1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the generic implementation of LoopInfo used for both Loops and
10 // MachineLoops.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
15 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
16 
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetOperations.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/Dominators.h"
23 
24 namespace llvm {
25 
26 //===----------------------------------------------------------------------===//
27 // APIs for simple analysis of the loop. See header notes.
28 
29 /// getExitingBlocks - Return all blocks inside the loop that have successors
30 /// outside of the loop.  These are the blocks _inside of the current loop_
31 /// which branch out.  The returned list is always unique.
32 ///
33 template <class BlockT, class LoopT>
getExitingBlocks(SmallVectorImpl<BlockT * > & ExitingBlocks)34 void LoopBase<BlockT, LoopT>::getExitingBlocks(
35     SmallVectorImpl<BlockT *> &ExitingBlocks) const {
36   assert(!isInvalid() && "Loop not in a valid state!");
37   for (const auto BB : blocks())
38     for (auto *Succ : children<BlockT *>(BB))
39       if (!contains(Succ)) {
40         // Not in current loop? It must be an exit block.
41         ExitingBlocks.push_back(BB);
42         break;
43       }
44 }
45 
46 /// getExitingBlock - If getExitingBlocks would return exactly one block,
47 /// return that block. Otherwise return null.
48 template <class BlockT, class LoopT>
getExitingBlock()49 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
50   assert(!isInvalid() && "Loop not in a valid state!");
51   SmallVector<BlockT *, 8> ExitingBlocks;
52   getExitingBlocks(ExitingBlocks);
53   if (ExitingBlocks.size() == 1)
54     return ExitingBlocks[0];
55   return nullptr;
56 }
57 
58 /// getExitBlocks - Return all of the successor blocks of this loop.  These
59 /// are the blocks _outside of the current loop_ which are branched to.
60 ///
61 template <class BlockT, class LoopT>
getExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)62 void LoopBase<BlockT, LoopT>::getExitBlocks(
63     SmallVectorImpl<BlockT *> &ExitBlocks) const {
64   assert(!isInvalid() && "Loop not in a valid state!");
65   for (const auto BB : blocks())
66     for (auto *Succ : children<BlockT *>(BB))
67       if (!contains(Succ))
68         // Not in current loop? It must be an exit block.
69         ExitBlocks.push_back(Succ);
70 }
71 
72 template <class BlockT, class LoopT>
hasNoExitBlocks()73 bool LoopBase<BlockT, LoopT>::hasNoExitBlocks() const {
74   SmallVector<BlockT *, 8> ExitBlocks;
75   getExitBlocks(ExitBlocks);
76   return ExitBlocks.empty();
77 }
78 
79 /// getExitBlock - If getExitBlocks would return exactly one block,
80 /// return that block. Otherwise return null.
81 template <class BlockT, class LoopT>
getExitBlock()82 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
83   assert(!isInvalid() && "Loop not in a valid state!");
84   SmallVector<BlockT *, 8> ExitBlocks;
85   getExitBlocks(ExitBlocks);
86   if (ExitBlocks.size() == 1)
87     return ExitBlocks[0];
88   return nullptr;
89 }
90 
91 template <class BlockT, class LoopT>
hasDedicatedExits()92 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
93   // Each predecessor of each exit block of a normal loop is contained
94   // within the loop.
95   SmallVector<BlockT *, 4> UniqueExitBlocks;
96   getUniqueExitBlocks(UniqueExitBlocks);
97   for (BlockT *EB : UniqueExitBlocks)
98     for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
99       if (!contains(Predecessor))
100         return false;
101   // All the requirements are met.
102   return true;
103 }
104 
105 // Helper function to get unique loop exits. Pred is a predicate pointing to
106 // BasicBlocks in a loop which should be considered to find loop exits.
107 template <class BlockT, class LoopT, typename PredicateT>
getUniqueExitBlocksHelper(const LoopT * L,SmallVectorImpl<BlockT * > & ExitBlocks,PredicateT Pred)108 void getUniqueExitBlocksHelper(const LoopT *L,
109                                SmallVectorImpl<BlockT *> &ExitBlocks,
110                                PredicateT Pred) {
111   assert(!L->isInvalid() && "Loop not in a valid state!");
112   SmallPtrSet<BlockT *, 32> Visited;
113   auto Filtered = make_filter_range(L->blocks(), Pred);
114   for (BlockT *BB : Filtered)
115     for (BlockT *Successor : children<BlockT *>(BB))
116       if (!L->contains(Successor))
117         if (Visited.insert(Successor).second)
118           ExitBlocks.push_back(Successor);
119 }
120 
121 template <class BlockT, class LoopT>
getUniqueExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)122 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
123     SmallVectorImpl<BlockT *> &ExitBlocks) const {
124   getUniqueExitBlocksHelper(this, ExitBlocks,
125                             [](const BlockT *BB) { return true; });
126 }
127 
128 template <class BlockT, class LoopT>
getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)129 void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
130     SmallVectorImpl<BlockT *> &ExitBlocks) const {
131   const BlockT *Latch = getLoopLatch();
132   assert(Latch && "Latch block must exists");
133   getUniqueExitBlocksHelper(this, ExitBlocks,
134                             [Latch](const BlockT *BB) { return BB != Latch; });
135 }
136 
137 template <class BlockT, class LoopT>
getUniqueExitBlock()138 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
139   SmallVector<BlockT *, 8> UniqueExitBlocks;
140   getUniqueExitBlocks(UniqueExitBlocks);
141   if (UniqueExitBlocks.size() == 1)
142     return UniqueExitBlocks[0];
143   return nullptr;
144 }
145 
146 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
147 template <class BlockT, class LoopT>
getExitEdges(SmallVectorImpl<Edge> & ExitEdges)148 void LoopBase<BlockT, LoopT>::getExitEdges(
149     SmallVectorImpl<Edge> &ExitEdges) const {
150   assert(!isInvalid() && "Loop not in a valid state!");
151   for (const auto BB : blocks())
152     for (auto *Succ : children<BlockT *>(BB))
153       if (!contains(Succ))
154         // Not in current loop? It must be an exit block.
155         ExitEdges.emplace_back(BB, Succ);
156 }
157 
158 /// getLoopPreheader - If there is a preheader for this loop, return it.  A
159 /// loop has a preheader if there is only one edge to the header of the loop
160 /// from outside of the loop and it is legal to hoist instructions into the
161 /// predecessor. If this is the case, the block branching to the header of the
162 /// loop is the preheader node.
163 ///
164 /// This method returns null if there is no preheader for the loop.
165 ///
166 template <class BlockT, class LoopT>
getLoopPreheader()167 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
168   assert(!isInvalid() && "Loop not in a valid state!");
169   // Keep track of nodes outside the loop branching to the header...
170   BlockT *Out = getLoopPredecessor();
171   if (!Out)
172     return nullptr;
173 
174   // Make sure we are allowed to hoist instructions into the predecessor.
175   if (!Out->isLegalToHoistInto())
176     return nullptr;
177 
178   // Make sure there is only one exit out of the preheader.
179   typedef GraphTraits<BlockT *> BlockTraits;
180   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
181   ++SI;
182   if (SI != BlockTraits::child_end(Out))
183     return nullptr; // Multiple exits from the block, must not be a preheader.
184 
185   // The predecessor has exactly one successor, so it is a preheader.
186   return Out;
187 }
188 
189 /// getLoopPredecessor - If the given loop's header has exactly one unique
190 /// predecessor outside the loop, return it. Otherwise return null.
191 /// This is less strict that the loop "preheader" concept, which requires
192 /// the predecessor to have exactly one successor.
193 ///
194 template <class BlockT, class LoopT>
getLoopPredecessor()195 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
196   assert(!isInvalid() && "Loop not in a valid state!");
197   // Keep track of nodes outside the loop branching to the header...
198   BlockT *Out = nullptr;
199 
200   // Loop over the predecessors of the header node...
201   BlockT *Header = getHeader();
202   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
203     if (!contains(Pred)) { // If the block is not in the loop...
204       if (Out && Out != Pred)
205         return nullptr; // Multiple predecessors outside the loop
206       Out = Pred;
207     }
208   }
209 
210   return Out;
211 }
212 
213 /// getLoopLatch - If there is a single latch block for this loop, return it.
214 /// A latch block is a block that contains a branch back to the header.
215 template <class BlockT, class LoopT>
getLoopLatch()216 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
217   assert(!isInvalid() && "Loop not in a valid state!");
218   BlockT *Header = getHeader();
219   BlockT *Latch = nullptr;
220   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
221     if (contains(Pred)) {
222       if (Latch)
223         return nullptr;
224       Latch = Pred;
225     }
226   }
227 
228   return Latch;
229 }
230 
231 //===----------------------------------------------------------------------===//
232 // APIs for updating loop information after changing the CFG
233 //
234 
235 /// addBasicBlockToLoop - This method is used by other analyses to update loop
236 /// information.  NewBB is set to be a new member of the current loop.
237 /// Because of this, it is added as a member of all parent loops, and is added
238 /// to the specified LoopInfo object as being in the current basic block.  It
239 /// is not valid to replace the loop header with this method.
240 ///
241 template <class BlockT, class LoopT>
addBasicBlockToLoop(BlockT * NewBB,LoopInfoBase<BlockT,LoopT> & LIB)242 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
243     BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
244   assert(!isInvalid() && "Loop not in a valid state!");
245 #ifndef NDEBUG
246   if (!Blocks.empty()) {
247     auto SameHeader = LIB[getHeader()];
248     assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
249            "Incorrect LI specified for this loop!");
250   }
251 #endif
252   assert(NewBB && "Cannot add a null basic block to the loop!");
253   assert(!LIB[NewBB] && "BasicBlock already in the loop!");
254 
255   LoopT *L = static_cast<LoopT *>(this);
256 
257   // Add the loop mapping to the LoopInfo object...
258   LIB.BBMap[NewBB] = L;
259 
260   // Add the basic block to this loop and all parent loops...
261   while (L) {
262     L->addBlockEntry(NewBB);
263     L = L->getParentLoop();
264   }
265 }
266 
267 /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
268 /// the OldChild entry in our children list with NewChild, and updates the
269 /// parent pointer of OldChild to be null and the NewChild to be this loop.
270 /// This updates the loop depth of the new child.
271 template <class BlockT, class LoopT>
replaceChildLoopWith(LoopT * OldChild,LoopT * NewChild)272 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
273                                                    LoopT *NewChild) {
274   assert(!isInvalid() && "Loop not in a valid state!");
275   assert(OldChild->ParentLoop == this && "This loop is already broken!");
276   assert(!NewChild->ParentLoop && "NewChild already has a parent!");
277   typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
278   assert(I != SubLoops.end() && "OldChild not in loop!");
279   *I = NewChild;
280   OldChild->ParentLoop = nullptr;
281   NewChild->ParentLoop = static_cast<LoopT *>(this);
282 }
283 
284 /// verifyLoop - Verify loop structure
285 template <class BlockT, class LoopT>
verifyLoop()286 void LoopBase<BlockT, LoopT>::verifyLoop() const {
287   assert(!isInvalid() && "Loop not in a valid state!");
288 #ifndef NDEBUG
289   assert(!Blocks.empty() && "Loop header is missing");
290 
291   // Setup for using a depth-first iterator to visit every block in the loop.
292   SmallVector<BlockT *, 8> ExitBBs;
293   getExitBlocks(ExitBBs);
294   df_iterator_default_set<BlockT *> VisitSet;
295   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
296   df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
297       BI = df_ext_begin(getHeader(), VisitSet),
298       BE = df_ext_end(getHeader(), VisitSet);
299 
300   // Keep track of the BBs visited.
301   SmallPtrSet<BlockT *, 8> VisitedBBs;
302 
303   // Check the individual blocks.
304   for (; BI != BE; ++BI) {
305     BlockT *BB = *BI;
306 
307     assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
308                        GraphTraits<BlockT *>::child_end(BB),
309                        [&](BlockT *B) { return contains(B); }) &&
310            "Loop block has no in-loop successors!");
311 
312     assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
313                        GraphTraits<Inverse<BlockT *>>::child_end(BB),
314                        [&](BlockT *B) { return contains(B); }) &&
315            "Loop block has no in-loop predecessors!");
316 
317     SmallVector<BlockT *, 2> OutsideLoopPreds;
318     std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
319                   GraphTraits<Inverse<BlockT *>>::child_end(BB),
320                   [&](BlockT *B) {
321                     if (!contains(B))
322                       OutsideLoopPreds.push_back(B);
323                   });
324 
325     if (BB == getHeader()) {
326       assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
327     } else if (!OutsideLoopPreds.empty()) {
328       // A non-header loop shouldn't be reachable from outside the loop,
329       // though it is permitted if the predecessor is not itself actually
330       // reachable.
331       BlockT *EntryBB = &BB->getParent()->front();
332       for (BlockT *CB : depth_first(EntryBB))
333         for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
334           assert(CB != OutsideLoopPreds[i] &&
335                  "Loop has multiple entry points!");
336     }
337     assert(BB != &getHeader()->getParent()->front() &&
338            "Loop contains function entry block!");
339 
340     VisitedBBs.insert(BB);
341   }
342 
343   if (VisitedBBs.size() != getNumBlocks()) {
344     dbgs() << "The following blocks are unreachable in the loop: ";
345     for (auto BB : Blocks) {
346       if (!VisitedBBs.count(BB)) {
347         dbgs() << *BB << "\n";
348       }
349     }
350     assert(false && "Unreachable block in loop");
351   }
352 
353   // Check the subloops.
354   for (iterator I = begin(), E = end(); I != E; ++I)
355     // Each block in each subloop should be contained within this loop.
356     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
357          BI != BE; ++BI) {
358       assert(contains(*BI) &&
359              "Loop does not contain all the blocks of a subloop!");
360     }
361 
362   // Check the parent loop pointer.
363   if (ParentLoop) {
364     assert(is_contained(*ParentLoop, this) &&
365            "Loop is not a subloop of its parent!");
366   }
367 #endif
368 }
369 
370 /// verifyLoop - Verify loop structure of this loop and all nested loops.
371 template <class BlockT, class LoopT>
verifyLoopNest(DenseSet<const LoopT * > * Loops)372 void LoopBase<BlockT, LoopT>::verifyLoopNest(
373     DenseSet<const LoopT *> *Loops) const {
374   assert(!isInvalid() && "Loop not in a valid state!");
375   Loops->insert(static_cast<const LoopT *>(this));
376   // Verify this loop.
377   verifyLoop();
378   // Verify the subloops.
379   for (iterator I = begin(), E = end(); I != E; ++I)
380     (*I)->verifyLoopNest(Loops);
381 }
382 
383 template <class BlockT, class LoopT>
print(raw_ostream & OS,bool Verbose,bool PrintNested,unsigned Depth)384 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, bool Verbose,
385                                     bool PrintNested, unsigned Depth) const {
386   OS.indent(Depth * 2);
387   if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
388     OS << "Parallel ";
389   OS << "Loop at depth " << getLoopDepth() << " containing: ";
390 
391   BlockT *H = getHeader();
392   for (unsigned i = 0; i < getBlocks().size(); ++i) {
393     BlockT *BB = getBlocks()[i];
394     if (!Verbose) {
395       if (i)
396         OS << ",";
397       BB->printAsOperand(OS, false);
398     } else
399       OS << "\n";
400 
401     if (BB == H)
402       OS << "<header>";
403     if (isLoopLatch(BB))
404       OS << "<latch>";
405     if (isLoopExiting(BB))
406       OS << "<exiting>";
407     if (Verbose)
408       BB->print(OS);
409   }
410 
411   if (PrintNested) {
412     OS << "\n";
413 
414     for (iterator I = begin(), E = end(); I != E; ++I)
415       (*I)->print(OS, /*Verbose*/ false, PrintNested, Depth + 2);
416   }
417 }
418 
419 //===----------------------------------------------------------------------===//
420 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
421 /// result does / not depend on use list (block predecessor) order.
422 ///
423 
424 /// Discover a subloop with the specified backedges such that: All blocks within
425 /// this loop are mapped to this loop or a subloop. And all subloops within this
426 /// loop have their parent loop set to this loop or a subloop.
427 template <class BlockT, class LoopT>
discoverAndMapSubloop(LoopT * L,ArrayRef<BlockT * > Backedges,LoopInfoBase<BlockT,LoopT> * LI,const DomTreeBase<BlockT> & DomTree)428 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
429                                   LoopInfoBase<BlockT, LoopT> *LI,
430                                   const DomTreeBase<BlockT> &DomTree) {
431   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
432 
433   unsigned NumBlocks = 0;
434   unsigned NumSubloops = 0;
435 
436   // Perform a backward CFG traversal using a worklist.
437   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
438   while (!ReverseCFGWorklist.empty()) {
439     BlockT *PredBB = ReverseCFGWorklist.back();
440     ReverseCFGWorklist.pop_back();
441 
442     LoopT *Subloop = LI->getLoopFor(PredBB);
443     if (!Subloop) {
444       if (!DomTree.isReachableFromEntry(PredBB))
445         continue;
446 
447       // This is an undiscovered block. Map it to the current loop.
448       LI->changeLoopFor(PredBB, L);
449       ++NumBlocks;
450       if (PredBB == L->getHeader())
451         continue;
452       // Push all block predecessors on the worklist.
453       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
454                                 InvBlockTraits::child_begin(PredBB),
455                                 InvBlockTraits::child_end(PredBB));
456     } else {
457       // This is a discovered block. Find its outermost discovered loop.
458       while (LoopT *Parent = Subloop->getParentLoop())
459         Subloop = Parent;
460 
461       // If it is already discovered to be a subloop of this loop, continue.
462       if (Subloop == L)
463         continue;
464 
465       // Discover a subloop of this loop.
466       Subloop->setParentLoop(L);
467       ++NumSubloops;
468       NumBlocks += Subloop->getBlocksVector().capacity();
469       PredBB = Subloop->getHeader();
470       // Continue traversal along predecessors that are not loop-back edges from
471       // within this subloop tree itself. Note that a predecessor may directly
472       // reach another subloop that is not yet discovered to be a subloop of
473       // this loop, which we must traverse.
474       for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
475         if (LI->getLoopFor(Pred) != Subloop)
476           ReverseCFGWorklist.push_back(Pred);
477       }
478     }
479   }
480   L->getSubLoopsVector().reserve(NumSubloops);
481   L->reserveBlocks(NumBlocks);
482 }
483 
484 /// Populate all loop data in a stable order during a single forward DFS.
485 template <class BlockT, class LoopT> class PopulateLoopsDFS {
486   typedef GraphTraits<BlockT *> BlockTraits;
487   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
488 
489   LoopInfoBase<BlockT, LoopT> *LI;
490 
491 public:
PopulateLoopsDFS(LoopInfoBase<BlockT,LoopT> * li)492   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
493 
494   void traverse(BlockT *EntryBlock);
495 
496 protected:
497   void insertIntoLoop(BlockT *Block);
498 };
499 
500 /// Top-level driver for the forward DFS within the loop.
501 template <class BlockT, class LoopT>
traverse(BlockT * EntryBlock)502 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
503   for (BlockT *BB : post_order(EntryBlock))
504     insertIntoLoop(BB);
505 }
506 
507 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
508 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
509 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
510 template <class BlockT, class LoopT>
insertIntoLoop(BlockT * Block)511 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
512   LoopT *Subloop = LI->getLoopFor(Block);
513   if (Subloop && Block == Subloop->getHeader()) {
514     // We reach this point once per subloop after processing all the blocks in
515     // the subloop.
516     if (!Subloop->isOutermost())
517       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
518     else
519       LI->addTopLevelLoop(Subloop);
520 
521     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
522     // the lists, except for the loop header, which is always at the beginning.
523     Subloop->reverseBlock(1);
524     std::reverse(Subloop->getSubLoopsVector().begin(),
525                  Subloop->getSubLoopsVector().end());
526 
527     Subloop = Subloop->getParentLoop();
528   }
529   for (; Subloop; Subloop = Subloop->getParentLoop())
530     Subloop->addBlockEntry(Block);
531 }
532 
533 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
534 /// interleaved with backward CFG traversals within each subloop
535 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
536 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
537 /// Block vectors are then populated during a single forward CFG traversal
538 /// (PopulateLoopDFS).
539 ///
540 /// During the two CFG traversals each block is seen three times:
541 /// 1) Discovered and mapped by a reverse CFG traversal.
542 /// 2) Visited during a forward DFS CFG traversal.
543 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
544 ///
545 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
546 /// insertions per block.
547 template <class BlockT, class LoopT>
analyze(const DomTreeBase<BlockT> & DomTree)548 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
549   // Postorder traversal of the dominator tree.
550   const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
551   for (auto DomNode : post_order(DomRoot)) {
552 
553     BlockT *Header = DomNode->getBlock();
554     SmallVector<BlockT *, 4> Backedges;
555 
556     // Check each predecessor of the potential loop header.
557     for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
558       // If Header dominates predBB, this is a new loop. Collect the backedges.
559       if (DomTree.dominates(Header, Backedge) &&
560           DomTree.isReachableFromEntry(Backedge)) {
561         Backedges.push_back(Backedge);
562       }
563     }
564     // Perform a backward CFG traversal to discover and map blocks in this loop.
565     if (!Backedges.empty()) {
566       LoopT *L = AllocateLoop(Header);
567       discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
568     }
569   }
570   // Perform a single forward CFG traversal to populate block and subloop
571   // vectors for all loops.
572   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
573   DFS.traverse(DomRoot->getBlock());
574 }
575 
576 template <class BlockT, class LoopT>
getLoopsInPreorder()577 SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
578   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
579   // The outer-most loop actually goes into the result in the same relative
580   // order as we walk it. But LoopInfo stores the top level loops in reverse
581   // program order so for here we reverse it to get forward program order.
582   // FIXME: If we change the order of LoopInfo we will want to remove the
583   // reverse here.
584   for (LoopT *RootL : reverse(*this)) {
585     auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
586     PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
587                          PreOrderLoopsInRootL.end());
588   }
589 
590   return PreOrderLoops;
591 }
592 
593 template <class BlockT, class LoopT>
594 SmallVector<LoopT *, 4>
getLoopsInReverseSiblingPreorder()595 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
596   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
597   // The outer-most loop actually goes into the result in the same relative
598   // order as we walk it. LoopInfo stores the top level loops in reverse
599   // program order so we walk in order here.
600   // FIXME: If we change the order of LoopInfo we will want to add a reverse
601   // here.
602   for (LoopT *RootL : *this) {
603     assert(PreOrderWorklist.empty() &&
604            "Must start with an empty preorder walk worklist.");
605     PreOrderWorklist.push_back(RootL);
606     do {
607       LoopT *L = PreOrderWorklist.pop_back_val();
608       // Sub-loops are stored in forward program order, but will process the
609       // worklist backwards so we can just append them in order.
610       PreOrderWorklist.append(L->begin(), L->end());
611       PreOrderLoops.push_back(L);
612     } while (!PreOrderWorklist.empty());
613   }
614 
615   return PreOrderLoops;
616 }
617 
618 // Debugging
619 template <class BlockT, class LoopT>
print(raw_ostream & OS)620 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
621   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
622     TopLevelLoops[i]->print(OS);
623 #if 0
624   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
625          E = BBMap.end(); I != E; ++I)
626     OS << "BB '" << I->first->getName() << "' level = "
627        << I->second->getLoopDepth() << "\n";
628 #endif
629 }
630 
631 template <typename T>
compareVectors(std::vector<T> & BB1,std::vector<T> & BB2)632 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
633   llvm::sort(BB1);
634   llvm::sort(BB2);
635   return BB1 == BB2;
636 }
637 
638 template <class BlockT, class LoopT>
addInnerLoopsToHeadersMap(DenseMap<BlockT *,const LoopT * > & LoopHeaders,const LoopInfoBase<BlockT,LoopT> & LI,const LoopT & L)639 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
640                                const LoopInfoBase<BlockT, LoopT> &LI,
641                                const LoopT &L) {
642   LoopHeaders[L.getHeader()] = &L;
643   for (LoopT *SL : L)
644     addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
645 }
646 
647 #ifndef NDEBUG
648 template <class BlockT, class LoopT>
compareLoops(const LoopT * L,const LoopT * OtherL,DenseMap<BlockT *,const LoopT * > & OtherLoopHeaders)649 static void compareLoops(const LoopT *L, const LoopT *OtherL,
650                          DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
651   BlockT *H = L->getHeader();
652   BlockT *OtherH = OtherL->getHeader();
653   assert(H == OtherH &&
654          "Mismatched headers even though found in the same map entry!");
655 
656   assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
657          "Mismatched loop depth!");
658   const LoopT *ParentL = L, *OtherParentL = OtherL;
659   do {
660     assert(ParentL->getHeader() == OtherParentL->getHeader() &&
661            "Mismatched parent loop headers!");
662     ParentL = ParentL->getParentLoop();
663     OtherParentL = OtherParentL->getParentLoop();
664   } while (ParentL);
665 
666   for (const LoopT *SubL : *L) {
667     BlockT *SubH = SubL->getHeader();
668     const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
669     assert(OtherSubL && "Inner loop is missing in computed loop info!");
670     OtherLoopHeaders.erase(SubH);
671     compareLoops(SubL, OtherSubL, OtherLoopHeaders);
672   }
673 
674   std::vector<BlockT *> BBs = L->getBlocks();
675   std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
676   assert(compareVectors(BBs, OtherBBs) &&
677          "Mismatched basic blocks in the loops!");
678 
679   const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
680   const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet =
681       OtherL->getBlocksSet();
682   assert(BlocksSet.size() == OtherBlocksSet.size() &&
683          llvm::set_is_subset(BlocksSet, OtherBlocksSet) &&
684          "Mismatched basic blocks in BlocksSets!");
685 }
686 #endif
687 
688 template <class BlockT, class LoopT>
verify(const DomTreeBase<BlockT> & DomTree)689 void LoopInfoBase<BlockT, LoopT>::verify(
690     const DomTreeBase<BlockT> &DomTree) const {
691   DenseSet<const LoopT *> Loops;
692   for (iterator I = begin(), E = end(); I != E; ++I) {
693     assert((*I)->isOutermost() && "Top-level loop has a parent!");
694     (*I)->verifyLoopNest(&Loops);
695   }
696 
697 // Verify that blocks are mapped to valid loops.
698 #ifndef NDEBUG
699   for (auto &Entry : BBMap) {
700     const BlockT *BB = Entry.first;
701     LoopT *L = Entry.second;
702     assert(Loops.count(L) && "orphaned loop");
703     assert(L->contains(BB) && "orphaned block");
704     for (LoopT *ChildLoop : *L)
705       assert(!ChildLoop->contains(BB) &&
706              "BBMap should point to the innermost loop containing BB");
707   }
708 
709   // Recompute LoopInfo to verify loops structure.
710   LoopInfoBase<BlockT, LoopT> OtherLI;
711   OtherLI.analyze(DomTree);
712 
713   // Build a map we can use to move from our LI to the computed one. This
714   // allows us to ignore the particular order in any layer of the loop forest
715   // while still comparing the structure.
716   DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
717   for (LoopT *L : OtherLI)
718     addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
719 
720   // Walk the top level loops and ensure there is a corresponding top-level
721   // loop in the computed version and then recursively compare those loop
722   // nests.
723   for (LoopT *L : *this) {
724     BlockT *Header = L->getHeader();
725     const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
726     assert(OtherL && "Top level loop is missing in computed loop info!");
727     // Now that we've matched this loop, erase its header from the map.
728     OtherLoopHeaders.erase(Header);
729     // And recursively compare these loops.
730     compareLoops(L, OtherL, OtherLoopHeaders);
731   }
732 
733   // Any remaining entries in the map are loops which were found when computing
734   // a fresh LoopInfo but not present in the current one.
735   if (!OtherLoopHeaders.empty()) {
736     for (const auto &HeaderAndLoop : OtherLoopHeaders)
737       dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
738     llvm_unreachable("Found new loops when recomputing LoopInfo!");
739   }
740 #endif
741 }
742 
743 } // End llvm namespace
744 
745 #endif
746