1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Shared implementation of BlockFrequency for IR and Machine Instructions.
10 // See the documentation below for BlockFrequencyInfoImpl for details.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
15 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/SparseBitVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/ValueHandle.h"
28 #include "llvm/Support/BlockFrequency.h"
29 #include "llvm/Support/BranchProbability.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/DOTGraphTraits.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/Format.h"
35 #include "llvm/Support/ScaledNumber.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstddef>
40 #include <cstdint>
41 #include <deque>
42 #include <iterator>
43 #include <limits>
44 #include <list>
45 #include <queue>
46 #include <string>
47 #include <unordered_set>
48 #include <utility>
49 #include <vector>
50 
51 #define DEBUG_TYPE "block-freq"
52 
53 namespace llvm {
54 extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries;
55 
56 extern llvm::cl::opt<bool> UseIterativeBFIInference;
57 extern llvm::cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock;
58 extern llvm::cl::opt<double> IterativeBFIPrecision;
59 
60 class BranchProbabilityInfo;
61 class Function;
62 class Loop;
63 class LoopInfo;
64 class MachineBasicBlock;
65 class MachineBranchProbabilityInfo;
66 class MachineFunction;
67 class MachineLoop;
68 class MachineLoopInfo;
69 
70 namespace bfi_detail {
71 
72 struct IrreducibleGraph;
73 
74 // This is part of a workaround for a GCC 4.7 crash on lambdas.
75 template <class BT> struct BlockEdgesAdder;
76 
77 /// Mass of a block.
78 ///
79 /// This class implements a sort of fixed-point fraction always between 0.0 and
80 /// 1.0.  getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
81 /// 1.0.
82 ///
83 /// Masses can be added and subtracted.  Simple saturation arithmetic is used,
84 /// so arithmetic operations never overflow or underflow.
85 ///
86 /// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
87 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
88 /// quite, maximum precision).
89 ///
90 /// Masses can be scaled by \a BranchProbability at maximum precision.
91 class BlockMass {
92   uint64_t Mass = 0;
93 
94 public:
95   BlockMass() = default;
BlockMass(uint64_t Mass)96   explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
97 
getEmpty()98   static BlockMass getEmpty() { return BlockMass(); }
99 
getFull()100   static BlockMass getFull() {
101     return BlockMass(std::numeric_limits<uint64_t>::max());
102   }
103 
getMass()104   uint64_t getMass() const { return Mass; }
105 
isFull()106   bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
isEmpty()107   bool isEmpty() const { return !Mass; }
108 
109   bool operator!() const { return isEmpty(); }
110 
111   /// Add another mass.
112   ///
113   /// Adds another mass, saturating at \a isFull() rather than overflowing.
114   BlockMass &operator+=(BlockMass X) {
115     uint64_t Sum = Mass + X.Mass;
116     Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
117     return *this;
118   }
119 
120   /// Subtract another mass.
121   ///
122   /// Subtracts another mass, saturating at \a isEmpty() rather than
123   /// undeflowing.
124   BlockMass &operator-=(BlockMass X) {
125     uint64_t Diff = Mass - X.Mass;
126     Mass = Diff > Mass ? 0 : Diff;
127     return *this;
128   }
129 
130   BlockMass &operator*=(BranchProbability P) {
131     Mass = P.scale(Mass);
132     return *this;
133   }
134 
135   bool operator==(BlockMass X) const { return Mass == X.Mass; }
136   bool operator!=(BlockMass X) const { return Mass != X.Mass; }
137   bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
138   bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
139   bool operator<(BlockMass X) const { return Mass < X.Mass; }
140   bool operator>(BlockMass X) const { return Mass > X.Mass; }
141 
142   /// Convert to scaled number.
143   ///
144   /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
145   /// gives slightly above 0.0.
146   ScaledNumber<uint64_t> toScaled() const;
147 
148   void dump() const;
149   raw_ostream &print(raw_ostream &OS) const;
150 };
151 
152 inline BlockMass operator+(BlockMass L, BlockMass R) {
153   return BlockMass(L) += R;
154 }
155 inline BlockMass operator-(BlockMass L, BlockMass R) {
156   return BlockMass(L) -= R;
157 }
158 inline BlockMass operator*(BlockMass L, BranchProbability R) {
159   return BlockMass(L) *= R;
160 }
161 inline BlockMass operator*(BranchProbability L, BlockMass R) {
162   return BlockMass(R) *= L;
163 }
164 
165 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
166   return X.print(OS);
167 }
168 
169 } // end namespace bfi_detail
170 
171 /// Base class for BlockFrequencyInfoImpl
172 ///
173 /// BlockFrequencyInfoImplBase has supporting data structures and some
174 /// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
175 /// the block type (or that call such algorithms) are skipped here.
176 ///
177 /// Nevertheless, the majority of the overall algorithm documentation lives with
178 /// BlockFrequencyInfoImpl.  See there for details.
179 class BlockFrequencyInfoImplBase {
180 public:
181   using Scaled64 = ScaledNumber<uint64_t>;
182   using BlockMass = bfi_detail::BlockMass;
183 
184   /// Representative of a block.
185   ///
186   /// This is a simple wrapper around an index into the reverse-post-order
187   /// traversal of the blocks.
188   ///
189   /// Unlike a block pointer, its order has meaning (location in the
190   /// topological sort) and it's class is the same regardless of block type.
191   struct BlockNode {
192     using IndexType = uint32_t;
193 
194     IndexType Index;
195 
BlockNodeBlockNode196     BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
BlockNodeBlockNode197     BlockNode(IndexType Index) : Index(Index) {}
198 
199     bool operator==(const BlockNode &X) const { return Index == X.Index; }
200     bool operator!=(const BlockNode &X) const { return Index != X.Index; }
201     bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
202     bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
203     bool operator<(const BlockNode &X) const { return Index < X.Index; }
204     bool operator>(const BlockNode &X) const { return Index > X.Index; }
205 
isValidBlockNode206     bool isValid() const { return Index <= getMaxIndex(); }
207 
getMaxIndexBlockNode208     static size_t getMaxIndex() {
209        return std::numeric_limits<uint32_t>::max() - 1;
210     }
211   };
212 
213   /// Stats about a block itself.
214   struct FrequencyData {
215     Scaled64 Scaled;
216     uint64_t Integer;
217   };
218 
219   /// Data about a loop.
220   ///
221   /// Contains the data necessary to represent a loop as a pseudo-node once it's
222   /// packaged.
223   struct LoopData {
224     using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
225     using NodeList = SmallVector<BlockNode, 4>;
226     using HeaderMassList = SmallVector<BlockMass, 1>;
227 
228     LoopData *Parent;            ///< The parent loop.
229     bool IsPackaged = false;     ///< Whether this has been packaged.
230     uint32_t NumHeaders = 1;     ///< Number of headers.
231     ExitMap Exits;               ///< Successor edges (and weights).
232     NodeList Nodes;              ///< Header and the members of the loop.
233     HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
234     BlockMass Mass;
235     Scaled64 Scale;
236 
LoopDataLoopData237     LoopData(LoopData *Parent, const BlockNode &Header)
238       : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
239 
240     template <class It1, class It2>
LoopDataLoopData241     LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
242              It2 LastOther)
243         : Parent(Parent), Nodes(FirstHeader, LastHeader) {
244       NumHeaders = Nodes.size();
245       Nodes.insert(Nodes.end(), FirstOther, LastOther);
246       BackedgeMass.resize(NumHeaders);
247     }
248 
isHeaderLoopData249     bool isHeader(const BlockNode &Node) const {
250       if (isIrreducible())
251         return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
252                                   Node);
253       return Node == Nodes[0];
254     }
255 
getHeaderLoopData256     BlockNode getHeader() const { return Nodes[0]; }
isIrreducibleLoopData257     bool isIrreducible() const { return NumHeaders > 1; }
258 
getHeaderIndexLoopData259     HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
260       assert(isHeader(B) && "this is only valid on loop header blocks");
261       if (isIrreducible())
262         return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
263                Nodes.begin();
264       return 0;
265     }
266 
members_beginLoopData267     NodeList::const_iterator members_begin() const {
268       return Nodes.begin() + NumHeaders;
269     }
270 
members_endLoopData271     NodeList::const_iterator members_end() const { return Nodes.end(); }
membersLoopData272     iterator_range<NodeList::const_iterator> members() const {
273       return make_range(members_begin(), members_end());
274     }
275   };
276 
277   /// Index of loop information.
278   struct WorkingData {
279     BlockNode Node;           ///< This node.
280     LoopData *Loop = nullptr; ///< The loop this block is inside.
281     BlockMass Mass;           ///< Mass distribution from the entry block.
282 
WorkingDataWorkingData283     WorkingData(const BlockNode &Node) : Node(Node) {}
284 
isLoopHeaderWorkingData285     bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
286 
isDoubleLoopHeaderWorkingData287     bool isDoubleLoopHeader() const {
288       return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
289              Loop->Parent->isHeader(Node);
290     }
291 
getContainingLoopWorkingData292     LoopData *getContainingLoop() const {
293       if (!isLoopHeader())
294         return Loop;
295       if (!isDoubleLoopHeader())
296         return Loop->Parent;
297       return Loop->Parent->Parent;
298     }
299 
300     /// Resolve a node to its representative.
301     ///
302     /// Get the node currently representing Node, which could be a containing
303     /// loop.
304     ///
305     /// This function should only be called when distributing mass.  As long as
306     /// there are no irreducible edges to Node, then it will have complexity
307     /// O(1) in this context.
308     ///
309     /// In general, the complexity is O(L), where L is the number of loop
310     /// headers Node has been packaged into.  Since this method is called in
311     /// the context of distributing mass, L will be the number of loop headers
312     /// an early exit edge jumps out of.
getResolvedNodeWorkingData313     BlockNode getResolvedNode() const {
314       auto L = getPackagedLoop();
315       return L ? L->getHeader() : Node;
316     }
317 
getPackagedLoopWorkingData318     LoopData *getPackagedLoop() const {
319       if (!Loop || !Loop->IsPackaged)
320         return nullptr;
321       auto L = Loop;
322       while (L->Parent && L->Parent->IsPackaged)
323         L = L->Parent;
324       return L;
325     }
326 
327     /// Get the appropriate mass for a node.
328     ///
329     /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
330     /// has been packaged), returns the mass of its pseudo-node.  If it's a
331     /// node inside a packaged loop, it returns the loop's mass.
getMassWorkingData332     BlockMass &getMass() {
333       if (!isAPackage())
334         return Mass;
335       if (!isADoublePackage())
336         return Loop->Mass;
337       return Loop->Parent->Mass;
338     }
339 
340     /// Has ContainingLoop been packaged up?
isPackagedWorkingData341     bool isPackaged() const { return getResolvedNode() != Node; }
342 
343     /// Has Loop been packaged up?
isAPackageWorkingData344     bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
345 
346     /// Has Loop been packaged up twice?
isADoublePackageWorkingData347     bool isADoublePackage() const {
348       return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
349     }
350   };
351 
352   /// Unscaled probability weight.
353   ///
354   /// Probability weight for an edge in the graph (including the
355   /// successor/target node).
356   ///
357   /// All edges in the original function are 32-bit.  However, exit edges from
358   /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
359   /// space in general.
360   ///
361   /// In addition to the raw weight amount, Weight stores the type of the edge
362   /// in the current context (i.e., the context of the loop being processed).
363   /// Is this a local edge within the loop, an exit from the loop, or a
364   /// backedge to the loop header?
365   struct Weight {
366     enum DistType { Local, Exit, Backedge };
367     DistType Type = Local;
368     BlockNode TargetNode;
369     uint64_t Amount = 0;
370 
371     Weight() = default;
WeightWeight372     Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
373         : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
374   };
375 
376   /// Distribution of unscaled probability weight.
377   ///
378   /// Distribution of unscaled probability weight to a set of successors.
379   ///
380   /// This class collates the successor edge weights for later processing.
381   ///
382   /// \a DidOverflow indicates whether \a Total did overflow while adding to
383   /// the distribution.  It should never overflow twice.
384   struct Distribution {
385     using WeightList = SmallVector<Weight, 4>;
386 
387     WeightList Weights;       ///< Individual successor weights.
388     uint64_t Total = 0;       ///< Sum of all weights.
389     bool DidOverflow = false; ///< Whether \a Total did overflow.
390 
391     Distribution() = default;
392 
addLocalDistribution393     void addLocal(const BlockNode &Node, uint64_t Amount) {
394       add(Node, Amount, Weight::Local);
395     }
396 
addExitDistribution397     void addExit(const BlockNode &Node, uint64_t Amount) {
398       add(Node, Amount, Weight::Exit);
399     }
400 
addBackedgeDistribution401     void addBackedge(const BlockNode &Node, uint64_t Amount) {
402       add(Node, Amount, Weight::Backedge);
403     }
404 
405     /// Normalize the distribution.
406     ///
407     /// Combines multiple edges to the same \a Weight::TargetNode and scales
408     /// down so that \a Total fits into 32-bits.
409     ///
410     /// This is linear in the size of \a Weights.  For the vast majority of
411     /// cases, adjacent edge weights are combined by sorting WeightList and
412     /// combining adjacent weights.  However, for very large edge lists an
413     /// auxiliary hash table is used.
414     void normalize();
415 
416   private:
417     void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
418   };
419 
420   /// Data about each block.  This is used downstream.
421   std::vector<FrequencyData> Freqs;
422 
423   /// Whether each block is an irreducible loop header.
424   /// This is used downstream.
425   SparseBitVector<> IsIrrLoopHeader;
426 
427   /// Loop data: see initializeLoops().
428   std::vector<WorkingData> Working;
429 
430   /// Indexed information about loops.
431   std::list<LoopData> Loops;
432 
433   /// Virtual destructor.
434   ///
435   /// Need a virtual destructor to mask the compiler warning about
436   /// getBlockName().
437   virtual ~BlockFrequencyInfoImplBase() = default;
438 
439   /// Add all edges out of a packaged loop to the distribution.
440   ///
441   /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
442   /// successor edge.
443   ///
444   /// \return \c true unless there's an irreducible backedge.
445   bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
446                                Distribution &Dist);
447 
448   /// Add an edge to the distribution.
449   ///
450   /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
451   /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
452   /// every edge should be a local edge (since all the loops are packaged up).
453   ///
454   /// \return \c true unless aborted due to an irreducible backedge.
455   bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
456                  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
457 
458   /// Analyze irreducible SCCs.
459   ///
460   /// Separate irreducible SCCs from \c G, which is an explicit graph of \c
461   /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
462   /// Insert them into \a Loops before \c Insert.
463   ///
464   /// \return the \c LoopData nodes representing the irreducible SCCs.
465   iterator_range<std::list<LoopData>::iterator>
466   analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
467                      std::list<LoopData>::iterator Insert);
468 
469   /// Update a loop after packaging irreducible SCCs inside of it.
470   ///
471   /// Update \c OuterLoop.  Before finding irreducible control flow, it was
472   /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
473   /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
474   /// up need to be removed from \a OuterLoop::Nodes.
475   void updateLoopWithIrreducible(LoopData &OuterLoop);
476 
477   /// Distribute mass according to a distribution.
478   ///
479   /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
480   /// backedges and exits are stored in its entry in Loops.
481   ///
482   /// Mass is distributed in parallel from two copies of the source mass.
483   void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
484                       Distribution &Dist);
485 
486   /// Compute the loop scale for a loop.
487   void computeLoopScale(LoopData &Loop);
488 
489   /// Adjust the mass of all headers in an irreducible loop.
490   ///
491   /// Initially, irreducible loops are assumed to distribute their mass
492   /// equally among its headers. This can lead to wrong frequency estimates
493   /// since some headers may be executed more frequently than others.
494   ///
495   /// This adjusts header mass distribution so it matches the weights of
496   /// the backedges going into each of the loop headers.
497   void adjustLoopHeaderMass(LoopData &Loop);
498 
499   void distributeIrrLoopHeaderMass(Distribution &Dist);
500 
501   /// Package up a loop.
502   void packageLoop(LoopData &Loop);
503 
504   /// Unwrap loops.
505   void unwrapLoops();
506 
507   /// Finalize frequency metrics.
508   ///
509   /// Calculates final frequencies and cleans up no-longer-needed data
510   /// structures.
511   void finalizeMetrics();
512 
513   /// Clear all memory.
514   void clear();
515 
516   virtual std::string getBlockName(const BlockNode &Node) const;
517   std::string getLoopName(const LoopData &Loop) const;
518 
print(raw_ostream & OS)519   virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
dump()520   void dump() const { print(dbgs()); }
521 
522   Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
523 
524   BlockFrequency getBlockFreq(const BlockNode &Node) const;
525   Optional<uint64_t> getBlockProfileCount(const Function &F,
526                                           const BlockNode &Node,
527                                           bool AllowSynthetic = false) const;
528   Optional<uint64_t> getProfileCountFromFreq(const Function &F,
529                                              uint64_t Freq,
530                                              bool AllowSynthetic = false) const;
531   bool isIrrLoopHeader(const BlockNode &Node);
532 
533   void setBlockFreq(const BlockNode &Node, uint64_t Freq);
534 
535   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
536   raw_ostream &printBlockFreq(raw_ostream &OS,
537                               const BlockFrequency &Freq) const;
538 
getEntryFreq()539   uint64_t getEntryFreq() const {
540     assert(!Freqs.empty());
541     return Freqs[0].Integer;
542   }
543 };
544 
545 namespace bfi_detail {
546 
547 template <class BlockT> struct TypeMap {};
548 template <> struct TypeMap<BasicBlock> {
549   using BlockT = BasicBlock;
550   using BlockKeyT = AssertingVH<const BasicBlock>;
551   using FunctionT = Function;
552   using BranchProbabilityInfoT = BranchProbabilityInfo;
553   using LoopT = Loop;
554   using LoopInfoT = LoopInfo;
555 };
556 template <> struct TypeMap<MachineBasicBlock> {
557   using BlockT = MachineBasicBlock;
558   using BlockKeyT = const MachineBasicBlock *;
559   using FunctionT = MachineFunction;
560   using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
561   using LoopT = MachineLoop;
562   using LoopInfoT = MachineLoopInfo;
563 };
564 
565 template <class BlockT, class BFIImplT>
566 class BFICallbackVH;
567 
568 /// Get the name of a MachineBasicBlock.
569 ///
570 /// Get the name of a MachineBasicBlock.  It's templated so that including from
571 /// CodeGen is unnecessary (that would be a layering issue).
572 ///
573 /// This is used mainly for debug output.  The name is similar to
574 /// MachineBasicBlock::getFullName(), but skips the name of the function.
575 template <class BlockT> std::string getBlockName(const BlockT *BB) {
576   assert(BB && "Unexpected nullptr");
577   auto MachineName = "BB" + Twine(BB->getNumber());
578   if (BB->getBasicBlock())
579     return (MachineName + "[" + BB->getName() + "]").str();
580   return MachineName.str();
581 }
582 /// Get the name of a BasicBlock.
583 template <> inline std::string getBlockName(const BasicBlock *BB) {
584   assert(BB && "Unexpected nullptr");
585   return BB->getName().str();
586 }
587 
588 /// Graph of irreducible control flow.
589 ///
590 /// This graph is used for determining the SCCs in a loop (or top-level
591 /// function) that has irreducible control flow.
592 ///
593 /// During the block frequency algorithm, the local graphs are defined in a
594 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
595 /// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
596 /// latter only has successor information.
597 ///
598 /// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
599 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
600 /// and it explicitly lists predecessors and successors.  The initialization
601 /// that relies on \c MachineBasicBlock is defined in the header.
602 struct IrreducibleGraph {
603   using BFIBase = BlockFrequencyInfoImplBase;
604 
605   BFIBase &BFI;
606 
607   using BlockNode = BFIBase::BlockNode;
608   struct IrrNode {
609     BlockNode Node;
610     unsigned NumIn = 0;
611     std::deque<const IrrNode *> Edges;
612 
613     IrrNode(const BlockNode &Node) : Node(Node) {}
614 
615     using iterator = std::deque<const IrrNode *>::const_iterator;
616 
617     iterator pred_begin() const { return Edges.begin(); }
618     iterator succ_begin() const { return Edges.begin() + NumIn; }
619     iterator pred_end() const { return succ_begin(); }
620     iterator succ_end() const { return Edges.end(); }
621   };
622   BlockNode Start;
623   const IrrNode *StartIrr = nullptr;
624   std::vector<IrrNode> Nodes;
625   SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
626 
627   /// Construct an explicit graph containing irreducible control flow.
628   ///
629   /// Construct an explicit graph of the control flow in \c OuterLoop (or the
630   /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
631   /// addBlockEdges to add block successors that have not been packaged into
632   /// loops.
633   ///
634   /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
635   /// user of this.
636   template <class BlockEdgesAdder>
637   IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
638                    BlockEdgesAdder addBlockEdges) : BFI(BFI) {
639     initialize(OuterLoop, addBlockEdges);
640   }
641 
642   template <class BlockEdgesAdder>
643   void initialize(const BFIBase::LoopData *OuterLoop,
644                   BlockEdgesAdder addBlockEdges);
645   void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
646   void addNodesInFunction();
647 
648   void addNode(const BlockNode &Node) {
649     Nodes.emplace_back(Node);
650     BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
651   }
652 
653   void indexNodes();
654   template <class BlockEdgesAdder>
655   void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
656                 BlockEdgesAdder addBlockEdges);
657   void addEdge(IrrNode &Irr, const BlockNode &Succ,
658                const BFIBase::LoopData *OuterLoop);
659 };
660 
661 template <class BlockEdgesAdder>
662 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
663                                   BlockEdgesAdder addBlockEdges) {
664   if (OuterLoop) {
665     addNodesInLoop(*OuterLoop);
666     for (auto N : OuterLoop->Nodes)
667       addEdges(N, OuterLoop, addBlockEdges);
668   } else {
669     addNodesInFunction();
670     for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
671       addEdges(Index, OuterLoop, addBlockEdges);
672   }
673   StartIrr = Lookup[Start.Index];
674 }
675 
676 template <class BlockEdgesAdder>
677 void IrreducibleGraph::addEdges(const BlockNode &Node,
678                                 const BFIBase::LoopData *OuterLoop,
679                                 BlockEdgesAdder addBlockEdges) {
680   auto L = Lookup.find(Node.Index);
681   if (L == Lookup.end())
682     return;
683   IrrNode &Irr = *L->second;
684   const auto &Working = BFI.Working[Node.Index];
685 
686   if (Working.isAPackage())
687     for (const auto &I : Working.Loop->Exits)
688       addEdge(Irr, I.first, OuterLoop);
689   else
690     addBlockEdges(*this, Irr, OuterLoop);
691 }
692 
693 } // end namespace bfi_detail
694 
695 /// Shared implementation for block frequency analysis.
696 ///
697 /// This is a shared implementation of BlockFrequencyInfo and
698 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
699 /// blocks.
700 ///
701 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
702 /// which is called the header.  A given loop, L, can have sub-loops, which are
703 /// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
704 /// consists of a single block that does not have a self-edge.)
705 ///
706 /// In addition to loops, this algorithm has limited support for irreducible
707 /// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
708 /// discovered on the fly, and modelled as loops with multiple headers.
709 ///
710 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
711 /// nodes that are targets of a backedge within it (excluding backedges within
712 /// true sub-loops).  Block frequency calculations act as if a block is
713 /// inserted that intercepts all the edges to the headers.  All backedges and
714 /// entries point to this block.  Its successors are the headers, which split
715 /// the frequency evenly.
716 ///
717 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
718 /// separates mass distribution from loop scaling, and dithers to eliminate
719 /// probability mass loss.
720 ///
721 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
722 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
723 /// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
724 /// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
725 /// reverse-post order.  This gives two advantages:  it's easy to compare the
726 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
727 /// by vectors.
728 ///
729 /// This algorithm is O(V+E), unless there is irreducible control flow, in
730 /// which case it's O(V*E) in the worst case.
731 ///
732 /// These are the main stages:
733 ///
734 ///  0. Reverse post-order traversal (\a initializeRPOT()).
735 ///
736 ///     Run a single post-order traversal and save it (in reverse) in RPOT.
737 ///     All other stages make use of this ordering.  Save a lookup from BlockT
738 ///     to BlockNode (the index into RPOT) in Nodes.
739 ///
740 ///  1. Loop initialization (\a initializeLoops()).
741 ///
742 ///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
743 ///     the algorithm.  In particular, store the immediate members of each loop
744 ///     in reverse post-order.
745 ///
746 ///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
747 ///
748 ///     For each loop (bottom-up), distribute mass through the DAG resulting
749 ///     from ignoring backedges and treating sub-loops as a single pseudo-node.
750 ///     Track the backedge mass distributed to the loop header, and use it to
751 ///     calculate the loop scale (number of loop iterations).  Immediate
752 ///     members that represent sub-loops will already have been visited and
753 ///     packaged into a pseudo-node.
754 ///
755 ///     Distributing mass in a loop is a reverse-post-order traversal through
756 ///     the loop.  Start by assigning full mass to the Loop header.  For each
757 ///     node in the loop:
758 ///
759 ///         - Fetch and categorize the weight distribution for its successors.
760 ///           If this is a packaged-subloop, the weight distribution is stored
761 ///           in \a LoopData::Exits.  Otherwise, fetch it from
762 ///           BranchProbabilityInfo.
763 ///
764 ///         - Each successor is categorized as \a Weight::Local, a local edge
765 ///           within the current loop, \a Weight::Backedge, a backedge to the
766 ///           loop header, or \a Weight::Exit, any successor outside the loop.
767 ///           The weight, the successor, and its category are stored in \a
768 ///           Distribution.  There can be multiple edges to each successor.
769 ///
770 ///         - If there's a backedge to a non-header, there's an irreducible SCC.
771 ///           The usual flow is temporarily aborted.  \a
772 ///           computeIrreducibleMass() finds the irreducible SCCs within the
773 ///           loop, packages them up, and restarts the flow.
774 ///
775 ///         - Normalize the distribution:  scale weights down so that their sum
776 ///           is 32-bits, and coalesce multiple edges to the same node.
777 ///
778 ///         - Distribute the mass accordingly, dithering to minimize mass loss,
779 ///           as described in \a distributeMass().
780 ///
781 ///     In the case of irreducible loops, instead of a single loop header,
782 ///     there will be several. The computation of backedge masses is similar
783 ///     but instead of having a single backedge mass, there will be one
784 ///     backedge per loop header. In these cases, each backedge will carry
785 ///     a mass proportional to the edge weights along the corresponding
786 ///     path.
787 ///
788 ///     At the end of propagation, the full mass assigned to the loop will be
789 ///     distributed among the loop headers proportionally according to the
790 ///     mass flowing through their backedges.
791 ///
792 ///     Finally, calculate the loop scale from the accumulated backedge mass.
793 ///
794 ///  3. Distribute mass in the function (\a computeMassInFunction()).
795 ///
796 ///     Finally, distribute mass through the DAG resulting from packaging all
797 ///     loops in the function.  This uses the same algorithm as distributing
798 ///     mass in a loop, except that there are no exit or backedge edges.
799 ///
800 ///  4. Unpackage loops (\a unwrapLoops()).
801 ///
802 ///     Initialize each block's frequency to a floating point representation of
803 ///     its mass.
804 ///
805 ///     Visit loops top-down, scaling the frequencies of its immediate members
806 ///     by the loop's pseudo-node's frequency.
807 ///
808 ///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
809 ///
810 ///     Using the min and max frequencies as a guide, translate floating point
811 ///     frequencies to an appropriate range in uint64_t.
812 ///
813 /// It has some known flaws.
814 ///
815 ///   - The model of irreducible control flow is a rough approximation.
816 ///
817 ///     Modelling irreducible control flow exactly involves setting up and
818 ///     solving a group of infinite geometric series.  Such precision is
819 ///     unlikely to be worthwhile, since most of our algorithms give up on
820 ///     irreducible control flow anyway.
821 ///
822 ///     Nevertheless, we might find that we need to get closer.  Here's a sort
823 ///     of TODO list for the model with diminishing returns, to be completed as
824 ///     necessary.
825 ///
826 ///       - The headers for the \a LoopData representing an irreducible SCC
827 ///         include non-entry blocks.  When these extra blocks exist, they
828 ///         indicate a self-contained irreducible sub-SCC.  We could treat them
829 ///         as sub-loops, rather than arbitrarily shoving the problematic
830 ///         blocks into the headers of the main irreducible SCC.
831 ///
832 ///       - Entry frequencies are assumed to be evenly split between the
833 ///         headers of a given irreducible SCC, which is the only option if we
834 ///         need to compute mass in the SCC before its parent loop.  Instead,
835 ///         we could partially compute mass in the parent loop, and stop when
836 ///         we get to the SCC.  Here, we have the correct ratio of entry
837 ///         masses, which we can use to adjust their relative frequencies.
838 ///         Compute mass in the SCC, and then continue propagation in the
839 ///         parent.
840 ///
841 ///       - We can propagate mass iteratively through the SCC, for some fixed
842 ///         number of iterations.  Each iteration starts by assigning the entry
843 ///         blocks their backedge mass from the prior iteration.  The final
844 ///         mass for each block (and each exit, and the total backedge mass
845 ///         used for computing loop scale) is the sum of all iterations.
846 ///         (Running this until fixed point would "solve" the geometric
847 ///         series by simulation.)
848 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
849   // This is part of a workaround for a GCC 4.7 crash on lambdas.
850   friend struct bfi_detail::BlockEdgesAdder<BT>;
851 
852   using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
853   using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT;
854   using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
855   using BranchProbabilityInfoT =
856       typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
857   using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
858   using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
859   using Successor = GraphTraits<const BlockT *>;
860   using Predecessor = GraphTraits<Inverse<const BlockT *>>;
861   using BFICallbackVH =
862       bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>;
863 
864   const BranchProbabilityInfoT *BPI = nullptr;
865   const LoopInfoT *LI = nullptr;
866   const FunctionT *F = nullptr;
867 
868   // All blocks in reverse postorder.
869   std::vector<const BlockT *> RPOT;
870   DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes;
871 
872   using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
873 
874   rpot_iterator rpot_begin() const { return RPOT.begin(); }
875   rpot_iterator rpot_end() const { return RPOT.end(); }
876 
877   size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
878 
879   BlockNode getNode(const rpot_iterator &I) const {
880     return BlockNode(getIndex(I));
881   }
882 
883   BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; }
884 
885   const BlockT *getBlock(const BlockNode &Node) const {
886     assert(Node.Index < RPOT.size());
887     return RPOT[Node.Index];
888   }
889 
890   /// Run (and save) a post-order traversal.
891   ///
892   /// Saves a reverse post-order traversal of all the nodes in \a F.
893   void initializeRPOT();
894 
895   /// Initialize loop data.
896   ///
897   /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
898   /// each block to the deepest loop it's in, but we need the inverse.  For each
899   /// loop, we store in reverse post-order its "immediate" members, defined as
900   /// the header, the headers of immediate sub-loops, and all other blocks in
901   /// the loop that are not in sub-loops.
902   void initializeLoops();
903 
904   /// Propagate to a block's successors.
905   ///
906   /// In the context of distributing mass through \c OuterLoop, divide the mass
907   /// currently assigned to \c Node between its successors.
908   ///
909   /// \return \c true unless there's an irreducible backedge.
910   bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
911 
912   /// Compute mass in a particular loop.
913   ///
914   /// Assign mass to \c Loop's header, and then for each block in \c Loop in
915   /// reverse post-order, distribute mass to its successors.  Only visits nodes
916   /// that have not been packaged into sub-loops.
917   ///
918   /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
919   /// \return \c true unless there's an irreducible backedge.
920   bool computeMassInLoop(LoopData &Loop);
921 
922   /// Try to compute mass in the top-level function.
923   ///
924   /// Assign mass to the entry block, and then for each block in reverse
925   /// post-order, distribute mass to its successors.  Skips nodes that have
926   /// been packaged into loops.
927   ///
928   /// \pre \a computeMassInLoops() has been called.
929   /// \return \c true unless there's an irreducible backedge.
930   bool tryToComputeMassInFunction();
931 
932   /// Compute mass in (and package up) irreducible SCCs.
933   ///
934   /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
935   /// of \c Insert), and call \a computeMassInLoop() on each of them.
936   ///
937   /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
938   ///
939   /// \pre \a computeMassInLoop() has been called for each subloop of \c
940   /// OuterLoop.
941   /// \pre \c Insert points at the last loop successfully processed by \a
942   /// computeMassInLoop().
943   /// \pre \c OuterLoop has irreducible SCCs.
944   void computeIrreducibleMass(LoopData *OuterLoop,
945                               std::list<LoopData>::iterator Insert);
946 
947   /// Compute mass in all loops.
948   ///
949   /// For each loop bottom-up, call \a computeMassInLoop().
950   ///
951   /// \a computeMassInLoop() aborts (and returns \c false) on loops that
952   /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
953   /// re-enter \a computeMassInLoop().
954   ///
955   /// \post \a computeMassInLoop() has returned \c true for every loop.
956   void computeMassInLoops();
957 
958   /// Compute mass in the top-level function.
959   ///
960   /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
961   /// compute mass in the top-level function.
962   ///
963   /// \post \a tryToComputeMassInFunction() has returned \c true.
964   void computeMassInFunction();
965 
966   std::string getBlockName(const BlockNode &Node) const override {
967     return bfi_detail::getBlockName(getBlock(Node));
968   }
969 
970   /// The current implementation for computing relative block frequencies does
971   /// not handle correctly control-flow graphs containing irreducible loops. To
972   /// resolve the problem, we apply a post-processing step, which iteratively
973   /// updates block frequencies based on the frequencies of their predesessors.
974   /// This corresponds to finding the stationary point of the Markov chain by
975   /// an iterative method aka "PageRank computation".
976   /// The algorithm takes at most O(|E| * IterativeBFIMaxIterations) steps but
977   /// typically converges faster.
978   ///
979   /// Decide whether we want to apply iterative inference for a given function.
980   bool needIterativeInference() const;
981 
982   /// Apply an iterative post-processing to infer correct counts for irr loops.
983   void applyIterativeInference();
984 
985   using ProbMatrixType = std::vector<std::vector<std::pair<size_t, Scaled64>>>;
986 
987   /// Run iterative inference for a probability matrix and initial frequencies.
988   void iterativeInference(const ProbMatrixType &ProbMatrix,
989                           std::vector<Scaled64> &Freq) const;
990 
991   /// Find all blocks to apply inference on, that is, reachable from the entry
992   /// and backward reachable from exists along edges with positive probability.
993   void findReachableBlocks(std::vector<const BlockT *> &Blocks) const;
994 
995   /// Build a matrix of probabilities with transitions (edges) between the
996   /// blocks: ProbMatrix[I] holds pairs (J, P), where Pr[J -> I | J] = P
997   void initTransitionProbabilities(
998       const std::vector<const BlockT *> &Blocks,
999       const DenseMap<const BlockT *, size_t> &BlockIndex,
1000       ProbMatrixType &ProbMatrix) const;
1001 
1002 #ifndef NDEBUG
1003   /// Compute the discrepancy between current block frequencies and the
1004   /// probability matrix.
1005   Scaled64 discrepancy(const ProbMatrixType &ProbMatrix,
1006                        const std::vector<Scaled64> &Freq) const;
1007 #endif
1008 
1009 public:
1010   BlockFrequencyInfoImpl() = default;
1011 
1012   const FunctionT *getFunction() const { return F; }
1013 
1014   void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
1015                  const LoopInfoT &LI);
1016 
1017   using BlockFrequencyInfoImplBase::getEntryFreq;
1018 
1019   BlockFrequency getBlockFreq(const BlockT *BB) const {
1020     return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
1021   }
1022 
1023   Optional<uint64_t> getBlockProfileCount(const Function &F,
1024                                           const BlockT *BB,
1025                                           bool AllowSynthetic = false) const {
1026     return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB),
1027                                                             AllowSynthetic);
1028   }
1029 
1030   Optional<uint64_t> getProfileCountFromFreq(const Function &F,
1031                                              uint64_t Freq,
1032                                              bool AllowSynthetic = false) const {
1033     return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq,
1034                                                                AllowSynthetic);
1035   }
1036 
1037   bool isIrrLoopHeader(const BlockT *BB) {
1038     return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
1039   }
1040 
1041   void setBlockFreq(const BlockT *BB, uint64_t Freq);
1042 
1043   void forgetBlock(const BlockT *BB) {
1044     // We don't erase corresponding items from `Freqs`, `RPOT` and other to
1045     // avoid invalidating indices. Doing so would have saved some memory, but
1046     // it's not worth it.
1047     Nodes.erase(BB);
1048   }
1049 
1050   Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
1051     return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
1052   }
1053 
1054   const BranchProbabilityInfoT &getBPI() const { return *BPI; }
1055 
1056   /// Print the frequencies for the current function.
1057   ///
1058   /// Prints the frequencies for the blocks in the current function.
1059   ///
1060   /// Blocks are printed in the natural iteration order of the function, rather
1061   /// than reverse post-order.  This provides two advantages:  writing -analyze
1062   /// tests is easier (since blocks come out in source order), and even
1063   /// unreachable blocks are printed.
1064   ///
1065   /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
1066   /// we need to override it here.
1067   raw_ostream &print(raw_ostream &OS) const override;
1068 
1069   using BlockFrequencyInfoImplBase::dump;
1070   using BlockFrequencyInfoImplBase::printBlockFreq;
1071 
1072   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
1073     return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
1074   }
1075 
1076   void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const;
1077 };
1078 
1079 namespace bfi_detail {
1080 
1081 template <class BFIImplT>
1082 class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH {
1083   BFIImplT *BFIImpl;
1084 
1085 public:
1086   BFICallbackVH() = default;
1087 
1088   BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl)
1089       : CallbackVH(BB), BFIImpl(BFIImpl) {}
1090 
1091   virtual ~BFICallbackVH() = default;
1092 
1093   void deleted() override {
1094     BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr()));
1095   }
1096 };
1097 
1098 /// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles
1099 /// don't apply to them.
1100 template <class BFIImplT>
1101 class BFICallbackVH<MachineBasicBlock, BFIImplT> {
1102 public:
1103   BFICallbackVH() = default;
1104   BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {}
1105 };
1106 
1107 } // end namespace bfi_detail
1108 
1109 template <class BT>
1110 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
1111                                            const BranchProbabilityInfoT &BPI,
1112                                            const LoopInfoT &LI) {
1113   // Save the parameters.
1114   this->BPI = &BPI;
1115   this->LI = &LI;
1116   this->F = &F;
1117 
1118   // Clean up left-over data structures.
1119   BlockFrequencyInfoImplBase::clear();
1120   RPOT.clear();
1121   Nodes.clear();
1122 
1123   // Initialize.
1124   LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
1125                     << "\n================="
1126                     << std::string(F.getName().size(), '=') << "\n");
1127   initializeRPOT();
1128   initializeLoops();
1129 
1130   // Visit loops in post-order to find the local mass distribution, and then do
1131   // the full function.
1132   computeMassInLoops();
1133   computeMassInFunction();
1134   unwrapLoops();
1135   // Apply a post-processing step improving computed frequencies for functions
1136   // with irreducible loops.
1137   if (needIterativeInference())
1138     applyIterativeInference();
1139   finalizeMetrics();
1140 
1141   if (CheckBFIUnknownBlockQueries) {
1142     // To detect BFI queries for unknown blocks, add entries for unreachable
1143     // blocks, if any. This is to distinguish between known/existing unreachable
1144     // blocks and unknown blocks.
1145     for (const BlockT &BB : F)
1146       if (!Nodes.count(&BB))
1147         setBlockFreq(&BB, 0);
1148   }
1149 }
1150 
1151 template <class BT>
1152 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
1153   if (Nodes.count(BB))
1154     BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
1155   else {
1156     // If BB is a newly added block after BFI is done, we need to create a new
1157     // BlockNode for it assigned with a new index. The index can be determined
1158     // by the size of Freqs.
1159     BlockNode NewNode(Freqs.size());
1160     Nodes[BB] = {NewNode, BFICallbackVH(BB, this)};
1161     Freqs.emplace_back();
1162     BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
1163   }
1164 }
1165 
1166 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
1167   const BlockT *Entry = &F->front();
1168   RPOT.reserve(F->size());
1169   std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1170   std::reverse(RPOT.begin(), RPOT.end());
1171 
1172   assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1173          "More nodes in function than Block Frequency Info supports");
1174 
1175   LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
1176   for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1177     BlockNode Node = getNode(I);
1178     LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
1179                       << "\n");
1180     Nodes[*I] = {Node, BFICallbackVH(*I, this)};
1181   }
1182 
1183   Working.reserve(RPOT.size());
1184   for (size_t Index = 0; Index < RPOT.size(); ++Index)
1185     Working.emplace_back(Index);
1186   Freqs.resize(RPOT.size());
1187 }
1188 
1189 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1190   LLVM_DEBUG(dbgs() << "loop-detection\n");
1191   if (LI->empty())
1192     return;
1193 
1194   // Visit loops top down and assign them an index.
1195   std::deque<std::pair<const LoopT *, LoopData *>> Q;
1196   for (const LoopT *L : *LI)
1197     Q.emplace_back(L, nullptr);
1198   while (!Q.empty()) {
1199     const LoopT *Loop = Q.front().first;
1200     LoopData *Parent = Q.front().second;
1201     Q.pop_front();
1202 
1203     BlockNode Header = getNode(Loop->getHeader());
1204     assert(Header.isValid());
1205 
1206     Loops.emplace_back(Parent, Header);
1207     Working[Header.Index].Loop = &Loops.back();
1208     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1209 
1210     for (const LoopT *L : *Loop)
1211       Q.emplace_back(L, &Loops.back());
1212   }
1213 
1214   // Visit nodes in reverse post-order and add them to their deepest containing
1215   // loop.
1216   for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1217     // Loop headers have already been mostly mapped.
1218     if (Working[Index].isLoopHeader()) {
1219       LoopData *ContainingLoop = Working[Index].getContainingLoop();
1220       if (ContainingLoop)
1221         ContainingLoop->Nodes.push_back(Index);
1222       continue;
1223     }
1224 
1225     const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1226     if (!Loop)
1227       continue;
1228 
1229     // Add this node to its containing loop's member list.
1230     BlockNode Header = getNode(Loop->getHeader());
1231     assert(Header.isValid());
1232     const auto &HeaderData = Working[Header.Index];
1233     assert(HeaderData.isLoopHeader());
1234 
1235     Working[Index].Loop = HeaderData.Loop;
1236     HeaderData.Loop->Nodes.push_back(Index);
1237     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1238                       << ": member = " << getBlockName(Index) << "\n");
1239   }
1240 }
1241 
1242 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1243   // Visit loops with the deepest first, and the top-level loops last.
1244   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1245     if (computeMassInLoop(*L))
1246       continue;
1247     auto Next = std::next(L);
1248     computeIrreducibleMass(&*L, L.base());
1249     L = std::prev(Next);
1250     if (computeMassInLoop(*L))
1251       continue;
1252     llvm_unreachable("unhandled irreducible control flow");
1253   }
1254 }
1255 
1256 template <class BT>
1257 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1258   // Compute mass in loop.
1259   LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1260 
1261   if (Loop.isIrreducible()) {
1262     LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
1263     Distribution Dist;
1264     unsigned NumHeadersWithWeight = 0;
1265     Optional<uint64_t> MinHeaderWeight;
1266     DenseSet<uint32_t> HeadersWithoutWeight;
1267     HeadersWithoutWeight.reserve(Loop.NumHeaders);
1268     for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1269       auto &HeaderNode = Loop.Nodes[H];
1270       const BlockT *Block = getBlock(HeaderNode);
1271       IsIrrLoopHeader.set(Loop.Nodes[H].Index);
1272       Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
1273       if (!HeaderWeight) {
1274         LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
1275                           << getBlockName(HeaderNode) << "\n");
1276         HeadersWithoutWeight.insert(H);
1277         continue;
1278       }
1279       LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
1280                         << " has irr loop header weight "
1281                         << HeaderWeight.getValue() << "\n");
1282       NumHeadersWithWeight++;
1283       uint64_t HeaderWeightValue = HeaderWeight.getValue();
1284       if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
1285         MinHeaderWeight = HeaderWeightValue;
1286       if (HeaderWeightValue) {
1287         Dist.addLocal(HeaderNode, HeaderWeightValue);
1288       }
1289     }
1290     // As a heuristic, if some headers don't have a weight, give them the
1291     // minimum weight seen (not to disrupt the existing trends too much by
1292     // using a weight that's in the general range of the other headers' weights,
1293     // and the minimum seems to perform better than the average.)
1294     // FIXME: better update in the passes that drop the header weight.
1295     // If no headers have a weight, give them even weight (use weight 1).
1296     if (!MinHeaderWeight)
1297       MinHeaderWeight = 1;
1298     for (uint32_t H : HeadersWithoutWeight) {
1299       auto &HeaderNode = Loop.Nodes[H];
1300       assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
1301              "Shouldn't have a weight metadata");
1302       uint64_t MinWeight = MinHeaderWeight.getValue();
1303       LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
1304                         << getBlockName(HeaderNode) << "\n");
1305       if (MinWeight)
1306         Dist.addLocal(HeaderNode, MinWeight);
1307     }
1308     distributeIrrLoopHeaderMass(Dist);
1309     for (const BlockNode &M : Loop.Nodes)
1310       if (!propagateMassToSuccessors(&Loop, M))
1311         llvm_unreachable("unhandled irreducible control flow");
1312     if (NumHeadersWithWeight == 0)
1313       // No headers have a metadata. Adjust header mass.
1314       adjustLoopHeaderMass(Loop);
1315   } else {
1316     Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1317     if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1318       llvm_unreachable("irreducible control flow to loop header!?");
1319     for (const BlockNode &M : Loop.members())
1320       if (!propagateMassToSuccessors(&Loop, M))
1321         // Irreducible backedge.
1322         return false;
1323   }
1324 
1325   computeLoopScale(Loop);
1326   packageLoop(Loop);
1327   return true;
1328 }
1329 
1330 template <class BT>
1331 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1332   // Compute mass in function.
1333   LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
1334   assert(!Working.empty() && "no blocks in function");
1335   assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1336 
1337   Working[0].getMass() = BlockMass::getFull();
1338   for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1339     // Check for nodes that have been packaged.
1340     BlockNode Node = getNode(I);
1341     if (Working[Node.Index].isPackaged())
1342       continue;
1343 
1344     if (!propagateMassToSuccessors(nullptr, Node))
1345       return false;
1346   }
1347   return true;
1348 }
1349 
1350 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1351   if (tryToComputeMassInFunction())
1352     return;
1353   computeIrreducibleMass(nullptr, Loops.begin());
1354   if (tryToComputeMassInFunction())
1355     return;
1356   llvm_unreachable("unhandled irreducible control flow");
1357 }
1358 
1359 template <class BT>
1360 bool BlockFrequencyInfoImpl<BT>::needIterativeInference() const {
1361   if (!UseIterativeBFIInference)
1362     return false;
1363   if (!F->getFunction().hasProfileData())
1364     return false;
1365   // Apply iterative inference only if the function contains irreducible loops;
1366   // otherwise, computed block frequencies are reasonably correct.
1367   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1368     if (L->isIrreducible())
1369       return true;
1370   }
1371   return false;
1372 }
1373 
1374 template <class BT> void BlockFrequencyInfoImpl<BT>::applyIterativeInference() {
1375   // Extract blocks for processing: a block is considered for inference iff it
1376   // can be reached from the entry by edges with a positive probability.
1377   // Non-processed blocks are assigned with the zero frequency and are ignored
1378   // in the computation
1379   std::vector<const BlockT *> ReachableBlocks;
1380   findReachableBlocks(ReachableBlocks);
1381   if (ReachableBlocks.empty())
1382     return;
1383 
1384   // The map is used to to index successors/predecessors of reachable blocks in
1385   // the ReachableBlocks vector
1386   DenseMap<const BlockT *, size_t> BlockIndex;
1387   // Extract initial frequencies for the reachable blocks
1388   auto Freq = std::vector<Scaled64>(ReachableBlocks.size());
1389   Scaled64 SumFreq;
1390   for (size_t I = 0; I < ReachableBlocks.size(); I++) {
1391     const BlockT *BB = ReachableBlocks[I];
1392     BlockIndex[BB] = I;
1393     Freq[I] = getFloatingBlockFreq(BB);
1394     SumFreq += Freq[I];
1395   }
1396   assert(!SumFreq.isZero() && "empty initial block frequencies");
1397 
1398   LLVM_DEBUG(dbgs() << "Applying iterative inference for " << F->getName()
1399                     << " with " << ReachableBlocks.size() << " blocks\n");
1400 
1401   // Normalizing frequencies so they sum up to 1.0
1402   for (auto &Value : Freq) {
1403     Value /= SumFreq;
1404   }
1405 
1406   // Setting up edge probabilities using sparse matrix representation:
1407   // ProbMatrix[I] holds a vector of pairs (J, P) where Pr[J -> I | J] = P
1408   ProbMatrixType ProbMatrix;
1409   initTransitionProbabilities(ReachableBlocks, BlockIndex, ProbMatrix);
1410 
1411   // Run the propagation
1412   iterativeInference(ProbMatrix, Freq);
1413 
1414   // Assign computed frequency values
1415   for (const BlockT &BB : *F) {
1416     auto Node = getNode(&BB);
1417     if (!Node.isValid())
1418       continue;
1419     if (BlockIndex.count(&BB)) {
1420       Freqs[Node.Index].Scaled = Freq[BlockIndex[&BB]];
1421     } else {
1422       Freqs[Node.Index].Scaled = Scaled64::getZero();
1423     }
1424   }
1425 }
1426 
1427 template <class BT>
1428 void BlockFrequencyInfoImpl<BT>::iterativeInference(
1429     const ProbMatrixType &ProbMatrix, std::vector<Scaled64> &Freq) const {
1430   assert(0.0 < IterativeBFIPrecision && IterativeBFIPrecision < 1.0 &&
1431          "incorrectly specified precision");
1432   // Convert double precision to Scaled64
1433   const auto Precision =
1434       Scaled64::getInverse(static_cast<uint64_t>(1.0 / IterativeBFIPrecision));
1435   const size_t MaxIterations = IterativeBFIMaxIterationsPerBlock * Freq.size();
1436 
1437 #ifndef NDEBUG
1438   LLVM_DEBUG(dbgs() << "  Initial discrepancy = "
1439                     << discrepancy(ProbMatrix, Freq).toString() << "\n");
1440 #endif
1441 
1442   // Successors[I] holds unique sucessors of the I-th block
1443   auto Successors = std::vector<std::vector<size_t>>(Freq.size());
1444   for (size_t I = 0; I < Freq.size(); I++) {
1445     for (auto &Jump : ProbMatrix[I]) {
1446       Successors[Jump.first].push_back(I);
1447     }
1448   }
1449 
1450   // To speedup computation, we maintain a set of "active" blocks whose
1451   // frequencies need to be updated based on the incoming edges.
1452   // The set is dynamic and changes after every update. Initially all blocks
1453   // with a positive frequency are active
1454   auto IsActive = std::vector<bool>(Freq.size(), false);
1455   std::queue<size_t> ActiveSet;
1456   for (size_t I = 0; I < Freq.size(); I++) {
1457     if (Freq[I] > 0) {
1458       ActiveSet.push(I);
1459       IsActive[I] = true;
1460     }
1461   }
1462 
1463   // Iterate over the blocks propagating frequencies
1464   size_t It = 0;
1465   while (It++ < MaxIterations && !ActiveSet.empty()) {
1466     size_t I = ActiveSet.front();
1467     ActiveSet.pop();
1468     IsActive[I] = false;
1469 
1470     // Compute a new frequency for the block: NewFreq := Freq \times ProbMatrix.
1471     // A special care is taken for self-edges that needs to be scaled by
1472     // (1.0 - SelfProb), where SelfProb is the sum of probabilities on the edges
1473     Scaled64 NewFreq;
1474     Scaled64 OneMinusSelfProb = Scaled64::getOne();
1475     for (auto &Jump : ProbMatrix[I]) {
1476       if (Jump.first == I) {
1477         OneMinusSelfProb -= Jump.second;
1478       } else {
1479         NewFreq += Freq[Jump.first] * Jump.second;
1480       }
1481     }
1482     if (OneMinusSelfProb != Scaled64::getOne())
1483       NewFreq /= OneMinusSelfProb;
1484 
1485     // If the block's frequency has changed enough, then
1486     // make sure the block and its successors are in the active set
1487     auto Change = Freq[I] >= NewFreq ? Freq[I] - NewFreq : NewFreq - Freq[I];
1488     if (Change > Precision) {
1489       ActiveSet.push(I);
1490       IsActive[I] = true;
1491       for (size_t Succ : Successors[I]) {
1492         if (!IsActive[Succ]) {
1493           ActiveSet.push(Succ);
1494           IsActive[Succ] = true;
1495         }
1496       }
1497     }
1498 
1499     // Update the frequency for the block
1500     Freq[I] = NewFreq;
1501   }
1502 
1503   LLVM_DEBUG(dbgs() << "  Completed " << It << " inference iterations"
1504                     << format(" (%0.0f per block)", double(It) / Freq.size())
1505                     << "\n");
1506 #ifndef NDEBUG
1507   LLVM_DEBUG(dbgs() << "  Final   discrepancy = "
1508                     << discrepancy(ProbMatrix, Freq).toString() << "\n");
1509 #endif
1510 }
1511 
1512 template <class BT>
1513 void BlockFrequencyInfoImpl<BT>::findReachableBlocks(
1514     std::vector<const BlockT *> &Blocks) const {
1515   // Find all blocks to apply inference on, that is, reachable from the entry
1516   // along edges with non-zero probablities
1517   std::queue<const BlockT *> Queue;
1518   std::unordered_set<const BlockT *> Reachable;
1519   const BlockT *Entry = &F->front();
1520   Queue.push(Entry);
1521   Reachable.insert(Entry);
1522   while (!Queue.empty()) {
1523     const BlockT *SrcBB = Queue.front();
1524     Queue.pop();
1525     for (const BlockT *DstBB : children<const BlockT *>(SrcBB)) {
1526       auto EP = BPI->getEdgeProbability(SrcBB, DstBB);
1527       if (EP.isZero())
1528         continue;
1529       if (Reachable.find(DstBB) == Reachable.end()) {
1530         Queue.push(DstBB);
1531         Reachable.insert(DstBB);
1532       }
1533     }
1534   }
1535 
1536   // Find all blocks to apply inference on, that is, backward reachable from
1537   // the entry along (backward) edges with non-zero probablities
1538   std::unordered_set<const BlockT *> InverseReachable;
1539   for (const BlockT &BB : *F) {
1540     // An exit block is a block without any successors
1541     bool HasSucc = GraphTraits<const BlockT *>::child_begin(&BB) !=
1542                    GraphTraits<const BlockT *>::child_end(&BB);
1543     if (!HasSucc && Reachable.count(&BB)) {
1544       Queue.push(&BB);
1545       InverseReachable.insert(&BB);
1546     }
1547   }
1548   while (!Queue.empty()) {
1549     const BlockT *SrcBB = Queue.front();
1550     Queue.pop();
1551     for (const BlockT *DstBB : children<Inverse<const BlockT *>>(SrcBB)) {
1552       auto EP = BPI->getEdgeProbability(DstBB, SrcBB);
1553       if (EP.isZero())
1554         continue;
1555       if (InverseReachable.find(DstBB) == InverseReachable.end()) {
1556         Queue.push(DstBB);
1557         InverseReachable.insert(DstBB);
1558       }
1559     }
1560   }
1561 
1562   // Collect the result
1563   Blocks.reserve(F->size());
1564   for (const BlockT &BB : *F) {
1565     if (Reachable.count(&BB) && InverseReachable.count(&BB)) {
1566       Blocks.push_back(&BB);
1567     }
1568   }
1569 }
1570 
1571 template <class BT>
1572 void BlockFrequencyInfoImpl<BT>::initTransitionProbabilities(
1573     const std::vector<const BlockT *> &Blocks,
1574     const DenseMap<const BlockT *, size_t> &BlockIndex,
1575     ProbMatrixType &ProbMatrix) const {
1576   const size_t NumBlocks = Blocks.size();
1577   auto Succs = std::vector<std::vector<std::pair<size_t, Scaled64>>>(NumBlocks);
1578   auto SumProb = std::vector<Scaled64>(NumBlocks);
1579 
1580   // Find unique successors and corresponding probabilities for every block
1581   for (size_t Src = 0; Src < NumBlocks; Src++) {
1582     const BlockT *BB = Blocks[Src];
1583     std::unordered_set<const BlockT *> UniqueSuccs;
1584     for (const auto SI : children<const BlockT *>(BB)) {
1585       // Ignore cold blocks
1586       if (BlockIndex.find(SI) == BlockIndex.end())
1587         continue;
1588       // Ignore parallel edges between BB and SI blocks
1589       if (UniqueSuccs.find(SI) != UniqueSuccs.end())
1590         continue;
1591       UniqueSuccs.insert(SI);
1592       // Ignore jumps with zero probability
1593       auto EP = BPI->getEdgeProbability(BB, SI);
1594       if (EP.isZero())
1595         continue;
1596 
1597       auto EdgeProb =
1598           Scaled64::getFraction(EP.getNumerator(), EP.getDenominator());
1599       size_t Dst = BlockIndex.find(SI)->second;
1600       Succs[Src].push_back(std::make_pair(Dst, EdgeProb));
1601       SumProb[Src] += EdgeProb;
1602     }
1603   }
1604 
1605   // Add transitions for every jump with positive branch probability
1606   ProbMatrix = ProbMatrixType(NumBlocks);
1607   for (size_t Src = 0; Src < NumBlocks; Src++) {
1608     // Ignore blocks w/o successors
1609     if (Succs[Src].empty())
1610       continue;
1611 
1612     assert(!SumProb[Src].isZero() && "Zero sum probability of non-exit block");
1613     for (auto &Jump : Succs[Src]) {
1614       size_t Dst = Jump.first;
1615       Scaled64 Prob = Jump.second;
1616       ProbMatrix[Dst].push_back(std::make_pair(Src, Prob / SumProb[Src]));
1617     }
1618   }
1619 
1620   // Add transitions from sinks to the source
1621   size_t EntryIdx = BlockIndex.find(&F->front())->second;
1622   for (size_t Src = 0; Src < NumBlocks; Src++) {
1623     if (Succs[Src].empty()) {
1624       ProbMatrix[EntryIdx].push_back(std::make_pair(Src, Scaled64::getOne()));
1625     }
1626   }
1627 }
1628 
1629 #ifndef NDEBUG
1630 template <class BT>
1631 BlockFrequencyInfoImplBase::Scaled64 BlockFrequencyInfoImpl<BT>::discrepancy(
1632     const ProbMatrixType &ProbMatrix, const std::vector<Scaled64> &Freq) const {
1633   assert(Freq[0] > 0 && "Incorrectly computed frequency of the entry block");
1634   Scaled64 Discrepancy;
1635   for (size_t I = 0; I < ProbMatrix.size(); I++) {
1636     Scaled64 Sum;
1637     for (const auto &Jump : ProbMatrix[I]) {
1638       Sum += Freq[Jump.first] * Jump.second;
1639     }
1640     Discrepancy += Freq[I] >= Sum ? Freq[I] - Sum : Sum - Freq[I];
1641   }
1642   // Normalizing by the frequency of the entry block
1643   return Discrepancy / Freq[0];
1644 }
1645 #endif
1646 
1647 /// \note This should be a lambda, but that crashes GCC 4.7.
1648 namespace bfi_detail {
1649 
1650 template <class BT> struct BlockEdgesAdder {
1651   using BlockT = BT;
1652   using LoopData = BlockFrequencyInfoImplBase::LoopData;
1653   using Successor = GraphTraits<const BlockT *>;
1654 
1655   const BlockFrequencyInfoImpl<BT> &BFI;
1656 
1657   explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1658       : BFI(BFI) {}
1659 
1660   void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1661                   const LoopData *OuterLoop) {
1662     const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1663     for (const auto Succ : children<const BlockT *>(BB))
1664       G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
1665   }
1666 };
1667 
1668 } // end namespace bfi_detail
1669 
1670 template <class BT>
1671 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1672     LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1673   LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
1674              if (OuterLoop) dbgs()
1675              << "loop: " << getLoopName(*OuterLoop) << "\n";
1676              else dbgs() << "function\n");
1677 
1678   using namespace bfi_detail;
1679 
1680   // Ideally, addBlockEdges() would be declared here as a lambda, but that
1681   // crashes GCC 4.7.
1682   BlockEdgesAdder<BT> addBlockEdges(*this);
1683   IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1684 
1685   for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1686     computeMassInLoop(L);
1687 
1688   if (!OuterLoop)
1689     return;
1690   updateLoopWithIrreducible(*OuterLoop);
1691 }
1692 
1693 // A helper function that converts a branch probability into weight.
1694 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
1695   return Prob.getNumerator();
1696 }
1697 
1698 template <class BT>
1699 bool
1700 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1701                                                       const BlockNode &Node) {
1702   LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1703   // Calculate probability for successors.
1704   Distribution Dist;
1705   if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1706     assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1707     if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1708       // Irreducible backedge.
1709       return false;
1710   } else {
1711     const BlockT *BB = getBlock(Node);
1712     for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
1713               SE = GraphTraits<const BlockT *>::child_end(BB);
1714          SI != SE; ++SI)
1715       if (!addToDist(
1716               Dist, OuterLoop, Node, getNode(*SI),
1717               getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1718         // Irreducible backedge.
1719         return false;
1720   }
1721 
1722   // Distribute mass to successors, saving exit and backedge data in the
1723   // loop header.
1724   distributeMass(Node, OuterLoop, Dist);
1725   return true;
1726 }
1727 
1728 template <class BT>
1729 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1730   if (!F)
1731     return OS;
1732   OS << "block-frequency-info: " << F->getName() << "\n";
1733   for (const BlockT &BB : *F) {
1734     OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1735     getFloatingBlockFreq(&BB).print(OS, 5)
1736         << ", int = " << getBlockFreq(&BB).getFrequency();
1737     if (Optional<uint64_t> ProfileCount =
1738         BlockFrequencyInfoImplBase::getBlockProfileCount(
1739             F->getFunction(), getNode(&BB)))
1740       OS << ", count = " << ProfileCount.getValue();
1741     if (Optional<uint64_t> IrrLoopHeaderWeight =
1742         BB.getIrrLoopHeaderWeight())
1743       OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue();
1744     OS << "\n";
1745   }
1746 
1747   // Add an extra newline for readability.
1748   OS << "\n";
1749   return OS;
1750 }
1751 
1752 template <class BT>
1753 void BlockFrequencyInfoImpl<BT>::verifyMatch(
1754     BlockFrequencyInfoImpl<BT> &Other) const {
1755   bool Match = true;
1756   DenseMap<const BlockT *, BlockNode> ValidNodes;
1757   DenseMap<const BlockT *, BlockNode> OtherValidNodes;
1758   for (auto &Entry : Nodes) {
1759     const BlockT *BB = Entry.first;
1760     if (BB) {
1761       ValidNodes[BB] = Entry.second.first;
1762     }
1763   }
1764   for (auto &Entry : Other.Nodes) {
1765     const BlockT *BB = Entry.first;
1766     if (BB) {
1767       OtherValidNodes[BB] = Entry.second.first;
1768     }
1769   }
1770   unsigned NumValidNodes = ValidNodes.size();
1771   unsigned NumOtherValidNodes = OtherValidNodes.size();
1772   if (NumValidNodes != NumOtherValidNodes) {
1773     Match = false;
1774     dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs "
1775            << NumOtherValidNodes << "\n";
1776   } else {
1777     for (auto &Entry : ValidNodes) {
1778       const BlockT *BB = Entry.first;
1779       BlockNode Node = Entry.second;
1780       if (OtherValidNodes.count(BB)) {
1781         BlockNode OtherNode = OtherValidNodes[BB];
1782         const auto &Freq = Freqs[Node.Index];
1783         const auto &OtherFreq = Other.Freqs[OtherNode.Index];
1784         if (Freq.Integer != OtherFreq.Integer) {
1785           Match = false;
1786           dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " "
1787                  << Freq.Integer << " vs " << OtherFreq.Integer << "\n";
1788         }
1789       } else {
1790         Match = false;
1791         dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index "
1792                << Node.Index << " does not exist in Other.\n";
1793       }
1794     }
1795     // If there's a valid node in OtherValidNodes that's not in ValidNodes,
1796     // either the above num check or the check on OtherValidNodes will fail.
1797   }
1798   if (!Match) {
1799     dbgs() << "This\n";
1800     print(dbgs());
1801     dbgs() << "Other\n";
1802     Other.print(dbgs());
1803   }
1804   assert(Match && "BFI mismatch");
1805 }
1806 
1807 // Graph trait base class for block frequency information graph
1808 // viewer.
1809 
1810 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
1811 
1812 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1813 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
1814   using GTraits = GraphTraits<BlockFrequencyInfoT *>;
1815   using NodeRef = typename GTraits::NodeRef;
1816   using EdgeIter = typename GTraits::ChildIteratorType;
1817   using NodeIter = typename GTraits::nodes_iterator;
1818 
1819   uint64_t MaxFrequency = 0;
1820 
1821   explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1822       : DefaultDOTGraphTraits(isSimple) {}
1823 
1824   static StringRef getGraphName(const BlockFrequencyInfoT *G) {
1825     return G->getFunction()->getName();
1826   }
1827 
1828   std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
1829                                 unsigned HotPercentThreshold = 0) {
1830     std::string Result;
1831     if (!HotPercentThreshold)
1832       return Result;
1833 
1834     // Compute MaxFrequency on the fly:
1835     if (!MaxFrequency) {
1836       for (NodeIter I = GTraits::nodes_begin(Graph),
1837                     E = GTraits::nodes_end(Graph);
1838            I != E; ++I) {
1839         NodeRef N = *I;
1840         MaxFrequency =
1841             std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
1842       }
1843     }
1844     BlockFrequency Freq = Graph->getBlockFreq(Node);
1845     BlockFrequency HotFreq =
1846         (BlockFrequency(MaxFrequency) *
1847          BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1848 
1849     if (Freq < HotFreq)
1850       return Result;
1851 
1852     raw_string_ostream OS(Result);
1853     OS << "color=\"red\"";
1854     OS.flush();
1855     return Result;
1856   }
1857 
1858   std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
1859                            GVDAGType GType, int layout_order = -1) {
1860     std::string Result;
1861     raw_string_ostream OS(Result);
1862 
1863     if (layout_order != -1)
1864       OS << Node->getName() << "[" << layout_order << "] : ";
1865     else
1866       OS << Node->getName() << " : ";
1867     switch (GType) {
1868     case GVDT_Fraction:
1869       Graph->printBlockFreq(OS, Node);
1870       break;
1871     case GVDT_Integer:
1872       OS << Graph->getBlockFreq(Node).getFrequency();
1873       break;
1874     case GVDT_Count: {
1875       auto Count = Graph->getBlockProfileCount(Node);
1876       if (Count)
1877         OS << Count.getValue();
1878       else
1879         OS << "Unknown";
1880       break;
1881     }
1882     case GVDT_None:
1883       llvm_unreachable("If we are not supposed to render a graph we should "
1884                        "never reach this point.");
1885     }
1886     return Result;
1887   }
1888 
1889   std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
1890                                 const BlockFrequencyInfoT *BFI,
1891                                 const BranchProbabilityInfoT *BPI,
1892                                 unsigned HotPercentThreshold = 0) {
1893     std::string Str;
1894     if (!BPI)
1895       return Str;
1896 
1897     BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1898     uint32_t N = BP.getNumerator();
1899     uint32_t D = BP.getDenominator();
1900     double Percent = 100.0 * N / D;
1901     raw_string_ostream OS(Str);
1902     OS << format("label=\"%.1f%%\"", Percent);
1903 
1904     if (HotPercentThreshold) {
1905       BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1906       BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
1907                                BranchProbability(HotPercentThreshold, 100);
1908 
1909       if (EFreq >= HotFreq) {
1910         OS << ",color=\"red\"";
1911       }
1912     }
1913 
1914     OS.flush();
1915     return Str;
1916   }
1917 };
1918 
1919 } // end namespace llvm
1920 
1921 #undef DEBUG_TYPE
1922 
1923 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
1924