1 /* Copyright © 2011 Intel Corporation
2  *
3  * Permission is hereby granted, free of charge, to any person obtaining a
4  * copy of this software and associated documentation files (the "Software"),
5  * to deal in the Software without restriction, including without limitation
6  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
7  * and/or sell copies of the Software, and to permit persons to whom the
8  * Software is furnished to do so, subject to the following conditions:
9  *
10  * The above copyright notice and this permission notice (including the next
11  * paragraph) shall be included in all copies or substantial portions of the
12  * Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
20  * IN THE SOFTWARE.
21  */
22 
23 #include "brw_vec4.h"
24 #include "brw_cfg.h"
25 #include "brw_eu.h"
26 #include "dev/intel_debug.h"
27 #include "util/mesa-sha1.h"
28 
29 using namespace brw;
30 
31 static void
generate_math1_gfx4(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src)32 generate_math1_gfx4(struct brw_codegen *p,
33                     vec4_instruction *inst,
34                     struct brw_reg dst,
35                     struct brw_reg src)
36 {
37    gfx4_math(p,
38 	     dst,
39 	     brw_math_function(inst->opcode),
40 	     inst->base_mrf,
41 	     src,
42 	     BRW_MATH_PRECISION_FULL);
43 }
44 
45 static void
check_gfx6_math_src_arg(struct brw_reg src)46 check_gfx6_math_src_arg(struct brw_reg src)
47 {
48    /* Source swizzles are ignored. */
49    assert(!src.abs);
50    assert(!src.negate);
51    assert(src.swizzle == BRW_SWIZZLE_XYZW);
52 }
53 
54 static void
generate_math_gfx6(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)55 generate_math_gfx6(struct brw_codegen *p,
56                    vec4_instruction *inst,
57                    struct brw_reg dst,
58                    struct brw_reg src0,
59                    struct brw_reg src1)
60 {
61    /* Can't do writemask because math can't be align16. */
62    assert(dst.writemask == WRITEMASK_XYZW);
63    /* Source swizzles are ignored. */
64    check_gfx6_math_src_arg(src0);
65    if (src1.file == BRW_GENERAL_REGISTER_FILE)
66       check_gfx6_math_src_arg(src1);
67 
68    brw_set_default_access_mode(p, BRW_ALIGN_1);
69    gfx6_math(p, dst, brw_math_function(inst->opcode), src0, src1);
70    brw_set_default_access_mode(p, BRW_ALIGN_16);
71 }
72 
73 static void
generate_math2_gfx4(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)74 generate_math2_gfx4(struct brw_codegen *p,
75                     vec4_instruction *inst,
76                     struct brw_reg dst,
77                     struct brw_reg src0,
78                     struct brw_reg src1)
79 {
80    /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
81     * "Message Payload":
82     *
83     * "Operand0[7].  For the INT DIV functions, this operand is the
84     *  denominator."
85     *  ...
86     * "Operand1[7].  For the INT DIV functions, this operand is the
87     *  numerator."
88     */
89    bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
90    struct brw_reg &op0 = is_int_div ? src1 : src0;
91    struct brw_reg &op1 = is_int_div ? src0 : src1;
92 
93    brw_push_insn_state(p);
94    brw_set_default_saturate(p, false);
95    brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
96    brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), op1.type), op1);
97    brw_pop_insn_state(p);
98 
99    gfx4_math(p,
100 	     dst,
101 	     brw_math_function(inst->opcode),
102 	     inst->base_mrf,
103 	     op0,
104 	     BRW_MATH_PRECISION_FULL);
105 }
106 
107 static void
generate_tex(struct brw_codegen * p,struct brw_vue_prog_data * prog_data,gl_shader_stage stage,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg surface_index,struct brw_reg sampler_index)108 generate_tex(struct brw_codegen *p,
109              struct brw_vue_prog_data *prog_data,
110              gl_shader_stage stage,
111              vec4_instruction *inst,
112              struct brw_reg dst,
113              struct brw_reg src,
114              struct brw_reg surface_index,
115              struct brw_reg sampler_index)
116 {
117    const struct intel_device_info *devinfo = p->devinfo;
118    int msg_type = -1;
119 
120    if (devinfo->ver >= 5) {
121       switch (inst->opcode) {
122       case SHADER_OPCODE_TEX:
123       case SHADER_OPCODE_TXL:
124 	 if (inst->shadow_compare) {
125 	    msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
126 	 } else {
127 	    msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_LOD;
128 	 }
129 	 break;
130       case SHADER_OPCODE_TXD:
131          if (inst->shadow_compare) {
132             /* Gfx7.5+.  Otherwise, lowered by brw_lower_texture_gradients(). */
133             assert(devinfo->is_haswell);
134             msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
135          } else {
136             msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
137          }
138 	 break;
139       case SHADER_OPCODE_TXF:
140 	 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_LD;
141 	 break;
142       case SHADER_OPCODE_TXF_CMS:
143          if (devinfo->ver >= 7)
144             msg_type = GFX7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
145          else
146             msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_LD;
147          break;
148       case SHADER_OPCODE_TXF_MCS:
149          assert(devinfo->ver >= 7);
150          msg_type = GFX7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
151          break;
152       case SHADER_OPCODE_TXS:
153 	 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
154 	 break;
155       case SHADER_OPCODE_TG4:
156          if (inst->shadow_compare) {
157             msg_type = GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
158          } else {
159             msg_type = GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
160          }
161          break;
162       case SHADER_OPCODE_TG4_OFFSET:
163          if (inst->shadow_compare) {
164             msg_type = GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
165          } else {
166             msg_type = GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
167          }
168          break;
169       case SHADER_OPCODE_SAMPLEINFO:
170          msg_type = GFX6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
171          break;
172       default:
173 	 unreachable("should not get here: invalid vec4 texture opcode");
174       }
175    } else {
176       switch (inst->opcode) {
177       case SHADER_OPCODE_TEX:
178       case SHADER_OPCODE_TXL:
179 	 if (inst->shadow_compare) {
180 	    msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE;
181 	    assert(inst->mlen == 3);
182 	 } else {
183 	    msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD;
184 	    assert(inst->mlen == 2);
185 	 }
186 	 break;
187       case SHADER_OPCODE_TXD:
188 	 /* There is no sample_d_c message; comparisons are done manually. */
189 	 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS;
190 	 assert(inst->mlen == 4);
191 	 break;
192       case SHADER_OPCODE_TXF:
193 	 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_LD;
194 	 assert(inst->mlen == 2);
195 	 break;
196       case SHADER_OPCODE_TXS:
197 	 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO;
198 	 assert(inst->mlen == 2);
199 	 break;
200       default:
201 	 unreachable("should not get here: invalid vec4 texture opcode");
202       }
203    }
204 
205    assert(msg_type != -1);
206 
207    assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
208 
209    /* Load the message header if present.  If there's a texture offset, we need
210     * to set it up explicitly and load the offset bitfield.  Otherwise, we can
211     * use an implied move from g0 to the first message register.
212     */
213    if (inst->header_size != 0) {
214       if (devinfo->ver < 6 && !inst->offset) {
215          /* Set up an implied move from g0 to the MRF. */
216          src = brw_vec8_grf(0, 0);
217       } else {
218          struct brw_reg header =
219             retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
220          uint32_t dw2 = 0;
221 
222          /* Explicitly set up the message header by copying g0 to the MRF. */
223          brw_push_insn_state(p);
224          brw_set_default_mask_control(p, BRW_MASK_DISABLE);
225          brw_MOV(p, header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
226 
227          brw_set_default_access_mode(p, BRW_ALIGN_1);
228 
229          if (inst->offset)
230             /* Set the texel offset bits in DWord 2. */
231             dw2 = inst->offset;
232 
233          /* The VS, DS, and FS stages have the g0.2 payload delivered as 0,
234           * so header0.2 is 0 when g0 is copied.  The HS and GS stages do
235           * not, so we must set to to 0 to avoid setting undesirable bits
236           * in the message header.
237           */
238          if (dw2 ||
239              stage == MESA_SHADER_TESS_CTRL ||
240              stage == MESA_SHADER_GEOMETRY) {
241             brw_MOV(p, get_element_ud(header, 2), brw_imm_ud(dw2));
242          }
243 
244          brw_adjust_sampler_state_pointer(p, header, sampler_index);
245          brw_pop_insn_state(p);
246       }
247    }
248 
249    uint32_t return_format;
250 
251    switch (dst.type) {
252    case BRW_REGISTER_TYPE_D:
253       return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
254       break;
255    case BRW_REGISTER_TYPE_UD:
256       return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
257       break;
258    default:
259       return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
260       break;
261    }
262 
263    /* Stomp the resinfo output type to UINT32.  On gens 4-5, the output type
264     * is set as part of the message descriptor.  On gfx4, the PRM seems to
265     * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
266     * later gens UINT32 is required.  Once you hit Sandy Bridge, the bit is
267     * gone from the message descriptor entirely and you just get UINT32 all
268     * the time regasrdless.  Since we can really only do non-UINT32 on gfx4,
269     * just stomp it to UINT32 all the time.
270     */
271    if (inst->opcode == SHADER_OPCODE_TXS)
272       return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
273 
274    uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
275          inst->opcode == SHADER_OPCODE_TG4_OFFSET)
276          ? prog_data->base.binding_table.gather_texture_start
277          : prog_data->base.binding_table.texture_start;
278 
279    if (surface_index.file == BRW_IMMEDIATE_VALUE &&
280        sampler_index.file == BRW_IMMEDIATE_VALUE) {
281       uint32_t surface = surface_index.ud;
282       uint32_t sampler = sampler_index.ud;
283 
284       brw_SAMPLE(p,
285                  dst,
286                  inst->base_mrf,
287                  src,
288                  surface + base_binding_table_index,
289                  sampler % 16,
290                  msg_type,
291                  1, /* response length */
292                  inst->mlen,
293                  inst->header_size != 0,
294                  BRW_SAMPLER_SIMD_MODE_SIMD4X2,
295                  return_format);
296    } else {
297       /* Non-constant sampler index. */
298 
299       struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
300       struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
301       struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
302 
303       brw_push_insn_state(p);
304       brw_set_default_mask_control(p, BRW_MASK_DISABLE);
305       brw_set_default_access_mode(p, BRW_ALIGN_1);
306 
307       if (brw_regs_equal(&surface_reg, &sampler_reg)) {
308          brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
309       } else {
310          if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
311             brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
312          } else {
313             brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
314             brw_OR(p, addr, addr, surface_reg);
315          }
316       }
317       if (base_binding_table_index)
318          brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
319       brw_AND(p, addr, addr, brw_imm_ud(0xfff));
320 
321       brw_pop_insn_state(p);
322 
323       if (inst->base_mrf != -1)
324          gfx6_resolve_implied_move(p, &src, inst->base_mrf);
325 
326       /* dst = send(offset, a0.0 | <descriptor>) */
327       brw_send_indirect_message(
328          p, BRW_SFID_SAMPLER, dst, src, addr,
329          brw_message_desc(devinfo, inst->mlen, 1, inst->header_size) |
330          brw_sampler_desc(devinfo,
331                           0 /* surface */,
332                           0 /* sampler */,
333                           msg_type,
334                           BRW_SAMPLER_SIMD_MODE_SIMD4X2,
335                           return_format),
336          false /* EOT */);
337 
338       /* visitor knows more than we do about the surface limit required,
339        * so has already done marking.
340        */
341    }
342 }
343 
344 static void
generate_vs_urb_write(struct brw_codegen * p,vec4_instruction * inst)345 generate_vs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
346 {
347    brw_urb_WRITE(p,
348 		 brw_null_reg(), /* dest */
349 		 inst->base_mrf, /* starting mrf reg nr */
350 		 brw_vec8_grf(0, 0), /* src */
351                  inst->urb_write_flags,
352 		 inst->mlen,
353 		 0,		/* response len */
354 		 inst->offset,	/* urb destination offset */
355 		 BRW_URB_SWIZZLE_INTERLEAVE);
356 }
357 
358 static void
generate_gs_urb_write(struct brw_codegen * p,vec4_instruction * inst)359 generate_gs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
360 {
361    struct brw_reg src = brw_message_reg(inst->base_mrf);
362    brw_urb_WRITE(p,
363                  brw_null_reg(), /* dest */
364                  inst->base_mrf, /* starting mrf reg nr */
365                  src,
366                  inst->urb_write_flags,
367                  inst->mlen,
368                  0,             /* response len */
369                  inst->offset,  /* urb destination offset */
370                  BRW_URB_SWIZZLE_INTERLEAVE);
371 }
372 
373 static void
generate_gs_urb_write_allocate(struct brw_codegen * p,vec4_instruction * inst)374 generate_gs_urb_write_allocate(struct brw_codegen *p, vec4_instruction *inst)
375 {
376    struct brw_reg src = brw_message_reg(inst->base_mrf);
377 
378    /* We pass the temporary passed in src0 as the writeback register */
379    brw_urb_WRITE(p,
380                  inst->src[0].as_brw_reg(), /* dest */
381                  inst->base_mrf, /* starting mrf reg nr */
382                  src,
383                  BRW_URB_WRITE_ALLOCATE_COMPLETE,
384                  inst->mlen,
385                  1, /* response len */
386                  inst->offset,  /* urb destination offset */
387                  BRW_URB_SWIZZLE_INTERLEAVE);
388 
389    /* Now put allocated urb handle in dst.0 */
390    brw_push_insn_state(p);
391    brw_set_default_access_mode(p, BRW_ALIGN_1);
392    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
393    brw_MOV(p, get_element_ud(inst->dst.as_brw_reg(), 0),
394            get_element_ud(inst->src[0].as_brw_reg(), 0));
395    brw_pop_insn_state(p);
396 }
397 
398 static void
generate_gs_thread_end(struct brw_codegen * p,vec4_instruction * inst)399 generate_gs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
400 {
401    struct brw_reg src = brw_message_reg(inst->base_mrf);
402    brw_urb_WRITE(p,
403                  brw_null_reg(), /* dest */
404                  inst->base_mrf, /* starting mrf reg nr */
405                  src,
406                  BRW_URB_WRITE_EOT | inst->urb_write_flags,
407                  inst->mlen,
408                  0,              /* response len */
409                  0,              /* urb destination offset */
410                  BRW_URB_SWIZZLE_INTERLEAVE);
411 }
412 
413 static void
generate_gs_set_write_offset(struct brw_codegen * p,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)414 generate_gs_set_write_offset(struct brw_codegen *p,
415                              struct brw_reg dst,
416                              struct brw_reg src0,
417                              struct brw_reg src1)
418 {
419    /* From p22 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
420     * Header: M0.3):
421     *
422     *     Slot 0 Offset. This field, after adding to the Global Offset field
423     *     in the message descriptor, specifies the offset (in 256-bit units)
424     *     from the start of the URB entry, as referenced by URB Handle 0, at
425     *     which the data will be accessed.
426     *
427     * Similar text describes DWORD M0.4, which is slot 1 offset.
428     *
429     * Therefore, we want to multiply DWORDs 0 and 4 of src0 (the x components
430     * of the register for geometry shader invocations 0 and 1) by the
431     * immediate value in src1, and store the result in DWORDs 3 and 4 of dst.
432     *
433     * We can do this with the following EU instruction:
434     *
435     *     mul(2) dst.3<1>UD src0<8;2,4>UD src1<...>UW   { Align1 WE_all }
436     */
437    brw_push_insn_state(p);
438    brw_set_default_access_mode(p, BRW_ALIGN_1);
439    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
440    assert(p->devinfo->ver >= 7 &&
441           src1.file == BRW_IMMEDIATE_VALUE &&
442           src1.type == BRW_REGISTER_TYPE_UD &&
443           src1.ud <= USHRT_MAX);
444    if (src0.file == BRW_IMMEDIATE_VALUE) {
445       brw_MOV(p, suboffset(stride(dst, 2, 2, 1), 3),
446               brw_imm_ud(src0.ud * src1.ud));
447    } else {
448       if (src1.file == BRW_IMMEDIATE_VALUE) {
449          src1 = brw_imm_uw(src1.ud);
450       }
451       brw_MUL(p, suboffset(stride(dst, 2, 2, 1), 3), stride(src0, 8, 2, 4),
452               retype(src1, BRW_REGISTER_TYPE_UW));
453    }
454    brw_pop_insn_state(p);
455 }
456 
457 static void
generate_gs_set_vertex_count(struct brw_codegen * p,struct brw_reg dst,struct brw_reg src)458 generate_gs_set_vertex_count(struct brw_codegen *p,
459                              struct brw_reg dst,
460                              struct brw_reg src)
461 {
462    brw_push_insn_state(p);
463    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
464 
465    /* If we think of the src and dst registers as composed of 8 DWORDs each,
466     * we want to pick up the contents of DWORDs 0 and 4 from src, truncate
467     * them to WORDs, and then pack them into DWORD 2 of dst.
468     *
469     * It's easier to get the EU to do this if we think of the src and dst
470     * registers as composed of 16 WORDS each; then, we want to pick up the
471     * contents of WORDs 0 and 8 from src, and pack them into WORDs 4 and 5
472     * of dst.
473     *
474     * We can do that by the following EU instruction:
475     *
476     *     mov (2) dst.4<1>:uw src<8;1,0>:uw   { Align1, Q1, NoMask }
477     */
478    brw_set_default_access_mode(p, BRW_ALIGN_1);
479    brw_MOV(p,
480            suboffset(stride(retype(dst, BRW_REGISTER_TYPE_UW), 2, 2, 1), 4),
481            stride(retype(src, BRW_REGISTER_TYPE_UW), 8, 1, 0));
482 
483    brw_pop_insn_state(p);
484 }
485 
486 static void
generate_gs_svb_write(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)487 generate_gs_svb_write(struct brw_codegen *p,
488                       vec4_instruction *inst,
489                       struct brw_reg dst,
490                       struct brw_reg src0,
491                       struct brw_reg src1)
492 {
493    int binding = inst->sol_binding;
494    bool final_write = inst->sol_final_write;
495 
496    brw_push_insn_state(p);
497    brw_set_default_exec_size(p, BRW_EXECUTE_4);
498    /* Copy Vertex data into M0.x */
499    brw_MOV(p, stride(dst, 4, 4, 1),
500            stride(retype(src0, BRW_REGISTER_TYPE_UD), 4, 4, 1));
501    brw_pop_insn_state(p);
502 
503    brw_push_insn_state(p);
504    /* Send SVB Write */
505    brw_svb_write(p,
506                  final_write ? src1 : brw_null_reg(), /* dest == src1 */
507                  1, /* msg_reg_nr */
508                  dst, /* src0 == previous dst */
509                  BRW_GFX6_SOL_BINDING_START + binding, /* binding_table_index */
510                  final_write); /* send_commit_msg */
511 
512    /* Finally, wait for the write commit to occur so that we can proceed to
513     * other things safely.
514     *
515     * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
516     *
517     *   The write commit does not modify the destination register, but
518     *   merely clears the dependency associated with the destination
519     *   register. Thus, a simple “mov” instruction using the register as a
520     *   source is sufficient to wait for the write commit to occur.
521     */
522    if (final_write) {
523       brw_MOV(p, src1, src1);
524    }
525    brw_pop_insn_state(p);
526 }
527 
528 static void
generate_gs_svb_set_destination_index(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src)529 generate_gs_svb_set_destination_index(struct brw_codegen *p,
530                                       vec4_instruction *inst,
531                                       struct brw_reg dst,
532                                       struct brw_reg src)
533 {
534    int vertex = inst->sol_vertex;
535    brw_push_insn_state(p);
536    brw_set_default_access_mode(p, BRW_ALIGN_1);
537    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
538    brw_MOV(p, get_element_ud(dst, 5), get_element_ud(src, vertex));
539    brw_pop_insn_state(p);
540 }
541 
542 static void
generate_gs_set_dword_2(struct brw_codegen * p,struct brw_reg dst,struct brw_reg src)543 generate_gs_set_dword_2(struct brw_codegen *p,
544                         struct brw_reg dst,
545                         struct brw_reg src)
546 {
547    brw_push_insn_state(p);
548    brw_set_default_access_mode(p, BRW_ALIGN_1);
549    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
550    brw_MOV(p, suboffset(vec1(dst), 2), suboffset(vec1(src), 0));
551    brw_pop_insn_state(p);
552 }
553 
554 static void
generate_gs_prepare_channel_masks(struct brw_codegen * p,struct brw_reg dst)555 generate_gs_prepare_channel_masks(struct brw_codegen *p,
556                                   struct brw_reg dst)
557 {
558    /* We want to left shift just DWORD 4 (the x component belonging to the
559     * second geometry shader invocation) by 4 bits.  So generate the
560     * instruction:
561     *
562     *     shl(1) dst.4<1>UD dst.4<0,1,0>UD 4UD { align1 WE_all }
563     */
564    dst = suboffset(vec1(dst), 4);
565    brw_push_insn_state(p);
566    brw_set_default_access_mode(p, BRW_ALIGN_1);
567    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
568    brw_SHL(p, dst, dst, brw_imm_ud(4));
569    brw_pop_insn_state(p);
570 }
571 
572 static void
generate_gs_set_channel_masks(struct brw_codegen * p,struct brw_reg dst,struct brw_reg src)573 generate_gs_set_channel_masks(struct brw_codegen *p,
574                               struct brw_reg dst,
575                               struct brw_reg src)
576 {
577    /* From p21 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
578     * Header: M0.5):
579     *
580     *     15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask
581     *
582     *        When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1
583     *        DATA[3], when Swizzle Control = URB_NOSWIZZLE this bit controls
584     *        Vertex 0 DATA[7].  This bit is ANDed with the corresponding
585     *        channel enable to determine the final channel enable.  For the
586     *        URB_READ_OWORD & URB_READ_HWORD messages, when final channel
587     *        enable is 1 it indicates that Vertex 1 DATA [3] will be included
588     *        in the writeback message.  For the URB_WRITE_OWORD &
589     *        URB_WRITE_HWORD messages, when final channel enable is 1 it
590     *        indicates that Vertex 1 DATA [3] will be written to the surface.
591     *
592     *        0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included
593     *        1: Vertex DATA [3] / Vertex 0 DATA[7] channel included
594     *
595     *     14 Vertex 1 DATA [2] Channel Mask
596     *     13 Vertex 1 DATA [1] Channel Mask
597     *     12 Vertex 1 DATA [0] Channel Mask
598     *     11 Vertex 0 DATA [3] Channel Mask
599     *     10 Vertex 0 DATA [2] Channel Mask
600     *      9 Vertex 0 DATA [1] Channel Mask
601     *      8 Vertex 0 DATA [0] Channel Mask
602     *
603     * (This is from a section of the PRM that is agnostic to the particular
604     * type of shader being executed, so "Vertex 0" and "Vertex 1" refer to
605     * geometry shader invocations 0 and 1, respectively).  Since we have the
606     * enable flags for geometry shader invocation 0 in bits 3:0 of DWORD 0,
607     * and the enable flags for geometry shader invocation 1 in bits 7:0 of
608     * DWORD 4, we just need to OR them together and store the result in bits
609     * 15:8 of DWORD 5.
610     *
611     * It's easier to get the EU to do this if we think of the src and dst
612     * registers as composed of 32 bytes each; then, we want to pick up the
613     * contents of bytes 0 and 16 from src, OR them together, and store them in
614     * byte 21.
615     *
616     * We can do that by the following EU instruction:
617     *
618     *     or(1) dst.21<1>UB src<0,1,0>UB src.16<0,1,0>UB { align1 WE_all }
619     *
620     * Note: this relies on the source register having zeros in (a) bits 7:4 of
621     * DWORD 0 and (b) bits 3:0 of DWORD 4.  We can rely on (b) because the
622     * source register was prepared by GS_OPCODE_PREPARE_CHANNEL_MASKS (which
623     * shifts DWORD 4 left by 4 bits), and we can rely on (a) because prior to
624     * the execution of GS_OPCODE_PREPARE_CHANNEL_MASKS, DWORDs 0 and 4 need to
625     * contain valid channel mask values (which are in the range 0x0-0xf).
626     */
627    dst = retype(dst, BRW_REGISTER_TYPE_UB);
628    src = retype(src, BRW_REGISTER_TYPE_UB);
629    brw_push_insn_state(p);
630    brw_set_default_access_mode(p, BRW_ALIGN_1);
631    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
632    brw_OR(p, suboffset(vec1(dst), 21), vec1(src), suboffset(vec1(src), 16));
633    brw_pop_insn_state(p);
634 }
635 
636 static void
generate_gs_get_instance_id(struct brw_codegen * p,struct brw_reg dst)637 generate_gs_get_instance_id(struct brw_codegen *p,
638                             struct brw_reg dst)
639 {
640    /* We want to right shift R0.0 & R0.1 by GFX7_GS_PAYLOAD_INSTANCE_ID_SHIFT
641     * and store into dst.0 & dst.4. So generate the instruction:
642     *
643     *     shr(8) dst<1> R0<1,4,0> GFX7_GS_PAYLOAD_INSTANCE_ID_SHIFT { align1 WE_normal 1Q }
644     */
645    brw_push_insn_state(p);
646    brw_set_default_access_mode(p, BRW_ALIGN_1);
647    dst = retype(dst, BRW_REGISTER_TYPE_UD);
648    struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
649    brw_SHR(p, dst, stride(r0, 1, 4, 0),
650            brw_imm_ud(GFX7_GS_PAYLOAD_INSTANCE_ID_SHIFT));
651    brw_pop_insn_state(p);
652 }
653 
654 static void
generate_gs_ff_sync_set_primitives(struct brw_codegen * p,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1,struct brw_reg src2)655 generate_gs_ff_sync_set_primitives(struct brw_codegen *p,
656                                    struct brw_reg dst,
657                                    struct brw_reg src0,
658                                    struct brw_reg src1,
659                                    struct brw_reg src2)
660 {
661    brw_push_insn_state(p);
662    brw_set_default_access_mode(p, BRW_ALIGN_1);
663    /* Save src0 data in 16:31 bits of dst.0 */
664    brw_AND(p, suboffset(vec1(dst), 0), suboffset(vec1(src0), 0),
665            brw_imm_ud(0xffffu));
666    brw_SHL(p, suboffset(vec1(dst), 0), suboffset(vec1(dst), 0), brw_imm_ud(16));
667    /* Save src1 data in 0:15 bits of dst.0 */
668    brw_AND(p, suboffset(vec1(src2), 0), suboffset(vec1(src1), 0),
669            brw_imm_ud(0xffffu));
670    brw_OR(p, suboffset(vec1(dst), 0),
671           suboffset(vec1(dst), 0),
672           suboffset(vec1(src2), 0));
673    brw_pop_insn_state(p);
674 }
675 
676 static void
generate_gs_ff_sync(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)677 generate_gs_ff_sync(struct brw_codegen *p,
678                     vec4_instruction *inst,
679                     struct brw_reg dst,
680                     struct brw_reg src0,
681                     struct brw_reg src1)
682 {
683    /* This opcode uses an implied MRF register for:
684     *  - the header of the ff_sync message. And as such it is expected to be
685     *    initialized to r0 before calling here.
686     *  - the destination where we will write the allocated URB handle.
687     */
688    struct brw_reg header =
689       retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
690 
691    /* Overwrite dword 0 of the header (SO vertices to write) and
692     * dword 1 (number of primitives written).
693     */
694    brw_push_insn_state(p);
695    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
696    brw_set_default_access_mode(p, BRW_ALIGN_1);
697    brw_MOV(p, get_element_ud(header, 0), get_element_ud(src1, 0));
698    brw_MOV(p, get_element_ud(header, 1), get_element_ud(src0, 0));
699    brw_pop_insn_state(p);
700 
701    /* Allocate URB handle in dst */
702    brw_ff_sync(p,
703                dst,
704                0,
705                header,
706                1, /* allocate */
707                1, /* response length */
708                0 /* eot */);
709 
710    /* Now put allocated urb handle in header.0 */
711    brw_push_insn_state(p);
712    brw_set_default_access_mode(p, BRW_ALIGN_1);
713    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
714    brw_MOV(p, get_element_ud(header, 0), get_element_ud(dst, 0));
715 
716    /* src1 is not an immediate when we use transform feedback */
717    if (src1.file != BRW_IMMEDIATE_VALUE) {
718       brw_set_default_exec_size(p, BRW_EXECUTE_4);
719       brw_MOV(p, brw_vec4_grf(src1.nr, 0), brw_vec4_grf(dst.nr, 1));
720    }
721 
722    brw_pop_insn_state(p);
723 }
724 
725 static void
generate_gs_set_primitive_id(struct brw_codegen * p,struct brw_reg dst)726 generate_gs_set_primitive_id(struct brw_codegen *p, struct brw_reg dst)
727 {
728    /* In gfx6, PrimitiveID is delivered in R0.1 of the payload */
729    struct brw_reg src = brw_vec8_grf(0, 0);
730    brw_push_insn_state(p);
731    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
732    brw_set_default_access_mode(p, BRW_ALIGN_1);
733    brw_MOV(p, get_element_ud(dst, 0), get_element_ud(src, 1));
734    brw_pop_insn_state(p);
735 }
736 
737 static void
generate_tcs_get_instance_id(struct brw_codegen * p,struct brw_reg dst)738 generate_tcs_get_instance_id(struct brw_codegen *p, struct brw_reg dst)
739 {
740    const struct intel_device_info *devinfo = p->devinfo;
741    const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
742 
743    /* "Instance Count" comes as part of the payload in r0.2 bits 23:17.
744     *
745     * Since we operate in SIMD4x2 mode, we need run half as many threads
746     * as necessary.  So we assign (2i + 1, 2i) as the thread counts.  We
747     * shift right by one less to accomplish the multiplication by two.
748     */
749    dst = retype(dst, BRW_REGISTER_TYPE_UD);
750    struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
751 
752    brw_push_insn_state(p);
753    brw_set_default_access_mode(p, BRW_ALIGN_1);
754 
755    const int mask = ivb ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
756    const int shift = ivb ? 16 : 17;
757 
758    brw_AND(p, get_element_ud(dst, 0), get_element_ud(r0, 2), brw_imm_ud(mask));
759    brw_SHR(p, get_element_ud(dst, 0), get_element_ud(dst, 0),
760            brw_imm_ud(shift - 1));
761    brw_ADD(p, get_element_ud(dst, 4), get_element_ud(dst, 0), brw_imm_ud(1));
762 
763    brw_pop_insn_state(p);
764 }
765 
766 static void
generate_tcs_urb_write(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg urb_header)767 generate_tcs_urb_write(struct brw_codegen *p,
768                        vec4_instruction *inst,
769                        struct brw_reg urb_header)
770 {
771    const struct intel_device_info *devinfo = p->devinfo;
772 
773    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
774    brw_set_dest(p, send, brw_null_reg());
775    brw_set_src0(p, send, urb_header);
776    brw_set_desc(p, send, brw_message_desc(devinfo, inst->mlen, 0, true));
777 
778    brw_inst_set_sfid(devinfo, send, BRW_SFID_URB);
779    brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_WRITE_OWORD);
780    brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
781    if (inst->urb_write_flags & BRW_URB_WRITE_EOT) {
782       brw_inst_set_eot(devinfo, send, 1);
783    } else {
784       brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
785       brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
786    }
787 
788    /* what happens to swizzles? */
789 }
790 
791 
792 static void
generate_tcs_input_urb_offsets(struct brw_codegen * p,struct brw_reg dst,struct brw_reg vertex,struct brw_reg offset)793 generate_tcs_input_urb_offsets(struct brw_codegen *p,
794                                struct brw_reg dst,
795                                struct brw_reg vertex,
796                                struct brw_reg offset)
797 {
798    /* Generates an URB read/write message header for HS/DS operation.
799     * Inputs are a vertex index, and a byte offset from the beginning of
800     * the vertex. */
801 
802    /* If `vertex` is not an immediate, we clobber a0.0 */
803 
804    assert(vertex.file == BRW_IMMEDIATE_VALUE || vertex.file == BRW_GENERAL_REGISTER_FILE);
805    assert(vertex.type == BRW_REGISTER_TYPE_UD || vertex.type == BRW_REGISTER_TYPE_D);
806 
807    assert(dst.file == BRW_GENERAL_REGISTER_FILE);
808 
809    brw_push_insn_state(p);
810    brw_set_default_access_mode(p, BRW_ALIGN_1);
811    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
812    brw_MOV(p, dst, brw_imm_ud(0));
813 
814    /* m0.5 bits 8-15 are channel enables */
815    brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
816 
817    /* m0.0-0.1: URB handles */
818    if (vertex.file == BRW_IMMEDIATE_VALUE) {
819       uint32_t vertex_index = vertex.ud;
820       struct brw_reg index_reg = brw_vec1_grf(
821             1 + (vertex_index >> 3), vertex_index & 7);
822 
823       brw_MOV(p, vec2(get_element_ud(dst, 0)),
824               retype(index_reg, BRW_REGISTER_TYPE_UD));
825    } else {
826       /* Use indirect addressing.  ICP Handles are DWords (single channels
827        * of a register) and start at g1.0.
828        *
829        * In order to start our region at g1.0, we add 8 to the vertex index,
830        * effectively skipping over the 8 channels in g0.0.  This gives us a
831        * DWord offset to the ICP Handle.
832        *
833        * Indirect addressing works in terms of bytes, so we then multiply
834        * the DWord offset by 4 (by shifting left by 2).
835        */
836       struct brw_reg addr = brw_address_reg(0);
837 
838       /* bottom half: m0.0 = g[1.0 + vertex.0]UD */
839       brw_ADD(p, addr, retype(get_element_ud(vertex, 0), BRW_REGISTER_TYPE_UW),
840               brw_imm_uw(0x8));
841       brw_SHL(p, addr, addr, brw_imm_uw(2));
842       brw_MOV(p, get_element_ud(dst, 0), deref_1ud(brw_indirect(0, 0), 0));
843 
844       /* top half: m0.1 = g[1.0 + vertex.4]UD */
845       brw_ADD(p, addr, retype(get_element_ud(vertex, 4), BRW_REGISTER_TYPE_UW),
846               brw_imm_uw(0x8));
847       brw_SHL(p, addr, addr, brw_imm_uw(2));
848       brw_MOV(p, get_element_ud(dst, 1), deref_1ud(brw_indirect(0, 0), 0));
849    }
850 
851    /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
852    if (offset.file != ARF)
853       brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
854 
855    brw_pop_insn_state(p);
856 }
857 
858 
859 static void
generate_tcs_output_urb_offsets(struct brw_codegen * p,struct brw_reg dst,struct brw_reg write_mask,struct brw_reg offset)860 generate_tcs_output_urb_offsets(struct brw_codegen *p,
861                                 struct brw_reg dst,
862                                 struct brw_reg write_mask,
863                                 struct brw_reg offset)
864 {
865    /* Generates an URB read/write message header for HS/DS operation, for the patch URB entry. */
866    assert(dst.file == BRW_GENERAL_REGISTER_FILE || dst.file == BRW_MESSAGE_REGISTER_FILE);
867 
868    assert(write_mask.file == BRW_IMMEDIATE_VALUE);
869    assert(write_mask.type == BRW_REGISTER_TYPE_UD);
870 
871    brw_push_insn_state(p);
872 
873    brw_set_default_access_mode(p, BRW_ALIGN_1);
874    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
875    brw_MOV(p, dst, brw_imm_ud(0));
876 
877    unsigned mask = write_mask.ud;
878 
879    /* m0.5 bits 15:12 and 11:8 are channel enables */
880    brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud((mask << 8) | (mask << 12)));
881 
882    /* HS patch URB handle is delivered in r0.0 */
883    struct brw_reg urb_handle = brw_vec1_grf(0, 0);
884 
885    /* m0.0-0.1: URB handles */
886    brw_MOV(p, vec2(get_element_ud(dst, 0)),
887            retype(urb_handle, BRW_REGISTER_TYPE_UD));
888 
889    /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
890    if (offset.file != ARF)
891       brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
892 
893    brw_pop_insn_state(p);
894 }
895 
896 static void
generate_tes_create_input_read_header(struct brw_codegen * p,struct brw_reg dst)897 generate_tes_create_input_read_header(struct brw_codegen *p,
898                                       struct brw_reg dst)
899 {
900    brw_push_insn_state(p);
901    brw_set_default_access_mode(p, BRW_ALIGN_1);
902    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
903 
904    /* Initialize the register to 0 */
905    brw_MOV(p, dst, brw_imm_ud(0));
906 
907    /* Enable all the channels in m0.5 bits 15:8 */
908    brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
909 
910    /* Copy g1.3 (the patch URB handle) to m0.0 and m0.1.  For safety,
911     * mask out irrelevant "Reserved" bits, as they're not marked MBZ.
912     */
913    brw_AND(p, vec2(get_element_ud(dst, 0)),
914            retype(brw_vec1_grf(1, 3), BRW_REGISTER_TYPE_UD),
915            brw_imm_ud(0x1fff));
916    brw_pop_insn_state(p);
917 }
918 
919 static void
generate_tes_add_indirect_urb_offset(struct brw_codegen * p,struct brw_reg dst,struct brw_reg header,struct brw_reg offset)920 generate_tes_add_indirect_urb_offset(struct brw_codegen *p,
921                                      struct brw_reg dst,
922                                      struct brw_reg header,
923                                      struct brw_reg offset)
924 {
925    brw_push_insn_state(p);
926    brw_set_default_access_mode(p, BRW_ALIGN_1);
927    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
928 
929    brw_MOV(p, dst, header);
930 
931    /* Uniforms will have a stride <0;4,1>, and we need to convert to <0;1,0>.
932     * Other values get <4;1,0>.
933     */
934    struct brw_reg restrided_offset;
935    if (offset.vstride == BRW_VERTICAL_STRIDE_0 &&
936        offset.width == BRW_WIDTH_4 &&
937        offset.hstride == BRW_HORIZONTAL_STRIDE_1) {
938       restrided_offset = stride(offset, 0, 1, 0);
939    } else {
940       restrided_offset = stride(offset, 4, 1, 0);
941    }
942 
943    /* m0.3-0.4: 128-bit-granular offsets into the URB from the handles */
944    brw_MOV(p, vec2(get_element_ud(dst, 3)), restrided_offset);
945 
946    brw_pop_insn_state(p);
947 }
948 
949 static void
generate_vec4_urb_read(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg header)950 generate_vec4_urb_read(struct brw_codegen *p,
951                        vec4_instruction *inst,
952                        struct brw_reg dst,
953                        struct brw_reg header)
954 {
955    const struct intel_device_info *devinfo = p->devinfo;
956 
957    assert(header.file == BRW_GENERAL_REGISTER_FILE);
958    assert(header.type == BRW_REGISTER_TYPE_UD);
959 
960    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
961    brw_set_dest(p, send, dst);
962    brw_set_src0(p, send, header);
963 
964    brw_set_desc(p, send, brw_message_desc(devinfo, 1, 1, true));
965 
966    brw_inst_set_sfid(devinfo, send, BRW_SFID_URB);
967    brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
968    brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
969    brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
970 
971    brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
972 }
973 
974 static void
generate_tcs_release_input(struct brw_codegen * p,struct brw_reg header,struct brw_reg vertex,struct brw_reg is_unpaired)975 generate_tcs_release_input(struct brw_codegen *p,
976                            struct brw_reg header,
977                            struct brw_reg vertex,
978                            struct brw_reg is_unpaired)
979 {
980    const struct intel_device_info *devinfo = p->devinfo;
981 
982    assert(vertex.file == BRW_IMMEDIATE_VALUE);
983    assert(vertex.type == BRW_REGISTER_TYPE_UD);
984 
985    /* m0.0-0.1: URB handles */
986    struct brw_reg urb_handles =
987       retype(brw_vec2_grf(1 + (vertex.ud >> 3), vertex.ud & 7),
988              BRW_REGISTER_TYPE_UD);
989 
990    brw_push_insn_state(p);
991    brw_set_default_access_mode(p, BRW_ALIGN_1);
992    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
993    brw_MOV(p, header, brw_imm_ud(0));
994    brw_MOV(p, vec2(get_element_ud(header, 0)), urb_handles);
995    brw_pop_insn_state(p);
996 
997    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
998    brw_set_dest(p, send, brw_null_reg());
999    brw_set_src0(p, send, header);
1000    brw_set_desc(p, send, brw_message_desc(devinfo, 1, 0, true));
1001 
1002    brw_inst_set_sfid(devinfo, send, BRW_SFID_URB);
1003    brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
1004    brw_inst_set_urb_complete(devinfo, send, 1);
1005    brw_inst_set_urb_swizzle_control(devinfo, send, is_unpaired.ud ?
1006                                     BRW_URB_SWIZZLE_NONE :
1007                                     BRW_URB_SWIZZLE_INTERLEAVE);
1008 }
1009 
1010 static void
generate_tcs_thread_end(struct brw_codegen * p,vec4_instruction * inst)1011 generate_tcs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
1012 {
1013    struct brw_reg header = brw_message_reg(inst->base_mrf);
1014 
1015    brw_push_insn_state(p);
1016    brw_set_default_access_mode(p, BRW_ALIGN_1);
1017    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1018    brw_MOV(p, header, brw_imm_ud(0));
1019    brw_MOV(p, get_element_ud(header, 5), brw_imm_ud(WRITEMASK_X << 8));
1020    brw_MOV(p, get_element_ud(header, 0),
1021            retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
1022    brw_MOV(p, brw_message_reg(inst->base_mrf + 1), brw_imm_ud(0u));
1023    brw_pop_insn_state(p);
1024 
1025    brw_urb_WRITE(p,
1026                  brw_null_reg(), /* dest */
1027                  inst->base_mrf, /* starting mrf reg nr */
1028                  header,
1029                  BRW_URB_WRITE_EOT | BRW_URB_WRITE_OWORD |
1030                  BRW_URB_WRITE_USE_CHANNEL_MASKS,
1031                  inst->mlen,
1032                  0,              /* response len */
1033                  0,              /* urb destination offset */
1034                  0);
1035 }
1036 
1037 static void
generate_tes_get_primitive_id(struct brw_codegen * p,struct brw_reg dst)1038 generate_tes_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1039 {
1040    brw_push_insn_state(p);
1041    brw_set_default_access_mode(p, BRW_ALIGN_1);
1042    brw_MOV(p, dst, retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_D));
1043    brw_pop_insn_state(p);
1044 }
1045 
1046 static void
generate_tcs_get_primitive_id(struct brw_codegen * p,struct brw_reg dst)1047 generate_tcs_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1048 {
1049    brw_push_insn_state(p);
1050    brw_set_default_access_mode(p, BRW_ALIGN_1);
1051    brw_MOV(p, dst, retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
1052    brw_pop_insn_state(p);
1053 }
1054 
1055 static void
generate_tcs_create_barrier_header(struct brw_codegen * p,struct brw_vue_prog_data * prog_data,struct brw_reg dst)1056 generate_tcs_create_barrier_header(struct brw_codegen *p,
1057                                    struct brw_vue_prog_data *prog_data,
1058                                    struct brw_reg dst)
1059 {
1060    const struct intel_device_info *devinfo = p->devinfo;
1061    const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
1062    struct brw_reg m0_2 = get_element_ud(dst, 2);
1063    unsigned instances = ((struct brw_tcs_prog_data *) prog_data)->instances;
1064 
1065    brw_push_insn_state(p);
1066    brw_set_default_access_mode(p, BRW_ALIGN_1);
1067    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1068 
1069    /* Zero the message header */
1070    brw_MOV(p, retype(dst, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
1071 
1072    /* Copy "Barrier ID" from r0.2, bits 16:13 (Gfx7.5+) or 15:12 (Gfx7) */
1073    brw_AND(p, m0_2,
1074            retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
1075            brw_imm_ud(ivb ? INTEL_MASK(15, 12) : INTEL_MASK(16, 13)));
1076 
1077    /* Shift it up to bits 27:24. */
1078    brw_SHL(p, m0_2, get_element_ud(dst, 2), brw_imm_ud(ivb ? 12 : 11));
1079 
1080    /* Set the Barrier Count and the enable bit */
1081    brw_OR(p, m0_2, m0_2, brw_imm_ud(instances << 9 | (1 << 15)));
1082 
1083    brw_pop_insn_state(p);
1084 }
1085 
1086 static void
generate_oword_dual_block_offsets(struct brw_codegen * p,struct brw_reg m1,struct brw_reg index)1087 generate_oword_dual_block_offsets(struct brw_codegen *p,
1088                                   struct brw_reg m1,
1089                                   struct brw_reg index)
1090 {
1091    int second_vertex_offset;
1092 
1093    if (p->devinfo->ver >= 6)
1094       second_vertex_offset = 1;
1095    else
1096       second_vertex_offset = 16;
1097 
1098    m1 = retype(m1, BRW_REGISTER_TYPE_D);
1099 
1100    /* Set up M1 (message payload).  Only the block offsets in M1.0 and
1101     * M1.4 are used, and the rest are ignored.
1102     */
1103    struct brw_reg m1_0 = suboffset(vec1(m1), 0);
1104    struct brw_reg m1_4 = suboffset(vec1(m1), 4);
1105    struct brw_reg index_0 = suboffset(vec1(index), 0);
1106    struct brw_reg index_4 = suboffset(vec1(index), 4);
1107 
1108    brw_push_insn_state(p);
1109    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1110    brw_set_default_access_mode(p, BRW_ALIGN_1);
1111 
1112    brw_MOV(p, m1_0, index_0);
1113 
1114    if (index.file == BRW_IMMEDIATE_VALUE) {
1115       index_4.ud += second_vertex_offset;
1116       brw_MOV(p, m1_4, index_4);
1117    } else {
1118       brw_ADD(p, m1_4, index_4, brw_imm_d(second_vertex_offset));
1119    }
1120 
1121    brw_pop_insn_state(p);
1122 }
1123 
1124 static void
generate_unpack_flags(struct brw_codegen * p,struct brw_reg dst)1125 generate_unpack_flags(struct brw_codegen *p,
1126                       struct brw_reg dst)
1127 {
1128    brw_push_insn_state(p);
1129    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1130    brw_set_default_access_mode(p, BRW_ALIGN_1);
1131 
1132    struct brw_reg flags = brw_flag_reg(0, 0);
1133    struct brw_reg dst_0 = suboffset(vec1(dst), 0);
1134    struct brw_reg dst_4 = suboffset(vec1(dst), 4);
1135 
1136    brw_AND(p, dst_0, flags, brw_imm_ud(0x0f));
1137    brw_AND(p, dst_4, flags, brw_imm_ud(0xf0));
1138    brw_SHR(p, dst_4, dst_4, brw_imm_ud(4));
1139 
1140    brw_pop_insn_state(p);
1141 }
1142 
1143 static void
generate_scratch_read(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg index)1144 generate_scratch_read(struct brw_codegen *p,
1145                       vec4_instruction *inst,
1146                       struct brw_reg dst,
1147                       struct brw_reg index)
1148 {
1149    const struct intel_device_info *devinfo = p->devinfo;
1150    struct brw_reg header = brw_vec8_grf(0, 0);
1151 
1152    gfx6_resolve_implied_move(p, &header, inst->base_mrf);
1153 
1154    generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1155 				     index);
1156 
1157    uint32_t msg_type;
1158 
1159    if (devinfo->ver >= 6)
1160       msg_type = GFX6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1161    else if (devinfo->ver == 5 || devinfo->is_g4x)
1162       msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1163    else
1164       msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1165 
1166    const unsigned target_cache =
1167       devinfo->ver >= 7 ? GFX7_SFID_DATAPORT_DATA_CACHE :
1168       devinfo->ver >= 6 ? GFX6_SFID_DATAPORT_RENDER_CACHE :
1169       BRW_SFID_DATAPORT_READ;
1170 
1171    /* Each of the 8 channel enables is considered for whether each
1172     * dword is written.
1173     */
1174    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1175    brw_inst_set_sfid(devinfo, send, target_cache);
1176    brw_set_dest(p, send, dst);
1177    brw_set_src0(p, send, header);
1178    if (devinfo->ver < 6)
1179       brw_inst_set_cond_modifier(devinfo, send, inst->base_mrf);
1180    brw_set_desc(p, send,
1181                 brw_message_desc(devinfo, 2, 1, true) |
1182                 brw_dp_read_desc(devinfo,
1183                                  brw_scratch_surface_idx(p),
1184                                  BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1185                                  msg_type, BRW_DATAPORT_READ_TARGET_RENDER_CACHE));
1186 }
1187 
1188 static void
generate_scratch_write(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg index)1189 generate_scratch_write(struct brw_codegen *p,
1190                        vec4_instruction *inst,
1191                        struct brw_reg dst,
1192                        struct brw_reg src,
1193                        struct brw_reg index)
1194 {
1195    const struct intel_device_info *devinfo = p->devinfo;
1196    const unsigned target_cache =
1197       (devinfo->ver >= 7 ? GFX7_SFID_DATAPORT_DATA_CACHE :
1198        devinfo->ver >= 6 ? GFX6_SFID_DATAPORT_RENDER_CACHE :
1199        BRW_SFID_DATAPORT_WRITE);
1200    struct brw_reg header = brw_vec8_grf(0, 0);
1201    bool write_commit;
1202 
1203    /* If the instruction is predicated, we'll predicate the send, not
1204     * the header setup.
1205     */
1206    brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1207 
1208    gfx6_resolve_implied_move(p, &header, inst->base_mrf);
1209 
1210    generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1211 				     index);
1212 
1213    brw_MOV(p,
1214 	   retype(brw_message_reg(inst->base_mrf + 2), BRW_REGISTER_TYPE_D),
1215 	   retype(src, BRW_REGISTER_TYPE_D));
1216 
1217    uint32_t msg_type;
1218 
1219    if (devinfo->ver >= 7)
1220       msg_type = GFX7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE;
1221    else if (devinfo->ver == 6)
1222       msg_type = GFX6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1223    else
1224       msg_type = BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1225 
1226    brw_set_default_predicate_control(p, inst->predicate);
1227 
1228    /* Pre-gfx6, we have to specify write commits to ensure ordering
1229     * between reads and writes within a thread.  Afterwards, that's
1230     * guaranteed and write commits only matter for inter-thread
1231     * synchronization.
1232     */
1233    if (devinfo->ver >= 6) {
1234       write_commit = false;
1235    } else {
1236       /* The visitor set up our destination register to be g0.  This
1237        * means that when the next read comes along, we will end up
1238        * reading from g0 and causing a block on the write commit.  For
1239        * write-after-read, we are relying on the value of the previous
1240        * read being used (and thus blocking on completion) before our
1241        * write is executed.  This means we have to be careful in
1242        * instruction scheduling to not violate this assumption.
1243        */
1244       write_commit = true;
1245    }
1246 
1247    /* Each of the 8 channel enables is considered for whether each
1248     * dword is written.
1249     */
1250    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1251    brw_inst_set_sfid(p->devinfo, send, target_cache);
1252    brw_set_dest(p, send, dst);
1253    brw_set_src0(p, send, header);
1254    if (devinfo->ver < 6)
1255       brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1256    brw_set_desc(p, send,
1257                 brw_message_desc(devinfo, 3, write_commit, true) |
1258                 brw_dp_write_desc(devinfo,
1259                                   brw_scratch_surface_idx(p),
1260                                   BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1261                                   msg_type,
1262                                   write_commit));
1263 }
1264 
1265 static void
generate_pull_constant_load(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg index,struct brw_reg offset)1266 generate_pull_constant_load(struct brw_codegen *p,
1267                             vec4_instruction *inst,
1268                             struct brw_reg dst,
1269                             struct brw_reg index,
1270                             struct brw_reg offset)
1271 {
1272    const struct intel_device_info *devinfo = p->devinfo;
1273    const unsigned target_cache =
1274       (devinfo->ver >= 6 ? GFX6_SFID_DATAPORT_SAMPLER_CACHE :
1275        BRW_SFID_DATAPORT_READ);
1276    assert(index.file == BRW_IMMEDIATE_VALUE &&
1277 	  index.type == BRW_REGISTER_TYPE_UD);
1278    uint32_t surf_index = index.ud;
1279 
1280    struct brw_reg header = brw_vec8_grf(0, 0);
1281 
1282    gfx6_resolve_implied_move(p, &header, inst->base_mrf);
1283 
1284    if (devinfo->ver >= 6) {
1285       if (offset.file == BRW_IMMEDIATE_VALUE) {
1286          brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1287                            BRW_REGISTER_TYPE_D),
1288                  brw_imm_d(offset.ud >> 4));
1289       } else {
1290          brw_SHR(p, retype(brw_message_reg(inst->base_mrf + 1),
1291                            BRW_REGISTER_TYPE_D),
1292                  offset, brw_imm_d(4));
1293       }
1294    } else {
1295       brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1296                         BRW_REGISTER_TYPE_D),
1297               offset);
1298    }
1299 
1300    uint32_t msg_type;
1301 
1302    if (devinfo->ver >= 6)
1303       msg_type = GFX6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1304    else if (devinfo->ver == 5 || devinfo->is_g4x)
1305       msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1306    else
1307       msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1308 
1309    /* Each of the 8 channel enables is considered for whether each
1310     * dword is written.
1311     */
1312    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1313    brw_inst_set_sfid(devinfo, send, target_cache);
1314    brw_set_dest(p, send, dst);
1315    brw_set_src0(p, send, header);
1316    if (devinfo->ver < 6)
1317       brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1318    brw_set_desc(p, send,
1319                 brw_message_desc(devinfo, 2, 1, true) |
1320                 brw_dp_read_desc(devinfo, surf_index,
1321                                  BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1322                                  msg_type,
1323                                  BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1324 }
1325 
1326 static void
generate_get_buffer_size(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg surf_index)1327 generate_get_buffer_size(struct brw_codegen *p,
1328                          vec4_instruction *inst,
1329                          struct brw_reg dst,
1330                          struct brw_reg src,
1331                          struct brw_reg surf_index)
1332 {
1333    assert(p->devinfo->ver >= 7);
1334    assert(surf_index.type == BRW_REGISTER_TYPE_UD &&
1335           surf_index.file == BRW_IMMEDIATE_VALUE);
1336 
1337    brw_SAMPLE(p,
1338               dst,
1339               inst->base_mrf,
1340               src,
1341               surf_index.ud,
1342               0,
1343               GFX5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
1344               1, /* response length */
1345               inst->mlen,
1346               inst->header_size > 0,
1347               BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1348               BRW_SAMPLER_RETURN_FORMAT_SINT32);
1349 }
1350 
1351 static void
generate_pull_constant_load_gfx7(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg surf_index,struct brw_reg offset)1352 generate_pull_constant_load_gfx7(struct brw_codegen *p,
1353                                  vec4_instruction *inst,
1354                                  struct brw_reg dst,
1355                                  struct brw_reg surf_index,
1356                                  struct brw_reg offset)
1357 {
1358    const struct intel_device_info *devinfo = p->devinfo;
1359    assert(surf_index.type == BRW_REGISTER_TYPE_UD);
1360 
1361    if (surf_index.file == BRW_IMMEDIATE_VALUE) {
1362 
1363       brw_inst *insn = brw_next_insn(p, BRW_OPCODE_SEND);
1364       brw_inst_set_sfid(devinfo, insn, BRW_SFID_SAMPLER);
1365       brw_set_dest(p, insn, dst);
1366       brw_set_src0(p, insn, offset);
1367       brw_set_desc(p, insn,
1368                    brw_message_desc(devinfo, inst->mlen, 1, inst->header_size) |
1369                    brw_sampler_desc(devinfo, surf_index.ud,
1370                                     0, /* LD message ignores sampler unit */
1371                                     GFX5_SAMPLER_MESSAGE_SAMPLE_LD,
1372                                     BRW_SAMPLER_SIMD_MODE_SIMD4X2, 0));
1373    } else {
1374 
1375       struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1376 
1377       brw_push_insn_state(p);
1378       brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1379       brw_set_default_access_mode(p, BRW_ALIGN_1);
1380 
1381       /* a0.0 = surf_index & 0xff */
1382       brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1383       brw_inst_set_exec_size(devinfo, insn_and, BRW_EXECUTE_1);
1384       brw_set_dest(p, insn_and, addr);
1385       brw_set_src0(p, insn_and, vec1(retype(surf_index, BRW_REGISTER_TYPE_UD)));
1386       brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1387 
1388       brw_pop_insn_state(p);
1389 
1390       /* dst = send(offset, a0.0 | <descriptor>) */
1391       brw_send_indirect_message(
1392          p, BRW_SFID_SAMPLER, dst, offset, addr,
1393          brw_message_desc(devinfo, inst->mlen, 1, inst->header_size) |
1394          brw_sampler_desc(devinfo,
1395                           0 /* surface */,
1396                           0 /* sampler */,
1397                           GFX5_SAMPLER_MESSAGE_SAMPLE_LD,
1398                           BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1399                           0),
1400          false /* EOT */);
1401    }
1402 }
1403 
1404 static void
generate_mov_indirect(struct brw_codegen * p,vec4_instruction *,struct brw_reg dst,struct brw_reg reg,struct brw_reg indirect)1405 generate_mov_indirect(struct brw_codegen *p,
1406                       vec4_instruction *,
1407                       struct brw_reg dst, struct brw_reg reg,
1408                       struct brw_reg indirect)
1409 {
1410    assert(indirect.type == BRW_REGISTER_TYPE_UD);
1411    assert(p->devinfo->ver >= 6);
1412 
1413    unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr * (REG_SIZE / 2);
1414 
1415    /* This instruction acts in align1 mode */
1416    assert(dst.writemask == WRITEMASK_XYZW);
1417 
1418    if (indirect.file == BRW_IMMEDIATE_VALUE) {
1419       imm_byte_offset += indirect.ud;
1420 
1421       reg.nr = imm_byte_offset / REG_SIZE;
1422       reg.subnr = (imm_byte_offset / (REG_SIZE / 2)) % 2;
1423       unsigned shift = (imm_byte_offset / 4) % 4;
1424       reg.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
1425 
1426       brw_MOV(p, dst, reg);
1427    } else {
1428       brw_push_insn_state(p);
1429       brw_set_default_access_mode(p, BRW_ALIGN_1);
1430       brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1431 
1432       struct brw_reg addr = vec8(brw_address_reg(0));
1433 
1434       /* We need to move the indirect value into the address register.  In
1435        * order to make things make some sense, we want to respect at least the
1436        * X component of the swizzle.  In order to do that, we need to convert
1437        * the subnr (probably 0) to an align1 subnr and add in the swizzle.
1438        */
1439       assert(brw_is_single_value_swizzle(indirect.swizzle));
1440       indirect.subnr = (indirect.subnr * 4 + BRW_GET_SWZ(indirect.swizzle, 0));
1441 
1442       /* We then use a region of <8,4,0>:uw to pick off the first 2 bytes of
1443        * the indirect and splat it out to all four channels of the given half
1444        * of a0.
1445        */
1446       indirect.subnr *= 2;
1447       indirect = stride(retype(indirect, BRW_REGISTER_TYPE_UW), 8, 4, 0);
1448       brw_ADD(p, addr, indirect, brw_imm_uw(imm_byte_offset));
1449 
1450       /* Now we need to incorporate the swizzle from the source register */
1451       if (reg.swizzle != BRW_SWIZZLE_XXXX) {
1452          uint32_t uv_swiz = BRW_GET_SWZ(reg.swizzle, 0) << 2 |
1453                             BRW_GET_SWZ(reg.swizzle, 1) << 6 |
1454                             BRW_GET_SWZ(reg.swizzle, 2) << 10 |
1455                             BRW_GET_SWZ(reg.swizzle, 3) << 14;
1456          uv_swiz |= uv_swiz << 16;
1457 
1458          brw_ADD(p, addr, addr, brw_imm_uv(uv_swiz));
1459       }
1460 
1461       brw_MOV(p, dst, retype(brw_VxH_indirect(0, 0), reg.type));
1462 
1463       brw_pop_insn_state(p);
1464    }
1465 }
1466 
1467 static void
generate_zero_oob_push_regs(struct brw_codegen * p,struct brw_stage_prog_data * prog_data,struct brw_reg scratch,struct brw_reg bit_mask_in)1468 generate_zero_oob_push_regs(struct brw_codegen *p,
1469                             struct brw_stage_prog_data *prog_data,
1470                             struct brw_reg scratch,
1471                             struct brw_reg bit_mask_in)
1472 {
1473    const uint64_t want_zero = prog_data->zero_push_reg;
1474    assert(want_zero);
1475 
1476    assert(bit_mask_in.file == BRW_GENERAL_REGISTER_FILE);
1477    assert(BRW_GET_SWZ(bit_mask_in.swizzle, 1) ==
1478           BRW_GET_SWZ(bit_mask_in.swizzle, 0) + 1);
1479    bit_mask_in.subnr += BRW_GET_SWZ(bit_mask_in.swizzle, 0) * 4;
1480    bit_mask_in.type = BRW_REGISTER_TYPE_W;
1481 
1482    /* Scratch should be 3 registers in the GRF */
1483    assert(scratch.file == BRW_GENERAL_REGISTER_FILE);
1484    scratch = vec8(scratch);
1485    struct brw_reg mask_w16 = retype(scratch, BRW_REGISTER_TYPE_W);
1486    struct brw_reg mask_d16 = retype(byte_offset(scratch, REG_SIZE),
1487                                     BRW_REGISTER_TYPE_D);
1488 
1489    brw_push_insn_state(p);
1490    brw_set_default_access_mode(p, BRW_ALIGN_1);
1491    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1492 
1493    for (unsigned i = 0; i < 64; i++) {
1494       if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) {
1495          brw_set_default_exec_size(p, BRW_EXECUTE_8);
1496          brw_SHL(p, suboffset(mask_w16, 8),
1497                     vec1(byte_offset(bit_mask_in, i / 8)),
1498                     brw_imm_v(0x01234567));
1499          brw_SHL(p, mask_w16, suboffset(mask_w16, 8), brw_imm_w(8));
1500 
1501          brw_set_default_exec_size(p, BRW_EXECUTE_16);
1502          brw_ASR(p, mask_d16, mask_w16, brw_imm_w(15));
1503       }
1504 
1505       if (want_zero & BITFIELD64_BIT(i)) {
1506          unsigned push_start = prog_data->dispatch_grf_start_reg;
1507          struct brw_reg push_reg =
1508             retype(brw_vec8_grf(push_start + i, 0), BRW_REGISTER_TYPE_D);
1509 
1510          brw_set_default_exec_size(p, BRW_EXECUTE_8);
1511          brw_AND(p, push_reg, push_reg, vec1(suboffset(mask_d16, i)));
1512       }
1513    }
1514 
1515    brw_pop_insn_state(p);
1516 }
1517 
1518 static void
generate_code(struct brw_codegen * p,const struct brw_compiler * compiler,void * log_data,const nir_shader * nir,struct brw_vue_prog_data * prog_data,const struct cfg_t * cfg,const performance & perf,struct brw_compile_stats * stats,bool debug_enabled)1519 generate_code(struct brw_codegen *p,
1520               const struct brw_compiler *compiler,
1521               void *log_data,
1522               const nir_shader *nir,
1523               struct brw_vue_prog_data *prog_data,
1524               const struct cfg_t *cfg,
1525               const performance &perf,
1526               struct brw_compile_stats *stats,
1527               bool debug_enabled)
1528 {
1529    const struct intel_device_info *devinfo = p->devinfo;
1530    const char *stage_abbrev = _mesa_shader_stage_to_abbrev(nir->info.stage);
1531    struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1532 
1533    /* `send_count` explicitly does not include spills or fills, as we'd
1534     * like to use it as a metric for intentional memory access or other
1535     * shared function use.  Otherwise, subtle changes to scheduling or
1536     * register allocation could cause it to fluctuate wildly - and that
1537     * effect is already counted in spill/fill counts.
1538     */
1539    int spill_count = 0, fill_count = 0;
1540    int loop_count = 0, send_count = 0;
1541 
1542    foreach_block_and_inst (block, vec4_instruction, inst, cfg) {
1543       struct brw_reg src[3], dst;
1544 
1545       if (unlikely(debug_enabled))
1546          disasm_annotate(disasm_info, inst, p->next_insn_offset);
1547 
1548       for (unsigned int i = 0; i < 3; i++) {
1549          src[i] = inst->src[i].as_brw_reg();
1550       }
1551       dst = inst->dst.as_brw_reg();
1552 
1553       brw_set_default_predicate_control(p, inst->predicate);
1554       brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1555       brw_set_default_flag_reg(p, inst->flag_subreg / 2, inst->flag_subreg % 2);
1556       brw_set_default_saturate(p, inst->saturate);
1557       brw_set_default_mask_control(p, inst->force_writemask_all);
1558       brw_set_default_acc_write_control(p, inst->writes_accumulator);
1559 
1560       assert(inst->group % inst->exec_size == 0);
1561       assert(inst->group % 4 == 0);
1562 
1563       /* There are some instructions where the destination is 64-bit
1564        * but we retype it to a smaller type. In that case, we cannot
1565        * double the exec_size.
1566        */
1567       const bool is_df = (get_exec_type_size(inst) == 8 ||
1568                           inst->dst.type == BRW_REGISTER_TYPE_DF) &&
1569                          inst->opcode != VEC4_OPCODE_PICK_LOW_32BIT &&
1570                          inst->opcode != VEC4_OPCODE_PICK_HIGH_32BIT &&
1571                          inst->opcode != VEC4_OPCODE_SET_LOW_32BIT &&
1572                          inst->opcode != VEC4_OPCODE_SET_HIGH_32BIT;
1573 
1574       unsigned exec_size = inst->exec_size;
1575       if (devinfo->verx10 == 70 && is_df)
1576          exec_size *= 2;
1577 
1578       brw_set_default_exec_size(p, cvt(exec_size) - 1);
1579 
1580       if (!inst->force_writemask_all)
1581          brw_set_default_group(p, inst->group);
1582 
1583       assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->ver));
1584       assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1585 
1586       unsigned pre_emit_nr_insn = p->nr_insn;
1587 
1588       switch (inst->opcode) {
1589       case VEC4_OPCODE_UNPACK_UNIFORM:
1590       case BRW_OPCODE_MOV:
1591       case VEC4_OPCODE_MOV_FOR_SCRATCH:
1592          brw_MOV(p, dst, src[0]);
1593          break;
1594       case BRW_OPCODE_ADD:
1595          brw_ADD(p, dst, src[0], src[1]);
1596          break;
1597       case BRW_OPCODE_MUL:
1598          brw_MUL(p, dst, src[0], src[1]);
1599          break;
1600       case BRW_OPCODE_MACH:
1601          brw_MACH(p, dst, src[0], src[1]);
1602          break;
1603 
1604       case BRW_OPCODE_MAD:
1605          assert(devinfo->ver >= 6);
1606          brw_MAD(p, dst, src[0], src[1], src[2]);
1607          break;
1608 
1609       case BRW_OPCODE_FRC:
1610          brw_FRC(p, dst, src[0]);
1611          break;
1612       case BRW_OPCODE_RNDD:
1613          brw_RNDD(p, dst, src[0]);
1614          break;
1615       case BRW_OPCODE_RNDE:
1616          brw_RNDE(p, dst, src[0]);
1617          break;
1618       case BRW_OPCODE_RNDZ:
1619          brw_RNDZ(p, dst, src[0]);
1620          break;
1621 
1622       case BRW_OPCODE_AND:
1623          brw_AND(p, dst, src[0], src[1]);
1624          break;
1625       case BRW_OPCODE_OR:
1626          brw_OR(p, dst, src[0], src[1]);
1627          break;
1628       case BRW_OPCODE_XOR:
1629          brw_XOR(p, dst, src[0], src[1]);
1630          break;
1631       case BRW_OPCODE_NOT:
1632          brw_NOT(p, dst, src[0]);
1633          break;
1634       case BRW_OPCODE_ASR:
1635          brw_ASR(p, dst, src[0], src[1]);
1636          break;
1637       case BRW_OPCODE_SHR:
1638          brw_SHR(p, dst, src[0], src[1]);
1639          break;
1640       case BRW_OPCODE_SHL:
1641          brw_SHL(p, dst, src[0], src[1]);
1642          break;
1643 
1644       case BRW_OPCODE_CMP:
1645          brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1646          break;
1647       case BRW_OPCODE_CMPN:
1648          brw_CMPN(p, dst, inst->conditional_mod, src[0], src[1]);
1649          break;
1650       case BRW_OPCODE_SEL:
1651          brw_SEL(p, dst, src[0], src[1]);
1652          break;
1653 
1654       case BRW_OPCODE_DPH:
1655          brw_DPH(p, dst, src[0], src[1]);
1656          break;
1657 
1658       case BRW_OPCODE_DP4:
1659          brw_DP4(p, dst, src[0], src[1]);
1660          break;
1661 
1662       case BRW_OPCODE_DP3:
1663          brw_DP3(p, dst, src[0], src[1]);
1664          break;
1665 
1666       case BRW_OPCODE_DP2:
1667          brw_DP2(p, dst, src[0], src[1]);
1668          break;
1669 
1670       case BRW_OPCODE_F32TO16:
1671          assert(devinfo->ver >= 7);
1672          brw_F32TO16(p, dst, src[0]);
1673          break;
1674 
1675       case BRW_OPCODE_F16TO32:
1676          assert(devinfo->ver >= 7);
1677          brw_F16TO32(p, dst, src[0]);
1678          break;
1679 
1680       case BRW_OPCODE_LRP:
1681          assert(devinfo->ver >= 6);
1682          brw_LRP(p, dst, src[0], src[1], src[2]);
1683          break;
1684 
1685       case BRW_OPCODE_BFREV:
1686          assert(devinfo->ver >= 7);
1687          brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1688                    retype(src[0], BRW_REGISTER_TYPE_UD));
1689          break;
1690       case BRW_OPCODE_FBH:
1691          assert(devinfo->ver >= 7);
1692          brw_FBH(p, retype(dst, src[0].type), src[0]);
1693          break;
1694       case BRW_OPCODE_FBL:
1695          assert(devinfo->ver >= 7);
1696          brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1697                  retype(src[0], BRW_REGISTER_TYPE_UD));
1698          break;
1699       case BRW_OPCODE_LZD:
1700          brw_LZD(p, dst, src[0]);
1701          break;
1702       case BRW_OPCODE_CBIT:
1703          assert(devinfo->ver >= 7);
1704          brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1705                   retype(src[0], BRW_REGISTER_TYPE_UD));
1706          break;
1707       case BRW_OPCODE_ADDC:
1708          assert(devinfo->ver >= 7);
1709          brw_ADDC(p, dst, src[0], src[1]);
1710          break;
1711       case BRW_OPCODE_SUBB:
1712          assert(devinfo->ver >= 7);
1713          brw_SUBB(p, dst, src[0], src[1]);
1714          break;
1715       case BRW_OPCODE_MAC:
1716          brw_MAC(p, dst, src[0], src[1]);
1717          break;
1718 
1719       case BRW_OPCODE_BFE:
1720          assert(devinfo->ver >= 7);
1721          brw_BFE(p, dst, src[0], src[1], src[2]);
1722          break;
1723 
1724       case BRW_OPCODE_BFI1:
1725          assert(devinfo->ver >= 7);
1726          brw_BFI1(p, dst, src[0], src[1]);
1727          break;
1728       case BRW_OPCODE_BFI2:
1729          assert(devinfo->ver >= 7);
1730          brw_BFI2(p, dst, src[0], src[1], src[2]);
1731          break;
1732 
1733       case BRW_OPCODE_IF:
1734          if (!inst->src[0].is_null()) {
1735             /* The instruction has an embedded compare (only allowed on gfx6) */
1736             assert(devinfo->ver == 6);
1737             gfx6_IF(p, inst->conditional_mod, src[0], src[1]);
1738          } else {
1739             brw_inst *if_inst = brw_IF(p, BRW_EXECUTE_8);
1740             brw_inst_set_pred_control(p->devinfo, if_inst, inst->predicate);
1741          }
1742          break;
1743 
1744       case BRW_OPCODE_ELSE:
1745          brw_ELSE(p);
1746          break;
1747       case BRW_OPCODE_ENDIF:
1748          brw_ENDIF(p);
1749          break;
1750 
1751       case BRW_OPCODE_DO:
1752          brw_DO(p, BRW_EXECUTE_8);
1753          break;
1754 
1755       case BRW_OPCODE_BREAK:
1756          brw_BREAK(p);
1757          brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1758          break;
1759       case BRW_OPCODE_CONTINUE:
1760          brw_CONT(p);
1761          brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1762          break;
1763 
1764       case BRW_OPCODE_WHILE:
1765          brw_WHILE(p);
1766          loop_count++;
1767          break;
1768 
1769       case SHADER_OPCODE_RCP:
1770       case SHADER_OPCODE_RSQ:
1771       case SHADER_OPCODE_SQRT:
1772       case SHADER_OPCODE_EXP2:
1773       case SHADER_OPCODE_LOG2:
1774       case SHADER_OPCODE_SIN:
1775       case SHADER_OPCODE_COS:
1776          assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1777          if (devinfo->ver >= 7) {
1778             gfx6_math(p, dst, brw_math_function(inst->opcode), src[0],
1779                       brw_null_reg());
1780          } else if (devinfo->ver == 6) {
1781             generate_math_gfx6(p, inst, dst, src[0], brw_null_reg());
1782          } else {
1783             generate_math1_gfx4(p, inst, dst, src[0]);
1784             send_count++;
1785          }
1786          break;
1787 
1788       case SHADER_OPCODE_POW:
1789       case SHADER_OPCODE_INT_QUOTIENT:
1790       case SHADER_OPCODE_INT_REMAINDER:
1791          assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1792          if (devinfo->ver >= 7) {
1793             gfx6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1794          } else if (devinfo->ver == 6) {
1795             generate_math_gfx6(p, inst, dst, src[0], src[1]);
1796          } else {
1797             generate_math2_gfx4(p, inst, dst, src[0], src[1]);
1798             send_count++;
1799          }
1800          break;
1801 
1802       case SHADER_OPCODE_TEX:
1803       case SHADER_OPCODE_TXD:
1804       case SHADER_OPCODE_TXF:
1805       case SHADER_OPCODE_TXF_CMS:
1806       case SHADER_OPCODE_TXF_CMS_W:
1807       case SHADER_OPCODE_TXF_MCS:
1808       case SHADER_OPCODE_TXL:
1809       case SHADER_OPCODE_TXS:
1810       case SHADER_OPCODE_TG4:
1811       case SHADER_OPCODE_TG4_OFFSET:
1812       case SHADER_OPCODE_SAMPLEINFO:
1813          generate_tex(p, prog_data, nir->info.stage,
1814                       inst, dst, src[0], src[1], src[2]);
1815          send_count++;
1816          break;
1817 
1818       case SHADER_OPCODE_GET_BUFFER_SIZE:
1819          generate_get_buffer_size(p, inst, dst, src[0], src[1]);
1820          send_count++;
1821          break;
1822 
1823       case VS_OPCODE_URB_WRITE:
1824          generate_vs_urb_write(p, inst);
1825          send_count++;
1826          break;
1827 
1828       case SHADER_OPCODE_GFX4_SCRATCH_READ:
1829          generate_scratch_read(p, inst, dst, src[0]);
1830          fill_count++;
1831          break;
1832 
1833       case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
1834          generate_scratch_write(p, inst, dst, src[0], src[1]);
1835          spill_count++;
1836          break;
1837 
1838       case VS_OPCODE_PULL_CONSTANT_LOAD:
1839          generate_pull_constant_load(p, inst, dst, src[0], src[1]);
1840          send_count++;
1841          break;
1842 
1843       case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
1844          generate_pull_constant_load_gfx7(p, inst, dst, src[0], src[1]);
1845          send_count++;
1846          break;
1847 
1848       case GS_OPCODE_URB_WRITE:
1849          generate_gs_urb_write(p, inst);
1850          send_count++;
1851          break;
1852 
1853       case GS_OPCODE_URB_WRITE_ALLOCATE:
1854          generate_gs_urb_write_allocate(p, inst);
1855          send_count++;
1856          break;
1857 
1858       case GS_OPCODE_SVB_WRITE:
1859          generate_gs_svb_write(p, inst, dst, src[0], src[1]);
1860          send_count++;
1861          break;
1862 
1863       case GS_OPCODE_SVB_SET_DST_INDEX:
1864          generate_gs_svb_set_destination_index(p, inst, dst, src[0]);
1865          break;
1866 
1867       case GS_OPCODE_THREAD_END:
1868          generate_gs_thread_end(p, inst);
1869          send_count++;
1870          break;
1871 
1872       case GS_OPCODE_SET_WRITE_OFFSET:
1873          generate_gs_set_write_offset(p, dst, src[0], src[1]);
1874          break;
1875 
1876       case GS_OPCODE_SET_VERTEX_COUNT:
1877          generate_gs_set_vertex_count(p, dst, src[0]);
1878          break;
1879 
1880       case GS_OPCODE_FF_SYNC:
1881          generate_gs_ff_sync(p, inst, dst, src[0], src[1]);
1882          send_count++;
1883          break;
1884 
1885       case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
1886          generate_gs_ff_sync_set_primitives(p, dst, src[0], src[1], src[2]);
1887          break;
1888 
1889       case GS_OPCODE_SET_PRIMITIVE_ID:
1890          generate_gs_set_primitive_id(p, dst);
1891          break;
1892 
1893       case GS_OPCODE_SET_DWORD_2:
1894          generate_gs_set_dword_2(p, dst, src[0]);
1895          break;
1896 
1897       case GS_OPCODE_PREPARE_CHANNEL_MASKS:
1898          generate_gs_prepare_channel_masks(p, dst);
1899          break;
1900 
1901       case GS_OPCODE_SET_CHANNEL_MASKS:
1902          generate_gs_set_channel_masks(p, dst, src[0]);
1903          break;
1904 
1905       case GS_OPCODE_GET_INSTANCE_ID:
1906          generate_gs_get_instance_id(p, dst);
1907          break;
1908 
1909       case SHADER_OPCODE_SHADER_TIME_ADD:
1910          brw_shader_time_add(p, src[0],
1911                              prog_data->base.binding_table.shader_time_start);
1912          send_count++;
1913          break;
1914 
1915       case VEC4_OPCODE_UNTYPED_ATOMIC:
1916          assert(src[2].file == BRW_IMMEDIATE_VALUE);
1917          brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
1918                             !inst->dst.is_null(), inst->header_size);
1919          send_count++;
1920          break;
1921 
1922       case VEC4_OPCODE_UNTYPED_SURFACE_READ:
1923          assert(!inst->header_size);
1924          assert(src[2].file == BRW_IMMEDIATE_VALUE);
1925          brw_untyped_surface_read(p, dst, src[0], src[1], inst->mlen,
1926                                   src[2].ud);
1927          send_count++;
1928          break;
1929 
1930       case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
1931          assert(src[2].file == BRW_IMMEDIATE_VALUE);
1932          brw_untyped_surface_write(p, src[0], src[1], inst->mlen,
1933                                    src[2].ud, inst->header_size);
1934          send_count++;
1935          break;
1936 
1937       case SHADER_OPCODE_MEMORY_FENCE:
1938          brw_memory_fence(p, dst, src[0], BRW_OPCODE_SEND,
1939                           brw_message_target(inst->sfid),
1940                           /* commit_enable */ false,
1941                           /* bti */ 0);
1942          send_count++;
1943          break;
1944 
1945       case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
1946          const struct brw_reg mask =
1947             brw_stage_has_packed_dispatch(devinfo, nir->info.stage,
1948                                           &prog_data->base) ? brw_imm_ud(~0u) :
1949             brw_dmask_reg();
1950          brw_find_live_channel(p, dst, mask);
1951          break;
1952       }
1953 
1954       case SHADER_OPCODE_BROADCAST:
1955          assert(inst->force_writemask_all);
1956          brw_broadcast(p, dst, src[0], src[1]);
1957          break;
1958 
1959       case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
1960          generate_unpack_flags(p, dst);
1961          break;
1962 
1963       case VEC4_OPCODE_MOV_BYTES: {
1964          /* Moves the low byte from each channel, using an Align1 access mode
1965           * and a <4,1,0> source region.
1966           */
1967          assert(src[0].type == BRW_REGISTER_TYPE_UB ||
1968                 src[0].type == BRW_REGISTER_TYPE_B);
1969 
1970          brw_set_default_access_mode(p, BRW_ALIGN_1);
1971          src[0].vstride = BRW_VERTICAL_STRIDE_4;
1972          src[0].width = BRW_WIDTH_1;
1973          src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
1974          brw_MOV(p, dst, src[0]);
1975          brw_set_default_access_mode(p, BRW_ALIGN_16);
1976          break;
1977       }
1978 
1979       case VEC4_OPCODE_DOUBLE_TO_F32:
1980       case VEC4_OPCODE_DOUBLE_TO_D32:
1981       case VEC4_OPCODE_DOUBLE_TO_U32: {
1982          assert(type_sz(src[0].type) == 8);
1983          assert(type_sz(dst.type) == 8);
1984 
1985          brw_reg_type dst_type;
1986 
1987          switch (inst->opcode) {
1988          case VEC4_OPCODE_DOUBLE_TO_F32:
1989             dst_type = BRW_REGISTER_TYPE_F;
1990             break;
1991          case VEC4_OPCODE_DOUBLE_TO_D32:
1992             dst_type = BRW_REGISTER_TYPE_D;
1993             break;
1994          case VEC4_OPCODE_DOUBLE_TO_U32:
1995             dst_type = BRW_REGISTER_TYPE_UD;
1996             break;
1997          default:
1998             unreachable("Not supported conversion");
1999          }
2000          dst = retype(dst, dst_type);
2001 
2002          brw_set_default_access_mode(p, BRW_ALIGN_1);
2003 
2004          /* When converting from DF->F, we set destination's stride as 2 as an
2005           * aligment requirement. But in IVB/BYT, each DF implicitly writes
2006           * two floats, being the first one the converted value. So we don't
2007           * need to explicitly set stride 2, but 1.
2008           */
2009          struct brw_reg spread_dst;
2010          if (devinfo->verx10 == 70)
2011             spread_dst = stride(dst, 8, 4, 1);
2012          else
2013             spread_dst = stride(dst, 8, 4, 2);
2014 
2015          brw_MOV(p, spread_dst, src[0]);
2016 
2017          brw_set_default_access_mode(p, BRW_ALIGN_16);
2018          break;
2019       }
2020 
2021       case VEC4_OPCODE_TO_DOUBLE: {
2022          assert(type_sz(src[0].type) == 4);
2023          assert(type_sz(dst.type) == 8);
2024 
2025          brw_set_default_access_mode(p, BRW_ALIGN_1);
2026 
2027          brw_MOV(p, dst, src[0]);
2028 
2029          brw_set_default_access_mode(p, BRW_ALIGN_16);
2030          break;
2031       }
2032 
2033       case VEC4_OPCODE_PICK_LOW_32BIT:
2034       case VEC4_OPCODE_PICK_HIGH_32BIT: {
2035          /* Stores the low/high 32-bit of each 64-bit element in src[0] into
2036           * dst using ALIGN1 mode and a <8,4,2>:UD region on the source.
2037           */
2038          assert(type_sz(src[0].type) == 8);
2039          assert(type_sz(dst.type) == 4);
2040 
2041          brw_set_default_access_mode(p, BRW_ALIGN_1);
2042 
2043          dst = retype(dst, BRW_REGISTER_TYPE_UD);
2044          dst.hstride = BRW_HORIZONTAL_STRIDE_1;
2045 
2046          src[0] = retype(src[0], BRW_REGISTER_TYPE_UD);
2047          if (inst->opcode == VEC4_OPCODE_PICK_HIGH_32BIT)
2048             src[0] = suboffset(src[0], 1);
2049          src[0] = spread(src[0], 2);
2050          brw_MOV(p, dst, src[0]);
2051 
2052          brw_set_default_access_mode(p, BRW_ALIGN_16);
2053          break;
2054       }
2055 
2056       case VEC4_OPCODE_SET_LOW_32BIT:
2057       case VEC4_OPCODE_SET_HIGH_32BIT: {
2058          /* Reads consecutive 32-bit elements from src[0] and writes
2059           * them to the low/high 32-bit of each 64-bit element in dst.
2060           */
2061          assert(type_sz(src[0].type) == 4);
2062          assert(type_sz(dst.type) == 8);
2063 
2064          brw_set_default_access_mode(p, BRW_ALIGN_1);
2065 
2066          dst = retype(dst, BRW_REGISTER_TYPE_UD);
2067          if (inst->opcode == VEC4_OPCODE_SET_HIGH_32BIT)
2068             dst = suboffset(dst, 1);
2069          dst.hstride = BRW_HORIZONTAL_STRIDE_2;
2070 
2071          src[0] = retype(src[0], BRW_REGISTER_TYPE_UD);
2072          brw_MOV(p, dst, src[0]);
2073 
2074          brw_set_default_access_mode(p, BRW_ALIGN_16);
2075          break;
2076       }
2077 
2078       case VEC4_OPCODE_PACK_BYTES: {
2079          /* Is effectively:
2080           *
2081           *   mov(8) dst<16,4,1>:UB src<4,1,0>:UB
2082           *
2083           * but destinations' only regioning is horizontal stride, so instead we
2084           * have to use two instructions:
2085           *
2086           *   mov(4) dst<1>:UB     src<4,1,0>:UB
2087           *   mov(4) dst.16<1>:UB  src.16<4,1,0>:UB
2088           *
2089           * where they pack the four bytes from the low and high four DW.
2090           */
2091          assert(util_is_power_of_two_nonzero(dst.writemask));
2092          unsigned offset = __builtin_ctz(dst.writemask);
2093 
2094          dst.type = BRW_REGISTER_TYPE_UB;
2095 
2096          brw_set_default_access_mode(p, BRW_ALIGN_1);
2097 
2098          src[0].type = BRW_REGISTER_TYPE_UB;
2099          src[0].vstride = BRW_VERTICAL_STRIDE_4;
2100          src[0].width = BRW_WIDTH_1;
2101          src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
2102          dst.subnr = offset * 4;
2103          struct brw_inst *insn = brw_MOV(p, dst, src[0]);
2104          brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
2105          brw_inst_set_no_dd_clear(p->devinfo, insn, true);
2106          brw_inst_set_no_dd_check(p->devinfo, insn, inst->no_dd_check);
2107 
2108          src[0].subnr = 16;
2109          dst.subnr = 16 + offset * 4;
2110          insn = brw_MOV(p, dst, src[0]);
2111          brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
2112          brw_inst_set_no_dd_clear(p->devinfo, insn, inst->no_dd_clear);
2113          brw_inst_set_no_dd_check(p->devinfo, insn, true);
2114 
2115          brw_set_default_access_mode(p, BRW_ALIGN_16);
2116          break;
2117       }
2118 
2119       case VEC4_OPCODE_ZERO_OOB_PUSH_REGS:
2120          generate_zero_oob_push_regs(p, &prog_data->base, dst, src[0]);
2121          break;
2122 
2123       case TCS_OPCODE_URB_WRITE:
2124          generate_tcs_urb_write(p, inst, src[0]);
2125          send_count++;
2126          break;
2127 
2128       case VEC4_OPCODE_URB_READ:
2129          generate_vec4_urb_read(p, inst, dst, src[0]);
2130          send_count++;
2131          break;
2132 
2133       case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
2134          generate_tcs_input_urb_offsets(p, dst, src[0], src[1]);
2135          break;
2136 
2137       case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
2138          generate_tcs_output_urb_offsets(p, dst, src[0], src[1]);
2139          break;
2140 
2141       case TCS_OPCODE_GET_INSTANCE_ID:
2142          generate_tcs_get_instance_id(p, dst);
2143          break;
2144 
2145       case TCS_OPCODE_GET_PRIMITIVE_ID:
2146          generate_tcs_get_primitive_id(p, dst);
2147          break;
2148 
2149       case TCS_OPCODE_CREATE_BARRIER_HEADER:
2150          generate_tcs_create_barrier_header(p, prog_data, dst);
2151          break;
2152 
2153       case TES_OPCODE_CREATE_INPUT_READ_HEADER:
2154          generate_tes_create_input_read_header(p, dst);
2155          break;
2156 
2157       case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
2158          generate_tes_add_indirect_urb_offset(p, dst, src[0], src[1]);
2159          break;
2160 
2161       case TES_OPCODE_GET_PRIMITIVE_ID:
2162          generate_tes_get_primitive_id(p, dst);
2163          break;
2164 
2165       case TCS_OPCODE_SRC0_010_IS_ZERO:
2166          /* If src_reg had stride like fs_reg, we wouldn't need this. */
2167          brw_MOV(p, brw_null_reg(), stride(src[0], 0, 1, 0));
2168          break;
2169 
2170       case TCS_OPCODE_RELEASE_INPUT:
2171          generate_tcs_release_input(p, dst, src[0], src[1]);
2172          send_count++;
2173          break;
2174 
2175       case TCS_OPCODE_THREAD_END:
2176          generate_tcs_thread_end(p, inst);
2177          send_count++;
2178          break;
2179 
2180       case SHADER_OPCODE_BARRIER:
2181          brw_barrier(p, src[0]);
2182          brw_WAIT(p);
2183          send_count++;
2184          break;
2185 
2186       case SHADER_OPCODE_MOV_INDIRECT:
2187          generate_mov_indirect(p, inst, dst, src[0], src[1]);
2188          break;
2189 
2190       case BRW_OPCODE_DIM:
2191          assert(devinfo->is_haswell);
2192          assert(src[0].type == BRW_REGISTER_TYPE_DF);
2193          assert(dst.type == BRW_REGISTER_TYPE_DF);
2194          brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2195          break;
2196 
2197       default:
2198          unreachable("Unsupported opcode");
2199       }
2200 
2201       if (inst->opcode == VEC4_OPCODE_PACK_BYTES) {
2202          /* Handled dependency hints in the generator. */
2203 
2204          assert(!inst->conditional_mod);
2205       } else if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2206          assert(p->nr_insn == pre_emit_nr_insn + 1 ||
2207                 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2208                  "emitting more than 1 instruction");
2209 
2210          brw_inst *last = &p->store[pre_emit_nr_insn];
2211 
2212          if (inst->conditional_mod)
2213             brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2214          brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2215          brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2216       }
2217    }
2218 
2219    brw_set_uip_jip(p, 0);
2220 
2221    /* end of program sentinel */
2222    disasm_new_inst_group(disasm_info, p->next_insn_offset);
2223 
2224 #ifndef NDEBUG
2225    bool validated =
2226 #else
2227    if (unlikely(debug_enabled))
2228 #endif
2229       brw_validate_instructions(devinfo, p->store,
2230                                 0, p->next_insn_offset,
2231                                 disasm_info);
2232 
2233    int before_size = p->next_insn_offset;
2234    brw_compact_instructions(p, 0, disasm_info);
2235    int after_size = p->next_insn_offset;
2236 
2237    if (unlikely(debug_enabled)) {
2238       unsigned char sha1[21];
2239       char sha1buf[41];
2240 
2241       _mesa_sha1_compute(p->store, p->next_insn_offset, sha1);
2242       _mesa_sha1_format(sha1buf, sha1);
2243 
2244       fprintf(stderr, "Native code for %s %s shader %s (sha1 %s):\n",
2245             nir->info.label ? nir->info.label : "unnamed",
2246             _mesa_shader_stage_to_string(nir->info.stage), nir->info.name,
2247             sha1buf);
2248 
2249       fprintf(stderr, "%s vec4 shader: %d instructions. %d loops. %u cycles. %d:%d "
2250                      "spills:fills, %u sends. Compacted %d to %d bytes (%.0f%%)\n",
2251             stage_abbrev, before_size / 16, loop_count, perf.latency,
2252             spill_count, fill_count, send_count, before_size, after_size,
2253             100.0f * (before_size - after_size) / before_size);
2254 
2255       /* overriding the shader makes disasm_info invalid */
2256       if (!brw_try_override_assembly(p, 0, sha1buf)) {
2257          dump_assembly(p->store, 0, p->next_insn_offset,
2258                        disasm_info, perf.block_latency);
2259       } else {
2260          fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
2261       }
2262    }
2263    ralloc_free(disasm_info);
2264    assert(validated);
2265 
2266    brw_shader_debug_log(compiler, log_data,
2267                         "%s vec4 shader: %d inst, %d loops, %u cycles, "
2268                         "%d:%d spills:fills, %u sends, "
2269                         "compacted %d to %d bytes.\n",
2270                         stage_abbrev, before_size / 16,
2271                         loop_count, perf.latency, spill_count,
2272                         fill_count, send_count, before_size, after_size);
2273    if (stats) {
2274       stats->dispatch_width = 0;
2275       stats->instructions = before_size / 16;
2276       stats->sends = send_count;
2277       stats->loops = loop_count;
2278       stats->cycles = perf.latency;
2279       stats->spills = spill_count;
2280       stats->fills = fill_count;
2281    }
2282 }
2283 
2284 extern "C" const unsigned *
brw_vec4_generate_assembly(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const nir_shader * nir,struct brw_vue_prog_data * prog_data,const struct cfg_t * cfg,const performance & perf,struct brw_compile_stats * stats,bool debug_enabled)2285 brw_vec4_generate_assembly(const struct brw_compiler *compiler,
2286                            void *log_data,
2287                            void *mem_ctx,
2288                            const nir_shader *nir,
2289                            struct brw_vue_prog_data *prog_data,
2290                            const struct cfg_t *cfg,
2291                            const performance &perf,
2292                            struct brw_compile_stats *stats,
2293                            bool debug_enabled)
2294 {
2295    struct brw_codegen *p = rzalloc(mem_ctx, struct brw_codegen);
2296    brw_init_codegen(compiler->devinfo, p, mem_ctx);
2297    brw_set_default_access_mode(p, BRW_ALIGN_16);
2298 
2299    generate_code(p, compiler, log_data, nir, prog_data, cfg, perf, stats,
2300                  debug_enabled);
2301 
2302    assert(prog_data->base.const_data_size == 0);
2303    if (nir->constant_data_size > 0) {
2304       prog_data->base.const_data_size = nir->constant_data_size;
2305       prog_data->base.const_data_offset =
2306          brw_append_data(p, nir->constant_data, nir->constant_data_size, 32);
2307    }
2308 
2309    return brw_get_program(p, &prog_data->base.program_size);
2310 }
2311