1 //===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an iterator that enumerates the intervals in a control flow
10 // graph of some sort.  This iterator is parametric, allowing iterator over the
11 // following types of graphs:
12 //
13 //  1. A Function* object, composed of BasicBlock nodes.
14 //  2. An IntervalPartition& object, composed of Interval nodes.
15 //
16 // This iterator is defined to walk the control flow graph, returning intervals
17 // in depth first order.  These intervals are completely filled in except for
18 // the predecessor fields (the successor information is filled in however).
19 //
20 // By default, the intervals created by this iterator are deleted after they
21 // are no longer any use to the iterator.  This behavior can be changed by
22 // passing a false value into the intervals_begin() function. This causes the
23 // IOwnMem member to be set, and the intervals to not be deleted.
24 //
25 // It is only safe to use this if all of the intervals are deleted by the caller
26 // and all of the intervals are processed.  However, the user of the iterator is
27 // not allowed to modify or delete the intervals until after the iterator has
28 // been used completely.  The IntervalPartition class uses this functionality.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #ifndef LLVM_ANALYSIS_INTERVALITERATOR_H
33 #define LLVM_ANALYSIS_INTERVALITERATOR_H
34 
35 #include "llvm/ADT/GraphTraits.h"
36 #include "llvm/Analysis/Interval.h"
37 #include "llvm/Analysis/IntervalPartition.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <iterator>
44 #include <set>
45 #include <utility>
46 #include <vector>
47 
48 namespace llvm {
49 
50 class BasicBlock;
51 
52 // getNodeHeader - Given a source graph node and the source graph, return the
53 // BasicBlock that is the header node.  This is the opposite of
54 // getSourceGraphNode.
getNodeHeader(BasicBlock * BB)55 inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
getNodeHeader(Interval * I)56 inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
57 
58 // getSourceGraphNode - Given a BasicBlock and the source graph, return the
59 // source graph node that corresponds to the BasicBlock.  This is the opposite
60 // of getNodeHeader.
getSourceGraphNode(Function *,BasicBlock * BB)61 inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
62   return BB;
63 }
getSourceGraphNode(IntervalPartition * IP,BasicBlock * BB)64 inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
65   return IP->getBlockInterval(BB);
66 }
67 
68 // addNodeToInterval - This method exists to assist the generic ProcessNode
69 // with the task of adding a node to the new interval, depending on the
70 // type of the source node.  In the case of a CFG source graph (BasicBlock
71 // case), the BasicBlock itself is added to the interval.
addNodeToInterval(Interval * Int,BasicBlock * BB)72 inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
73   Int->Nodes.push_back(BB);
74 }
75 
76 // addNodeToInterval - This method exists to assist the generic ProcessNode
77 // with the task of adding a node to the new interval, depending on the
78 // type of the source node.  In the case of a CFG source graph (BasicBlock
79 // case), the BasicBlock itself is added to the interval.  In the case of
80 // an IntervalPartition source graph (Interval case), all of the member
81 // BasicBlocks are added to the interval.
addNodeToInterval(Interval * Int,Interval * I)82 inline void addNodeToInterval(Interval *Int, Interval *I) {
83   // Add all of the nodes in I as new nodes in Int.
84   llvm::append_range(Int->Nodes, I->Nodes);
85 }
86 
87 template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy *>,
88          class IGT = GraphTraits<Inverse<NodeTy *>>>
89 class IntervalIterator {
90   std::vector<std::pair<Interval *, typename Interval::succ_iterator>> IntStack;
91   std::set<BasicBlock *> Visited;
92   OrigContainer_t *OrigContainer;
93   bool IOwnMem;     // If True, delete intervals when done with them
94                     // See file header for conditions of use
95 
96 public:
97   using iterator_category = std::forward_iterator_tag;
98 
99   IntervalIterator() = default; // End iterator, empty stack
100 
IntervalIterator(Function * M,bool OwnMemory)101   IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
102     OrigContainer = M;
103     if (!ProcessInterval(&M->front())) {
104       llvm_unreachable("ProcessInterval should never fail for first interval!");
105     }
106   }
107 
IntervalIterator(IntervalIterator && x)108   IntervalIterator(IntervalIterator &&x)
109       : IntStack(std::move(x.IntStack)), Visited(std::move(x.Visited)),
110         OrigContainer(x.OrigContainer), IOwnMem(x.IOwnMem) {
111     x.IOwnMem = false;
112   }
113 
IntervalIterator(IntervalPartition & IP,bool OwnMemory)114   IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
115     OrigContainer = &IP;
116     if (!ProcessInterval(IP.getRootInterval())) {
117       llvm_unreachable("ProcessInterval should never fail for first interval!");
118     }
119   }
120 
~IntervalIterator()121   ~IntervalIterator() {
122     if (IOwnMem)
123       while (!IntStack.empty()) {
124         delete operator*();
125         IntStack.pop_back();
126       }
127   }
128 
129   bool operator==(const IntervalIterator &x) const {
130     return IntStack == x.IntStack;
131   }
132   bool operator!=(const IntervalIterator &x) const { return !(*this == x); }
133 
134   const Interval *operator*() const { return IntStack.back().first; }
135   Interval *operator*() { return IntStack.back().first; }
136   const Interval *operator->() const { return operator*(); }
137   Interval *operator->() { return operator*(); }
138 
139   IntervalIterator &operator++() { // Preincrement
140     assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
141     do {
142       // All of the intervals on the stack have been visited.  Try visiting
143       // their successors now.
144       Interval::succ_iterator &SuccIt = IntStack.back().second,
145                                 EndIt = succ_end(IntStack.back().first);
146       while (SuccIt != EndIt) {                 // Loop over all interval succs
147         bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
148         ++SuccIt;                               // Increment iterator
149         if (Done) return *this;                 // Found a new interval! Use it!
150       }
151 
152       // Free interval memory... if necessary
153       if (IOwnMem) delete IntStack.back().first;
154 
155       // We ran out of successors for this interval... pop off the stack
156       IntStack.pop_back();
157     } while (!IntStack.empty());
158 
159     return *this;
160   }
161 
162   IntervalIterator operator++(int) { // Postincrement
163     IntervalIterator tmp = *this;
164     ++*this;
165     return tmp;
166   }
167 
168 private:
169   // ProcessInterval - This method is used during the construction of the
170   // interval graph.  It walks through the source graph, recursively creating
171   // an interval per invocation until the entire graph is covered.  This uses
172   // the ProcessNode method to add all of the nodes to the interval.
173   //
174   // This method is templated because it may operate on two different source
175   // graphs: a basic block graph, or a preexisting interval graph.
ProcessInterval(NodeTy * Node)176   bool ProcessInterval(NodeTy *Node) {
177     BasicBlock *Header = getNodeHeader(Node);
178     if (!Visited.insert(Header).second)
179       return false;
180 
181     Interval *Int = new Interval(Header);
182 
183     // Check all of our successors to see if they are in the interval...
184     for (typename GT::ChildIteratorType I = GT::child_begin(Node),
185            E = GT::child_end(Node); I != E; ++I)
186       ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
187 
188     IntStack.push_back(std::make_pair(Int, succ_begin(Int)));
189     return true;
190   }
191 
192   // ProcessNode - This method is called by ProcessInterval to add nodes to the
193   // interval being constructed, and it is also called recursively as it walks
194   // the source graph.  A node is added to the current interval only if all of
195   // its predecessors are already in the graph.  This also takes care of keeping
196   // the successor set of an interval up to date.
197   //
198   // This method is templated because it may operate on two different source
199   // graphs: a basic block graph, or a preexisting interval graph.
ProcessNode(Interval * Int,NodeTy * Node)200   void ProcessNode(Interval *Int, NodeTy *Node) {
201     assert(Int && "Null interval == bad!");
202     assert(Node && "Null Node == bad!");
203 
204     BasicBlock *NodeHeader = getNodeHeader(Node);
205 
206     if (Visited.count(NodeHeader)) {     // Node already been visited?
207       if (Int->contains(NodeHeader)) {   // Already in this interval...
208         return;
209       } else {                           // In other interval, add as successor
210         if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
211           Int->Successors.push_back(NodeHeader);
212       }
213     } else {                             // Otherwise, not in interval yet
214       for (typename IGT::ChildIteratorType I = IGT::child_begin(Node),
215              E = IGT::child_end(Node); I != E; ++I) {
216         if (!Int->contains(*I)) {        // If pred not in interval, we can't be
217           if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
218             Int->Successors.push_back(NodeHeader);
219           return;                        // See you later
220         }
221       }
222 
223       // If we get here, then all of the predecessors of BB are in the interval
224       // already.  In this case, we must add BB to the interval!
225       addNodeToInterval(Int, Node);
226       Visited.insert(NodeHeader);     // The node has now been visited!
227 
228       if (Int->isSuccessor(NodeHeader)) {
229         // If we were in the successor list from before... remove from succ list
230         llvm::erase_value(Int->Successors, NodeHeader);
231       }
232 
233       // Now that we have discovered that Node is in the interval, perhaps some
234       // of its successors are as well?
235       for (typename GT::ChildIteratorType It = GT::child_begin(Node),
236              End = GT::child_end(Node); It != End; ++It)
237         ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
238     }
239   }
240 };
241 
242 using function_interval_iterator = IntervalIterator<BasicBlock, Function>;
243 using interval_part_interval_iterator =
244     IntervalIterator<Interval, IntervalPartition>;
245 
246 inline function_interval_iterator intervals_begin(Function *F,
247                                                   bool DeleteInts = true) {
248   return function_interval_iterator(F, DeleteInts);
249 }
intervals_end(Function *)250 inline function_interval_iterator intervals_end(Function *) {
251   return function_interval_iterator();
252 }
253 
254 inline interval_part_interval_iterator
255    intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
256   return interval_part_interval_iterator(IP, DeleteIntervals);
257 }
258 
intervals_end(IntervalPartition & IP)259 inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
260   return interval_part_interval_iterator();
261 }
262 
263 } // end namespace llvm
264 
265 #endif // LLVM_ANALYSIS_INTERVALITERATOR_H
266