1 //===-- Analysis/CFG.h - BasicBlock Analyses --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions performs analyses on basic blocks, and instructions
10 // contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_CFG_H
15 #define LLVM_ANALYSIS_CFG_H
16 
17 #include "llvm/ADT/GraphTraits.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include <utility>
20 
21 namespace llvm {
22 
23 class BasicBlock;
24 class DominatorTree;
25 class Function;
26 class Instruction;
27 class LoopInfo;
28 template <typename T> class SmallVectorImpl;
29 
30 /// Analyze the specified function to find all of the loop backedges in the
31 /// function and return them.  This is a relatively cheap (compared to
32 /// computing dominators and loop info) analysis.
33 ///
34 /// The output is added to Result, as pairs of <from,to> edge info.
35 void FindFunctionBackedges(
36     const Function &F,
37     SmallVectorImpl<std::pair<const BasicBlock *, const BasicBlock *> > &
38         Result);
39 
40 /// Search for the specified successor of basic block BB and return its position
41 /// in the terminator instruction's list of successors.  It is an error to call
42 /// this with a block that is not a successor.
43 unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ);
44 
45 /// Return true if the specified edge is a critical edge. Critical edges are
46 /// edges from a block with multiple successors to a block with multiple
47 /// predecessors.
48 ///
49 bool isCriticalEdge(const Instruction *TI, unsigned SuccNum,
50                     bool AllowIdenticalEdges = false);
51 bool isCriticalEdge(const Instruction *TI, const BasicBlock *Succ,
52                     bool AllowIdenticalEdges = false);
53 
54 /// Determine whether instruction 'To' is reachable from 'From', without passing
55 /// through any blocks in ExclusionSet, returning true if uncertain.
56 ///
57 /// Determine whether there is a path from From to To within a single function.
58 /// Returns false only if we can prove that once 'From' has been executed then
59 /// 'To' can not be executed. Conservatively returns true.
60 ///
61 /// This function is linear with respect to the number of blocks in the CFG,
62 /// walking down successors from From to reach To, with a fixed threshold.
63 /// Using DT or LI allows us to answer more quickly. LI reduces the cost of
64 /// an entire loop of any number of blocks to be the same as the cost of a
65 /// single block. DT reduces the cost by allowing the search to terminate when
66 /// we find a block that dominates the block containing 'To'. DT is most useful
67 /// on branchy code but not loops, and LI is most useful on code with loops but
68 /// does not help on branchy code outside loops.
69 bool isPotentiallyReachable(
70     const Instruction *From, const Instruction *To,
71     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr,
72     const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
73 
74 /// Determine whether block 'To' is reachable from 'From', returning
75 /// true if uncertain.
76 ///
77 /// Determine whether there is a path from From to To within a single function.
78 /// Returns false only if we can prove that once 'From' has been reached then
79 /// 'To' can not be executed. Conservatively returns true.
80 bool isPotentiallyReachable(
81     const BasicBlock *From, const BasicBlock *To,
82     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr,
83     const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
84 
85 /// Determine whether there is at least one path from a block in
86 /// 'Worklist' to 'StopBB' without passing through any blocks in
87 /// 'ExclusionSet', returning true if uncertain.
88 ///
89 /// Determine whether there is a path from at least one block in Worklist to
90 /// StopBB within a single function without passing through any of the blocks
91 /// in 'ExclusionSet'. Returns false only if we can prove that once any block
92 /// in 'Worklist' has been reached then 'StopBB' can not be executed.
93 /// Conservatively returns true.
94 bool isPotentiallyReachableFromMany(
95     SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
96     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet,
97     const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
98 
99 /// Return true if the control flow in \p RPOTraversal is irreducible.
100 ///
101 /// This is a generic implementation to detect CFG irreducibility based on loop
102 /// info analysis. It can be used for any kind of CFG (Loop, MachineLoop,
103 /// Function, MachineFunction, etc.) by providing an RPO traversal (\p
104 /// RPOTraversal) and the loop info analysis (\p LI) of the CFG. This utility
105 /// function is only recommended when loop info analysis is available. If loop
106 /// info analysis isn't available, please, don't compute it explicitly for this
107 /// purpose. There are more efficient ways to detect CFG irreducibility that
108 /// don't require recomputing loop info analysis (e.g., T1/T2 or Tarjan's
109 /// algorithm).
110 ///
111 /// Requirements:
112 ///   1) GraphTraits must be implemented for NodeT type. It is used to access
113 ///      NodeT successors.
114 //    2) \p RPOTraversal must be a valid reverse post-order traversal of the
115 ///      target CFG with begin()/end() iterator interfaces.
116 ///   3) \p LI must be a valid LoopInfoBase that contains up-to-date loop
117 ///      analysis information of the CFG.
118 ///
119 /// This algorithm uses the information about reducible loop back-edges already
120 /// computed in \p LI. When a back-edge is found during the RPO traversal, the
121 /// algorithm checks whether the back-edge is one of the reducible back-edges in
122 /// loop info. If it isn't, the CFG is irreducible. For example, for the CFG
123 /// below (canonical irreducible graph) loop info won't contain any loop, so the
124 /// algorithm will return that the CFG is irreducible when checking the B <-
125 /// -> C back-edge.
126 ///
127 /// (A->B, A->C, B->C, C->B, C->D)
128 ///    A
129 ///  /   \
130 /// B<- ->C
131 ///       |
132 ///       D
133 ///
134 template <class NodeT, class RPOTraversalT, class LoopInfoT,
135           class GT = GraphTraits<NodeT>>
containsIrreducibleCFG(RPOTraversalT & RPOTraversal,const LoopInfoT & LI)136 bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI) {
137   /// Check whether the edge (\p Src, \p Dst) is a reducible loop backedge
138   /// according to LI. I.e., check if there exists a loop that contains Src and
139   /// where Dst is the loop header.
140   auto isProperBackedge = [&](NodeT Src, NodeT Dst) {
141     for (const auto *Lp = LI.getLoopFor(Src); Lp; Lp = Lp->getParentLoop()) {
142       if (Lp->getHeader() == Dst)
143         return true;
144     }
145     return false;
146   };
147 
148   SmallPtrSet<NodeT, 32> Visited;
149   for (NodeT Node : RPOTraversal) {
150     Visited.insert(Node);
151     for (NodeT Succ : make_range(GT::child_begin(Node), GT::child_end(Node))) {
152       // Succ hasn't been visited yet
153       if (!Visited.count(Succ))
154         continue;
155       // We already visited Succ, thus Node->Succ must be a backedge. Check that
156       // the head matches what we have in the loop information. Otherwise, we
157       // have an irreducible graph.
158       if (!isProperBackedge(Node, Succ))
159         return true;
160     }
161   }
162 
163   return false;
164 }
165 } // End llvm namespace
166 
167 #endif
168