1 /*
2     Copyright (c) Microsoft Corporation
3 
4     Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
5     associated documentation files (the "Software"), to deal in the Software without restriction,
6     including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
7     and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
8     subject to the following conditions:
9 
10     The above copyright notice and this permission notice shall be included in all copies or substantial
11     portions of the Software.
12 
13     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
14     NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
15     IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
16     WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
17     SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
18 */
19 
20 #pragma once
21 //=================================================================================================================================
22 // Microsoft D3D11 Fixed Function Tessellator Reference - May 7, 2012
23 // amar.patel@microsoft.com
24 //
25 // CHWTessellator demonstrates what is expected of hardware in the D3D11 fixed function Tessellator stage.  Hardware
26 // implementers need only look at this class.
27 //
28 // CHLSLTessellator is a wrapper for CHWTessellator, representing the effect of shader code that will
29 // be autogenerated by HLSL in the Hull Shader, both for plumbing data around, and to precondition TessFactor values before they
30 // are passed to the hardware (such as deriving inside TessFactors from edge TessFactors).  The algorithms used
31 // in CHLSLTessellator are subject to change, but since they represent shader code auto-generated by the HLSL compiler,
32 // CHLSLTessellator has no effect on hardware design at all.  Note the HLSL compiler will expose all the raw hardware
33 // control illustrated by CHWTessellator for those who don't need the helper functionality illustrated by CHLSLTessellator.
34 //
35 // Usage:        (1) Create either a CHLSLTessellator or CHWTessellator object, depending on which you want to verify.
36 //               (2) Call C*Tessellator::Init()
37 //               (3) Call C*Tessellator::Tessellate[IsoLine|Tri|Quad]Domain()
38 //                      - Here you pass in TessFactors (how much to tessellate)
39 //               (4) Call C*Tessellator::GetPointCount(), C*Tessellator::GetIndexCount() to see how much data was generated.
40 //               (5) Call C*Tessellator::GetPoints() and C*Tessellator::GetIndices() to get pointers to the data.
41 //                   The pointers are fixed for the lifetime of the object (storage for max tessellation),
42 //                   so if you ::Tessellate again, the data in the buffers is overwritten.
43 //               (6) There are various other Get() methods to retrieve TessFactors that have been processed from
44 //                   what you passed in at step 3.  You can retrieve separate TessFactors that the tessellator
45 //                   produced after clamping but before rounding, and also after rounding (say in pow2 mode).
46 //                   These numbers can be useful information if you are geomorphing displacement maps.
47 //               (7) Goto Step 2 or 3 if you want to animate TessFactors or tessellate a different patch
48 //
49 // Code implementation details:
50 //
51 // There is lots of headroom to make this code run faster on CPUs.  It was written merely as a reference for
52 // what results hardware should produce, with CPU performance not a consideration.  It is nice that this implementation
53 // only generates the exact number of vertices needed (no duplicates) in the output vertex buffer.  Also, the number
54 // of calculations done for each U/V domain coordinate is minimized by doing some precalculation of some patch or edge
55 // invariant numbers (see TESS_FACTOR_CONTEXT).  All the vertex coordinate calculations could be computed with as much
56 // parallelism as you like.  Similarly the calculation of connectivity itself is highly parallelizable, and can also
57 // be done independent of the vertex calculations.
58 //
59 //=================================================================================================================================
60 
61 #define PIPE_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR 1
62 #define PIPE_TESSELLATOR_MAX_ODD_TESSELLATION_FACTOR 63
63 #define PIPE_TESSELLATOR_MIN_EVEN_TESSELLATION_FACTOR 2
64 #define PIPE_TESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR 64
65 
66 #define PIPE_TESSELLATOR_MIN_ISOLINE_DENSITY_TESSELLATION_FACTOR 1
67 #define PIPE_TESSELLATOR_MAX_ISOLINE_DENSITY_TESSELLATION_FACTOR 64
68 
69 #define PIPE_TESSELLATOR_MAX_TESSELLATION_FACTOR 64 // max of even and odd tessFactors
70 
71 #define MAX_POINT_COUNT ((PIPE_TESSELLATOR_MAX_TESSELLATION_FACTOR+1)*(PIPE_TESSELLATOR_MAX_TESSELLATION_FACTOR+1))
72 #define MAX_INDEX_COUNT (PIPE_TESSELLATOR_MAX_TESSELLATION_FACTOR*PIPE_TESSELLATOR_MAX_TESSELLATION_FACTOR*2*3)
73 
74 //=================================================================================================================================
75 // Data types for the caller
76 //=================================================================================================================================
77 enum PIPE_TESSELLATOR_PARTITIONING
78 {
79     PIPE_TESSELLATOR_PARTITIONING_INTEGER,
80     PIPE_TESSELLATOR_PARTITIONING_POW2,
81     PIPE_TESSELLATOR_PARTITIONING_FRACTIONAL_ODD,
82     PIPE_TESSELLATOR_PARTITIONING_FRACTIONAL_EVEN
83 };
84 
85 enum PIPE_TESSELLATOR_REDUCTION
86 {
87     PIPE_TESSELLATOR_REDUCTION_MIN,
88     PIPE_TESSELLATOR_REDUCTION_MAX,
89     PIPE_TESSELLATOR_REDUCTION_AVERAGE
90 };
91 
92 enum PIPE_TESSELLATOR_QUAD_REDUCTION_AXIS
93 {
94     PIPE_TESSELLATOR_QUAD_REDUCTION_1_AXIS,
95     PIPE_TESSELLATOR_QUAD_REDUCTION_2_AXIS
96 };
97 
98 enum PIPE_TESSELLATOR_OUTPUT_PRIMITIVE
99 {
100     PIPE_TESSELLATOR_OUTPUT_POINT,
101     PIPE_TESSELLATOR_OUTPUT_LINE,
102     PIPE_TESSELLATOR_OUTPUT_TRIANGLE_CW,
103     PIPE_TESSELLATOR_OUTPUT_TRIANGLE_CCW,
104 };
105 
106 typedef struct DOMAIN_POINT
107 {
108     float u;
109     float v; // for tri, w = 1 - u - v;
110 } DOMAIN_POINT;
111 
112 //=================================================================================================================================
113 // CHWTessellator: D3D11 Tessellation Fixed Function Hardware Reference
114 //=================================================================================================================================
115 typedef unsigned int FXP; // fixed point number
116 
117 class CHWTessellator
118 {
119 
120 //---------------------------------------------------------------------------------------------------------------------------------
121 public:
122     void Init( PIPE_TESSELLATOR_PARTITIONING         partitioning,
123                PIPE_TESSELLATOR_OUTPUT_PRIMITIVE     outputPrimitive);
124 
125     void TessellateIsoLineDomain( float TessFactor_V_LineDensity,
126                                   float TessFactor_U_LineDetail );
127 
128     void TessellateTriDomain( float TessFactor_Ueq0,
129                               float TessFactor_Veq0,
130                               float TessFactor_Weq0,
131                               float TessFactor_Inside );
132 
133     void TessellateQuadDomain( float TessFactor_Ueq0,
134                                float TessFactor_Veq0,
135                                float TessFactor_Ueq1,
136                                float TessFactor_Veq1,
137                                float TessFactor_InsideU,
138                                float TessFactor_InsideV );
139 
140     int GetPointCount();
141     int GetIndexCount();
142 
143     DOMAIN_POINT* GetPoints(); // Get CHWTessellator owned pointer to vertices (UV values).
144                                // Pointer is fixed for lifetime of CHWTessellator object.
145     int* GetIndices();         // Get CHWTessellator owned pointer to vertex indices.
146                                // Pointer is fixed for lifetime of CHWTessellator object.
147 
148     CHWTessellator();
149     ~CHWTessellator();
150 //---------------------------------------------------------------------------------------------------------------------------------
151     //=============================================================================================================================
152     // Some defines so that numbers are usually self commenting
153     //=============================================================================================================================
154     static const int U = 0; // points on a tri patch
155     static const int V = 1;
156     static const int W = 2;
157     static const int Ueq0 = 0; // edges on a tri patch
158     static const int Veq0 = 1;
159     static const int Weq0 = 2;
160 
161     static const int Ueq1 = 2; // edges on a quad patch: Ueq0, Veq0, Ueq1, Veq1
162     static const int Veq1 = 3;
163 
164     static const int QUAD_AXES = 2;
165     static const int QUAD_EDGES = 4;
166     static const int TRI_EDGES = 3;
167     //=============================================================================================================================
168 
169     enum TESSELLATOR_PARITY // derived from PIPE_TESSELLATOR_PARTITIONING
170     {                               // (note: for integer tessellation, both parities are used)
171         TESSELLATOR_PARITY_EVEN,
172         TESSELLATOR_PARITY_ODD
173     };
174 private:
175     TESSELLATOR_PARITY                   m_originalParity; // user chosen parity
176     TESSELLATOR_PARITY                   m_parity; // current parity: if allowing mix of even/odd during discrete
177                                                    // tessellation, this can vary from the user defined parity
178     PIPE_TESSELLATOR_PARTITIONING       m_originalPartitioning; // user chosen partitioning
179     PIPE_TESSELLATOR_PARTITIONING       m_partitioning; // current partitioning.  IsoLines overrides for line density
180     PIPE_TESSELLATOR_OUTPUT_PRIMITIVE   m_outputPrimitive;
181     DOMAIN_POINT*                        m_Point; // array where we will store u/v's for the points we generate
182     int*                                 m_Index; // array where we will store index topology
183     int                                  m_NumPoints;
184     int                                  m_NumIndices;
185     // PlacePointIn1D below is the workhorse for all position placement.
186     // It is code that could run as preamble in a Domain Shader, so the tessellator itself
187     // doesn't necessarily need to have floating point.
188     // Some per-TessFactor fixed context is needed, and that can be computed wherever
189     // the TessFactor reduction is done, perhaps as Hull Shader postamble - this is shared
190     // for all point evaluation.
191     typedef struct TESS_FACTOR_CONTEXT
192     {
193         FXP fxpInvNumSegmentsOnFloorTessFactor;
194         FXP fxpInvNumSegmentsOnCeilTessFactor;
195         FXP fxpHalfTessFactorFraction;
196         int numHalfTessFactorPoints;
197         int splitPointOnFloorHalfTessFactor;
198     } TESS_FACTOR_CONTEXT;
199     void ComputeTessFactorContext( FXP fxpTessFactor, TESS_FACTOR_CONTEXT& TessFactorCtx );
200     void PlacePointIn1D( const TESS_FACTOR_CONTEXT& TessFactorCtx, int point, FXP& fxpLocation );
201 
202     int NumPointsForTessFactor(FXP fxpTessFactor);
203 
204     // Tessellation parity control
Odd()205     bool Odd() {return (m_parity == TESSELLATOR_PARITY_ODD) ? true : false;}
SetTessellationParity(TESSELLATOR_PARITY parity)206     void SetTessellationParity(TESSELLATOR_PARITY parity) {m_parity = parity;}
207 
208     // HWIntegerPartitioning() - hardware doesn't care about what pow2 partitioning is - the query below is true for
209     //                           both integer and pow2.
HWIntegerPartitioning()210     bool HWIntegerPartitioning() {return ((m_partitioning == PIPE_TESSELLATOR_PARTITIONING_INTEGER)||
211                                           (m_partitioning == PIPE_TESSELLATOR_PARTITIONING_POW2)) ? true : false;}
212 
213     // Tesselation Partitioning control
RestorePartitioning()214     void RestorePartitioning() {m_partitioning = m_originalPartitioning;};
OverridePartitioning(PIPE_TESSELLATOR_PARTITIONING partitioning)215     void OverridePartitioning(PIPE_TESSELLATOR_PARTITIONING partitioning) {m_partitioning = partitioning;} //isoline uses this for density
216 
217     // Call these to generate new points and indices.  Max TessFactor storage is already allocated.
218     int DefinePoint(FXP u, FXP v, int pointStorageOffset);
219     void DefineIndex(int index, int indexStorageOffset);
220     void DefineClockwiseTriangle(int index0, int index1, int index2, int indexStorageBaseOffset);
221 
222     // Couple of trivial ways to generate index data just given points and no other connectivity.
223     void DumpAllPoints();                  // Make point indices for point rendering mode -
224                                            // redundant, but just here for orthogonality.
225     void DumpAllPointsAsInOrderLineList(); // A debug visualization of all the points connected
226                                            // in the order they were generated.
227                                            // Asking to draw line topology on a tri or quad patch will do this
228 
229 
230     // The structures below define the data that is derived given input TessFactors and which
231     // is used by point generation and connectivity generation steps (each of which are independent)
232     typedef struct PROCESSED_TESS_FACTORS_ISOLINE
233     {
234         TESSELLATOR_PARITY lineDensityParity;
235         TESSELLATOR_PARITY lineDetailParity;
236         TESS_FACTOR_CONTEXT lineDensityTessFactorCtx;
237         TESS_FACTOR_CONTEXT lineDetailTessFactorCtx;
238         bool bPatchCulled;
239         int numPointsPerLine;
240         int numLines;
241     } PROCESSED_TESS_FACTORS_ISOLINE;
242     typedef struct PROCESSED_TESS_FACTORS_TRI
243     {
244         FXP outsideTessFactor[TRI_EDGES];
245         FXP insideTessFactor;
246         TESSELLATOR_PARITY outsideTessFactorParity[TRI_EDGES];
247         TESSELLATOR_PARITY insideTessFactorParity;
248         TESS_FACTOR_CONTEXT outsideTessFactorCtx[TRI_EDGES];
249         TESS_FACTOR_CONTEXT insideTessFactorCtx;
250         bool bJustDoMinimumTessFactor;
251         bool bPatchCulled;
252         // Stuff below is just specific to the traversal order
253         // this code happens to use to generate points/lines
254         int numPointsForOutsideEdge[TRI_EDGES];
255         int numPointsForInsideTessFactor;
256         int insideEdgePointBaseOffset;
257     } PROCESSED_TESS_FACTORS_TRI;
258     typedef struct PROCESSED_TESS_FACTORS_QUAD
259     {
260         FXP outsideTessFactor[QUAD_EDGES];
261         FXP insideTessFactor[QUAD_AXES];
262         TESSELLATOR_PARITY outsideTessFactorParity[QUAD_EDGES];
263         TESSELLATOR_PARITY insideTessFactorParity[QUAD_AXES];
264         TESS_FACTOR_CONTEXT outsideTessFactorCtx[QUAD_EDGES];
265         TESS_FACTOR_CONTEXT insideTessFactorCtx[QUAD_AXES];
266         bool bJustDoMinimumTessFactor;
267         bool bPatchCulled;
268         // Stuff below is just specific to the traversal order
269         // this code happens to use to generate points/lines
270         int numPointsForOutsideEdge[QUAD_EDGES];
271         int numPointsForInsideTessFactor[QUAD_AXES];
272         int insideEdgePointBaseOffset;
273     } PROCESSED_TESS_FACTORS_QUAD;
274 
275     // These are the workhorse functions for tessellation:
276     // (1) Process input TessFactors
277     // (2) Generate points
278     // (3) Generate connectivity (can be done in parallel to (2))
279     void IsoLineProcessTessFactors( float TessFactor_V_LineDensity, float TessFactor_U_LineDetail, PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors );
280     void IsoLineGeneratePoints( const PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors );
281     void IsoLineGenerateConnectivity( const PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors );
282     void TriProcessTessFactors( float tessFactor_Ueq0, float TessFactor_Veq0, float TessFactor_Weq0, float insideTessFactor, PROCESSED_TESS_FACTORS_TRI& processedTessFactors );
283     void TriGeneratePoints( const PROCESSED_TESS_FACTORS_TRI& processedTessFactors );
284     void TriGenerateConnectivity( const PROCESSED_TESS_FACTORS_TRI& processedTessFactors );
285     void QuadProcessTessFactors( float tessFactor_Ueq0, float tessFactor_Veq0, float tessFactor_Ueq1, float tessFactor_Veq1,
286                                float insideTessFactor_U, float insideTessFactor_V, PROCESSED_TESS_FACTORS_QUAD& processedTessFactors );
287     void QuadGeneratePoints( const PROCESSED_TESS_FACTORS_QUAD& processedTessFactors );
288     void QuadGenerateConnectivity( const PROCESSED_TESS_FACTORS_QUAD& processedTessFactors );
289 
290     // Stitching
291     // ---------
292     // Given pointers to the beginning of 2 parallel rows of points, and TessFactors for each, stitch them.
293     // The assumption is the stitch is symmetric.
294     void StitchTransition(int baseIndexOffset, int insideEdgePointBaseOffset, int insideNumHalfTessFactorPoints,
295                                                TESSELLATOR_PARITY insideEdgeTessFactorParity,
296                                                int outsideEdgePointBaseOffset, int outsideNumHalfTessFactorPoints,
297                                                TESSELLATOR_PARITY outsideEdgeTessFactorParity );
298     // The interior can just use a simpler stitch.
299     enum DIAGONALS
300     {
301         DIAGONALS_INSIDE_TO_OUTSIDE,
302         DIAGONALS_INSIDE_TO_OUTSIDE_EXCEPT_MIDDLE,
303         DIAGONALS_MIRRORED
304     };
305 
306     void StitchRegular(bool bTrapezoid, DIAGONALS diagonals, int baseIndexOffset, int numInsideEdgePoints,
307                                         int insideEdgePointBaseOffset, int outsideEdgePointBaseOffset);
308 
309 //---------------------------------------------------------------------------------------------------------------------------------
310     // Index Patching
311     // --------------
312     // The code below patches index values produces during triangulation, so triangulation doesn't have to know
313     // where points should go.  I happened to never produce duplicate vertices, but the patching would
314     // be simpler if some duplicate vertices were introduced in practice.  During point rendering mode however,
315     // it is not permitted for duplicate points to show up.
316 
317     // Since the points are generated in concentric rings, most of the time, the point locations are
318     // sequentially increasing in memory for each side of a ring, which the stitch can take advantage of.
319     // However, there are exceptions where the points are not sequentially increasing, such as
320     // the 4th row in a given ring, where the last point on the outside of each row is actually the beginning
321     // point.
322     // So we let the stitching code think it sees sequential vertices, and when it emits a vertex index,
323     // we patch it to be the real location.
324     int  PatchIndexValue(int index);
325     typedef struct INDEX_PATCH_CONTEXT
326     {
327         int insidePointIndexDeltaToRealValue;
328         int insidePointIndexBadValue;
329         int insidePointIndexReplacementValue;
330         int outsidePointIndexPatchBase;
331         int outsidePointIndexDeltaToRealValue;
332         int outsidePointIndexBadValue;
333         int outsidePointIndexReplacementValue;
334     } INDEX_PATCH_CONTEXT;
SetUsingPatchedIndices(bool bUsingPatchedIndices)335     void SetUsingPatchedIndices(bool bUsingPatchedIndices) {m_bUsingPatchedIndices = bUsingPatchedIndices;}
336 
337     // A second index patch we have to do handles the leftover strip of quads in the middle of an odd quad patch after
338     // finishing all the concentric rings.
339     // This also handles the leftover strip of points in the middle of an even quad
340     // patch, when stitching the row of triangles up the left side (V major quad) or bottom (U major quad) of the
341     // inner ring
342     typedef struct INDEX_PATCH_CONTEXT2
343     {
344         int baseIndexToInvert;
345         int indexInversionEndPoint;
346         int cornerCaseBadValue;
347         int cornerCaseReplacementValue;
348     } INDEX_PATCH_CONTEXT2;
SetUsingPatchedIndices2(bool bUsingPatchedIndices)349     void SetUsingPatchedIndices2(bool bUsingPatchedIndices) {m_bUsingPatchedIndices2 = bUsingPatchedIndices;}
350     bool                                 m_bUsingPatchedIndices;
351     bool                                 m_bUsingPatchedIndices2;
352     INDEX_PATCH_CONTEXT                  m_IndexPatchContext;
353     INDEX_PATCH_CONTEXT2                 m_IndexPatchContext2;
354 
355 };
356 
357 //=================================================================================================================================
358 // CHLSLTessellator: PIPE Tessellation HLSL Tessellator Interface
359 // Demonstrates TessFactor preconditioning code auto-generated by HLSL.  Subject to change, but this
360 // just represents the effect of shader code the HLSL compiler will generate in the Hull Shader,
361 // so it does not affect hardware design at all.
362 //=================================================================================================================================
363 class CHLSLTessellator : public CHWTessellator
364 {
365 public:
366     void Init( PIPE_TESSELLATOR_PARTITIONING         partitioning,
367                PIPE_TESSELLATOR_REDUCTION            insideTessFactorReduction,
368                PIPE_TESSELLATOR_QUAD_REDUCTION_AXIS  quadInsideTessFactorReductionAxis,
369                PIPE_TESSELLATOR_OUTPUT_PRIMITIVE     outputPrimitive);
370 
371     void TessellateIsoLineDomain( float TessFactor_V_LineDensity,
372                                   float TessFactor_U_LineDetail );
373 
374     void TessellateTriDomain( float tessFactor_Ueq0,
375                               float TessFactor_Veq0,
376                               float TessFactor_Weq0,
377                               float insideTessFactorScale /*[0..1]*/ );
378 
379     void TessellateQuadDomain( float TessFactorUeq0,
380                                float TessFactorVeq0,
381                                float TessFactorUeq1,
382                                float TessFactorVeq1,
383                                float insideTessFactorScaleU /*[0..1]*/,
384                                float insideTessFactorScaleV /*[0..1]*/ );
385 
GetPointCount()386     int GetPointCount() {return CHWTessellator::GetPointCount();};
GetIndexCount()387     int GetIndexCount() {return CHWTessellator::GetIndexCount();}
388 
GetPoints()389     DOMAIN_POINT* GetPoints() {return CHWTessellator::GetPoints();} // Get CHLSLTessellator owned pointer to vertices (UV values).
390                                // Pointer is fixed for lifetime of CHLSLTessellator object.
GetIndices()391     int* GetIndices() {return CHWTessellator::GetIndices();}         // Get CHLSLTessellator owned pointer to vertex indices.
392                                // Pointer is fixed for lifetime of CHLSLTessellator object.
393 
394     // Retrieve TessFactors actually used by the "hardware"
395     // This includes clamping to valid range, and more interestingly
396     // if integer or pow2 partitioning is being done, the rounded TessFactors can be retrieved.
397     // Getting the rounded TessFactors can be useful for geomorphing of displacement maps.
GetIsoLineDensityTessFactor()398     float GetIsoLineDensityTessFactor() {return m_LastComputedTessFactors[0];}
GetIsoLineDetailTessFactor()399     float GetIsoLineDetailTessFactor() {return m_LastComputedTessFactors[1];}
GetTriUeq0TessFactor()400     float GetTriUeq0TessFactor() {return m_LastComputedTessFactors[0];}
GetTriVeq0TessFactor()401     float GetTriVeq0TessFactor() {return m_LastComputedTessFactors[1];}
GetTriWeq0TessFactor()402     float GetTriWeq0TessFactor() {return m_LastComputedTessFactors[2];}
GetTriInsideTessFactor()403     float GetTriInsideTessFactor() {return m_LastComputedTessFactors[3];}
GetQuadUeq0TessFactor()404     float GetQuadUeq0TessFactor() {return m_LastComputedTessFactors[0];}
GetQuadVeq0TessFactor()405     float GetQuadVeq0TessFactor() {return m_LastComputedTessFactors[1];}
GetQuadUeq1TessFactor()406     float GetQuadUeq1TessFactor() {return m_LastComputedTessFactors[2];}
GetQuadVeq1TessFactor()407     float GetQuadVeq1TessFactor() {return m_LastComputedTessFactors[3];}
GetQuadInsideUTessFactor()408     float GetQuadInsideUTessFactor() {return m_LastComputedTessFactors[4];}
GetQuadInsideVTessFactor()409     float GetQuadInsideVTessFactor() {return m_LastComputedTessFactors[5];}
GetUnRoundedIsoLineDensityTessFactor()410     float GetUnRoundedIsoLineDensityTessFactor() {return m_LastUnRoundedComputedTessFactors[0];}
GetUnRoundedIsoLineDetailTessFactor()411     float GetUnRoundedIsoLineDetailTessFactor() {return m_LastUnRoundedComputedTessFactors[1];}
GetUnRoundedTriUeq0TessFactor()412     float GetUnRoundedTriUeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[0];}
GetUnRoundedTriVeq0TessFactor()413     float GetUnRoundedTriVeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[1];}
GetUnRoundedTriWeq0TessFactor()414     float GetUnRoundedTriWeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[2];}
GetUnRoundedTriInsideTessFactor()415     float GetUnRoundedTriInsideTessFactor() {return m_LastUnRoundedComputedTessFactors[3];}
GetUnRoundedQuadUeq0TessFactor()416     float GetUnRoundedQuadUeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[0];}
GetUnRoundedQuadVeq0TessFactor()417     float GetUnRoundedQuadVeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[1];}
GetUnRoundedQuadUeq1TessFactor()418     float GetUnRoundedQuadUeq1TessFactor() {return m_LastUnRoundedComputedTessFactors[2];}
GetUnRoundedQuadVeq1TessFactor()419     float GetUnRoundedQuadVeq1TessFactor() {return m_LastUnRoundedComputedTessFactors[3];}
GetUnRoundedQuadInsideUTessFactor()420     float GetUnRoundedQuadInsideUTessFactor() {return m_LastUnRoundedComputedTessFactors[4];}
GetUnRoundedQuadInsideVTessFactor()421     float GetUnRoundedQuadInsideVTessFactor() {return m_LastUnRoundedComputedTessFactors[5];}
422 
423     CHLSLTessellator();
424 //---------------------------------------------------------------------------------------------------------------------------------
425 private:
426     TESSELLATOR_PARITY                   m_originalParity; // user chosen parity
427     TESSELLATOR_PARITY                   m_parity; // current parity: if allowing mix of even/odd during discrete
428                                                    // tessellation, this can vary from the user defined parity
429     PIPE_TESSELLATOR_PARTITIONING       m_originalPartitioning; // user chosen partitioning
430     PIPE_TESSELLATOR_PARTITIONING       m_partitioning; // current partitioning.  IsoLines overrides for line density
431     PIPE_TESSELLATOR_OUTPUT_PRIMITIVE   m_outputPrimitive;
432     PIPE_TESSELLATOR_REDUCTION          m_insideTessFactorReduction;
433     PIPE_TESSELLATOR_QUAD_REDUCTION_AXIS m_quadInsideTessFactorReductionAxis;
434     float                                m_LastComputedTessFactors[6]; // TessFactors used for last tessellation
435     float                                m_LastUnRoundedComputedTessFactors[6]; // TessFactors used for last tessellation (before they were rounded)
IntegerPartitioning()436     bool IntegerPartitioning() {return (m_partitioning == PIPE_TESSELLATOR_PARTITIONING_INTEGER) ? true : false;}
Pow2Partitioning()437     bool Pow2Partitioning() {return (m_partitioning == PIPE_TESSELLATOR_PARTITIONING_POW2)? true : false;}
438     void ClampTessFactor(float& TessFactor);
439     void RoundUpTessFactor(float& TessFactor);
440     void CleanupFloatTessFactor(float& input); // clamp float to [1.0f... +INF] (incl NaN->1.0f)
441     void ClampFloatTessFactorScale(float& input); // clamp float to [0.0f... +INF] (incl NaN->0.0f)
442 
443     // Tessellation parity control
Odd()444     bool Odd() {return (m_parity == TESSELLATOR_PARITY_ODD) ? true : false;}
SetTessellationParity(TESSELLATOR_PARITY parity)445     void SetTessellationParity(TESSELLATOR_PARITY parity) {m_parity = parity;}
446 
447     // Tesselation Partitioning control
RestorePartitioning()448     void RestorePartitioning() {m_partitioning = m_originalPartitioning;};
OverridePartitioning(PIPE_TESSELLATOR_PARTITIONING partitioning)449     void OverridePartitioning(PIPE_TESSELLATOR_PARTITIONING partitioning) {m_partitioning = partitioning;} //isoline uses this for density
450 
451     void IsoLineHLSLProcessTessFactors( float TessFactor_V_LineDensity, float TessFactor_U_LineDetail );
452     void TriHLSLProcessTessFactors( float tessFactor_Ueq0, float TessFactor_Veq0, float TessFactor_Weq0, float insideTessFactor );
453     void QuadHLSLProcessTessFactors( float TessFactor_Ueq0, float TessFactor_Veq0, float TessFactor_Ueq1, float TessFactor_Veq1,
454                                float insideTessFactor_U, float insideTessFactor_V );
455 
456 };
457 
458