1 //===- Loads.h - Local load analysis --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_LOADS_H
14 #define LLVM_ANALYSIS_LOADS_H
15 
16 #include "llvm/IR/BasicBlock.h"
17 #include "llvm/Support/CommandLine.h"
18 
19 namespace llvm {
20 
21 class AAResults;
22 class DataLayout;
23 class DominatorTree;
24 class Instruction;
25 class LoadInst;
26 class Loop;
27 class MDNode;
28 class MemoryLocation;
29 class ScalarEvolution;
30 class TargetLibraryInfo;
31 
32 /// Return true if this is always a dereferenceable pointer. If the context
33 /// instruction is specified perform context-sensitive analysis and return true
34 /// if the pointer is dereferenceable at the specified instruction.
35 bool isDereferenceablePointer(const Value *V, Type *Ty,
36                               const DataLayout &DL,
37                               const Instruction *CtxI = nullptr,
38                               const DominatorTree *DT = nullptr,
39                               const TargetLibraryInfo *TLI = nullptr);
40 
41 /// Returns true if V is always a dereferenceable pointer with alignment
42 /// greater or equal than requested. If the context instruction is specified
43 /// performs context-sensitive analysis and returns true if the pointer is
44 /// dereferenceable at the specified instruction.
45 bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
46                                         MaybeAlign Alignment,
47                                         const DataLayout &DL,
48                                         const Instruction *CtxI = nullptr,
49                                         const DominatorTree *DT = nullptr,
50                                         const TargetLibraryInfo *TLI = nullptr);
51 
52 /// Returns true if V is always dereferenceable for Size byte with alignment
53 /// greater or equal than requested. If the context instruction is specified
54 /// performs context-sensitive analysis and returns true if the pointer is
55 /// dereferenceable at the specified instruction.
56 bool isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
57                                         const APInt &Size, const DataLayout &DL,
58                                         const Instruction *CtxI = nullptr,
59                                         const DominatorTree *DT = nullptr,
60                                         const TargetLibraryInfo *TLI = nullptr);
61 
62 /// Return true if we know that executing a load from this value cannot trap.
63 ///
64 /// If DT and ScanFrom are specified this method performs context-sensitive
65 /// analysis and returns true if it is safe to load immediately before ScanFrom.
66 ///
67 /// If it is not obviously safe to load from the specified pointer, we do a
68 /// quick local scan of the basic block containing ScanFrom, to determine if
69 /// the address is already accessed.
70 bool isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
71                                  const DataLayout &DL,
72                                  Instruction *ScanFrom = nullptr,
73                                  const DominatorTree *DT = nullptr,
74                                  const TargetLibraryInfo *TLI = nullptr);
75 
76 /// Return true if we can prove that the given load (which is assumed to be
77 /// within the specified loop) would access only dereferenceable memory, and
78 /// be properly aligned on every iteration of the specified loop regardless of
79 /// its placement within the loop. (i.e. does not require predication beyond
80 /// that required by the the header itself and could be hoisted into the header
81 /// if desired.)  This is more powerful than the variants above when the
82 /// address loaded from is analyzeable by SCEV.
83 bool isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
84                                        ScalarEvolution &SE,
85                                        DominatorTree &DT);
86 
87 /// Return true if we know that executing a load from this value cannot trap.
88 ///
89 /// If DT and ScanFrom are specified this method performs context-sensitive
90 /// analysis and returns true if it is safe to load immediately before ScanFrom.
91 ///
92 /// If it is not obviously safe to load from the specified pointer, we do a
93 /// quick local scan of the basic block containing ScanFrom, to determine if
94 /// the address is already accessed.
95 bool isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
96                                  const DataLayout &DL,
97                                  Instruction *ScanFrom = nullptr,
98                                  const DominatorTree *DT = nullptr,
99                                  const TargetLibraryInfo *TLI = nullptr);
100 
101 /// The default number of maximum instructions to scan in the block, used by
102 /// FindAvailableLoadedValue().
103 extern cl::opt<unsigned> DefMaxInstsToScan;
104 
105 /// Scan backwards to see if we have the value of the given load available
106 /// locally within a small number of instructions.
107 ///
108 /// You can use this function to scan across multiple blocks: after you call
109 /// this function, if ScanFrom points at the beginning of the block, it's safe
110 /// to continue scanning the predecessors.
111 ///
112 /// Note that performing load CSE requires special care to make sure the
113 /// metadata is set appropriately.  In particular, aliasing metadata needs
114 /// to be merged.  (This doesn't matter for store-to-load forwarding because
115 /// the only relevant load gets deleted.)
116 ///
117 /// \param Load The load we want to replace.
118 /// \param ScanBB The basic block to scan.
119 /// \param [in,out] ScanFrom The location to start scanning from. When this
120 /// function returns, it points at the last instruction scanned.
121 /// \param MaxInstsToScan The maximum number of instructions to scan. If this
122 /// is zero, the whole block will be scanned.
123 /// \param AA Optional pointer to alias analysis, to make the scan more
124 /// precise.
125 /// \param [out] IsLoadCSE Whether the returned value is a load from the same
126 /// location in memory, as opposed to the value operand of a store.
127 ///
128 /// \returns The found value, or nullptr if no value is found.
129 Value *FindAvailableLoadedValue(LoadInst *Load,
130                                 BasicBlock *ScanBB,
131                                 BasicBlock::iterator &ScanFrom,
132                                 unsigned MaxInstsToScan = DefMaxInstsToScan,
133                                 AAResults *AA = nullptr,
134                                 bool *IsLoadCSE = nullptr,
135                                 unsigned *NumScanedInst = nullptr);
136 
137 /// This overload provides a more efficient implementation of
138 /// FindAvailableLoadedValue() for the case where we are not interested in
139 /// finding the closest clobbering instruction if no available load is found.
140 /// This overload cannot be used to scan across multiple blocks.
141 Value *FindAvailableLoadedValue(LoadInst *Load, AAResults &AA, bool *IsLoadCSE,
142                                 unsigned MaxInstsToScan = DefMaxInstsToScan);
143 
144 /// Scan backwards to see if we have the value of the given pointer available
145 /// locally within a small number of instructions.
146 ///
147 /// You can use this function to scan across multiple blocks: after you call
148 /// this function, if ScanFrom points at the beginning of the block, it's safe
149 /// to continue scanning the predecessors.
150 ///
151 /// \param Loc The location we want the load and store to originate from.
152 /// \param AccessTy The access type of the pointer.
153 /// \param AtLeastAtomic Are we looking for at-least an atomic load/store ? In
154 /// case it is false, we can return an atomic or non-atomic load or store. In
155 /// case it is true, we need to return an atomic load or store.
156 /// \param ScanBB The basic block to scan.
157 /// \param [in,out] ScanFrom The location to start scanning from. When this
158 /// function returns, it points at the last instruction scanned.
159 /// \param MaxInstsToScan The maximum number of instructions to scan. If this
160 /// is zero, the whole block will be scanned.
161 /// \param AA Optional pointer to alias analysis, to make the scan more
162 /// precise.
163 /// \param [out] IsLoadCSE Whether the returned value is a load from the same
164 /// location in memory, as opposed to the value operand of a store.
165 ///
166 /// \returns The found value, or nullptr if no value is found.
167 Value *findAvailablePtrLoadStore(const MemoryLocation &Loc, Type *AccessTy,
168                                  bool AtLeastAtomic, BasicBlock *ScanBB,
169                                  BasicBlock::iterator &ScanFrom,
170                                  unsigned MaxInstsToScan, AAResults *AA,
171                                  bool *IsLoadCSE, unsigned *NumScanedInst);
172 
173 /// Returns true if a pointer value \p A can be replace with another pointer
174 /// value \B if they are deemed equal through some means (e.g. information from
175 /// conditions).
176 /// NOTE: the current implementations is incomplete and unsound. It does not
177 /// reject all invalid cases yet, but will be made stricter in the future. In
178 /// particular this means returning true means unknown if replacement is safe.
179 bool canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
180                                Instruction *CtxI);
181 }
182 
183 #endif
184