1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the MIPS-specific support for the FastISel class.
11 /// Some of the target-specific code is generated by tablegen in the file
12 /// MipsGenFastISel.inc, which is #included here.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #include "MCTargetDesc/MipsABIInfo.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MipsCCState.h"
19 #include "MipsISelLowering.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMachineFunction.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/CodeGen/CallingConvLower.h"
30 #include "llvm/CodeGen/FastISel.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include <algorithm>
70 #include <array>
71 #include <cassert>
72 #include <cstdint>
73
74 #define DEBUG_TYPE "mips-fastisel"
75
76 using namespace llvm;
77
78 extern cl::opt<bool> EmitJalrReloc;
79
80 namespace {
81
82 class MipsFastISel final : public FastISel {
83
84 // All possible address modes.
85 class Address {
86 public:
87 using BaseKind = enum { RegBase, FrameIndexBase };
88
89 private:
90 BaseKind Kind = RegBase;
91 union {
92 unsigned Reg;
93 int FI;
94 } Base;
95
96 int64_t Offset = 0;
97
98 const GlobalValue *GV = nullptr;
99
100 public:
101 // Innocuous defaults for our address.
Address()102 Address() { Base.Reg = 0; }
103
setKind(BaseKind K)104 void setKind(BaseKind K) { Kind = K; }
getKind() const105 BaseKind getKind() const { return Kind; }
isRegBase() const106 bool isRegBase() const { return Kind == RegBase; }
isFIBase() const107 bool isFIBase() const { return Kind == FrameIndexBase; }
108
setReg(unsigned Reg)109 void setReg(unsigned Reg) {
110 assert(isRegBase() && "Invalid base register access!");
111 Base.Reg = Reg;
112 }
113
getReg() const114 unsigned getReg() const {
115 assert(isRegBase() && "Invalid base register access!");
116 return Base.Reg;
117 }
118
setFI(unsigned FI)119 void setFI(unsigned FI) {
120 assert(isFIBase() && "Invalid base frame index access!");
121 Base.FI = FI;
122 }
123
getFI() const124 unsigned getFI() const {
125 assert(isFIBase() && "Invalid base frame index access!");
126 return Base.FI;
127 }
128
setOffset(int64_t Offset_)129 void setOffset(int64_t Offset_) { Offset = Offset_; }
getOffset() const130 int64_t getOffset() const { return Offset; }
setGlobalValue(const GlobalValue * G)131 void setGlobalValue(const GlobalValue *G) { GV = G; }
getGlobalValue()132 const GlobalValue *getGlobalValue() { return GV; }
133 };
134
135 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
136 /// make the right decision when generating code for different targets.
137 const TargetMachine &TM;
138 const MipsSubtarget *Subtarget;
139 const TargetInstrInfo &TII;
140 const TargetLowering &TLI;
141 MipsFunctionInfo *MFI;
142
143 // Convenience variables to avoid some queries.
144 LLVMContext *Context;
145
146 bool fastLowerArguments() override;
147 bool fastLowerCall(CallLoweringInfo &CLI) override;
148 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
149
150 bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
151 // floating point but not reject doing fast-isel in other
152 // situations
153
154 private:
155 // Selection routines.
156 bool selectLogicalOp(const Instruction *I);
157 bool selectLoad(const Instruction *I);
158 bool selectStore(const Instruction *I);
159 bool selectBranch(const Instruction *I);
160 bool selectSelect(const Instruction *I);
161 bool selectCmp(const Instruction *I);
162 bool selectFPExt(const Instruction *I);
163 bool selectFPTrunc(const Instruction *I);
164 bool selectFPToInt(const Instruction *I, bool IsSigned);
165 bool selectRet(const Instruction *I);
166 bool selectTrunc(const Instruction *I);
167 bool selectIntExt(const Instruction *I);
168 bool selectShift(const Instruction *I);
169 bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
170
171 // Utility helper routines.
172 bool isTypeLegal(Type *Ty, MVT &VT);
173 bool isTypeSupported(Type *Ty, MVT &VT);
174 bool isLoadTypeLegal(Type *Ty, MVT &VT);
175 bool computeAddress(const Value *Obj, Address &Addr);
176 bool computeCallAddress(const Value *V, Address &Addr);
177 void simplifyAddress(Address &Addr);
178
179 // Emit helper routines.
180 bool emitCmp(unsigned DestReg, const CmpInst *CI);
181 bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
182 unsigned Alignment = 0);
183 bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
184 MachineMemOperand *MMO = nullptr);
185 bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
186 unsigned Alignment = 0);
187 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
188 bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
189
190 bool IsZExt);
191 bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
192
193 bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
194 bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
195 unsigned DestReg);
196 bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
197 unsigned DestReg);
198
199 unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
200
201 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
202 const Value *RHS);
203
204 unsigned materializeFP(const ConstantFP *CFP, MVT VT);
205 unsigned materializeGV(const GlobalValue *GV, MVT VT);
206 unsigned materializeInt(const Constant *C, MVT VT);
207 unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
208 unsigned materializeExternalCallSym(MCSymbol *Syn);
209
emitInst(unsigned Opc)210 MachineInstrBuilder emitInst(unsigned Opc) {
211 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
212 }
213
emitInst(unsigned Opc,unsigned DstReg)214 MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
215 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
216 DstReg);
217 }
218
emitInstStore(unsigned Opc,unsigned SrcReg,unsigned MemReg,int64_t MemOffset)219 MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
220 unsigned MemReg, int64_t MemOffset) {
221 return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
222 }
223
emitInstLoad(unsigned Opc,unsigned DstReg,unsigned MemReg,int64_t MemOffset)224 MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
225 unsigned MemReg, int64_t MemOffset) {
226 return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
227 }
228
229 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
230 const TargetRegisterClass *RC,
231 unsigned Op0, unsigned Op1);
232
233 // for some reason, this default is not generated by tablegen
234 // so we explicitly generate it here.
fastEmitInst_riir(uint64_t inst,const TargetRegisterClass * RC,unsigned Op0,uint64_t imm1,uint64_t imm2,unsigned Op3)235 unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
236 unsigned Op0, uint64_t imm1, uint64_t imm2,
237 unsigned Op3) {
238 return 0;
239 }
240
241 // Call handling routines.
242 private:
243 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
244 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
245 unsigned &NumBytes);
246 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
247
getABI() const248 const MipsABIInfo &getABI() const {
249 return static_cast<const MipsTargetMachine &>(TM).getABI();
250 }
251
252 public:
253 // Backend specific FastISel code.
MipsFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)254 explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
255 const TargetLibraryInfo *libInfo)
256 : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
257 Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
258 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
259 MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
260 Context = &funcInfo.Fn->getContext();
261 UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
262 }
263
264 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
265 unsigned fastMaterializeConstant(const Constant *C) override;
266 bool fastSelectInstruction(const Instruction *I) override;
267
268 #include "MipsGenFastISel.inc"
269 };
270
271 } // end anonymous namespace
272
273 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
274 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
275 CCState &State) LLVM_ATTRIBUTE_UNUSED;
276
CC_MipsO32_FP32(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)277 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
278 CCValAssign::LocInfo LocInfo,
279 ISD::ArgFlagsTy ArgFlags, CCState &State) {
280 llvm_unreachable("should not be called");
281 }
282
CC_MipsO32_FP64(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)283 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
284 CCValAssign::LocInfo LocInfo,
285 ISD::ArgFlagsTy ArgFlags, CCState &State) {
286 llvm_unreachable("should not be called");
287 }
288
289 #include "MipsGenCallingConv.inc"
290
CCAssignFnForCall(CallingConv::ID CC) const291 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
292 return CC_MipsO32;
293 }
294
emitLogicalOp(unsigned ISDOpc,MVT RetVT,const Value * LHS,const Value * RHS)295 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
296 const Value *LHS, const Value *RHS) {
297 // Canonicalize immediates to the RHS first.
298 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
299 std::swap(LHS, RHS);
300
301 unsigned Opc;
302 switch (ISDOpc) {
303 case ISD::AND:
304 Opc = Mips::AND;
305 break;
306 case ISD::OR:
307 Opc = Mips::OR;
308 break;
309 case ISD::XOR:
310 Opc = Mips::XOR;
311 break;
312 default:
313 llvm_unreachable("unexpected opcode");
314 }
315
316 unsigned LHSReg = getRegForValue(LHS);
317 if (!LHSReg)
318 return 0;
319
320 unsigned RHSReg;
321 if (const auto *C = dyn_cast<ConstantInt>(RHS))
322 RHSReg = materializeInt(C, MVT::i32);
323 else
324 RHSReg = getRegForValue(RHS);
325 if (!RHSReg)
326 return 0;
327
328 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
329 if (!ResultReg)
330 return 0;
331
332 emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
333 return ResultReg;
334 }
335
fastMaterializeAlloca(const AllocaInst * AI)336 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
337 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
338 "Alloca should always return a pointer.");
339
340 DenseMap<const AllocaInst *, int>::iterator SI =
341 FuncInfo.StaticAllocaMap.find(AI);
342
343 if (SI != FuncInfo.StaticAllocaMap.end()) {
344 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
345 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
346 ResultReg)
347 .addFrameIndex(SI->second)
348 .addImm(0);
349 return ResultReg;
350 }
351
352 return 0;
353 }
354
materializeInt(const Constant * C,MVT VT)355 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
356 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
357 return 0;
358 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
359 const ConstantInt *CI = cast<ConstantInt>(C);
360 return materialize32BitInt(CI->getZExtValue(), RC);
361 }
362
materialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)363 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
364 const TargetRegisterClass *RC) {
365 unsigned ResultReg = createResultReg(RC);
366
367 if (isInt<16>(Imm)) {
368 unsigned Opc = Mips::ADDiu;
369 emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
370 return ResultReg;
371 } else if (isUInt<16>(Imm)) {
372 emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
373 return ResultReg;
374 }
375 unsigned Lo = Imm & 0xFFFF;
376 unsigned Hi = (Imm >> 16) & 0xFFFF;
377 if (Lo) {
378 // Both Lo and Hi have nonzero bits.
379 unsigned TmpReg = createResultReg(RC);
380 emitInst(Mips::LUi, TmpReg).addImm(Hi);
381 emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
382 } else {
383 emitInst(Mips::LUi, ResultReg).addImm(Hi);
384 }
385 return ResultReg;
386 }
387
materializeFP(const ConstantFP * CFP,MVT VT)388 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
389 if (UnsupportedFPMode)
390 return 0;
391 int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
392 if (VT == MVT::f32) {
393 const TargetRegisterClass *RC = &Mips::FGR32RegClass;
394 unsigned DestReg = createResultReg(RC);
395 unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
396 emitInst(Mips::MTC1, DestReg).addReg(TempReg);
397 return DestReg;
398 } else if (VT == MVT::f64) {
399 const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
400 unsigned DestReg = createResultReg(RC);
401 unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
402 unsigned TempReg2 =
403 materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
404 emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
405 return DestReg;
406 }
407 return 0;
408 }
409
materializeGV(const GlobalValue * GV,MVT VT)410 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
411 // For now 32-bit only.
412 if (VT != MVT::i32)
413 return 0;
414 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
415 unsigned DestReg = createResultReg(RC);
416 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
417 bool IsThreadLocal = GVar && GVar->isThreadLocal();
418 // TLS not supported at this time.
419 if (IsThreadLocal)
420 return 0;
421 emitInst(Mips::LW, DestReg)
422 .addReg(MFI->getGlobalBaseReg(*MF))
423 .addGlobalAddress(GV, 0, MipsII::MO_GOT);
424 if ((GV->hasInternalLinkage() ||
425 (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
426 unsigned TempReg = createResultReg(RC);
427 emitInst(Mips::ADDiu, TempReg)
428 .addReg(DestReg)
429 .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
430 DestReg = TempReg;
431 }
432 return DestReg;
433 }
434
materializeExternalCallSym(MCSymbol * Sym)435 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
436 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
437 unsigned DestReg = createResultReg(RC);
438 emitInst(Mips::LW, DestReg)
439 .addReg(MFI->getGlobalBaseReg(*MF))
440 .addSym(Sym, MipsII::MO_GOT);
441 return DestReg;
442 }
443
444 // Materialize a constant into a register, and return the register
445 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)446 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
447 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
448
449 // Only handle simple types.
450 if (!CEVT.isSimple())
451 return 0;
452 MVT VT = CEVT.getSimpleVT();
453
454 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
455 return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
456 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
457 return materializeGV(GV, VT);
458 else if (isa<ConstantInt>(C))
459 return materializeInt(C, VT);
460
461 return 0;
462 }
463
computeAddress(const Value * Obj,Address & Addr)464 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
465 const User *U = nullptr;
466 unsigned Opcode = Instruction::UserOp1;
467 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
468 // Don't walk into other basic blocks unless the object is an alloca from
469 // another block, otherwise it may not have a virtual register assigned.
470 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
471 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
472 Opcode = I->getOpcode();
473 U = I;
474 }
475 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
476 Opcode = C->getOpcode();
477 U = C;
478 }
479 switch (Opcode) {
480 default:
481 break;
482 case Instruction::BitCast:
483 // Look through bitcasts.
484 return computeAddress(U->getOperand(0), Addr);
485 case Instruction::GetElementPtr: {
486 Address SavedAddr = Addr;
487 int64_t TmpOffset = Addr.getOffset();
488 // Iterate through the GEP folding the constants into offsets where
489 // we can.
490 gep_type_iterator GTI = gep_type_begin(U);
491 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
492 ++i, ++GTI) {
493 const Value *Op = *i;
494 if (StructType *STy = GTI.getStructTypeOrNull()) {
495 const StructLayout *SL = DL.getStructLayout(STy);
496 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
497 TmpOffset += SL->getElementOffset(Idx);
498 } else {
499 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
500 while (true) {
501 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
502 // Constant-offset addressing.
503 TmpOffset += CI->getSExtValue() * S;
504 break;
505 }
506 if (canFoldAddIntoGEP(U, Op)) {
507 // A compatible add with a constant operand. Fold the constant.
508 ConstantInt *CI =
509 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
510 TmpOffset += CI->getSExtValue() * S;
511 // Iterate on the other operand.
512 Op = cast<AddOperator>(Op)->getOperand(0);
513 continue;
514 }
515 // Unsupported
516 goto unsupported_gep;
517 }
518 }
519 }
520 // Try to grab the base operand now.
521 Addr.setOffset(TmpOffset);
522 if (computeAddress(U->getOperand(0), Addr))
523 return true;
524 // We failed, restore everything and try the other options.
525 Addr = SavedAddr;
526 unsupported_gep:
527 break;
528 }
529 case Instruction::Alloca: {
530 const AllocaInst *AI = cast<AllocaInst>(Obj);
531 DenseMap<const AllocaInst *, int>::iterator SI =
532 FuncInfo.StaticAllocaMap.find(AI);
533 if (SI != FuncInfo.StaticAllocaMap.end()) {
534 Addr.setKind(Address::FrameIndexBase);
535 Addr.setFI(SI->second);
536 return true;
537 }
538 break;
539 }
540 }
541 Addr.setReg(getRegForValue(Obj));
542 return Addr.getReg() != 0;
543 }
544
computeCallAddress(const Value * V,Address & Addr)545 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
546 const User *U = nullptr;
547 unsigned Opcode = Instruction::UserOp1;
548
549 if (const auto *I = dyn_cast<Instruction>(V)) {
550 // Check if the value is defined in the same basic block. This information
551 // is crucial to know whether or not folding an operand is valid.
552 if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
553 Opcode = I->getOpcode();
554 U = I;
555 }
556 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
557 Opcode = C->getOpcode();
558 U = C;
559 }
560
561 switch (Opcode) {
562 default:
563 break;
564 case Instruction::BitCast:
565 // Look past bitcasts if its operand is in the same BB.
566 return computeCallAddress(U->getOperand(0), Addr);
567 break;
568 case Instruction::IntToPtr:
569 // Look past no-op inttoptrs if its operand is in the same BB.
570 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
571 TLI.getPointerTy(DL))
572 return computeCallAddress(U->getOperand(0), Addr);
573 break;
574 case Instruction::PtrToInt:
575 // Look past no-op ptrtoints if its operand is in the same BB.
576 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
577 return computeCallAddress(U->getOperand(0), Addr);
578 break;
579 }
580
581 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
582 Addr.setGlobalValue(GV);
583 return true;
584 }
585
586 // If all else fails, try to materialize the value in a register.
587 if (!Addr.getGlobalValue()) {
588 Addr.setReg(getRegForValue(V));
589 return Addr.getReg() != 0;
590 }
591
592 return false;
593 }
594
isTypeLegal(Type * Ty,MVT & VT)595 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
596 EVT evt = TLI.getValueType(DL, Ty, true);
597 // Only handle simple types.
598 if (evt == MVT::Other || !evt.isSimple())
599 return false;
600 VT = evt.getSimpleVT();
601
602 // Handle all legal types, i.e. a register that will directly hold this
603 // value.
604 return TLI.isTypeLegal(VT);
605 }
606
isTypeSupported(Type * Ty,MVT & VT)607 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
608 if (Ty->isVectorTy())
609 return false;
610
611 if (isTypeLegal(Ty, VT))
612 return true;
613
614 // If this is a type than can be sign or zero-extended to a basic operation
615 // go ahead and accept it now.
616 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
617 return true;
618
619 return false;
620 }
621
isLoadTypeLegal(Type * Ty,MVT & VT)622 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
623 if (isTypeLegal(Ty, VT))
624 return true;
625 // We will extend this in a later patch:
626 // If this is a type than can be sign or zero-extended to a basic operation
627 // go ahead and accept it now.
628 if (VT == MVT::i8 || VT == MVT::i16)
629 return true;
630 return false;
631 }
632
633 // Because of how EmitCmp is called with fast-isel, you can
634 // end up with redundant "andi" instructions after the sequences emitted below.
635 // We should try and solve this issue in the future.
636 //
emitCmp(unsigned ResultReg,const CmpInst * CI)637 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
638 const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
639 bool IsUnsigned = CI->isUnsigned();
640 unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
641 if (LeftReg == 0)
642 return false;
643 unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
644 if (RightReg == 0)
645 return false;
646 CmpInst::Predicate P = CI->getPredicate();
647
648 switch (P) {
649 default:
650 return false;
651 case CmpInst::ICMP_EQ: {
652 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
653 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
654 emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
655 break;
656 }
657 case CmpInst::ICMP_NE: {
658 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
659 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
660 emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
661 break;
662 }
663 case CmpInst::ICMP_UGT:
664 emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
665 break;
666 case CmpInst::ICMP_ULT:
667 emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
668 break;
669 case CmpInst::ICMP_UGE: {
670 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
671 emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
672 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
673 break;
674 }
675 case CmpInst::ICMP_ULE: {
676 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
677 emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
678 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
679 break;
680 }
681 case CmpInst::ICMP_SGT:
682 emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
683 break;
684 case CmpInst::ICMP_SLT:
685 emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
686 break;
687 case CmpInst::ICMP_SGE: {
688 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
689 emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
690 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
691 break;
692 }
693 case CmpInst::ICMP_SLE: {
694 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
695 emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
696 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
697 break;
698 }
699 case CmpInst::FCMP_OEQ:
700 case CmpInst::FCMP_UNE:
701 case CmpInst::FCMP_OLT:
702 case CmpInst::FCMP_OLE:
703 case CmpInst::FCMP_OGT:
704 case CmpInst::FCMP_OGE: {
705 if (UnsupportedFPMode)
706 return false;
707 bool IsFloat = Left->getType()->isFloatTy();
708 bool IsDouble = Left->getType()->isDoubleTy();
709 if (!IsFloat && !IsDouble)
710 return false;
711 unsigned Opc, CondMovOpc;
712 switch (P) {
713 case CmpInst::FCMP_OEQ:
714 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
715 CondMovOpc = Mips::MOVT_I;
716 break;
717 case CmpInst::FCMP_UNE:
718 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
719 CondMovOpc = Mips::MOVF_I;
720 break;
721 case CmpInst::FCMP_OLT:
722 Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
723 CondMovOpc = Mips::MOVT_I;
724 break;
725 case CmpInst::FCMP_OLE:
726 Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
727 CondMovOpc = Mips::MOVT_I;
728 break;
729 case CmpInst::FCMP_OGT:
730 Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
731 CondMovOpc = Mips::MOVF_I;
732 break;
733 case CmpInst::FCMP_OGE:
734 Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
735 CondMovOpc = Mips::MOVF_I;
736 break;
737 default:
738 llvm_unreachable("Only switching of a subset of CCs.");
739 }
740 unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
741 unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
742 emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
743 emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
744 emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg)
745 .addReg(RightReg);
746 emitInst(CondMovOpc, ResultReg)
747 .addReg(RegWithOne)
748 .addReg(Mips::FCC0)
749 .addReg(RegWithZero);
750 break;
751 }
752 }
753 return true;
754 }
755
emitLoad(MVT VT,unsigned & ResultReg,Address & Addr,unsigned Alignment)756 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
757 unsigned Alignment) {
758 //
759 // more cases will be handled here in following patches.
760 //
761 unsigned Opc;
762 switch (VT.SimpleTy) {
763 case MVT::i32:
764 ResultReg = createResultReg(&Mips::GPR32RegClass);
765 Opc = Mips::LW;
766 break;
767 case MVT::i16:
768 ResultReg = createResultReg(&Mips::GPR32RegClass);
769 Opc = Mips::LHu;
770 break;
771 case MVT::i8:
772 ResultReg = createResultReg(&Mips::GPR32RegClass);
773 Opc = Mips::LBu;
774 break;
775 case MVT::f32:
776 if (UnsupportedFPMode)
777 return false;
778 ResultReg = createResultReg(&Mips::FGR32RegClass);
779 Opc = Mips::LWC1;
780 break;
781 case MVT::f64:
782 if (UnsupportedFPMode)
783 return false;
784 ResultReg = createResultReg(&Mips::AFGR64RegClass);
785 Opc = Mips::LDC1;
786 break;
787 default:
788 return false;
789 }
790 if (Addr.isRegBase()) {
791 simplifyAddress(Addr);
792 emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
793 return true;
794 }
795 if (Addr.isFIBase()) {
796 unsigned FI = Addr.getFI();
797 int64_t Offset = Addr.getOffset();
798 MachineFrameInfo &MFI = MF->getFrameInfo();
799 MachineMemOperand *MMO = MF->getMachineMemOperand(
800 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
801 MFI.getObjectSize(FI), Align(4));
802 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
803 .addFrameIndex(FI)
804 .addImm(Offset)
805 .addMemOperand(MMO);
806 return true;
807 }
808 return false;
809 }
810
emitStore(MVT VT,unsigned SrcReg,Address & Addr,unsigned Alignment)811 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
812 unsigned Alignment) {
813 //
814 // more cases will be handled here in following patches.
815 //
816 unsigned Opc;
817 switch (VT.SimpleTy) {
818 case MVT::i8:
819 Opc = Mips::SB;
820 break;
821 case MVT::i16:
822 Opc = Mips::SH;
823 break;
824 case MVT::i32:
825 Opc = Mips::SW;
826 break;
827 case MVT::f32:
828 if (UnsupportedFPMode)
829 return false;
830 Opc = Mips::SWC1;
831 break;
832 case MVT::f64:
833 if (UnsupportedFPMode)
834 return false;
835 Opc = Mips::SDC1;
836 break;
837 default:
838 return false;
839 }
840 if (Addr.isRegBase()) {
841 simplifyAddress(Addr);
842 emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
843 return true;
844 }
845 if (Addr.isFIBase()) {
846 unsigned FI = Addr.getFI();
847 int64_t Offset = Addr.getOffset();
848 MachineFrameInfo &MFI = MF->getFrameInfo();
849 MachineMemOperand *MMO = MF->getMachineMemOperand(
850 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
851 MFI.getObjectSize(FI), Align(4));
852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
853 .addReg(SrcReg)
854 .addFrameIndex(FI)
855 .addImm(Offset)
856 .addMemOperand(MMO);
857 return true;
858 }
859 return false;
860 }
861
selectLogicalOp(const Instruction * I)862 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
863 MVT VT;
864 if (!isTypeSupported(I->getType(), VT))
865 return false;
866
867 unsigned ResultReg;
868 switch (I->getOpcode()) {
869 default:
870 llvm_unreachable("Unexpected instruction.");
871 case Instruction::And:
872 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
873 break;
874 case Instruction::Or:
875 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
876 break;
877 case Instruction::Xor:
878 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
879 break;
880 }
881
882 if (!ResultReg)
883 return false;
884
885 updateValueMap(I, ResultReg);
886 return true;
887 }
888
selectLoad(const Instruction * I)889 bool MipsFastISel::selectLoad(const Instruction *I) {
890 // Atomic loads need special handling.
891 if (cast<LoadInst>(I)->isAtomic())
892 return false;
893
894 // Verify we have a legal type before going any further.
895 MVT VT;
896 if (!isLoadTypeLegal(I->getType(), VT))
897 return false;
898
899 // See if we can handle this address.
900 Address Addr;
901 if (!computeAddress(I->getOperand(0), Addr))
902 return false;
903
904 unsigned ResultReg;
905 if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
906 return false;
907 updateValueMap(I, ResultReg);
908 return true;
909 }
910
selectStore(const Instruction * I)911 bool MipsFastISel::selectStore(const Instruction *I) {
912 Value *Op0 = I->getOperand(0);
913 unsigned SrcReg = 0;
914
915 // Atomic stores need special handling.
916 if (cast<StoreInst>(I)->isAtomic())
917 return false;
918
919 // Verify we have a legal type before going any further.
920 MVT VT;
921 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
922 return false;
923
924 // Get the value to be stored into a register.
925 SrcReg = getRegForValue(Op0);
926 if (SrcReg == 0)
927 return false;
928
929 // See if we can handle this address.
930 Address Addr;
931 if (!computeAddress(I->getOperand(1), Addr))
932 return false;
933
934 if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
935 return false;
936 return true;
937 }
938
939 // This can cause a redundant sltiu to be generated.
940 // FIXME: try and eliminate this in a future patch.
selectBranch(const Instruction * I)941 bool MipsFastISel::selectBranch(const Instruction *I) {
942 const BranchInst *BI = cast<BranchInst>(I);
943 MachineBasicBlock *BrBB = FuncInfo.MBB;
944 //
945 // TBB is the basic block for the case where the comparison is true.
946 // FBB is the basic block for the case where the comparison is false.
947 // if (cond) goto TBB
948 // goto FBB
949 // TBB:
950 //
951 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
952 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
953
954 // Fold the common case of a conditional branch with a comparison
955 // in the same block.
956 unsigned ZExtCondReg = 0;
957 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
958 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
959 ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
960 if (!emitCmp(ZExtCondReg, CI))
961 return false;
962 }
963 }
964
965 // For the general case, we need to mask with 1.
966 if (ZExtCondReg == 0) {
967 unsigned CondReg = getRegForValue(BI->getCondition());
968 if (CondReg == 0)
969 return false;
970
971 ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true);
972 if (ZExtCondReg == 0)
973 return false;
974 }
975
976 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
977 .addReg(ZExtCondReg)
978 .addMBB(TBB);
979 finishCondBranch(BI->getParent(), TBB, FBB);
980 return true;
981 }
982
selectCmp(const Instruction * I)983 bool MipsFastISel::selectCmp(const Instruction *I) {
984 const CmpInst *CI = cast<CmpInst>(I);
985 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
986 if (!emitCmp(ResultReg, CI))
987 return false;
988 updateValueMap(I, ResultReg);
989 return true;
990 }
991
992 // Attempt to fast-select a floating-point extend instruction.
selectFPExt(const Instruction * I)993 bool MipsFastISel::selectFPExt(const Instruction *I) {
994 if (UnsupportedFPMode)
995 return false;
996 Value *Src = I->getOperand(0);
997 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
998 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
999
1000 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
1001 return false;
1002
1003 unsigned SrcReg =
1004 getRegForValue(Src); // this must be a 32bit floating point register class
1005 // maybe we should handle this differently
1006 if (!SrcReg)
1007 return false;
1008
1009 unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
1010 emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
1011 updateValueMap(I, DestReg);
1012 return true;
1013 }
1014
selectSelect(const Instruction * I)1015 bool MipsFastISel::selectSelect(const Instruction *I) {
1016 assert(isa<SelectInst>(I) && "Expected a select instruction.");
1017
1018 LLVM_DEBUG(dbgs() << "selectSelect\n");
1019
1020 MVT VT;
1021 if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
1022 LLVM_DEBUG(
1023 dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
1024 return false;
1025 }
1026
1027 unsigned CondMovOpc;
1028 const TargetRegisterClass *RC;
1029
1030 if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
1031 CondMovOpc = Mips::MOVN_I_I;
1032 RC = &Mips::GPR32RegClass;
1033 } else if (VT == MVT::f32) {
1034 CondMovOpc = Mips::MOVN_I_S;
1035 RC = &Mips::FGR32RegClass;
1036 } else if (VT == MVT::f64) {
1037 CondMovOpc = Mips::MOVN_I_D32;
1038 RC = &Mips::AFGR64RegClass;
1039 } else
1040 return false;
1041
1042 const SelectInst *SI = cast<SelectInst>(I);
1043 const Value *Cond = SI->getCondition();
1044 unsigned Src1Reg = getRegForValue(SI->getTrueValue());
1045 unsigned Src2Reg = getRegForValue(SI->getFalseValue());
1046 unsigned CondReg = getRegForValue(Cond);
1047
1048 if (!Src1Reg || !Src2Reg || !CondReg)
1049 return false;
1050
1051 unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1052 if (!ZExtCondReg)
1053 return false;
1054
1055 if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1056 return false;
1057
1058 unsigned ResultReg = createResultReg(RC);
1059 unsigned TempReg = createResultReg(RC);
1060
1061 if (!ResultReg || !TempReg)
1062 return false;
1063
1064 emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1065 emitInst(CondMovOpc, ResultReg)
1066 .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1067 updateValueMap(I, ResultReg);
1068 return true;
1069 }
1070
1071 // Attempt to fast-select a floating-point truncate instruction.
selectFPTrunc(const Instruction * I)1072 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1073 if (UnsupportedFPMode)
1074 return false;
1075 Value *Src = I->getOperand(0);
1076 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1077 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1078
1079 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1080 return false;
1081
1082 unsigned SrcReg = getRegForValue(Src);
1083 if (!SrcReg)
1084 return false;
1085
1086 unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
1087 if (!DestReg)
1088 return false;
1089
1090 emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1091 updateValueMap(I, DestReg);
1092 return true;
1093 }
1094
1095 // Attempt to fast-select a floating-point-to-integer conversion.
selectFPToInt(const Instruction * I,bool IsSigned)1096 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1097 if (UnsupportedFPMode)
1098 return false;
1099 MVT DstVT, SrcVT;
1100 if (!IsSigned)
1101 return false; // We don't handle this case yet. There is no native
1102 // instruction for this but it can be synthesized.
1103 Type *DstTy = I->getType();
1104 if (!isTypeLegal(DstTy, DstVT))
1105 return false;
1106
1107 if (DstVT != MVT::i32)
1108 return false;
1109
1110 Value *Src = I->getOperand(0);
1111 Type *SrcTy = Src->getType();
1112 if (!isTypeLegal(SrcTy, SrcVT))
1113 return false;
1114
1115 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1116 return false;
1117
1118 unsigned SrcReg = getRegForValue(Src);
1119 if (SrcReg == 0)
1120 return false;
1121
1122 // Determine the opcode for the conversion, which takes place
1123 // entirely within FPRs.
1124 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1125 unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
1126 unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1127
1128 // Generate the convert.
1129 emitInst(Opc, TempReg).addReg(SrcReg);
1130 emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1131
1132 updateValueMap(I, DestReg);
1133 return true;
1134 }
1135
processCallArgs(CallLoweringInfo & CLI,SmallVectorImpl<MVT> & OutVTs,unsigned & NumBytes)1136 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1137 SmallVectorImpl<MVT> &OutVTs,
1138 unsigned &NumBytes) {
1139 CallingConv::ID CC = CLI.CallConv;
1140 SmallVector<CCValAssign, 16> ArgLocs;
1141 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1142 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1143 // Get a count of how many bytes are to be pushed on the stack.
1144 NumBytes = CCInfo.getNextStackOffset();
1145 // This is the minimum argument area used for A0-A3.
1146 if (NumBytes < 16)
1147 NumBytes = 16;
1148
1149 emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0);
1150 // Process the args.
1151 MVT firstMVT;
1152 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1153 CCValAssign &VA = ArgLocs[i];
1154 const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1155 MVT ArgVT = OutVTs[VA.getValNo()];
1156
1157 if (i == 0) {
1158 firstMVT = ArgVT;
1159 if (ArgVT == MVT::f32) {
1160 VA.convertToReg(Mips::F12);
1161 } else if (ArgVT == MVT::f64) {
1162 if (Subtarget->isFP64bit())
1163 VA.convertToReg(Mips::D6_64);
1164 else
1165 VA.convertToReg(Mips::D6);
1166 }
1167 } else if (i == 1) {
1168 if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1169 if (ArgVT == MVT::f32) {
1170 VA.convertToReg(Mips::F14);
1171 } else if (ArgVT == MVT::f64) {
1172 if (Subtarget->isFP64bit())
1173 VA.convertToReg(Mips::D7_64);
1174 else
1175 VA.convertToReg(Mips::D7);
1176 }
1177 }
1178 }
1179 if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1180 (ArgVT == MVT::i8)) &&
1181 VA.isMemLoc()) {
1182 switch (VA.getLocMemOffset()) {
1183 case 0:
1184 VA.convertToReg(Mips::A0);
1185 break;
1186 case 4:
1187 VA.convertToReg(Mips::A1);
1188 break;
1189 case 8:
1190 VA.convertToReg(Mips::A2);
1191 break;
1192 case 12:
1193 VA.convertToReg(Mips::A3);
1194 break;
1195 default:
1196 break;
1197 }
1198 }
1199 unsigned ArgReg = getRegForValue(ArgVal);
1200 if (!ArgReg)
1201 return false;
1202
1203 // Handle arg promotion: SExt, ZExt, AExt.
1204 switch (VA.getLocInfo()) {
1205 case CCValAssign::Full:
1206 break;
1207 case CCValAssign::AExt:
1208 case CCValAssign::SExt: {
1209 MVT DestVT = VA.getLocVT();
1210 MVT SrcVT = ArgVT;
1211 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1212 if (!ArgReg)
1213 return false;
1214 break;
1215 }
1216 case CCValAssign::ZExt: {
1217 MVT DestVT = VA.getLocVT();
1218 MVT SrcVT = ArgVT;
1219 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1220 if (!ArgReg)
1221 return false;
1222 break;
1223 }
1224 default:
1225 llvm_unreachable("Unknown arg promotion!");
1226 }
1227
1228 // Now copy/store arg to correct locations.
1229 if (VA.isRegLoc() && !VA.needsCustom()) {
1230 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1231 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1232 CLI.OutRegs.push_back(VA.getLocReg());
1233 } else if (VA.needsCustom()) {
1234 llvm_unreachable("Mips does not use custom args.");
1235 return false;
1236 } else {
1237 //
1238 // FIXME: This path will currently return false. It was copied
1239 // from the AArch64 port and should be essentially fine for Mips too.
1240 // The work to finish up this path will be done in a follow-on patch.
1241 //
1242 assert(VA.isMemLoc() && "Assuming store on stack.");
1243 // Don't emit stores for undef values.
1244 if (isa<UndefValue>(ArgVal))
1245 continue;
1246
1247 // Need to store on the stack.
1248 // FIXME: This alignment is incorrect but this path is disabled
1249 // for now (will return false). We need to determine the right alignment
1250 // based on the normal alignment for the underlying machine type.
1251 //
1252 unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1253
1254 unsigned BEAlign = 0;
1255 if (ArgSize < 8 && !Subtarget->isLittle())
1256 BEAlign = 8 - ArgSize;
1257
1258 Address Addr;
1259 Addr.setKind(Address::RegBase);
1260 Addr.setReg(Mips::SP);
1261 Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1262
1263 Align Alignment = DL.getABITypeAlign(ArgVal->getType());
1264 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1265 MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1266 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1267 (void)(MMO);
1268 // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1269 return false; // can't store on the stack yet.
1270 }
1271 }
1272
1273 return true;
1274 }
1275
finishCall(CallLoweringInfo & CLI,MVT RetVT,unsigned NumBytes)1276 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1277 unsigned NumBytes) {
1278 CallingConv::ID CC = CLI.CallConv;
1279 emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1280 if (RetVT != MVT::isVoid) {
1281 SmallVector<CCValAssign, 16> RVLocs;
1282 MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1283
1284 CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy,
1285 CLI.Symbol ? CLI.Symbol->getName().data()
1286 : nullptr);
1287
1288 // Only handle a single return value.
1289 if (RVLocs.size() != 1)
1290 return false;
1291 // Copy all of the result registers out of their specified physreg.
1292 MVT CopyVT = RVLocs[0].getValVT();
1293 // Special handling for extended integers.
1294 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1295 CopyVT = MVT::i32;
1296
1297 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1298 if (!ResultReg)
1299 return false;
1300 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1301 TII.get(TargetOpcode::COPY),
1302 ResultReg).addReg(RVLocs[0].getLocReg());
1303 CLI.InRegs.push_back(RVLocs[0].getLocReg());
1304
1305 CLI.ResultReg = ResultReg;
1306 CLI.NumResultRegs = 1;
1307 }
1308 return true;
1309 }
1310
fastLowerArguments()1311 bool MipsFastISel::fastLowerArguments() {
1312 LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
1313
1314 if (!FuncInfo.CanLowerReturn) {
1315 LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1316 return false;
1317 }
1318
1319 const Function *F = FuncInfo.Fn;
1320 if (F->isVarArg()) {
1321 LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
1322 return false;
1323 }
1324
1325 CallingConv::ID CC = F->getCallingConv();
1326 if (CC != CallingConv::C) {
1327 LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1328 return false;
1329 }
1330
1331 std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2,
1332 Mips::A3}};
1333 std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}};
1334 std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}};
1335 auto NextGPR32 = GPR32ArgRegs.begin();
1336 auto NextFGR32 = FGR32ArgRegs.begin();
1337 auto NextAFGR64 = AFGR64ArgRegs.begin();
1338
1339 struct AllocatedReg {
1340 const TargetRegisterClass *RC;
1341 unsigned Reg;
1342 AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
1343 : RC(RC), Reg(Reg) {}
1344 };
1345
1346 // Only handle simple cases. i.e. All arguments are directly mapped to
1347 // registers of the appropriate type.
1348 SmallVector<AllocatedReg, 4> Allocation;
1349 for (const auto &FormalArg : F->args()) {
1350 if (FormalArg.hasAttribute(Attribute::InReg) ||
1351 FormalArg.hasAttribute(Attribute::StructRet) ||
1352 FormalArg.hasAttribute(Attribute::ByVal)) {
1353 LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1354 return false;
1355 }
1356
1357 Type *ArgTy = FormalArg.getType();
1358 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
1359 LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1360 return false;
1361 }
1362
1363 EVT ArgVT = TLI.getValueType(DL, ArgTy);
1364 LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": "
1365 << ArgVT.getEVTString() << "\n");
1366 if (!ArgVT.isSimple()) {
1367 LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1368 return false;
1369 }
1370
1371 switch (ArgVT.getSimpleVT().SimpleTy) {
1372 case MVT::i1:
1373 case MVT::i8:
1374 case MVT::i16:
1375 if (!FormalArg.hasAttribute(Attribute::SExt) &&
1376 !FormalArg.hasAttribute(Attribute::ZExt)) {
1377 // It must be any extend, this shouldn't happen for clang-generated IR
1378 // so just fall back on SelectionDAG.
1379 LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1380 return false;
1381 }
1382
1383 if (NextGPR32 == GPR32ArgRegs.end()) {
1384 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1385 return false;
1386 }
1387
1388 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1389 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1390
1391 // Allocating any GPR32 prohibits further use of floating point arguments.
1392 NextFGR32 = FGR32ArgRegs.end();
1393 NextAFGR64 = AFGR64ArgRegs.end();
1394 break;
1395
1396 case MVT::i32:
1397 if (FormalArg.hasAttribute(Attribute::ZExt)) {
1398 // The O32 ABI does not permit a zero-extended i32.
1399 LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1400 return false;
1401 }
1402
1403 if (NextGPR32 == GPR32ArgRegs.end()) {
1404 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1405 return false;
1406 }
1407
1408 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1409 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1410
1411 // Allocating any GPR32 prohibits further use of floating point arguments.
1412 NextFGR32 = FGR32ArgRegs.end();
1413 NextAFGR64 = AFGR64ArgRegs.end();
1414 break;
1415
1416 case MVT::f32:
1417 if (UnsupportedFPMode) {
1418 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1419 return false;
1420 }
1421 if (NextFGR32 == FGR32ArgRegs.end()) {
1422 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1423 return false;
1424 }
1425 LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
1426 Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
1427 // Allocating an FGR32 also allocates the super-register AFGR64, and
1428 // ABI rules require us to skip the corresponding GPR32.
1429 if (NextGPR32 != GPR32ArgRegs.end())
1430 NextGPR32++;
1431 if (NextAFGR64 != AFGR64ArgRegs.end())
1432 NextAFGR64++;
1433 break;
1434
1435 case MVT::f64:
1436 if (UnsupportedFPMode) {
1437 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1438 return false;
1439 }
1440 if (NextAFGR64 == AFGR64ArgRegs.end()) {
1441 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1442 return false;
1443 }
1444 LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
1445 Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
1446 // Allocating an FGR32 also allocates the super-register AFGR64, and
1447 // ABI rules require us to skip the corresponding GPR32 pair.
1448 if (NextGPR32 != GPR32ArgRegs.end())
1449 NextGPR32++;
1450 if (NextGPR32 != GPR32ArgRegs.end())
1451 NextGPR32++;
1452 if (NextFGR32 != FGR32ArgRegs.end())
1453 NextFGR32++;
1454 break;
1455
1456 default:
1457 LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1458 return false;
1459 }
1460 }
1461
1462 for (const auto &FormalArg : F->args()) {
1463 unsigned ArgNo = FormalArg.getArgNo();
1464 unsigned SrcReg = Allocation[ArgNo].Reg;
1465 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC);
1466 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1467 // Without this, EmitLiveInCopies may eliminate the livein if its only
1468 // use is a bitcast (which isn't turned into an instruction).
1469 unsigned ResultReg = createResultReg(Allocation[ArgNo].RC);
1470 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1471 TII.get(TargetOpcode::COPY), ResultReg)
1472 .addReg(DstReg, getKillRegState(true));
1473 updateValueMap(&FormalArg, ResultReg);
1474 }
1475
1476 // Calculate the size of the incoming arguments area.
1477 // We currently reject all the cases where this would be non-zero.
1478 unsigned IncomingArgSizeInBytes = 0;
1479
1480 // Account for the reserved argument area on ABI's that have one (O32).
1481 // It seems strange to do this on the caller side but it's necessary in
1482 // SelectionDAG's implementation.
1483 IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
1484 IncomingArgSizeInBytes);
1485
1486 MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
1487 false);
1488
1489 return true;
1490 }
1491
fastLowerCall(CallLoweringInfo & CLI)1492 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1493 CallingConv::ID CC = CLI.CallConv;
1494 bool IsTailCall = CLI.IsTailCall;
1495 bool IsVarArg = CLI.IsVarArg;
1496 const Value *Callee = CLI.Callee;
1497 MCSymbol *Symbol = CLI.Symbol;
1498
1499 // Do not handle FastCC.
1500 if (CC == CallingConv::Fast)
1501 return false;
1502
1503 // Allow SelectionDAG isel to handle tail calls.
1504 if (IsTailCall)
1505 return false;
1506
1507 // Let SDISel handle vararg functions.
1508 if (IsVarArg)
1509 return false;
1510
1511 // FIXME: Only handle *simple* calls for now.
1512 MVT RetVT;
1513 if (CLI.RetTy->isVoidTy())
1514 RetVT = MVT::isVoid;
1515 else if (!isTypeSupported(CLI.RetTy, RetVT))
1516 return false;
1517
1518 for (auto Flag : CLI.OutFlags)
1519 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1520 return false;
1521
1522 // Set up the argument vectors.
1523 SmallVector<MVT, 16> OutVTs;
1524 OutVTs.reserve(CLI.OutVals.size());
1525
1526 for (auto *Val : CLI.OutVals) {
1527 MVT VT;
1528 if (!isTypeLegal(Val->getType(), VT) &&
1529 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1530 return false;
1531
1532 // We don't handle vector parameters yet.
1533 if (VT.isVector() || VT.getSizeInBits() > 64)
1534 return false;
1535
1536 OutVTs.push_back(VT);
1537 }
1538
1539 Address Addr;
1540 if (!computeCallAddress(Callee, Addr))
1541 return false;
1542
1543 // Handle the arguments now that we've gotten them.
1544 unsigned NumBytes;
1545 if (!processCallArgs(CLI, OutVTs, NumBytes))
1546 return false;
1547
1548 if (!Addr.getGlobalValue())
1549 return false;
1550
1551 // Issue the call.
1552 unsigned DestAddress;
1553 if (Symbol)
1554 DestAddress = materializeExternalCallSym(Symbol);
1555 else
1556 DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1557 emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1558 MachineInstrBuilder MIB =
1559 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
1560 Mips::RA).addReg(Mips::T9);
1561
1562 // Add implicit physical register uses to the call.
1563 for (auto Reg : CLI.OutRegs)
1564 MIB.addReg(Reg, RegState::Implicit);
1565
1566 // Add a register mask with the call-preserved registers.
1567 // Proper defs for return values will be added by setPhysRegsDeadExcept().
1568 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1569
1570 CLI.Call = MIB;
1571
1572 if (EmitJalrReloc && !Subtarget->inMips16Mode()) {
1573 // Attach callee address to the instruction, let asm printer emit
1574 // .reloc R_MIPS_JALR.
1575 if (Symbol)
1576 MIB.addSym(Symbol, MipsII::MO_JALR);
1577 else
1578 MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol(
1579 Addr.getGlobalValue()->getName()), MipsII::MO_JALR);
1580 }
1581
1582 // Finish off the call including any return values.
1583 return finishCall(CLI, RetVT, NumBytes);
1584 }
1585
fastLowerIntrinsicCall(const IntrinsicInst * II)1586 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1587 switch (II->getIntrinsicID()) {
1588 default:
1589 return false;
1590 case Intrinsic::bswap: {
1591 Type *RetTy = II->getCalledFunction()->getReturnType();
1592
1593 MVT VT;
1594 if (!isTypeSupported(RetTy, VT))
1595 return false;
1596
1597 unsigned SrcReg = getRegForValue(II->getOperand(0));
1598 if (SrcReg == 0)
1599 return false;
1600 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1601 if (DestReg == 0)
1602 return false;
1603 if (VT == MVT::i16) {
1604 if (Subtarget->hasMips32r2()) {
1605 emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1606 updateValueMap(II, DestReg);
1607 return true;
1608 } else {
1609 unsigned TempReg[3];
1610 for (int i = 0; i < 3; i++) {
1611 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1612 if (TempReg[i] == 0)
1613 return false;
1614 }
1615 emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1616 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1617 emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1618 emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1619 updateValueMap(II, DestReg);
1620 return true;
1621 }
1622 } else if (VT == MVT::i32) {
1623 if (Subtarget->hasMips32r2()) {
1624 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1625 emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1626 emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1627 updateValueMap(II, DestReg);
1628 return true;
1629 } else {
1630 unsigned TempReg[8];
1631 for (int i = 0; i < 8; i++) {
1632 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1633 if (TempReg[i] == 0)
1634 return false;
1635 }
1636
1637 emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1638 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1639 emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1640 emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1641
1642 emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1643 emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1644
1645 emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1646 emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1647 emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1648 updateValueMap(II, DestReg);
1649 return true;
1650 }
1651 }
1652 return false;
1653 }
1654 case Intrinsic::memcpy:
1655 case Intrinsic::memmove: {
1656 const auto *MTI = cast<MemTransferInst>(II);
1657 // Don't handle volatile.
1658 if (MTI->isVolatile())
1659 return false;
1660 if (!MTI->getLength()->getType()->isIntegerTy(32))
1661 return false;
1662 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1663 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1);
1664 }
1665 case Intrinsic::memset: {
1666 const MemSetInst *MSI = cast<MemSetInst>(II);
1667 // Don't handle volatile.
1668 if (MSI->isVolatile())
1669 return false;
1670 if (!MSI->getLength()->getType()->isIntegerTy(32))
1671 return false;
1672 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
1673 }
1674 }
1675 return false;
1676 }
1677
selectRet(const Instruction * I)1678 bool MipsFastISel::selectRet(const Instruction *I) {
1679 const Function &F = *I->getParent()->getParent();
1680 const ReturnInst *Ret = cast<ReturnInst>(I);
1681
1682 LLVM_DEBUG(dbgs() << "selectRet\n");
1683
1684 if (!FuncInfo.CanLowerReturn)
1685 return false;
1686
1687 // Build a list of return value registers.
1688 SmallVector<unsigned, 4> RetRegs;
1689
1690 if (Ret->getNumOperands() > 0) {
1691 CallingConv::ID CC = F.getCallingConv();
1692
1693 // Do not handle FastCC.
1694 if (CC == CallingConv::Fast)
1695 return false;
1696
1697 SmallVector<ISD::OutputArg, 4> Outs;
1698 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1699
1700 // Analyze operands of the call, assigning locations to each operand.
1701 SmallVector<CCValAssign, 16> ValLocs;
1702 MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1703 I->getContext());
1704 CCAssignFn *RetCC = RetCC_Mips;
1705 CCInfo.AnalyzeReturn(Outs, RetCC);
1706
1707 // Only handle a single return value for now.
1708 if (ValLocs.size() != 1)
1709 return false;
1710
1711 CCValAssign &VA = ValLocs[0];
1712 const Value *RV = Ret->getOperand(0);
1713
1714 // Don't bother handling odd stuff for now.
1715 if ((VA.getLocInfo() != CCValAssign::Full) &&
1716 (VA.getLocInfo() != CCValAssign::BCvt))
1717 return false;
1718
1719 // Only handle register returns for now.
1720 if (!VA.isRegLoc())
1721 return false;
1722
1723 unsigned Reg = getRegForValue(RV);
1724 if (Reg == 0)
1725 return false;
1726
1727 unsigned SrcReg = Reg + VA.getValNo();
1728 Register DestReg = VA.getLocReg();
1729 // Avoid a cross-class copy. This is very unlikely.
1730 if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1731 return false;
1732
1733 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1734 if (!RVEVT.isSimple())
1735 return false;
1736
1737 if (RVEVT.isVector())
1738 return false;
1739
1740 MVT RVVT = RVEVT.getSimpleVT();
1741 if (RVVT == MVT::f128)
1742 return false;
1743
1744 // Do not handle FGR64 returns for now.
1745 if (RVVT == MVT::f64 && UnsupportedFPMode) {
1746 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1747 return false;
1748 }
1749
1750 MVT DestVT = VA.getValVT();
1751 // Special handling for extended integers.
1752 if (RVVT != DestVT) {
1753 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1754 return false;
1755
1756 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1757 bool IsZExt = Outs[0].Flags.isZExt();
1758 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1759 if (SrcReg == 0)
1760 return false;
1761 }
1762 }
1763
1764 // Make the copy.
1765 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1766 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1767
1768 // Add register to return instruction.
1769 RetRegs.push_back(VA.getLocReg());
1770 }
1771 MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1772 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1773 MIB.addReg(RetRegs[i], RegState::Implicit);
1774 return true;
1775 }
1776
selectTrunc(const Instruction * I)1777 bool MipsFastISel::selectTrunc(const Instruction *I) {
1778 // The high bits for a type smaller than the register size are assumed to be
1779 // undefined.
1780 Value *Op = I->getOperand(0);
1781
1782 EVT SrcVT, DestVT;
1783 SrcVT = TLI.getValueType(DL, Op->getType(), true);
1784 DestVT = TLI.getValueType(DL, I->getType(), true);
1785
1786 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1787 return false;
1788 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1789 return false;
1790
1791 unsigned SrcReg = getRegForValue(Op);
1792 if (!SrcReg)
1793 return false;
1794
1795 // Because the high bits are undefined, a truncate doesn't generate
1796 // any code.
1797 updateValueMap(I, SrcReg);
1798 return true;
1799 }
1800
selectIntExt(const Instruction * I)1801 bool MipsFastISel::selectIntExt(const Instruction *I) {
1802 Type *DestTy = I->getType();
1803 Value *Src = I->getOperand(0);
1804 Type *SrcTy = Src->getType();
1805
1806 bool isZExt = isa<ZExtInst>(I);
1807 unsigned SrcReg = getRegForValue(Src);
1808 if (!SrcReg)
1809 return false;
1810
1811 EVT SrcEVT, DestEVT;
1812 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1813 DestEVT = TLI.getValueType(DL, DestTy, true);
1814 if (!SrcEVT.isSimple())
1815 return false;
1816 if (!DestEVT.isSimple())
1817 return false;
1818
1819 MVT SrcVT = SrcEVT.getSimpleVT();
1820 MVT DestVT = DestEVT.getSimpleVT();
1821 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1822
1823 if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1824 return false;
1825 updateValueMap(I, ResultReg);
1826 return true;
1827 }
1828
emitIntSExt32r1(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1829 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1830 unsigned DestReg) {
1831 unsigned ShiftAmt;
1832 switch (SrcVT.SimpleTy) {
1833 default:
1834 return false;
1835 case MVT::i8:
1836 ShiftAmt = 24;
1837 break;
1838 case MVT::i16:
1839 ShiftAmt = 16;
1840 break;
1841 }
1842 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1843 emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1844 emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1845 return true;
1846 }
1847
emitIntSExt32r2(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1848 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1849 unsigned DestReg) {
1850 switch (SrcVT.SimpleTy) {
1851 default:
1852 return false;
1853 case MVT::i8:
1854 emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1855 break;
1856 case MVT::i16:
1857 emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1858 break;
1859 }
1860 return true;
1861 }
1862
emitIntSExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1863 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1864 unsigned DestReg) {
1865 if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1866 return false;
1867 if (Subtarget->hasMips32r2())
1868 return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1869 return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1870 }
1871
emitIntZExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1872 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1873 unsigned DestReg) {
1874 int64_t Imm;
1875
1876 switch (SrcVT.SimpleTy) {
1877 default:
1878 return false;
1879 case MVT::i1:
1880 Imm = 1;
1881 break;
1882 case MVT::i8:
1883 Imm = 0xff;
1884 break;
1885 case MVT::i16:
1886 Imm = 0xffff;
1887 break;
1888 }
1889
1890 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1891 return true;
1892 }
1893
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1894 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1895 unsigned DestReg, bool IsZExt) {
1896 // FastISel does not have plumbing to deal with extensions where the SrcVT or
1897 // DestVT are odd things, so test to make sure that they are both types we can
1898 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1899 // bail out to SelectionDAG.
1900 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1901 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1902 return false;
1903 if (IsZExt)
1904 return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1905 return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1906 }
1907
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool isZExt)1908 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1909 bool isZExt) {
1910 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1911 bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1912 return Success ? DestReg : 0;
1913 }
1914
selectDivRem(const Instruction * I,unsigned ISDOpcode)1915 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1916 EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1917 if (!DestEVT.isSimple())
1918 return false;
1919
1920 MVT DestVT = DestEVT.getSimpleVT();
1921 if (DestVT != MVT::i32)
1922 return false;
1923
1924 unsigned DivOpc;
1925 switch (ISDOpcode) {
1926 default:
1927 return false;
1928 case ISD::SDIV:
1929 case ISD::SREM:
1930 DivOpc = Mips::SDIV;
1931 break;
1932 case ISD::UDIV:
1933 case ISD::UREM:
1934 DivOpc = Mips::UDIV;
1935 break;
1936 }
1937
1938 unsigned Src0Reg = getRegForValue(I->getOperand(0));
1939 unsigned Src1Reg = getRegForValue(I->getOperand(1));
1940 if (!Src0Reg || !Src1Reg)
1941 return false;
1942
1943 emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1944 emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1945
1946 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1947 if (!ResultReg)
1948 return false;
1949
1950 unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1951 ? Mips::MFHI
1952 : Mips::MFLO;
1953 emitInst(MFOpc, ResultReg);
1954
1955 updateValueMap(I, ResultReg);
1956 return true;
1957 }
1958
selectShift(const Instruction * I)1959 bool MipsFastISel::selectShift(const Instruction *I) {
1960 MVT RetVT;
1961
1962 if (!isTypeSupported(I->getType(), RetVT))
1963 return false;
1964
1965 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1966 if (!ResultReg)
1967 return false;
1968
1969 unsigned Opcode = I->getOpcode();
1970 const Value *Op0 = I->getOperand(0);
1971 unsigned Op0Reg = getRegForValue(Op0);
1972 if (!Op0Reg)
1973 return false;
1974
1975 // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1976 if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1977 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1978 if (!TempReg)
1979 return false;
1980
1981 MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1982 bool IsZExt = Opcode == Instruction::LShr;
1983 if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1984 return false;
1985
1986 Op0Reg = TempReg;
1987 }
1988
1989 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1990 uint64_t ShiftVal = C->getZExtValue();
1991
1992 switch (Opcode) {
1993 default:
1994 llvm_unreachable("Unexpected instruction.");
1995 case Instruction::Shl:
1996 Opcode = Mips::SLL;
1997 break;
1998 case Instruction::AShr:
1999 Opcode = Mips::SRA;
2000 break;
2001 case Instruction::LShr:
2002 Opcode = Mips::SRL;
2003 break;
2004 }
2005
2006 emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
2007 updateValueMap(I, ResultReg);
2008 return true;
2009 }
2010
2011 unsigned Op1Reg = getRegForValue(I->getOperand(1));
2012 if (!Op1Reg)
2013 return false;
2014
2015 switch (Opcode) {
2016 default:
2017 llvm_unreachable("Unexpected instruction.");
2018 case Instruction::Shl:
2019 Opcode = Mips::SLLV;
2020 break;
2021 case Instruction::AShr:
2022 Opcode = Mips::SRAV;
2023 break;
2024 case Instruction::LShr:
2025 Opcode = Mips::SRLV;
2026 break;
2027 }
2028
2029 emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
2030 updateValueMap(I, ResultReg);
2031 return true;
2032 }
2033
fastSelectInstruction(const Instruction * I)2034 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
2035 switch (I->getOpcode()) {
2036 default:
2037 break;
2038 case Instruction::Load:
2039 return selectLoad(I);
2040 case Instruction::Store:
2041 return selectStore(I);
2042 case Instruction::SDiv:
2043 if (!selectBinaryOp(I, ISD::SDIV))
2044 return selectDivRem(I, ISD::SDIV);
2045 return true;
2046 case Instruction::UDiv:
2047 if (!selectBinaryOp(I, ISD::UDIV))
2048 return selectDivRem(I, ISD::UDIV);
2049 return true;
2050 case Instruction::SRem:
2051 if (!selectBinaryOp(I, ISD::SREM))
2052 return selectDivRem(I, ISD::SREM);
2053 return true;
2054 case Instruction::URem:
2055 if (!selectBinaryOp(I, ISD::UREM))
2056 return selectDivRem(I, ISD::UREM);
2057 return true;
2058 case Instruction::Shl:
2059 case Instruction::LShr:
2060 case Instruction::AShr:
2061 return selectShift(I);
2062 case Instruction::And:
2063 case Instruction::Or:
2064 case Instruction::Xor:
2065 return selectLogicalOp(I);
2066 case Instruction::Br:
2067 return selectBranch(I);
2068 case Instruction::Ret:
2069 return selectRet(I);
2070 case Instruction::Trunc:
2071 return selectTrunc(I);
2072 case Instruction::ZExt:
2073 case Instruction::SExt:
2074 return selectIntExt(I);
2075 case Instruction::FPTrunc:
2076 return selectFPTrunc(I);
2077 case Instruction::FPExt:
2078 return selectFPExt(I);
2079 case Instruction::FPToSI:
2080 return selectFPToInt(I, /*isSigned*/ true);
2081 case Instruction::FPToUI:
2082 return selectFPToInt(I, /*isSigned*/ false);
2083 case Instruction::ICmp:
2084 case Instruction::FCmp:
2085 return selectCmp(I);
2086 case Instruction::Select:
2087 return selectSelect(I);
2088 }
2089 return false;
2090 }
2091
getRegEnsuringSimpleIntegerWidening(const Value * V,bool IsUnsigned)2092 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
2093 bool IsUnsigned) {
2094 unsigned VReg = getRegForValue(V);
2095 if (VReg == 0)
2096 return 0;
2097 MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
2098
2099 if (VMVT == MVT::i1)
2100 return 0;
2101
2102 if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
2103 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
2104 if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
2105 return 0;
2106 VReg = TempReg;
2107 }
2108 return VReg;
2109 }
2110
simplifyAddress(Address & Addr)2111 void MipsFastISel::simplifyAddress(Address &Addr) {
2112 if (!isInt<16>(Addr.getOffset())) {
2113 unsigned TempReg =
2114 materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
2115 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
2116 emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
2117 Addr.setReg(DestReg);
2118 Addr.setOffset(0);
2119 }
2120 }
2121
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,unsigned Op1)2122 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2123 const TargetRegisterClass *RC,
2124 unsigned Op0, unsigned Op1) {
2125 // We treat the MUL instruction in a special way because it clobbers
2126 // the HI0 & LO0 registers. The TableGen definition of this instruction can
2127 // mark these registers only as implicitly defined. As a result, the
2128 // register allocator runs out of registers when this instruction is
2129 // followed by another instruction that defines the same registers too.
2130 // We can fix this by explicitly marking those registers as dead.
2131 if (MachineInstOpcode == Mips::MUL) {
2132 unsigned ResultReg = createResultReg(RC);
2133 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2134 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2135 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2137 .addReg(Op0)
2138 .addReg(Op1)
2139 .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
2140 .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
2141 return ResultReg;
2142 }
2143
2144 return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op1);
2145 }
2146
2147 namespace llvm {
2148
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)2149 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
2150 const TargetLibraryInfo *libInfo) {
2151 return new MipsFastISel(funcInfo, libInfo);
2152 }
2153
2154 } // end namespace llvm
2155