 
300 /**
301  * art_affine_identity: Set up the identity matrix.
302  * @dst: Where to store the resulting affine transform.
303  *
304  * Sets up an identity matrix.
305  **/
306 void
art_affine_identity(double dst[6])307 art_affine_identity (double dst[6])
308 {
309   dst[0] = 1;
310   dst[1] = 0;
311   dst[2] = 0;
312   dst[3] = 1;
313   dst[4] = 0;
314   dst[5] = 0;
315 }
316 
317 
318 /**
319  * art_affine_scale: Set up a scaling matrix.
320  * @dst: Where to store the resulting affine transform.
321  * @sx: X scale factor.
322  * @sy: Y scale factor.
323  *
324  * Sets up a scaling matrix.
325  **/
326 void
art_affine_scale(double dst[6],double sx,double sy)327 art_affine_scale (double dst[6], double sx, double sy)
328 {
329   dst[0] = sx;
330   dst[1] = 0;
331   dst[2] = 0;
332   dst[3] = sy;
333   dst[4] = 0;
334   dst[5] = 0;
335 }
336 
337 /**
338  * art_affine_rotate: Set up a rotation affine transform.
339  * @dst: Where to store the resulting affine transform.
340  * @theta: Rotation angle in degrees.
341  *
342  * Sets up a rotation matrix. In the standard libart coordinate
343  * system, in which increasing y moves downward, this is a
344  * counterclockwise rotation. In the standard PostScript coordinate
345  * system, which is reversed in the y direction, it is a clockwise
346  * rotation.
347  **/
348 void
art_affine_rotate(double dst[6],double theta)349 art_affine_rotate (double dst[6], double theta)
350 {
351   double s, c;
352 
353   s = sin (theta * M_PI / 180.0);
354   c = cos (theta * M_PI / 180.0);
355   dst[0] = c;
356   dst[1] = s;
357   dst[2] = -s;
358   dst[3] = c;
359   dst[4] = 0;
360   dst[5] = 0;
361 }
362 
363 /**
364  * art_affine_shear: Set up a shearing matrix.
365  * @dst: Where to store the resulting affine transform.
366  * @theta: Shear angle in degrees.
367  *
368  * Sets up a shearing matrix. In the standard libart coordinate system
369  * and a small value for theta, || becomes \\. Horizontal lines remain
370  * unchanged.
371  **/
372 void
art_affine_shear(double dst[6],double theta)373 art_affine_shear (double dst[6], double theta)
374 {
375   double t;
376 
377   t = tan (theta * M_PI / 180.0);
378   dst[0] = 1;
379   dst[1] = 0;
380   dst[2] = t;
381   dst[3] = 1;
382   dst[4] = 0;
383   dst[5] = 0;
384 }
385 
386 /**
387  * art_affine_translate: Set up a translation matrix.
388  * @dst: Where to store the resulting affine transform.
389  * @tx: X translation amount.
390  * @tx: Y translation amount.
391  *
392  * Sets up a translation matrix.
393  **/
394 void
art_affine_translate(double dst[6],double tx,double ty)395 art_affine_translate (double dst[6], double tx, double ty)
396 {
397   dst[0] = 1;
398   dst[1] = 0;
399   dst[2] = 0;
400   dst[3] = 1;
401   dst[4] = tx;
402   dst[5] = ty;
403 }
404 
405 /**
406  * art_affine_expansion: Find the affine's expansion factor.
407  * @src: The affine transformation.
408  *
409  * Finds the expansion factor, i.e. the square root of the factor
410  * by which the affine transform affects area. In an affine transform
411  * composed of scaling, rotation, shearing, and translation, returns
412  * the amount of scaling.
413  *
414  * Return value: the expansion factor.
415  **/
416 double
art_affine_expansion(const double src[6])417 art_affine_expansion (const double src[6])
418 {
419   return sqrt (fabs (src[0] * src[3] - src[1] * src[2]));
420 }
421 
422 /**
423  * art_affine_rectilinear: Determine whether the affine transformation is rectilinear.
424  * @src: The original affine transformation.
425  *
426  * Determines whether @src is rectilinear, i.e.  grid-aligned
427  * rectangles are transformed to other grid-aligned rectangles.  The
428  * implementation has epsilon-tolerance for roundoff errors.
429  *
430  * Return value: TRUE if @src is rectilinear.
431  **/
432 int
art_affine_rectilinear(const double src[6])433 art_affine_rectilinear (const double src[6])
434 {
435   return ((fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON) ||
436 	  (fabs (src[0]) < EPSILON && fabs (src[3]) < EPSILON));
437 }
438 
439 /**
440  * art_affine_equal: Determine whether two affine transformations are equal.
441  * @matrix1: An affine transformation.
442  * @matrix2: Another affine transformation.
443  *
444  * Determines whether @matrix1 and @matrix2 are equal, with
445  * epsilon-tolerance for roundoff errors.
446  *
447  * Return value: TRUE if @matrix1 and @matrix2 are equal.
448  **/
449 int
art_affine_equal(double matrix1[6],double matrix2[6])450 art_affine_equal (double matrix1[6], double matrix2[6])
451 {
452   return (fabs (matrix1[0] - matrix2[0]) < EPSILON &&
453 	  fabs (matrix1[1] - matrix2[1]) < EPSILON &&
454 	  fabs (matrix1[2] - matrix2[2]) < EPSILON &&
455 	  fabs (matrix1[3] - matrix2[3]) < EPSILON &&
456 	  fabs (matrix1[4] - matrix2[4]) < EPSILON &&
457 	  fabs (matrix1[5] - matrix2[5]) < EPSILON);
458 }
459