1 /*
2  * Copyright © 2010 - 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26 
27 #include <stdio.h>
28 #include "dev/intel_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32 
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36 
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40 
41 typedef struct nir_shader nir_shader;
42 
43 struct brw_compiler {
44    const struct intel_device_info *devinfo;
45 
46    struct {
47       struct ra_regs *regs;
48 
49       /**
50        * Array of the ra classes for the unaligned contiguous register
51        * block sizes used.
52        */
53       struct ra_class **classes;
54    } vec4_reg_set;
55 
56    struct {
57       struct ra_regs *regs;
58 
59       /**
60        * Array of the ra classes for the unaligned contiguous register
61        * block sizes used, indexed by register size.
62        */
63       struct ra_class *classes[16];
64 
65       /**
66        * ra class for the aligned barycentrics we use for PLN, which doesn't
67        * appear in *classes.
68        */
69       struct ra_class *aligned_bary_class;
70    } fs_reg_sets[3];
71 
72    void (*shader_debug_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
73    void (*shader_perf_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
74 
75    bool scalar_stage[MESA_ALL_SHADER_STAGES];
76    bool use_tcs_8_patch;
77    struct gl_shader_compiler_options glsl_compiler_options[MESA_ALL_SHADER_STAGES];
78 
79    /**
80     * Apply workarounds for SIN and COS output range problems.
81     * This can negatively impact performance.
82     */
83    bool precise_trig;
84 
85    /**
86     * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
87     * Base Address?  (If not, it's a normal GPU address.)
88     */
89    bool constant_buffer_0_is_relative;
90 
91    /**
92     * Whether or not the driver supports pull constants.  If not, the compiler
93     * will attempt to push everything.
94     */
95    bool supports_pull_constants;
96 
97    /**
98     * Whether or not the driver supports NIR shader constants.  This controls
99     * whether nir_opt_large_constants will be run.
100     */
101    bool supports_shader_constants;
102 
103    /**
104     * Whether or not the driver wants uniform params to be compacted by the
105     * back-end compiler.
106     */
107    bool compact_params;
108 
109    /**
110     * Whether or not the driver wants variable group size to be lowered by the
111     * back-end compiler.
112     */
113    bool lower_variable_group_size;
114 
115    /**
116     * Whether indirect UBO loads should use the sampler or go through the
117     * data/constant cache.  For the sampler, UBO surface states have to be set
118     * up with VK_FORMAT_R32G32B32A32_FLOAT whereas if it's going through the
119     * constant or data cache, UBOs must use VK_FORMAT_RAW.
120     */
121    bool indirect_ubos_use_sampler;
122 };
123 
124 #define brw_shader_debug_log(compiler, data, fmt, ... ) do {    \
125    static unsigned id = 0;                                      \
126    compiler->shader_debug_log(data, &id, fmt, ##__VA_ARGS__);   \
127 } while (0)
128 
129 #define brw_shader_perf_log(compiler, data, fmt, ... ) do {     \
130    static unsigned id = 0;                                      \
131    compiler->shader_perf_log(data, &id, fmt, ##__VA_ARGS__);    \
132 } while (0)
133 
134 /**
135  * We use a constant subgroup size of 32.  It really only needs to be a
136  * maximum and, since we do SIMD32 for compute shaders in some cases, it
137  * needs to be at least 32.  SIMD8 and SIMD16 shaders will still claim a
138  * subgroup size of 32 but will act as if 16 or 24 of those channels are
139  * disabled.
140  */
141 #define BRW_SUBGROUP_SIZE 32
142 
143 static inline bool
brw_shader_stage_is_bindless(gl_shader_stage stage)144 brw_shader_stage_is_bindless(gl_shader_stage stage)
145 {
146    return stage >= MESA_SHADER_RAYGEN &&
147           stage <= MESA_SHADER_CALLABLE;
148 }
149 
150 /**
151  * Program key structures.
152  *
153  * When drawing, we look for the currently bound shaders in the program
154  * cache.  This is essentially a hash table lookup, and these are the keys.
155  *
156  * Sometimes OpenGL features specified as state need to be simulated via
157  * shader code, due to a mismatch between the API and the hardware.  This
158  * is often referred to as "non-orthagonal state" or "NOS".  We store NOS
159  * in the program key so it's considered when searching for a program.  If
160  * we haven't seen a particular combination before, we have to recompile a
161  * new specialized version.
162  *
163  * Shader compilation should not look up state in gl_context directly, but
164  * instead use the copy in the program key.  This guarantees recompiles will
165  * happen correctly.
166  *
167  *  @{
168  */
169 
170 enum PACKED gfx6_gather_sampler_wa {
171    WA_SIGN = 1,      /* whether we need to sign extend */
172    WA_8BIT = 2,      /* if we have an 8bit format needing wa */
173    WA_16BIT = 4,     /* if we have a 16bit format needing wa */
174 };
175 
176 /**
177  * Sampler information needed by VS, WM, and GS program cache keys.
178  */
179 struct brw_sampler_prog_key_data {
180    /**
181     * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
182     */
183    uint16_t swizzles[MAX_SAMPLERS];
184 
185    uint32_t gl_clamp_mask[3];
186 
187    /**
188     * For RG32F, gather4's channel select is broken.
189     */
190    uint32_t gather_channel_quirk_mask;
191 
192    /**
193     * Whether this sampler uses the compressed multisample surface layout.
194     */
195    uint32_t compressed_multisample_layout_mask;
196 
197    /**
198     * Whether this sampler is using 16x multisampling. If so fetching from
199     * this sampler will be handled with a different instruction, ld2dms_w
200     * instead of ld2dms.
201     */
202    uint32_t msaa_16;
203 
204    /**
205     * For Sandybridge, which shader w/a we need for gather quirks.
206     */
207    enum gfx6_gather_sampler_wa gfx6_gather_wa[MAX_SAMPLERS];
208 
209    /**
210     * Texture units that have a YUV image bound.
211     */
212    uint32_t y_u_v_image_mask;
213    uint32_t y_uv_image_mask;
214    uint32_t yx_xuxv_image_mask;
215    uint32_t xy_uxvx_image_mask;
216    uint32_t ayuv_image_mask;
217    uint32_t xyuv_image_mask;
218    uint32_t bt709_mask;
219    uint32_t bt2020_mask;
220 
221    /* Scale factor for each texture. */
222    float scale_factors[32];
223 };
224 
225 /** An enum representing what kind of input gl_SubgroupSize is. */
226 enum PACKED brw_subgroup_size_type
227 {
228    BRW_SUBGROUP_SIZE_API_CONSTANT,     /**< Default Vulkan behavior */
229    BRW_SUBGROUP_SIZE_UNIFORM,          /**< OpenGL behavior */
230    BRW_SUBGROUP_SIZE_VARYING,          /**< VK_EXT_subgroup_size_control */
231 
232    /* These enums are specifically chosen so that the value of the enum is
233     * also the subgroup size.  If any new values are added, they must respect
234     * this invariant.
235     */
236    BRW_SUBGROUP_SIZE_REQUIRE_8   = 8,  /**< VK_EXT_subgroup_size_control */
237    BRW_SUBGROUP_SIZE_REQUIRE_16  = 16, /**< VK_EXT_subgroup_size_control */
238    BRW_SUBGROUP_SIZE_REQUIRE_32  = 32, /**< VK_EXT_subgroup_size_control */
239 };
240 
241 struct brw_base_prog_key {
242    unsigned program_string_id;
243 
244    enum brw_subgroup_size_type subgroup_size_type;
245    bool robust_buffer_access;
246    struct brw_sampler_prog_key_data tex;
247 };
248 
249 /**
250  * The VF can't natively handle certain types of attributes, such as GL_FIXED
251  * or most 10_10_10_2 types.  These flags enable various VS workarounds to
252  * "fix" attributes at the beginning of shaders.
253  */
254 #define BRW_ATTRIB_WA_COMPONENT_MASK    7  /* mask for GL_FIXED scale channel count */
255 #define BRW_ATTRIB_WA_NORMALIZE     8   /* normalize in shader */
256 #define BRW_ATTRIB_WA_BGRA          16  /* swap r/b channels in shader */
257 #define BRW_ATTRIB_WA_SIGN          32  /* interpret as signed in shader */
258 #define BRW_ATTRIB_WA_SCALE         64  /* interpret as scaled in shader */
259 
260 /**
261  * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
262  * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
263  * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
264  * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
265  */
266 #define MAX_GL_VERT_ATTRIB     VERT_ATTRIB_MAX
267 #define MAX_VK_VERT_ATTRIB     (VERT_ATTRIB_GENERIC0 + 28)
268 
269 /**
270  * Max number of binding table entries used for stream output.
271  *
272  * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
273  * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
274  *
275  * On Gfx6, the size of transform feedback data is limited not by the number
276  * of components but by the number of binding table entries we set aside.  We
277  * use one binding table entry for a float, one entry for a vector, and one
278  * entry per matrix column.  Since the only way we can communicate our
279  * transform feedback capabilities to the client is via
280  * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
281  * worst case, in which all the varyings are floats, so we use up one binding
282  * table entry per component.  Therefore we need to set aside at least 64
283  * binding table entries for use by transform feedback.
284  *
285  * Note: since we don't currently pack varyings, it is currently impossible
286  * for the client to actually use up all of these binding table entries--if
287  * all of their varyings were floats, they would run out of varying slots and
288  * fail to link.  But that's a bug, so it seems prudent to go ahead and
289  * allocate the number of binding table entries we will need once the bug is
290  * fixed.
291  */
292 #define BRW_MAX_SOL_BINDINGS 64
293 
294 /** The program key for Vertex Shaders. */
295 struct brw_vs_prog_key {
296    struct brw_base_prog_key base;
297 
298    /**
299     * Per-attribute workaround flags
300     *
301     * For each attribute, a combination of BRW_ATTRIB_WA_*.
302     *
303     * For OpenGL, where we expose a maximum of 16 user input atttributes
304     * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
305     * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
306     * expose up to 28 user input vertex attributes that are mapped to slots
307     * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
308     * enough to hold this many slots.
309     */
310    uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
311 
312    bool copy_edgeflag:1;
313 
314    bool clamp_vertex_color:1;
315 
316    /**
317     * How many user clipping planes are being uploaded to the vertex shader as
318     * push constants.
319     *
320     * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
321     * clip distances.
322     */
323    unsigned nr_userclip_plane_consts:4;
324 
325    /**
326     * For pre-Gfx6 hardware, a bitfield indicating which texture coordinates
327     * are going to be replaced with point coordinates (as a consequence of a
328     * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)).  Because
329     * our SF thread requires exact matching between VS outputs and FS inputs,
330     * these texture coordinates will need to be unconditionally included in
331     * the VUE, even if they aren't written by the vertex shader.
332     */
333    uint8_t point_coord_replace;
334 };
335 
336 /** The program key for Tessellation Control Shaders. */
337 struct brw_tcs_prog_key
338 {
339    struct brw_base_prog_key base;
340 
341    GLenum tes_primitive_mode;
342 
343    unsigned input_vertices;
344 
345    /** A bitfield of per-patch outputs written. */
346    uint32_t patch_outputs_written;
347 
348    /** A bitfield of per-vertex outputs written. */
349    uint64_t outputs_written;
350 
351    bool quads_workaround;
352 };
353 
354 /** The program key for Tessellation Evaluation Shaders. */
355 struct brw_tes_prog_key
356 {
357    struct brw_base_prog_key base;
358 
359    /** A bitfield of per-patch inputs read. */
360    uint32_t patch_inputs_read;
361 
362    /** A bitfield of per-vertex inputs read. */
363    uint64_t inputs_read;
364 
365    /**
366     * How many user clipping planes are being uploaded to the tessellation
367     * evaluation shader as push constants.
368     *
369     * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
370     * clip distances.
371     */
372    unsigned nr_userclip_plane_consts:4;
373 };
374 
375 /** The program key for Geometry Shaders. */
376 struct brw_gs_prog_key
377 {
378    struct brw_base_prog_key base;
379 
380    /**
381     * How many user clipping planes are being uploaded to the geometry shader
382     * as push constants.
383     *
384     * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
385     * clip distances.
386     */
387    unsigned nr_userclip_plane_consts:4;
388 };
389 
390 enum brw_sf_primitive {
391    BRW_SF_PRIM_POINTS = 0,
392    BRW_SF_PRIM_LINES = 1,
393    BRW_SF_PRIM_TRIANGLES = 2,
394    BRW_SF_PRIM_UNFILLED_TRIS = 3,
395 };
396 
397 struct brw_sf_prog_key {
398    uint64_t attrs;
399    bool contains_flat_varying;
400    unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
401    uint8_t point_sprite_coord_replace;
402    enum brw_sf_primitive primitive:2;
403    bool do_twoside_color:1;
404    bool frontface_ccw:1;
405    bool do_point_sprite:1;
406    bool do_point_coord:1;
407    bool sprite_origin_lower_left:1;
408    bool userclip_active:1;
409 };
410 
411 enum brw_clip_mode {
412    BRW_CLIP_MODE_NORMAL             = 0,
413    BRW_CLIP_MODE_CLIP_ALL           = 1,
414    BRW_CLIP_MODE_CLIP_NON_REJECTED  = 2,
415    BRW_CLIP_MODE_REJECT_ALL         = 3,
416    BRW_CLIP_MODE_ACCEPT_ALL         = 4,
417    BRW_CLIP_MODE_KERNEL_CLIP        = 5,
418 };
419 
420 enum brw_clip_fill_mode {
421    BRW_CLIP_FILL_MODE_LINE = 0,
422    BRW_CLIP_FILL_MODE_POINT = 1,
423    BRW_CLIP_FILL_MODE_FILL = 2,
424    BRW_CLIP_FILL_MODE_CULL = 3,
425 };
426 
427 /* Note that if unfilled primitives are being emitted, we have to fix
428  * up polygon offset and flatshading at this point:
429  */
430 struct brw_clip_prog_key {
431    uint64_t attrs;
432    bool contains_flat_varying;
433    bool contains_noperspective_varying;
434    unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
435    unsigned primitive:4;
436    unsigned nr_userclip:4;
437    bool pv_first:1;
438    bool do_unfilled:1;
439    enum brw_clip_fill_mode fill_cw:2;  /* includes cull information */
440    enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
441    bool offset_cw:1;
442    bool offset_ccw:1;
443    bool copy_bfc_cw:1;
444    bool copy_bfc_ccw:1;
445    enum brw_clip_mode clip_mode:3;
446 
447    float offset_factor;
448    float offset_units;
449    float offset_clamp;
450 };
451 
452 /* A big lookup table is used to figure out which and how many
453  * additional regs will inserted before the main payload in the WM
454  * program execution.  These mainly relate to depth and stencil
455  * processing and the early-depth-test optimization.
456  */
457 enum brw_wm_iz_bits {
458    BRW_WM_IZ_PS_KILL_ALPHATEST_BIT     = 0x1,
459    BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT     = 0x2,
460    BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT    = 0x4,
461    BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT     = 0x8,
462    BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT  = 0x10,
463    BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT   = 0x20,
464    BRW_WM_IZ_BIT_MAX                   = 0x40
465 };
466 
467 enum brw_wm_aa_enable {
468    BRW_WM_AA_NEVER,
469    BRW_WM_AA_SOMETIMES,
470    BRW_WM_AA_ALWAYS
471 };
472 
473 /** The program key for Fragment/Pixel Shaders. */
474 struct brw_wm_prog_key {
475    struct brw_base_prog_key base;
476 
477    /* Some collection of BRW_WM_IZ_* */
478    uint8_t iz_lookup;
479    bool stats_wm:1;
480    bool flat_shade:1;
481    unsigned nr_color_regions:5;
482    bool alpha_test_replicate_alpha:1;
483    bool alpha_to_coverage:1;
484    bool clamp_fragment_color:1;
485    bool persample_interp:1;
486    bool multisample_fbo:1;
487    bool frag_coord_adds_sample_pos:1;
488    enum brw_wm_aa_enable line_aa:2;
489    bool high_quality_derivatives:1;
490    bool force_dual_color_blend:1;
491    bool coherent_fb_fetch:1;
492    bool ignore_sample_mask_out:1;
493    bool coarse_pixel:1;
494 
495    uint8_t color_outputs_valid;
496    uint64_t input_slots_valid;
497    GLenum alpha_test_func;          /* < For Gfx4/5 MRT alpha test */
498    float alpha_test_ref;
499 };
500 
501 struct brw_cs_prog_key {
502    struct brw_base_prog_key base;
503 };
504 
505 struct brw_bs_prog_key {
506    struct brw_base_prog_key base;
507 };
508 
509 struct brw_ff_gs_prog_key {
510    uint64_t attrs;
511 
512    /**
513     * Hardware primitive type being drawn, e.g. _3DPRIM_TRILIST.
514     */
515    unsigned primitive:8;
516 
517    unsigned pv_first:1;
518    unsigned need_gs_prog:1;
519 
520    /**
521     * Number of varyings that are output to transform feedback.
522     */
523    unsigned num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
524 
525    /**
526     * Map from the index of a transform feedback binding table entry to the
527     * gl_varying_slot that should be streamed out through that binding table
528     * entry.
529     */
530    unsigned char transform_feedback_bindings[BRW_MAX_SOL_BINDINGS];
531 
532    /**
533     * Map from the index of a transform feedback binding table entry to the
534     * swizzles that should be used when streaming out data through that
535     * binding table entry.
536     */
537    unsigned char transform_feedback_swizzles[BRW_MAX_SOL_BINDINGS];
538 };
539 
540 /* brw_any_prog_key is any of the keys that map to an API stage */
541 union brw_any_prog_key {
542    struct brw_base_prog_key base;
543    struct brw_vs_prog_key vs;
544    struct brw_tcs_prog_key tcs;
545    struct brw_tes_prog_key tes;
546    struct brw_gs_prog_key gs;
547    struct brw_wm_prog_key wm;
548    struct brw_cs_prog_key cs;
549    struct brw_bs_prog_key bs;
550 };
551 
552 /*
553  * Image metadata structure as laid out in the shader parameter
554  * buffer.  Entries have to be 16B-aligned for the vec4 back-end to be
555  * able to use them.  That's okay because the padding and any unused
556  * entries [most of them except when we're doing untyped surface
557  * access] will be removed by the uniform packing pass.
558  */
559 #define BRW_IMAGE_PARAM_OFFSET_OFFSET           0
560 #define BRW_IMAGE_PARAM_SIZE_OFFSET             4
561 #define BRW_IMAGE_PARAM_STRIDE_OFFSET           8
562 #define BRW_IMAGE_PARAM_TILING_OFFSET           12
563 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET        16
564 #define BRW_IMAGE_PARAM_SIZE                    20
565 
566 struct brw_image_param {
567    /** Offset applied to the X and Y surface coordinates. */
568    uint32_t offset[2];
569 
570    /** Surface X, Y and Z dimensions. */
571    uint32_t size[3];
572 
573    /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
574     * pixels, vertical slice stride in pixels.
575     */
576    uint32_t stride[4];
577 
578    /** Log2 of the tiling modulus in the X, Y and Z dimension. */
579    uint32_t tiling[3];
580 
581    /**
582     * Right shift to apply for bit 6 address swizzling.  Two different
583     * swizzles can be specified and will be applied one after the other.  The
584     * resulting address will be:
585     *
586     *  addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
587     *                              (addr >> swizzling[1])))
588     *
589     * Use \c 0xff if any of the swizzles is not required.
590     */
591    uint32_t swizzling[2];
592 };
593 
594 /** Max number of render targets in a shader */
595 #define BRW_MAX_DRAW_BUFFERS 8
596 
597 /**
598  * Binding table index for the first gfx6 SOL binding.
599  */
600 #define BRW_GFX6_SOL_BINDING_START 0
601 
602 /**
603  * Stride in bytes between shader_time entries.
604  *
605  * We separate entries by a cacheline to reduce traffic between EUs writing to
606  * different entries.
607  */
608 #define BRW_SHADER_TIME_STRIDE 64
609 
610 struct brw_ubo_range
611 {
612    uint16_t block;
613    uint8_t start;
614    uint8_t length;
615 };
616 
617 /* We reserve the first 2^16 values for builtins */
618 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
619 
620 enum brw_param_builtin {
621    BRW_PARAM_BUILTIN_ZERO,
622 
623    BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
624    BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
625    BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
626    BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
627    BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
628    BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
629    BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
630    BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
631    BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
632    BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
633    BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
634    BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
635    BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
636    BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
637    BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
638    BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
639    BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
640    BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
641    BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
642    BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
643    BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
644    BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
645    BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
646    BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
647    BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
648    BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
649    BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
650    BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
651    BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
652    BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
653    BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
654    BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
655 
656    BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
657    BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
658    BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
659    BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
660    BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
661    BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
662 
663    BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
664 
665    BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
666    BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
667    BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
668    BRW_PARAM_BUILTIN_SUBGROUP_ID,
669    BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
670    BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
671    BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
672    BRW_PARAM_BUILTIN_WORK_DIM,
673 };
674 
675 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
676    (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
677 
678 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param)  \
679    ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
680     (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
681 
682 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
683    (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
684 
685 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
686    (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
687 
688 enum brw_shader_reloc_id {
689    BRW_SHADER_RELOC_CONST_DATA_ADDR_LOW,
690    BRW_SHADER_RELOC_CONST_DATA_ADDR_HIGH,
691    BRW_SHADER_RELOC_SHADER_START_OFFSET,
692    BRW_SHADER_RELOC_RESUME_SBT_ADDR_LOW,
693    BRW_SHADER_RELOC_RESUME_SBT_ADDR_HIGH,
694 };
695 
696 enum brw_shader_reloc_type {
697    /** An arbitrary 32-bit value */
698    BRW_SHADER_RELOC_TYPE_U32,
699    /** A MOV instruction with an immediate source */
700    BRW_SHADER_RELOC_TYPE_MOV_IMM,
701 };
702 
703 /** Represents a code relocation
704  *
705  * Relocatable constants are immediates in the code which we want to be able
706  * to replace post-compile with the actual value.
707  */
708 struct brw_shader_reloc {
709    /** The 32-bit ID of the relocatable constant */
710    uint32_t id;
711 
712    /** Type of this relocation */
713    enum brw_shader_reloc_type type;
714 
715    /** The offset in the shader to the relocated value
716     *
717     * For MOV_IMM relocs, this is an offset to the MOV instruction.  This
718     * allows us to do some sanity checking while we update the value.
719     */
720    uint32_t offset;
721 
722    /** Value to be added to the relocated value before it is written */
723    uint32_t delta;
724 };
725 
726 /** A value to write to a relocation */
727 struct brw_shader_reloc_value {
728    /** The 32-bit ID of the relocatable constant */
729    uint32_t id;
730 
731    /** The value with which to replace the relocated immediate */
732    uint32_t value;
733 };
734 
735 struct brw_stage_prog_data {
736    struct {
737       /** size of our binding table. */
738       uint32_t size_bytes;
739 
740       /** @{
741        * surface indices for the various groups of surfaces
742        */
743       uint32_t pull_constants_start;
744       uint32_t texture_start;
745       uint32_t gather_texture_start;
746       uint32_t ubo_start;
747       uint32_t ssbo_start;
748       uint32_t image_start;
749       uint32_t shader_time_start;
750       uint32_t plane_start[3];
751       /** @} */
752    } binding_table;
753 
754    struct brw_ubo_range ubo_ranges[4];
755 
756    GLuint nr_params;       /**< number of float params/constants */
757    GLuint nr_pull_params;
758 
759    gl_shader_stage stage;
760 
761    /* zero_push_reg is a bitfield which indicates what push registers (if any)
762     * should be zeroed by SW at the start of the shader.  The corresponding
763     * push_reg_mask_param specifies the param index (in 32-bit units) where
764     * the actual runtime 64-bit mask will be pushed.  The shader will zero
765     * push reg i if
766     *
767     *    reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
768     *
769     * If this field is set, brw_compiler::compact_params must be false.
770     */
771    uint64_t zero_push_reg;
772    unsigned push_reg_mask_param;
773 
774    unsigned curb_read_length;
775    unsigned total_scratch;
776    unsigned total_shared;
777 
778    unsigned program_size;
779 
780    unsigned const_data_size;
781    unsigned const_data_offset;
782 
783    unsigned num_relocs;
784    const struct brw_shader_reloc *relocs;
785 
786    /** Does this program pull from any UBO or other constant buffers? */
787    bool has_ubo_pull;
788 
789    /**
790     * Register where the thread expects to find input data from the URB
791     * (typically uniforms, followed by vertex or fragment attributes).
792     */
793    unsigned dispatch_grf_start_reg;
794 
795    bool use_alt_mode; /**< Use ALT floating point mode?  Otherwise, IEEE. */
796 
797    /* 32-bit identifiers for all push/pull parameters.  These can be anything
798     * the driver wishes them to be; the core of the back-end compiler simply
799     * re-arranges them.  The one restriction is that the bottom 2^16 values
800     * are reserved for builtins defined in the brw_param_builtin enum defined
801     * above.
802     */
803    uint32_t *param;
804    uint32_t *pull_param;
805 
806    /* Whether shader uses atomic operations. */
807    bool uses_atomic_load_store;
808 };
809 
810 static inline uint32_t *
brw_stage_prog_data_add_params(struct brw_stage_prog_data * prog_data,unsigned nr_new_params)811 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
812                                unsigned nr_new_params)
813 {
814    unsigned old_nr_params = prog_data->nr_params;
815    prog_data->nr_params += nr_new_params;
816    prog_data->param = reralloc(ralloc_parent(prog_data->param),
817                                prog_data->param, uint32_t,
818                                prog_data->nr_params);
819    return prog_data->param + old_nr_params;
820 }
821 
822 enum brw_barycentric_mode {
823    BRW_BARYCENTRIC_PERSPECTIVE_PIXEL       = 0,
824    BRW_BARYCENTRIC_PERSPECTIVE_CENTROID    = 1,
825    BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE      = 2,
826    BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL    = 3,
827    BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
828    BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE   = 5,
829    BRW_BARYCENTRIC_MODE_COUNT              = 6
830 };
831 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
832    ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
833     (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
834     (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
835 
836 enum brw_pixel_shader_computed_depth_mode {
837    BRW_PSCDEPTH_OFF   = 0, /* PS does not compute depth */
838    BRW_PSCDEPTH_ON    = 1, /* PS computes depth; no guarantee about value */
839    BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
840    BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
841 };
842 
843 /* Data about a particular attempt to compile a program.  Note that
844  * there can be many of these, each in a different GL state
845  * corresponding to a different brw_wm_prog_key struct, with different
846  * compiled programs.
847  */
848 struct brw_wm_prog_data {
849    struct brw_stage_prog_data base;
850 
851    GLuint num_varying_inputs;
852 
853    uint8_t reg_blocks_8;
854    uint8_t reg_blocks_16;
855    uint8_t reg_blocks_32;
856 
857    uint8_t dispatch_grf_start_reg_16;
858    uint8_t dispatch_grf_start_reg_32;
859    uint32_t prog_offset_16;
860    uint32_t prog_offset_32;
861 
862    struct {
863       /** @{
864        * surface indices the WM-specific surfaces
865        */
866       uint32_t render_target_read_start;
867       /** @} */
868    } binding_table;
869 
870    uint8_t computed_depth_mode;
871    bool computed_stencil;
872 
873    bool early_fragment_tests;
874    bool post_depth_coverage;
875    bool inner_coverage;
876    bool dispatch_8;
877    bool dispatch_16;
878    bool dispatch_32;
879    bool dual_src_blend;
880    bool persample_dispatch;
881    bool uses_pos_offset;
882    bool uses_omask;
883    bool uses_kill;
884    bool uses_src_depth;
885    bool uses_src_w;
886    bool uses_depth_w_coefficients;
887    bool uses_sample_mask;
888    bool has_render_target_reads;
889    bool has_side_effects;
890    bool pulls_bary;
891 
892    bool contains_flat_varying;
893    bool contains_noperspective_varying;
894 
895    /**
896     * Shader is ran at the coarse pixel shading dispatch rate (3DSTATE_CPS).
897     */
898    bool per_coarse_pixel_dispatch;
899 
900    /**
901     * Mask of which interpolation modes are required by the fragment shader.
902     * Used in hardware setup on gfx6+.
903     */
904    uint32_t barycentric_interp_modes;
905 
906    /**
907     * Mask of which FS inputs are marked flat by the shader source.  This is
908     * needed for setting up 3DSTATE_SF/SBE.
909     */
910    uint32_t flat_inputs;
911 
912    /**
913     * The FS inputs
914     */
915    uint64_t inputs;
916 
917    /* Mapping of VUE slots to interpolation modes.
918     * Used by the Gfx4-5 clip/sf/wm stages.
919     */
920    unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
921 
922    /**
923     * Map from gl_varying_slot to the position within the FS setup data
924     * payload where the varying's attribute vertex deltas should be delivered.
925     * For varying slots that are not used by the FS, the value is -1.
926     */
927    int urb_setup[VARYING_SLOT_MAX];
928 
929    /**
930     * Cache structure into the urb_setup array above that contains the
931     * attribute numbers of active varyings out of urb_setup.
932     * The actual count is stored in urb_setup_attribs_count.
933     */
934    uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
935    uint8_t urb_setup_attribs_count;
936 };
937 
938 /** Returns the SIMD width corresponding to a given KSP index
939  *
940  * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
941  * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
942  * kernel start pointer (KSP) indices that is based on what dispatch widths
943  * are enabled.  This function provides, effectively, the reverse mapping.
944  *
945  * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
946  * width of 8, 16, or 32 is returned.  If the KSP is invalid, 0 is returned.
947  */
948 static inline unsigned
brw_fs_simd_width_for_ksp(unsigned ksp_idx,bool simd8_enabled,bool simd16_enabled,bool simd32_enabled)949 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
950                           bool simd16_enabled, bool simd32_enabled)
951 {
952    /* This function strictly ignores contiguous dispatch */
953    switch (ksp_idx) {
954    case 0:
955       return simd8_enabled ? 8 :
956              (simd16_enabled && !simd32_enabled) ? 16 :
957              (simd32_enabled && !simd16_enabled) ? 32 : 0;
958    case 1:
959       return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
960    case 2:
961       return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
962    default:
963       unreachable("Invalid KSP index");
964    }
965 }
966 
967 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
968    brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
969                              (wm_state)._16PixelDispatchEnable, \
970                              (wm_state)._32PixelDispatchEnable)
971 
972 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
973    (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
974 
975 static inline uint32_t
_brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data * prog_data,unsigned simd_width)976 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
977                               unsigned simd_width)
978 {
979    switch (simd_width) {
980    case 8: return 0;
981    case 16: return prog_data->prog_offset_16;
982    case 32: return prog_data->prog_offset_32;
983    default: return 0;
984    }
985 }
986 
987 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
988    _brw_wm_prog_data_prog_offset(prog_data, \
989       brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
990 
991 static inline uint8_t
_brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data * prog_data,unsigned simd_width)992 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
993                                          unsigned simd_width)
994 {
995    switch (simd_width) {
996    case 8: return prog_data->base.dispatch_grf_start_reg;
997    case 16: return prog_data->dispatch_grf_start_reg_16;
998    case 32: return prog_data->dispatch_grf_start_reg_32;
999    default: return 0;
1000    }
1001 }
1002 
1003 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
1004    _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
1005       brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
1006 
1007 static inline uint8_t
_brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data * prog_data,unsigned simd_width)1008 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
1009                              unsigned simd_width)
1010 {
1011    switch (simd_width) {
1012    case 8: return prog_data->reg_blocks_8;
1013    case 16: return prog_data->reg_blocks_16;
1014    case 32: return prog_data->reg_blocks_32;
1015    default: return 0;
1016    }
1017 }
1018 
1019 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
1020    _brw_wm_prog_data_reg_blocks(prog_data, \
1021       brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
1022 
1023 struct brw_push_const_block {
1024    unsigned dwords;     /* Dword count, not reg aligned */
1025    unsigned regs;
1026    unsigned size;       /* Bytes, register aligned */
1027 };
1028 
1029 struct brw_cs_prog_data {
1030    struct brw_stage_prog_data base;
1031 
1032    unsigned local_size[3];
1033 
1034    /* Program offsets for the 8/16/32 SIMD variants.  Multiple variants are
1035     * kept when using variable group size, and the right one can only be
1036     * decided at dispatch time.
1037     */
1038    unsigned prog_offset[3];
1039 
1040    /* Bitmask indicating which program offsets are valid. */
1041    unsigned prog_mask;
1042 
1043    /* Bitmask indicating which programs have spilled. */
1044    unsigned prog_spilled;
1045 
1046    bool uses_barrier;
1047    bool uses_num_work_groups;
1048    bool uses_inline_data;
1049    bool uses_btd_stack_ids;
1050 
1051    struct {
1052       struct brw_push_const_block cross_thread;
1053       struct brw_push_const_block per_thread;
1054    } push;
1055 
1056    struct {
1057       /** @{
1058        * surface indices the CS-specific surfaces
1059        */
1060       uint32_t work_groups_start;
1061       /** @} */
1062    } binding_table;
1063 };
1064 
1065 static inline uint32_t
brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data * prog_data,unsigned dispatch_width)1066 brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
1067                              unsigned dispatch_width)
1068 {
1069    assert(dispatch_width == 8 ||
1070           dispatch_width == 16 ||
1071           dispatch_width == 32);
1072    const unsigned index = dispatch_width / 16;
1073    assert(prog_data->prog_mask & (1 << index));
1074    return prog_data->prog_offset[index];
1075 }
1076 
1077 struct brw_bs_prog_data {
1078    struct brw_stage_prog_data base;
1079 
1080    /** SIMD size of the root shader */
1081    uint8_t simd_size;
1082 
1083    /** Maximum stack size of all shaders */
1084    uint32_t max_stack_size;
1085 
1086    /** Offset into the shader where the resume SBT is located */
1087    uint32_t resume_sbt_offset;
1088 };
1089 
1090 struct brw_ff_gs_prog_data {
1091    unsigned urb_read_length;
1092    unsigned total_grf;
1093 
1094    /**
1095     * Gfx6 transform feedback: Amount by which the streaming vertex buffer
1096     * indices should be incremented each time the GS is invoked.
1097     */
1098    unsigned svbi_postincrement_value;
1099 };
1100 
1101 /**
1102  * Enum representing the i965-specific vertex results that don't correspond
1103  * exactly to any element of gl_varying_slot.  The values of this enum are
1104  * assigned such that they don't conflict with gl_varying_slot.
1105  */
1106 typedef enum
1107 {
1108    BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
1109    BRW_VARYING_SLOT_PAD,
1110    /**
1111     * Technically this is not a varying but just a placeholder that
1112     * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
1113     * builtin variable to be compiled correctly. see compile_sf_prog() for
1114     * more info.
1115     */
1116    BRW_VARYING_SLOT_PNTC,
1117    BRW_VARYING_SLOT_COUNT
1118 } brw_varying_slot;
1119 
1120 /**
1121  * We always program SF to start reading at an offset of 1 (2 varying slots)
1122  * from the start of the vertex URB entry.  This causes it to skip:
1123  * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gfx4-5
1124  * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gfx6+
1125  */
1126 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
1127 
1128 /**
1129  * Bitmask indicating which fragment shader inputs represent varyings (and
1130  * hence have to be delivered to the fragment shader by the SF/SBE stage).
1131  */
1132 #define BRW_FS_VARYING_INPUT_MASK \
1133    (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
1134     ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
1135 
1136 /**
1137  * Data structure recording the relationship between the gl_varying_slot enum
1138  * and "slots" within the vertex URB entry (VUE).  A "slot" is defined as a
1139  * single octaword within the VUE (128 bits).
1140  *
1141  * Note that each BRW register contains 256 bits (2 octawords), so when
1142  * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
1143  * consecutive VUE slots.  When accessing the VUE in URB_INTERLEAVED mode (as
1144  * in a vertex shader), each register corresponds to a single VUE slot, since
1145  * it contains data for two separate vertices.
1146  */
1147 struct brw_vue_map {
1148    /**
1149     * Bitfield representing all varying slots that are (a) stored in this VUE
1150     * map, and (b) actually written by the shader.  Does not include any of
1151     * the additional varying slots defined in brw_varying_slot.
1152     */
1153    uint64_t slots_valid;
1154 
1155    /**
1156     * Is this VUE map for a separate shader pipeline?
1157     *
1158     * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
1159     * without the linker having a chance to dead code eliminate unused varyings.
1160     *
1161     * This means that we have to use a fixed slot layout, based on the output's
1162     * location field, rather than assigning slots in a compact contiguous block.
1163     */
1164    bool separate;
1165 
1166    /**
1167     * Map from gl_varying_slot value to VUE slot.  For gl_varying_slots that are
1168     * not stored in a slot (because they are not written, or because
1169     * additional processing is applied before storing them in the VUE), the
1170     * value is -1.
1171     */
1172    signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
1173 
1174    /**
1175     * Map from VUE slot to gl_varying_slot value.  For slots that do not
1176     * directly correspond to a gl_varying_slot, the value comes from
1177     * brw_varying_slot.
1178     *
1179     * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
1180     */
1181    signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
1182 
1183    /**
1184     * Total number of VUE slots in use
1185     */
1186    int num_slots;
1187 
1188    /**
1189     * Number of per-patch VUE slots. Only valid for tessellation control
1190     * shader outputs and tessellation evaluation shader inputs.
1191     */
1192    int num_per_patch_slots;
1193 
1194    /**
1195     * Number of per-vertex VUE slots. Only valid for tessellation control
1196     * shader outputs and tessellation evaluation shader inputs.
1197     */
1198    int num_per_vertex_slots;
1199 };
1200 
1201 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map,
1202                        gl_shader_stage stage);
1203 
1204 /**
1205  * Convert a VUE slot number into a byte offset within the VUE.
1206  */
brw_vue_slot_to_offset(GLuint slot)1207 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
1208 {
1209    return 16*slot;
1210 }
1211 
1212 /**
1213  * Convert a vertex output (brw_varying_slot) into a byte offset within the
1214  * VUE.
1215  */
1216 static inline
brw_varying_to_offset(const struct brw_vue_map * vue_map,GLuint varying)1217 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
1218 {
1219    return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1220 }
1221 
1222 void brw_compute_vue_map(const struct intel_device_info *devinfo,
1223                          struct brw_vue_map *vue_map,
1224                          uint64_t slots_valid,
1225                          bool separate_shader,
1226                          uint32_t pos_slots);
1227 
1228 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1229                               uint64_t slots_valid,
1230                               uint32_t is_patch);
1231 
1232 /* brw_interpolation_map.c */
1233 void brw_setup_vue_interpolation(const struct brw_vue_map *vue_map,
1234                                  struct nir_shader *nir,
1235                                  struct brw_wm_prog_data *prog_data);
1236 
1237 enum shader_dispatch_mode {
1238    DISPATCH_MODE_4X1_SINGLE = 0,
1239    DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1240    DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1241    DISPATCH_MODE_SIMD8 = 3,
1242 
1243    DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1244    DISPATCH_MODE_TCS_8_PATCH = 2,
1245 };
1246 
1247 /**
1248  * @defgroup Tessellator parameter enumerations.
1249  *
1250  * These correspond to the hardware values in 3DSTATE_TE, and are provided
1251  * as part of the tessellation evaluation shader.
1252  *
1253  * @{
1254  */
1255 enum brw_tess_partitioning {
1256    BRW_TESS_PARTITIONING_INTEGER         = 0,
1257    BRW_TESS_PARTITIONING_ODD_FRACTIONAL  = 1,
1258    BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1259 };
1260 
1261 enum brw_tess_output_topology {
1262    BRW_TESS_OUTPUT_TOPOLOGY_POINT   = 0,
1263    BRW_TESS_OUTPUT_TOPOLOGY_LINE    = 1,
1264    BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW  = 2,
1265    BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1266 };
1267 
1268 enum brw_tess_domain {
1269    BRW_TESS_DOMAIN_QUAD    = 0,
1270    BRW_TESS_DOMAIN_TRI     = 1,
1271    BRW_TESS_DOMAIN_ISOLINE = 2,
1272 };
1273 /** @} */
1274 
1275 struct brw_vue_prog_data {
1276    struct brw_stage_prog_data base;
1277    struct brw_vue_map vue_map;
1278 
1279    /** Should the hardware deliver input VUE handles for URB pull loads? */
1280    bool include_vue_handles;
1281 
1282    GLuint urb_read_length;
1283    GLuint total_grf;
1284 
1285    uint32_t clip_distance_mask;
1286    uint32_t cull_distance_mask;
1287 
1288    /* Used for calculating urb partitions.  In the VS, this is the size of the
1289     * URB entry used for both input and output to the thread.  In the GS, this
1290     * is the size of the URB entry used for output.
1291     */
1292    GLuint urb_entry_size;
1293 
1294    enum shader_dispatch_mode dispatch_mode;
1295 };
1296 
1297 struct brw_vs_prog_data {
1298    struct brw_vue_prog_data base;
1299 
1300    GLbitfield64 inputs_read;
1301    GLbitfield64 double_inputs_read;
1302 
1303    unsigned nr_attribute_slots;
1304 
1305    bool uses_vertexid;
1306    bool uses_instanceid;
1307    bool uses_is_indexed_draw;
1308    bool uses_firstvertex;
1309    bool uses_baseinstance;
1310    bool uses_drawid;
1311 };
1312 
1313 struct brw_tcs_prog_data
1314 {
1315    struct brw_vue_prog_data base;
1316 
1317    /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1318    bool include_primitive_id;
1319 
1320    /** Number vertices in output patch */
1321    int instances;
1322 
1323    /** Track patch count threshold */
1324    int patch_count_threshold;
1325 };
1326 
1327 
1328 struct brw_tes_prog_data
1329 {
1330    struct brw_vue_prog_data base;
1331 
1332    enum brw_tess_partitioning partitioning;
1333    enum brw_tess_output_topology output_topology;
1334    enum brw_tess_domain domain;
1335 };
1336 
1337 struct brw_gs_prog_data
1338 {
1339    struct brw_vue_prog_data base;
1340 
1341    unsigned vertices_in;
1342 
1343    /**
1344     * Size of an output vertex, measured in HWORDS (32 bytes).
1345     */
1346    unsigned output_vertex_size_hwords;
1347 
1348    unsigned output_topology;
1349 
1350    /**
1351     * Size of the control data (cut bits or StreamID bits), in hwords (32
1352     * bytes).  0 if there is no control data.
1353     */
1354    unsigned control_data_header_size_hwords;
1355 
1356    /**
1357     * Format of the control data (either GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1358     * if the control data is StreamID bits, or
1359     * GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1360     * Ignored if control_data_header_size is 0.
1361     */
1362    unsigned control_data_format;
1363 
1364    bool include_primitive_id;
1365 
1366    /**
1367     * The number of vertices emitted, if constant - otherwise -1.
1368     */
1369    int static_vertex_count;
1370 
1371    int invocations;
1372 
1373    /**
1374     * Gfx6: Provoking vertex convention for odd-numbered triangles
1375     * in tristrips.
1376     */
1377    GLuint pv_first:1;
1378 
1379    /**
1380     * Gfx6: Number of varyings that are output to transform feedback.
1381     */
1382    GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1383 
1384    /**
1385     * Gfx6: Map from the index of a transform feedback binding table entry to the
1386     * gl_varying_slot that should be streamed out through that binding table
1387     * entry.
1388     */
1389    unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1390 
1391    /**
1392     * Gfx6: Map from the index of a transform feedback binding table entry to the
1393     * swizzles that should be used when streaming out data through that
1394     * binding table entry.
1395     */
1396    unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1397 };
1398 
1399 struct brw_sf_prog_data {
1400    uint32_t urb_read_length;
1401    uint32_t total_grf;
1402 
1403    /* Each vertex may have upto 12 attributes, 4 components each,
1404     * except WPOS which requires only 2.  (11*4 + 2) == 44 ==> 11
1405     * rows.
1406     *
1407     * Actually we use 4 for each, so call it 12 rows.
1408     */
1409    unsigned urb_entry_size;
1410 };
1411 
1412 struct brw_clip_prog_data {
1413    uint32_t curb_read_length;	/* user planes? */
1414    uint32_t clip_mode;
1415    uint32_t urb_read_length;
1416    uint32_t total_grf;
1417 };
1418 
1419 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1420 union brw_any_prog_data {
1421    struct brw_stage_prog_data base;
1422    struct brw_vue_prog_data vue;
1423    struct brw_vs_prog_data vs;
1424    struct brw_tcs_prog_data tcs;
1425    struct brw_tes_prog_data tes;
1426    struct brw_gs_prog_data gs;
1427    struct brw_wm_prog_data wm;
1428    struct brw_cs_prog_data cs;
1429    struct brw_bs_prog_data bs;
1430 };
1431 
1432 #define DEFINE_PROG_DATA_DOWNCAST(STAGE, CHECK)                            \
1433 static inline struct brw_##STAGE##_prog_data *                             \
1434 brw_##STAGE##_prog_data(struct brw_stage_prog_data *prog_data)             \
1435 {                                                                          \
1436    if (prog_data)                                                          \
1437       assert(CHECK);                                                       \
1438    return (struct brw_##STAGE##_prog_data *) prog_data;                    \
1439 }                                                                          \
1440 static inline const struct brw_##STAGE##_prog_data *                       \
1441 brw_##STAGE##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
1442 {                                                                          \
1443    if (prog_data)                                                          \
1444       assert(CHECK);                                                       \
1445    return (const struct brw_##STAGE##_prog_data *) prog_data;              \
1446 }
1447 
1448 DEFINE_PROG_DATA_DOWNCAST(vs,  prog_data->stage == MESA_SHADER_VERTEX)
1449 DEFINE_PROG_DATA_DOWNCAST(tcs, prog_data->stage == MESA_SHADER_TESS_CTRL)
1450 DEFINE_PROG_DATA_DOWNCAST(tes, prog_data->stage == MESA_SHADER_TESS_EVAL)
1451 DEFINE_PROG_DATA_DOWNCAST(gs,  prog_data->stage == MESA_SHADER_GEOMETRY)
1452 DEFINE_PROG_DATA_DOWNCAST(wm,  prog_data->stage == MESA_SHADER_FRAGMENT)
1453 DEFINE_PROG_DATA_DOWNCAST(cs,  prog_data->stage == MESA_SHADER_COMPUTE)
1454 DEFINE_PROG_DATA_DOWNCAST(bs,  brw_shader_stage_is_bindless(prog_data->stage))
1455 
1456 DEFINE_PROG_DATA_DOWNCAST(vue, prog_data->stage == MESA_SHADER_VERTEX ||
1457                                prog_data->stage == MESA_SHADER_TESS_CTRL ||
1458                                prog_data->stage == MESA_SHADER_TESS_EVAL ||
1459                                prog_data->stage == MESA_SHADER_GEOMETRY)
1460 
1461 /* These are not really brw_stage_prog_data. */
1462 DEFINE_PROG_DATA_DOWNCAST(ff_gs, true)
1463 DEFINE_PROG_DATA_DOWNCAST(clip,  true)
1464 DEFINE_PROG_DATA_DOWNCAST(sf,    true)
1465 #undef DEFINE_PROG_DATA_DOWNCAST
1466 
1467 struct brw_compile_stats {
1468    uint32_t dispatch_width; /**< 0 for vec4 */
1469    uint32_t instructions;
1470    uint32_t sends;
1471    uint32_t loops;
1472    uint32_t cycles;
1473    uint32_t spills;
1474    uint32_t fills;
1475 };
1476 
1477 /** @} */
1478 
1479 struct brw_compiler *
1480 brw_compiler_create(void *mem_ctx, const struct intel_device_info *devinfo);
1481 
1482 /**
1483  * Returns a compiler configuration for use with disk shader cache
1484  *
1485  * This value only needs to change for settings that can cause different
1486  * program generation between two runs on the same hardware.
1487  *
1488  * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1489  * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1490  */
1491 uint64_t
1492 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1493 
1494 unsigned
1495 brw_prog_data_size(gl_shader_stage stage);
1496 
1497 unsigned
1498 brw_prog_key_size(gl_shader_stage stage);
1499 
1500 void
1501 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1502 
1503 /**
1504  * Parameters for compiling a vertex shader.
1505  *
1506  * Some of these will be modified during the shader compilation.
1507  */
1508 struct brw_compile_vs_params {
1509    nir_shader *nir;
1510 
1511    const struct brw_vs_prog_key *key;
1512    struct brw_vs_prog_data *prog_data;
1513 
1514    bool edgeflag_is_last; /* true for gallium */
1515    bool shader_time;
1516    int shader_time_index;
1517 
1518    struct brw_compile_stats *stats;
1519 
1520    void *log_data;
1521 
1522    char *error_str;
1523 
1524    /* If unset, DEBUG_VS is used. */
1525    uint64_t debug_flag;
1526 };
1527 
1528 /**
1529  * Compile a vertex shader.
1530  *
1531  * Returns the final assembly and updates the parameters structure.
1532  */
1533 const unsigned *
1534 brw_compile_vs(const struct brw_compiler *compiler,
1535                void *mem_ctx,
1536                struct brw_compile_vs_params *params);
1537 
1538 /**
1539  * Compile a tessellation control shader.
1540  *
1541  * Returns the final assembly and the program's size.
1542  */
1543 const unsigned *
1544 brw_compile_tcs(const struct brw_compiler *compiler,
1545                 void *log_data,
1546                 void *mem_ctx,
1547                 const struct brw_tcs_prog_key *key,
1548                 struct brw_tcs_prog_data *prog_data,
1549                 nir_shader *nir,
1550                 int shader_time_index,
1551                 struct brw_compile_stats *stats,
1552                 char **error_str);
1553 
1554 /**
1555  * Compile a tessellation evaluation shader.
1556  *
1557  * Returns the final assembly and the program's size.
1558  */
1559 const unsigned *
1560 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1561                 void *mem_ctx,
1562                 const struct brw_tes_prog_key *key,
1563                 const struct brw_vue_map *input_vue_map,
1564                 struct brw_tes_prog_data *prog_data,
1565                 nir_shader *nir,
1566                 int shader_time_index,
1567                 struct brw_compile_stats *stats,
1568                 char **error_str);
1569 
1570 /**
1571  * Compile a vertex shader.
1572  *
1573  * Returns the final assembly and the program's size.
1574  */
1575 const unsigned *
1576 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1577                void *mem_ctx,
1578                const struct brw_gs_prog_key *key,
1579                struct brw_gs_prog_data *prog_data,
1580                nir_shader *nir,
1581                int shader_time_index,
1582                struct brw_compile_stats *stats,
1583                char **error_str);
1584 
1585 /**
1586  * Compile a strips and fans shader.
1587  *
1588  * This is a fixed-function shader determined entirely by the shader key and
1589  * a VUE map.
1590  *
1591  * Returns the final assembly and the program's size.
1592  */
1593 const unsigned *
1594 brw_compile_sf(const struct brw_compiler *compiler,
1595                void *mem_ctx,
1596                const struct brw_sf_prog_key *key,
1597                struct brw_sf_prog_data *prog_data,
1598                struct brw_vue_map *vue_map,
1599                unsigned *final_assembly_size);
1600 
1601 /**
1602  * Compile a clipper shader.
1603  *
1604  * This is a fixed-function shader determined entirely by the shader key and
1605  * a VUE map.
1606  *
1607  * Returns the final assembly and the program's size.
1608  */
1609 const unsigned *
1610 brw_compile_clip(const struct brw_compiler *compiler,
1611                  void *mem_ctx,
1612                  const struct brw_clip_prog_key *key,
1613                  struct brw_clip_prog_data *prog_data,
1614                  struct brw_vue_map *vue_map,
1615                  unsigned *final_assembly_size);
1616 
1617 /**
1618  * Parameters for compiling a fragment shader.
1619  *
1620  * Some of these will be modified during the shader compilation.
1621  */
1622 struct brw_compile_fs_params {
1623    nir_shader *nir;
1624 
1625    const struct brw_wm_prog_key *key;
1626    struct brw_wm_prog_data *prog_data;
1627    const struct brw_vue_map *vue_map;
1628 
1629    bool shader_time;
1630    int shader_time_index8;
1631    int shader_time_index16;
1632    int shader_time_index32;
1633 
1634    bool allow_spilling;
1635    bool use_rep_send;
1636 
1637    struct brw_compile_stats *stats;
1638 
1639    void *log_data;
1640 
1641    char *error_str;
1642 
1643    /* If unset, DEBUG_WM is used. */
1644    uint64_t debug_flag;
1645 };
1646 
1647 /**
1648  * Compile a fragment shader.
1649  *
1650  * Returns the final assembly and updates the parameters structure.
1651  */
1652 const unsigned *
1653 brw_compile_fs(const struct brw_compiler *compiler,
1654                void *mem_ctx,
1655                struct brw_compile_fs_params *params);
1656 
1657 /**
1658  * Parameters for compiling a compute shader.
1659  *
1660  * Some of these will be modified during the shader compilation.
1661  */
1662 struct brw_compile_cs_params {
1663    nir_shader *nir;
1664 
1665    const struct brw_cs_prog_key *key;
1666    struct brw_cs_prog_data *prog_data;
1667 
1668    bool shader_time;
1669    int shader_time_index;
1670 
1671    struct brw_compile_stats *stats;
1672 
1673    void *log_data;
1674 
1675    char *error_str;
1676 
1677    /* If unset, DEBUG_CS is used. */
1678    uint64_t debug_flag;
1679 };
1680 
1681 /**
1682  * Compile a compute shader.
1683  *
1684  * Returns the final assembly and updates the parameters structure.
1685  */
1686 const unsigned *
1687 brw_compile_cs(const struct brw_compiler *compiler,
1688                void *mem_ctx,
1689                struct brw_compile_cs_params *params);
1690 
1691 /**
1692  * Compile a Ray Tracing shader.
1693  *
1694  * Returns the final assembly and the program's size.
1695  */
1696 const unsigned *
1697 brw_compile_bs(const struct brw_compiler *compiler, void *log_data,
1698                void *mem_ctx,
1699                const struct brw_bs_prog_key *key,
1700                struct brw_bs_prog_data *prog_data,
1701                struct nir_shader *shader,
1702                unsigned num_resume_shaders,
1703                struct nir_shader **resume_shaders,
1704                struct brw_compile_stats *stats,
1705                char **error_str);
1706 
1707 /**
1708  * Compile a fixed function geometry shader.
1709  *
1710  * Returns the final assembly and the program's size.
1711  */
1712 const unsigned *
1713 brw_compile_ff_gs_prog(struct brw_compiler *compiler,
1714 		       void *mem_ctx,
1715 		       const struct brw_ff_gs_prog_key *key,
1716 		       struct brw_ff_gs_prog_data *prog_data,
1717 		       struct brw_vue_map *vue_map,
1718 		       unsigned *final_assembly_size);
1719 
1720 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1721                              gl_shader_stage stage,
1722                              const struct brw_base_prog_key *old_key,
1723                              const struct brw_base_prog_key *key);
1724 
1725 /* Shared Local Memory Size is specified as powers of two,
1726  * and also have a Gen-dependent minimum value if not zero.
1727  */
1728 static inline uint32_t
intel_calculate_slm_size(unsigned gen,uint32_t bytes)1729 intel_calculate_slm_size(unsigned gen, uint32_t bytes)
1730 {
1731    assert(bytes <= 64 * 1024);
1732    if (bytes > 0)
1733       return MAX2(util_next_power_of_two(bytes), gen >= 9 ? 1024 : 4096);
1734    else
1735       return 0;
1736 }
1737 
1738 static inline uint32_t
encode_slm_size(unsigned gen,uint32_t bytes)1739 encode_slm_size(unsigned gen, uint32_t bytes)
1740 {
1741    uint32_t slm_size = 0;
1742 
1743    /* Shared Local Memory is specified as powers of two, and encoded in
1744     * INTERFACE_DESCRIPTOR_DATA with the following representations:
1745     *
1746     * Size   | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1747     * -------------------------------------------------------------------
1748     * Gfx7-8 |    0 | none | none |    1 |    2 |     4 |     8 |    16 |
1749     * -------------------------------------------------------------------
1750     * Gfx9+  |    0 |    1 |    2 |    3 |    4 |     5 |     6 |     7 |
1751     */
1752 
1753    if (bytes > 0) {
1754       slm_size = intel_calculate_slm_size(gen, bytes);
1755       assert(util_is_power_of_two_nonzero(slm_size));
1756 
1757       if (gen >= 9) {
1758          /* Turn an exponent of 10 (1024 kB) into 1. */
1759          assert(slm_size >= 1024);
1760          slm_size = ffs(slm_size) - 10;
1761       } else {
1762          assert(slm_size >= 4096);
1763          /* Convert to the pre-Gfx9 representation. */
1764          slm_size = slm_size / 4096;
1765       }
1766    }
1767 
1768    return slm_size;
1769 }
1770 
1771 unsigned
1772 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
1773                              unsigned threads);
1774 
1775 void
1776 brw_write_shader_relocs(const struct intel_device_info *devinfo,
1777                         void *program,
1778                         const struct brw_stage_prog_data *prog_data,
1779                         struct brw_shader_reloc_value *values,
1780                         unsigned num_values);
1781 
1782 struct brw_cs_dispatch_info {
1783    uint32_t group_size;
1784    uint32_t simd_size;
1785    uint32_t threads;
1786 
1787    /* RightExecutionMask field used in GPGPU_WALKER. */
1788    uint32_t right_mask;
1789 };
1790 
1791 /**
1792  * Get the dispatch information for a shader to be used with GPGPU_WALKER and
1793  * similar instructions.
1794  *
1795  * If override_local_size is not NULL, it must to point to a 3-element that
1796  * will override the value from prog_data->local_size.  This is used by
1797  * ARB_compute_variable_group_size, where the size is set only at dispatch
1798  * time (so prog_data is outdated).
1799  */
1800 struct brw_cs_dispatch_info
1801 brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
1802                          const struct brw_cs_prog_data *prog_data,
1803                          const unsigned *override_local_size);
1804 
1805 /**
1806  * Return true if the given shader stage is dispatched contiguously by the
1807  * relevant fixed function starting from channel 0 of the SIMD thread, which
1808  * implies that the dispatch mask of a thread can be assumed to have the form
1809  * '2^n - 1' for some n.
1810  */
1811 static inline bool
brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info * devinfo,gl_shader_stage stage,const struct brw_stage_prog_data * prog_data)1812 brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info *devinfo,
1813                               gl_shader_stage stage,
1814                               const struct brw_stage_prog_data *prog_data)
1815 {
1816    /* The code below makes assumptions about the hardware's thread dispatch
1817     * behavior that could be proven wrong in future generations -- Make sure
1818     * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1819     * the NIR front-end before changing this assertion.
1820     */
1821    assert(devinfo->ver <= 12);
1822 
1823    switch (stage) {
1824    case MESA_SHADER_FRAGMENT: {
1825       /* The PSD discards subspans coming in with no lit samples, which in the
1826        * per-pixel shading case implies that each subspan will either be fully
1827        * lit (due to the VMask being used to allow derivative computations),
1828        * or not dispatched at all.  In per-sample dispatch mode individual
1829        * samples from the same subspan have a fixed relative location within
1830        * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1831        * general and we should return false.
1832        */
1833       const struct brw_wm_prog_data *wm_prog_data =
1834          (const struct brw_wm_prog_data *)prog_data;
1835       return !wm_prog_data->persample_dispatch;
1836    }
1837    case MESA_SHADER_COMPUTE:
1838       /* Compute shaders will be spawned with either a fully enabled dispatch
1839        * mask or with whatever bottom/right execution mask was given to the
1840        * GPGPU walker command to be used along the workgroup edges -- In both
1841        * cases the dispatch mask is required to be tightly packed for our
1842        * invocation index calculations to work.
1843        */
1844       return true;
1845    default:
1846       /* Most remaining fixed functions are limited to use a packed dispatch
1847        * mask due to the hardware representation of the dispatch mask as a
1848        * single counter representing the number of enabled channels.
1849        */
1850       return true;
1851    }
1852 }
1853 
1854 /**
1855  * Computes the first varying slot in the URB produced by the previous stage
1856  * that is used in the next stage. We do this by testing the varying slots in
1857  * the previous stage's vue map against the inputs read in the next stage.
1858  *
1859  * Note that:
1860  *
1861  * - Each URB offset contains two varying slots and we can only skip a
1862  *   full offset if both slots are unused, so the value we return here is always
1863  *   rounded down to the closest multiple of two.
1864  *
1865  * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1866  *   part of the vue header, so if these are read we can't skip anything.
1867  */
1868 static inline int
brw_compute_first_urb_slot_required(uint64_t inputs_read,const struct brw_vue_map * prev_stage_vue_map)1869 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1870                                     const struct brw_vue_map *prev_stage_vue_map)
1871 {
1872    if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1873       for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1874          int varying = prev_stage_vue_map->slot_to_varying[i];
1875          if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1876             return ROUND_DOWN_TO(i, 2);
1877       }
1878    }
1879 
1880    return 0;
1881 }
1882 
1883 #ifdef __cplusplus
1884 } /* extern "C" */
1885 #endif
1886 
1887 #endif /* BRW_COMPILER_H */
1888