1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/Support/AlignOf.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Transforms/InstCombine/InstCombiner.h"
34 #include <cassert>
35 #include <utility>
36 
37 using namespace llvm;
38 using namespace PatternMatch;
39 
40 #define DEBUG_TYPE "instcombine"
41 
42 namespace {
43 
44   /// Class representing coefficient of floating-point addend.
45   /// This class needs to be highly efficient, which is especially true for
46   /// the constructor. As of I write this comment, the cost of the default
47   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
48   /// perform write-merging).
49   ///
50   class FAddendCoef {
51   public:
52     // The constructor has to initialize a APFloat, which is unnecessary for
53     // most addends which have coefficient either 1 or -1. So, the constructor
54     // is expensive. In order to avoid the cost of the constructor, we should
55     // reuse some instances whenever possible. The pre-created instances
56     // FAddCombine::Add[0-5] embodies this idea.
57     FAddendCoef() = default;
58     ~FAddendCoef();
59 
60     // If possible, don't define operator+/operator- etc because these
61     // operators inevitably call FAddendCoef's constructor which is not cheap.
62     void operator=(const FAddendCoef &A);
63     void operator+=(const FAddendCoef &A);
64     void operator*=(const FAddendCoef &S);
65 
set(short C)66     void set(short C) {
67       assert(!insaneIntVal(C) && "Insane coefficient");
68       IsFp = false; IntVal = C;
69     }
70 
71     void set(const APFloat& C);
72 
73     void negate();
74 
isZero() const75     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
76     Value *getValue(Type *) const;
77 
isOne() const78     bool isOne() const { return isInt() && IntVal == 1; }
isTwo() const79     bool isTwo() const { return isInt() && IntVal == 2; }
isMinusOne() const80     bool isMinusOne() const { return isInt() && IntVal == -1; }
isMinusTwo() const81     bool isMinusTwo() const { return isInt() && IntVal == -2; }
82 
83   private:
insaneIntVal(int V)84     bool insaneIntVal(int V) { return V > 4 || V < -4; }
85 
getFpValPtr()86     APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
87 
getFpValPtr() const88     const APFloat *getFpValPtr() const {
89       return reinterpret_cast<const APFloat *>(&FpValBuf);
90     }
91 
getFpVal() const92     const APFloat &getFpVal() const {
93       assert(IsFp && BufHasFpVal && "Incorret state");
94       return *getFpValPtr();
95     }
96 
getFpVal()97     APFloat &getFpVal() {
98       assert(IsFp && BufHasFpVal && "Incorret state");
99       return *getFpValPtr();
100     }
101 
isInt() const102     bool isInt() const { return !IsFp; }
103 
104     // If the coefficient is represented by an integer, promote it to a
105     // floating point.
106     void convertToFpType(const fltSemantics &Sem);
107 
108     // Construct an APFloat from a signed integer.
109     // TODO: We should get rid of this function when APFloat can be constructed
110     //       from an *SIGNED* integer.
111     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
112 
113     bool IsFp = false;
114 
115     // True iff FpValBuf contains an instance of APFloat.
116     bool BufHasFpVal = false;
117 
118     // The integer coefficient of an individual addend is either 1 or -1,
119     // and we try to simplify at most 4 addends from neighboring at most
120     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
121     // is overkill of this end.
122     short IntVal = 0;
123 
124     AlignedCharArrayUnion<APFloat> FpValBuf;
125   };
126 
127   /// FAddend is used to represent floating-point addend. An addend is
128   /// represented as <C, V>, where the V is a symbolic value, and C is a
129   /// constant coefficient. A constant addend is represented as <C, 0>.
130   class FAddend {
131   public:
132     FAddend() = default;
133 
operator +=(const FAddend & T)134     void operator+=(const FAddend &T) {
135       assert((Val == T.Val) && "Symbolic-values disagree");
136       Coeff += T.Coeff;
137     }
138 
getSymVal() const139     Value *getSymVal() const { return Val; }
getCoef() const140     const FAddendCoef &getCoef() const { return Coeff; }
141 
isConstant() const142     bool isConstant() const { return Val == nullptr; }
isZero() const143     bool isZero() const { return Coeff.isZero(); }
144 
set(short Coefficient,Value * V)145     void set(short Coefficient, Value *V) {
146       Coeff.set(Coefficient);
147       Val = V;
148     }
set(const APFloat & Coefficient,Value * V)149     void set(const APFloat &Coefficient, Value *V) {
150       Coeff.set(Coefficient);
151       Val = V;
152     }
set(const ConstantFP * Coefficient,Value * V)153     void set(const ConstantFP *Coefficient, Value *V) {
154       Coeff.set(Coefficient->getValueAPF());
155       Val = V;
156     }
157 
negate()158     void negate() { Coeff.negate(); }
159 
160     /// Drill down the U-D chain one step to find the definition of V, and
161     /// try to break the definition into one or two addends.
162     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
163 
164     /// Similar to FAddend::drillDownOneStep() except that the value being
165     /// splitted is the addend itself.
166     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
167 
168   private:
Scale(const FAddendCoef & ScaleAmt)169     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
170 
171     // This addend has the value of "Coeff * Val".
172     Value *Val = nullptr;
173     FAddendCoef Coeff;
174   };
175 
176   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
177   /// with its neighboring at most two instructions.
178   ///
179   class FAddCombine {
180   public:
FAddCombine(InstCombiner::BuilderTy & B)181     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
182 
183     Value *simplify(Instruction *FAdd);
184 
185   private:
186     using AddendVect = SmallVector<const FAddend *, 4>;
187 
188     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
189 
190     /// Convert given addend to a Value
191     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
192 
193     /// Return the number of instructions needed to emit the N-ary addition.
194     unsigned calcInstrNumber(const AddendVect& Vect);
195 
196     Value *createFSub(Value *Opnd0, Value *Opnd1);
197     Value *createFAdd(Value *Opnd0, Value *Opnd1);
198     Value *createFMul(Value *Opnd0, Value *Opnd1);
199     Value *createFNeg(Value *V);
200     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
201     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
202 
203      // Debugging stuff are clustered here.
204     #ifndef NDEBUG
205       unsigned CreateInstrNum;
initCreateInstNum()206       void initCreateInstNum() { CreateInstrNum = 0; }
incCreateInstNum()207       void incCreateInstNum() { CreateInstrNum++; }
208     #else
initCreateInstNum()209       void initCreateInstNum() {}
incCreateInstNum()210       void incCreateInstNum() {}
211     #endif
212 
213     InstCombiner::BuilderTy &Builder;
214     Instruction *Instr = nullptr;
215   };
216 
217 } // end anonymous namespace
218 
219 //===----------------------------------------------------------------------===//
220 //
221 // Implementation of
222 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
223 //
224 //===----------------------------------------------------------------------===//
~FAddendCoef()225 FAddendCoef::~FAddendCoef() {
226   if (BufHasFpVal)
227     getFpValPtr()->~APFloat();
228 }
229 
set(const APFloat & C)230 void FAddendCoef::set(const APFloat& C) {
231   APFloat *P = getFpValPtr();
232 
233   if (isInt()) {
234     // As the buffer is meanless byte stream, we cannot call
235     // APFloat::operator=().
236     new(P) APFloat(C);
237   } else
238     *P = C;
239 
240   IsFp = BufHasFpVal = true;
241 }
242 
convertToFpType(const fltSemantics & Sem)243 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
244   if (!isInt())
245     return;
246 
247   APFloat *P = getFpValPtr();
248   if (IntVal > 0)
249     new(P) APFloat(Sem, IntVal);
250   else {
251     new(P) APFloat(Sem, 0 - IntVal);
252     P->changeSign();
253   }
254   IsFp = BufHasFpVal = true;
255 }
256 
createAPFloatFromInt(const fltSemantics & Sem,int Val)257 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
258   if (Val >= 0)
259     return APFloat(Sem, Val);
260 
261   APFloat T(Sem, 0 - Val);
262   T.changeSign();
263 
264   return T;
265 }
266 
operator =(const FAddendCoef & That)267 void FAddendCoef::operator=(const FAddendCoef &That) {
268   if (That.isInt())
269     set(That.IntVal);
270   else
271     set(That.getFpVal());
272 }
273 
operator +=(const FAddendCoef & That)274 void FAddendCoef::operator+=(const FAddendCoef &That) {
275   RoundingMode RndMode = RoundingMode::NearestTiesToEven;
276   if (isInt() == That.isInt()) {
277     if (isInt())
278       IntVal += That.IntVal;
279     else
280       getFpVal().add(That.getFpVal(), RndMode);
281     return;
282   }
283 
284   if (isInt()) {
285     const APFloat &T = That.getFpVal();
286     convertToFpType(T.getSemantics());
287     getFpVal().add(T, RndMode);
288     return;
289   }
290 
291   APFloat &T = getFpVal();
292   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
293 }
294 
operator *=(const FAddendCoef & That)295 void FAddendCoef::operator*=(const FAddendCoef &That) {
296   if (That.isOne())
297     return;
298 
299   if (That.isMinusOne()) {
300     negate();
301     return;
302   }
303 
304   if (isInt() && That.isInt()) {
305     int Res = IntVal * (int)That.IntVal;
306     assert(!insaneIntVal(Res) && "Insane int value");
307     IntVal = Res;
308     return;
309   }
310 
311   const fltSemantics &Semantic =
312     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
313 
314   if (isInt())
315     convertToFpType(Semantic);
316   APFloat &F0 = getFpVal();
317 
318   if (That.isInt())
319     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
320                 APFloat::rmNearestTiesToEven);
321   else
322     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
323 }
324 
negate()325 void FAddendCoef::negate() {
326   if (isInt())
327     IntVal = 0 - IntVal;
328   else
329     getFpVal().changeSign();
330 }
331 
getValue(Type * Ty) const332 Value *FAddendCoef::getValue(Type *Ty) const {
333   return isInt() ?
334     ConstantFP::get(Ty, float(IntVal)) :
335     ConstantFP::get(Ty->getContext(), getFpVal());
336 }
337 
338 // The definition of <Val>     Addends
339 // =========================================
340 //  A + B                     <1, A>, <1,B>
341 //  A - B                     <1, A>, <1,B>
342 //  0 - B                     <-1, B>
343 //  C * A,                    <C, A>
344 //  A + C                     <1, A> <C, NULL>
345 //  0 +/- 0                   <0, NULL> (corner case)
346 //
347 // Legend: A and B are not constant, C is constant
drillValueDownOneStep(Value * Val,FAddend & Addend0,FAddend & Addend1)348 unsigned FAddend::drillValueDownOneStep
349   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
350   Instruction *I = nullptr;
351   if (!Val || !(I = dyn_cast<Instruction>(Val)))
352     return 0;
353 
354   unsigned Opcode = I->getOpcode();
355 
356   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
357     ConstantFP *C0, *C1;
358     Value *Opnd0 = I->getOperand(0);
359     Value *Opnd1 = I->getOperand(1);
360     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
361       Opnd0 = nullptr;
362 
363     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
364       Opnd1 = nullptr;
365 
366     if (Opnd0) {
367       if (!C0)
368         Addend0.set(1, Opnd0);
369       else
370         Addend0.set(C0, nullptr);
371     }
372 
373     if (Opnd1) {
374       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
375       if (!C1)
376         Addend.set(1, Opnd1);
377       else
378         Addend.set(C1, nullptr);
379       if (Opcode == Instruction::FSub)
380         Addend.negate();
381     }
382 
383     if (Opnd0 || Opnd1)
384       return Opnd0 && Opnd1 ? 2 : 1;
385 
386     // Both operands are zero. Weird!
387     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
388     return 1;
389   }
390 
391   if (I->getOpcode() == Instruction::FMul) {
392     Value *V0 = I->getOperand(0);
393     Value *V1 = I->getOperand(1);
394     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
395       Addend0.set(C, V1);
396       return 1;
397     }
398 
399     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
400       Addend0.set(C, V0);
401       return 1;
402     }
403   }
404 
405   return 0;
406 }
407 
408 // Try to break *this* addend into two addends. e.g. Suppose this addend is
409 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
410 // i.e. <2.3, X> and <2.3, Y>.
drillAddendDownOneStep(FAddend & Addend0,FAddend & Addend1) const411 unsigned FAddend::drillAddendDownOneStep
412   (FAddend &Addend0, FAddend &Addend1) const {
413   if (isConstant())
414     return 0;
415 
416   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
417   if (!BreakNum || Coeff.isOne())
418     return BreakNum;
419 
420   Addend0.Scale(Coeff);
421 
422   if (BreakNum == 2)
423     Addend1.Scale(Coeff);
424 
425   return BreakNum;
426 }
427 
simplify(Instruction * I)428 Value *FAddCombine::simplify(Instruction *I) {
429   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
430          "Expected 'reassoc'+'nsz' instruction");
431 
432   // Currently we are not able to handle vector type.
433   if (I->getType()->isVectorTy())
434     return nullptr;
435 
436   assert((I->getOpcode() == Instruction::FAdd ||
437           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
438 
439   // Save the instruction before calling other member-functions.
440   Instr = I;
441 
442   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
443 
444   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
445 
446   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
447   unsigned Opnd0_ExpNum = 0;
448   unsigned Opnd1_ExpNum = 0;
449 
450   if (!Opnd0.isConstant())
451     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
452 
453   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
454   if (OpndNum == 2 && !Opnd1.isConstant())
455     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
456 
457   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
458   if (Opnd0_ExpNum && Opnd1_ExpNum) {
459     AddendVect AllOpnds;
460     AllOpnds.push_back(&Opnd0_0);
461     AllOpnds.push_back(&Opnd1_0);
462     if (Opnd0_ExpNum == 2)
463       AllOpnds.push_back(&Opnd0_1);
464     if (Opnd1_ExpNum == 2)
465       AllOpnds.push_back(&Opnd1_1);
466 
467     // Compute instruction quota. We should save at least one instruction.
468     unsigned InstQuota = 0;
469 
470     Value *V0 = I->getOperand(0);
471     Value *V1 = I->getOperand(1);
472     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
473                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
474 
475     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
476       return R;
477   }
478 
479   if (OpndNum != 2) {
480     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
481     // splitted into two addends, say "V = X - Y", the instruction would have
482     // been optimized into "I = Y - X" in the previous steps.
483     //
484     const FAddendCoef &CE = Opnd0.getCoef();
485     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
486   }
487 
488   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
489   if (Opnd1_ExpNum) {
490     AddendVect AllOpnds;
491     AllOpnds.push_back(&Opnd0);
492     AllOpnds.push_back(&Opnd1_0);
493     if (Opnd1_ExpNum == 2)
494       AllOpnds.push_back(&Opnd1_1);
495 
496     if (Value *R = simplifyFAdd(AllOpnds, 1))
497       return R;
498   }
499 
500   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
501   if (Opnd0_ExpNum) {
502     AddendVect AllOpnds;
503     AllOpnds.push_back(&Opnd1);
504     AllOpnds.push_back(&Opnd0_0);
505     if (Opnd0_ExpNum == 2)
506       AllOpnds.push_back(&Opnd0_1);
507 
508     if (Value *R = simplifyFAdd(AllOpnds, 1))
509       return R;
510   }
511 
512   return nullptr;
513 }
514 
simplifyFAdd(AddendVect & Addends,unsigned InstrQuota)515 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
516   unsigned AddendNum = Addends.size();
517   assert(AddendNum <= 4 && "Too many addends");
518 
519   // For saving intermediate results;
520   unsigned NextTmpIdx = 0;
521   FAddend TmpResult[3];
522 
523   // Points to the constant addend of the resulting simplified expression.
524   // If the resulting expr has constant-addend, this constant-addend is
525   // desirable to reside at the top of the resulting expression tree. Placing
526   // constant close to supper-expr(s) will potentially reveal some optimization
527   // opportunities in super-expr(s).
528   const FAddend *ConstAdd = nullptr;
529 
530   // Simplified addends are placed <SimpVect>.
531   AddendVect SimpVect;
532 
533   // The outer loop works on one symbolic-value at a time. Suppose the input
534   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
535   // The symbolic-values will be processed in this order: x, y, z.
536   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
537 
538     const FAddend *ThisAddend = Addends[SymIdx];
539     if (!ThisAddend) {
540       // This addend was processed before.
541       continue;
542     }
543 
544     Value *Val = ThisAddend->getSymVal();
545     unsigned StartIdx = SimpVect.size();
546     SimpVect.push_back(ThisAddend);
547 
548     // The inner loop collects addends sharing same symbolic-value, and these
549     // addends will be later on folded into a single addend. Following above
550     // example, if the symbolic value "y" is being processed, the inner loop
551     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552     // be later on folded into "<b1+b2, y>".
553     for (unsigned SameSymIdx = SymIdx + 1;
554          SameSymIdx < AddendNum; SameSymIdx++) {
555       const FAddend *T = Addends[SameSymIdx];
556       if (T && T->getSymVal() == Val) {
557         // Set null such that next iteration of the outer loop will not process
558         // this addend again.
559         Addends[SameSymIdx] = nullptr;
560         SimpVect.push_back(T);
561       }
562     }
563 
564     // If multiple addends share same symbolic value, fold them together.
565     if (StartIdx + 1 != SimpVect.size()) {
566       FAddend &R = TmpResult[NextTmpIdx ++];
567       R = *SimpVect[StartIdx];
568       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569         R += *SimpVect[Idx];
570 
571       // Pop all addends being folded and push the resulting folded addend.
572       SimpVect.resize(StartIdx);
573       if (Val) {
574         if (!R.isZero()) {
575           SimpVect.push_back(&R);
576         }
577       } else {
578         // Don't push constant addend at this time. It will be the last element
579         // of <SimpVect>.
580         ConstAdd = &R;
581       }
582     }
583   }
584 
585   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
586          "out-of-bound access");
587 
588   if (ConstAdd)
589     SimpVect.push_back(ConstAdd);
590 
591   Value *Result;
592   if (!SimpVect.empty())
593     Result = createNaryFAdd(SimpVect, InstrQuota);
594   else {
595     // The addition is folded to 0.0.
596     Result = ConstantFP::get(Instr->getType(), 0.0);
597   }
598 
599   return Result;
600 }
601 
createNaryFAdd(const AddendVect & Opnds,unsigned InstrQuota)602 Value *FAddCombine::createNaryFAdd
603   (const AddendVect &Opnds, unsigned InstrQuota) {
604   assert(!Opnds.empty() && "Expect at least one addend");
605 
606   // Step 1: Check if the # of instructions needed exceeds the quota.
607 
608   unsigned InstrNeeded = calcInstrNumber(Opnds);
609   if (InstrNeeded > InstrQuota)
610     return nullptr;
611 
612   initCreateInstNum();
613 
614   // step 2: Emit the N-ary addition.
615   // Note that at most three instructions are involved in Fadd-InstCombine: the
616   // addition in question, and at most two neighboring instructions.
617   // The resulting optimized addition should have at least one less instruction
618   // than the original addition expression tree. This implies that the resulting
619   // N-ary addition has at most two instructions, and we don't need to worry
620   // about tree-height when constructing the N-ary addition.
621 
622   Value *LastVal = nullptr;
623   bool LastValNeedNeg = false;
624 
625   // Iterate the addends, creating fadd/fsub using adjacent two addends.
626   for (const FAddend *Opnd : Opnds) {
627     bool NeedNeg;
628     Value *V = createAddendVal(*Opnd, NeedNeg);
629     if (!LastVal) {
630       LastVal = V;
631       LastValNeedNeg = NeedNeg;
632       continue;
633     }
634 
635     if (LastValNeedNeg == NeedNeg) {
636       LastVal = createFAdd(LastVal, V);
637       continue;
638     }
639 
640     if (LastValNeedNeg)
641       LastVal = createFSub(V, LastVal);
642     else
643       LastVal = createFSub(LastVal, V);
644 
645     LastValNeedNeg = false;
646   }
647 
648   if (LastValNeedNeg) {
649     LastVal = createFNeg(LastVal);
650   }
651 
652 #ifndef NDEBUG
653   assert(CreateInstrNum == InstrNeeded &&
654          "Inconsistent in instruction numbers");
655 #endif
656 
657   return LastVal;
658 }
659 
createFSub(Value * Opnd0,Value * Opnd1)660 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
661   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
662   if (Instruction *I = dyn_cast<Instruction>(V))
663     createInstPostProc(I);
664   return V;
665 }
666 
createFNeg(Value * V)667 Value *FAddCombine::createFNeg(Value *V) {
668   Value *NewV = Builder.CreateFNeg(V);
669   if (Instruction *I = dyn_cast<Instruction>(NewV))
670     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
671   return NewV;
672 }
673 
createFAdd(Value * Opnd0,Value * Opnd1)674 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
675   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
676   if (Instruction *I = dyn_cast<Instruction>(V))
677     createInstPostProc(I);
678   return V;
679 }
680 
createFMul(Value * Opnd0,Value * Opnd1)681 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
682   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
683   if (Instruction *I = dyn_cast<Instruction>(V))
684     createInstPostProc(I);
685   return V;
686 }
687 
createInstPostProc(Instruction * NewInstr,bool NoNumber)688 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
689   NewInstr->setDebugLoc(Instr->getDebugLoc());
690 
691   // Keep track of the number of instruction created.
692   if (!NoNumber)
693     incCreateInstNum();
694 
695   // Propagate fast-math flags
696   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
697 }
698 
699 // Return the number of instruction needed to emit the N-ary addition.
700 // NOTE: Keep this function in sync with createAddendVal().
calcInstrNumber(const AddendVect & Opnds)701 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
702   unsigned OpndNum = Opnds.size();
703   unsigned InstrNeeded = OpndNum - 1;
704 
705   // The number of addends in the form of "(-1)*x".
706   unsigned NegOpndNum = 0;
707 
708   // Adjust the number of instructions needed to emit the N-ary add.
709   for (const FAddend *Opnd : Opnds) {
710     if (Opnd->isConstant())
711       continue;
712 
713     // The constant check above is really for a few special constant
714     // coefficients.
715     if (isa<UndefValue>(Opnd->getSymVal()))
716       continue;
717 
718     const FAddendCoef &CE = Opnd->getCoef();
719     if (CE.isMinusOne() || CE.isMinusTwo())
720       NegOpndNum++;
721 
722     // Let the addend be "c * x". If "c == +/-1", the value of the addend
723     // is immediately available; otherwise, it needs exactly one instruction
724     // to evaluate the value.
725     if (!CE.isMinusOne() && !CE.isOne())
726       InstrNeeded++;
727   }
728   return InstrNeeded;
729 }
730 
731 // Input Addend        Value           NeedNeg(output)
732 // ================================================================
733 // Constant C          C               false
734 // <+/-1, V>           V               coefficient is -1
735 // <2/-2, V>          "fadd V, V"      coefficient is -2
736 // <C, V>             "fmul V, C"      false
737 //
738 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
createAddendVal(const FAddend & Opnd,bool & NeedNeg)739 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
740   const FAddendCoef &Coeff = Opnd.getCoef();
741 
742   if (Opnd.isConstant()) {
743     NeedNeg = false;
744     return Coeff.getValue(Instr->getType());
745   }
746 
747   Value *OpndVal = Opnd.getSymVal();
748 
749   if (Coeff.isMinusOne() || Coeff.isOne()) {
750     NeedNeg = Coeff.isMinusOne();
751     return OpndVal;
752   }
753 
754   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
755     NeedNeg = Coeff.isMinusTwo();
756     return createFAdd(OpndVal, OpndVal);
757   }
758 
759   NeedNeg = false;
760   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
761 }
762 
763 // Checks if any operand is negative and we can convert add to sub.
764 // This function checks for following negative patterns
765 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
766 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
767 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
checkForNegativeOperand(BinaryOperator & I,InstCombiner::BuilderTy & Builder)768 static Value *checkForNegativeOperand(BinaryOperator &I,
769                                       InstCombiner::BuilderTy &Builder) {
770   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
771 
772   // This function creates 2 instructions to replace ADD, we need at least one
773   // of LHS or RHS to have one use to ensure benefit in transform.
774   if (!LHS->hasOneUse() && !RHS->hasOneUse())
775     return nullptr;
776 
777   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
778   const APInt *C1 = nullptr, *C2 = nullptr;
779 
780   // if ONE is on other side, swap
781   if (match(RHS, m_Add(m_Value(X), m_One())))
782     std::swap(LHS, RHS);
783 
784   if (match(LHS, m_Add(m_Value(X), m_One()))) {
785     // if XOR on other side, swap
786     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
787       std::swap(X, RHS);
788 
789     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
790       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
791       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
792       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
793         Value *NewAnd = Builder.CreateAnd(Z, *C1);
794         return Builder.CreateSub(RHS, NewAnd, "sub");
795       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
796         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
797         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
798         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
799         return Builder.CreateSub(RHS, NewOr, "sub");
800       }
801     }
802   }
803 
804   // Restore LHS and RHS
805   LHS = I.getOperand(0);
806   RHS = I.getOperand(1);
807 
808   // if XOR is on other side, swap
809   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
810     std::swap(LHS, RHS);
811 
812   // C2 is ODD
813   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
814   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
815   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
816     if (C1->countTrailingZeros() == 0)
817       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
818         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
819         return Builder.CreateSub(RHS, NewOr, "sub");
820       }
821   return nullptr;
822 }
823 
824 /// Wrapping flags may allow combining constants separated by an extend.
foldNoWrapAdd(BinaryOperator & Add,InstCombiner::BuilderTy & Builder)825 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
826                                   InstCombiner::BuilderTy &Builder) {
827   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
828   Type *Ty = Add.getType();
829   Constant *Op1C;
830   if (!match(Op1, m_Constant(Op1C)))
831     return nullptr;
832 
833   // Try this match first because it results in an add in the narrow type.
834   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
835   Value *X;
836   const APInt *C1, *C2;
837   if (match(Op1, m_APInt(C1)) &&
838       match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
839       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
840     Constant *NewC =
841         ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
842     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
843   }
844 
845   // More general combining of constants in the wide type.
846   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
847   Constant *NarrowC;
848   if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
849     Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
850     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
851     Value *WideX = Builder.CreateSExt(X, Ty);
852     return BinaryOperator::CreateAdd(WideX, NewC);
853   }
854   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
855   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
856     Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
857     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
858     Value *WideX = Builder.CreateZExt(X, Ty);
859     return BinaryOperator::CreateAdd(WideX, NewC);
860   }
861 
862   return nullptr;
863 }
864 
foldAddWithConstant(BinaryOperator & Add)865 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
866   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
867   Constant *Op1C;
868   if (!match(Op1, m_ImmConstant(Op1C)))
869     return nullptr;
870 
871   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
872     return NV;
873 
874   Value *X;
875   Constant *Op00C;
876 
877   // add (sub C1, X), C2 --> sub (add C1, C2), X
878   if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
879     return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
880 
881   Value *Y;
882 
883   // add (sub X, Y), -1 --> add (not Y), X
884   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
885       match(Op1, m_AllOnes()))
886     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
887 
888   // zext(bool) + C -> bool ? C + 1 : C
889   if (match(Op0, m_ZExt(m_Value(X))) &&
890       X->getType()->getScalarSizeInBits() == 1)
891     return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
892   // sext(bool) + C -> bool ? C - 1 : C
893   if (match(Op0, m_SExt(m_Value(X))) &&
894       X->getType()->getScalarSizeInBits() == 1)
895     return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
896 
897   // ~X + C --> (C-1) - X
898   if (match(Op0, m_Not(m_Value(X))))
899     return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
900 
901   const APInt *C;
902   if (!match(Op1, m_APInt(C)))
903     return nullptr;
904 
905   // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
906   Constant *Op01C;
907   if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) &&
908       haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT))
909     return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
910 
911   // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
912   const APInt *C2;
913   if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
914     return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
915 
916   if (C->isSignMask()) {
917     // If wrapping is not allowed, then the addition must set the sign bit:
918     // X + (signmask) --> X | signmask
919     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
920       return BinaryOperator::CreateOr(Op0, Op1);
921 
922     // If wrapping is allowed, then the addition flips the sign bit of LHS:
923     // X + (signmask) --> X ^ signmask
924     return BinaryOperator::CreateXor(Op0, Op1);
925   }
926 
927   // Is this add the last step in a convoluted sext?
928   // add(zext(xor i16 X, -32768), -32768) --> sext X
929   Type *Ty = Add.getType();
930   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
931       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
932     return CastInst::Create(Instruction::SExt, X, Ty);
933 
934   if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
935     // (X ^ signmask) + C --> (X + (signmask ^ C))
936     if (C2->isSignMask())
937       return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
938 
939     // If X has no high-bits set above an xor mask:
940     // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
941     if (C2->isMask()) {
942       KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
943       if ((*C2 | LHSKnown.Zero).isAllOnesValue())
944         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
945     }
946 
947     // Look for a math+logic pattern that corresponds to sext-in-register of a
948     // value with cleared high bits. Convert that into a pair of shifts:
949     // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
950     // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
951     if (Op0->hasOneUse() && *C2 == -(*C)) {
952       unsigned BitWidth = Ty->getScalarSizeInBits();
953       unsigned ShAmt = 0;
954       if (C->isPowerOf2())
955         ShAmt = BitWidth - C->logBase2() - 1;
956       else if (C2->isPowerOf2())
957         ShAmt = BitWidth - C2->logBase2() - 1;
958       if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
959                                      0, &Add)) {
960         Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
961         Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
962         return BinaryOperator::CreateAShr(NewShl, ShAmtC);
963       }
964     }
965   }
966 
967   if (C->isOneValue() && Op0->hasOneUse()) {
968     // add (sext i1 X), 1 --> zext (not X)
969     // TODO: The smallest IR representation is (select X, 0, 1), and that would
970     // not require the one-use check. But we need to remove a transform in
971     // visitSelect and make sure that IR value tracking for select is equal or
972     // better than for these ops.
973     if (match(Op0, m_SExt(m_Value(X))) &&
974         X->getType()->getScalarSizeInBits() == 1)
975       return new ZExtInst(Builder.CreateNot(X), Ty);
976 
977     // Shifts and add used to flip and mask off the low bit:
978     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
979     const APInt *C3;
980     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
981         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
982       Value *NotX = Builder.CreateNot(X);
983       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
984     }
985   }
986 
987   // If all bits affected by the add are included in a high-bit-mask, do the
988   // add before the mask op:
989   // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00
990   if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) &&
991       C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) {
992     Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C));
993     return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2));
994   }
995 
996   return nullptr;
997 }
998 
999 // Matches multiplication expression Op * C where C is a constant. Returns the
1000 // constant value in C and the other operand in Op. Returns true if such a
1001 // match is found.
MatchMul(Value * E,Value * & Op,APInt & C)1002 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
1003   const APInt *AI;
1004   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
1005     C = *AI;
1006     return true;
1007   }
1008   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
1009     C = APInt(AI->getBitWidth(), 1);
1010     C <<= *AI;
1011     return true;
1012   }
1013   return false;
1014 }
1015 
1016 // Matches remainder expression Op % C where C is a constant. Returns the
1017 // constant value in C and the other operand in Op. Returns the signedness of
1018 // the remainder operation in IsSigned. Returns true if such a match is
1019 // found.
MatchRem(Value * E,Value * & Op,APInt & C,bool & IsSigned)1020 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1021   const APInt *AI;
1022   IsSigned = false;
1023   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1024     IsSigned = true;
1025     C = *AI;
1026     return true;
1027   }
1028   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1029     C = *AI;
1030     return true;
1031   }
1032   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1033     C = *AI + 1;
1034     return true;
1035   }
1036   return false;
1037 }
1038 
1039 // Matches division expression Op / C with the given signedness as indicated
1040 // by IsSigned, where C is a constant. Returns the constant value in C and the
1041 // other operand in Op. Returns true if such a match is found.
MatchDiv(Value * E,Value * & Op,APInt & C,bool IsSigned)1042 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1043   const APInt *AI;
1044   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1045     C = *AI;
1046     return true;
1047   }
1048   if (!IsSigned) {
1049     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1050       C = *AI;
1051       return true;
1052     }
1053     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1054       C = APInt(AI->getBitWidth(), 1);
1055       C <<= *AI;
1056       return true;
1057     }
1058   }
1059   return false;
1060 }
1061 
1062 // Returns whether C0 * C1 with the given signedness overflows.
MulWillOverflow(APInt & C0,APInt & C1,bool IsSigned)1063 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1064   bool overflow;
1065   if (IsSigned)
1066     (void)C0.smul_ov(C1, overflow);
1067   else
1068     (void)C0.umul_ov(C1, overflow);
1069   return overflow;
1070 }
1071 
1072 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1073 // does not overflow.
SimplifyAddWithRemainder(BinaryOperator & I)1074 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
1075   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1076   Value *X, *MulOpV;
1077   APInt C0, MulOpC;
1078   bool IsSigned;
1079   // Match I = X % C0 + MulOpV * C0
1080   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1081        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1082       C0 == MulOpC) {
1083     Value *RemOpV;
1084     APInt C1;
1085     bool Rem2IsSigned;
1086     // Match MulOpC = RemOpV % C1
1087     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1088         IsSigned == Rem2IsSigned) {
1089       Value *DivOpV;
1090       APInt DivOpC;
1091       // Match RemOpV = X / C0
1092       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1093           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1094         Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1095         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1096                         : Builder.CreateURem(X, NewDivisor, "urem");
1097       }
1098     }
1099   }
1100 
1101   return nullptr;
1102 }
1103 
1104 /// Fold
1105 ///   (1 << NBits) - 1
1106 /// Into:
1107 ///   ~(-(1 << NBits))
1108 /// Because a 'not' is better for bit-tracking analysis and other transforms
1109 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
canonicalizeLowbitMask(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1110 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1111                                            InstCombiner::BuilderTy &Builder) {
1112   Value *NBits;
1113   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1114     return nullptr;
1115 
1116   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1117   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1118   // Be wary of constant folding.
1119   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1120     // Always NSW. But NUW propagates from `add`.
1121     BOp->setHasNoSignedWrap();
1122     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1123   }
1124 
1125   return BinaryOperator::CreateNot(NotMask, I.getName());
1126 }
1127 
foldToUnsignedSaturatedAdd(BinaryOperator & I)1128 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1129   assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1130   Type *Ty = I.getType();
1131   auto getUAddSat = [&]() {
1132     return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1133   };
1134 
1135   // add (umin X, ~Y), Y --> uaddsat X, Y
1136   Value *X, *Y;
1137   if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1138                         m_Deferred(Y))))
1139     return CallInst::Create(getUAddSat(), { X, Y });
1140 
1141   // add (umin X, ~C), C --> uaddsat X, C
1142   const APInt *C, *NotC;
1143   if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1144       *C == ~*NotC)
1145     return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1146 
1147   return nullptr;
1148 }
1149 
1150 Instruction *InstCombinerImpl::
canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(BinaryOperator & I)1151     canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1152         BinaryOperator &I) {
1153   assert((I.getOpcode() == Instruction::Add ||
1154           I.getOpcode() == Instruction::Or ||
1155           I.getOpcode() == Instruction::Sub) &&
1156          "Expecting add/or/sub instruction");
1157 
1158   // We have a subtraction/addition between a (potentially truncated) *logical*
1159   // right-shift of X and a "select".
1160   Value *X, *Select;
1161   Instruction *LowBitsToSkip, *Extract;
1162   if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1163                                m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1164                                m_Instruction(Extract))),
1165                            m_Value(Select))))
1166     return nullptr;
1167 
1168   // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1169   if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1170     return nullptr;
1171 
1172   Type *XTy = X->getType();
1173   bool HadTrunc = I.getType() != XTy;
1174 
1175   // If there was a truncation of extracted value, then we'll need to produce
1176   // one extra instruction, so we need to ensure one instruction will go away.
1177   if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1178     return nullptr;
1179 
1180   // Extraction should extract high NBits bits, with shift amount calculated as:
1181   //   low bits to skip = shift bitwidth - high bits to extract
1182   // The shift amount itself may be extended, and we need to look past zero-ext
1183   // when matching NBits, that will matter for matching later.
1184   Constant *C;
1185   Value *NBits;
1186   if (!match(
1187           LowBitsToSkip,
1188           m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1189       !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1190                                    APInt(C->getType()->getScalarSizeInBits(),
1191                                          X->getType()->getScalarSizeInBits()))))
1192     return nullptr;
1193 
1194   // Sign-extending value can be zero-extended if we `sub`tract it,
1195   // or sign-extended otherwise.
1196   auto SkipExtInMagic = [&I](Value *&V) {
1197     if (I.getOpcode() == Instruction::Sub)
1198       match(V, m_ZExtOrSelf(m_Value(V)));
1199     else
1200       match(V, m_SExtOrSelf(m_Value(V)));
1201   };
1202 
1203   // Now, finally validate the sign-extending magic.
1204   // `select` itself may be appropriately extended, look past that.
1205   SkipExtInMagic(Select);
1206 
1207   ICmpInst::Predicate Pred;
1208   const APInt *Thr;
1209   Value *SignExtendingValue, *Zero;
1210   bool ShouldSignext;
1211   // It must be a select between two values we will later establish to be a
1212   // sign-extending value and a zero constant. The condition guarding the
1213   // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1214   if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1215                               m_Value(SignExtendingValue), m_Value(Zero))) ||
1216       !isSignBitCheck(Pred, *Thr, ShouldSignext))
1217     return nullptr;
1218 
1219   // icmp-select pair is commutative.
1220   if (!ShouldSignext)
1221     std::swap(SignExtendingValue, Zero);
1222 
1223   // If we should not perform sign-extension then we must add/or/subtract zero.
1224   if (!match(Zero, m_Zero()))
1225     return nullptr;
1226   // Otherwise, it should be some constant, left-shifted by the same NBits we
1227   // had in `lshr`. Said left-shift can also be appropriately extended.
1228   // Again, we must look past zero-ext when looking for NBits.
1229   SkipExtInMagic(SignExtendingValue);
1230   Constant *SignExtendingValueBaseConstant;
1231   if (!match(SignExtendingValue,
1232              m_Shl(m_Constant(SignExtendingValueBaseConstant),
1233                    m_ZExtOrSelf(m_Specific(NBits)))))
1234     return nullptr;
1235   // If we `sub`, then the constant should be one, else it should be all-ones.
1236   if (I.getOpcode() == Instruction::Sub
1237           ? !match(SignExtendingValueBaseConstant, m_One())
1238           : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1239     return nullptr;
1240 
1241   auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1242                                              Extract->getName() + ".sext");
1243   NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1244   if (!HadTrunc)
1245     return NewAShr;
1246 
1247   Builder.Insert(NewAShr);
1248   return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1249 }
1250 
1251 /// This is a specialization of a more general transform from
1252 /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally
1253 /// for multi-use cases or propagating nsw/nuw, then we would not need this.
factorizeMathWithShlOps(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1254 static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1255                                             InstCombiner::BuilderTy &Builder) {
1256   // TODO: Also handle mul by doubling the shift amount?
1257   assert((I.getOpcode() == Instruction::Add ||
1258           I.getOpcode() == Instruction::Sub) &&
1259          "Expected add/sub");
1260   auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1261   auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1262   if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1263     return nullptr;
1264 
1265   Value *X, *Y, *ShAmt;
1266   if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1267       !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1268     return nullptr;
1269 
1270   // No-wrap propagates only when all ops have no-wrap.
1271   bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1272                 Op1->hasNoSignedWrap();
1273   bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1274                 Op1->hasNoUnsignedWrap();
1275 
1276   // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1277   Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1278   if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1279     NewI->setHasNoSignedWrap(HasNSW);
1280     NewI->setHasNoUnsignedWrap(HasNUW);
1281   }
1282   auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1283   NewShl->setHasNoSignedWrap(HasNSW);
1284   NewShl->setHasNoUnsignedWrap(HasNUW);
1285   return NewShl;
1286 }
1287 
visitAdd(BinaryOperator & I)1288 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1289   if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1290                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1291                                  SQ.getWithInstruction(&I)))
1292     return replaceInstUsesWith(I, V);
1293 
1294   if (SimplifyAssociativeOrCommutative(I))
1295     return &I;
1296 
1297   if (Instruction *X = foldVectorBinop(I))
1298     return X;
1299 
1300   // (A*B)+(A*C) -> A*(B+C) etc
1301   if (Value *V = SimplifyUsingDistributiveLaws(I))
1302     return replaceInstUsesWith(I, V);
1303 
1304   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1305     return R;
1306 
1307   if (Instruction *X = foldAddWithConstant(I))
1308     return X;
1309 
1310   if (Instruction *X = foldNoWrapAdd(I, Builder))
1311     return X;
1312 
1313   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1314   Type *Ty = I.getType();
1315   if (Ty->isIntOrIntVectorTy(1))
1316     return BinaryOperator::CreateXor(LHS, RHS);
1317 
1318   // X + X --> X << 1
1319   if (LHS == RHS) {
1320     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1321     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1322     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1323     return Shl;
1324   }
1325 
1326   Value *A, *B;
1327   if (match(LHS, m_Neg(m_Value(A)))) {
1328     // -A + -B --> -(A + B)
1329     if (match(RHS, m_Neg(m_Value(B))))
1330       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1331 
1332     // -A + B --> B - A
1333     return BinaryOperator::CreateSub(RHS, A);
1334   }
1335 
1336   // A + -B  -->  A - B
1337   if (match(RHS, m_Neg(m_Value(B))))
1338     return BinaryOperator::CreateSub(LHS, B);
1339 
1340   if (Value *V = checkForNegativeOperand(I, Builder))
1341     return replaceInstUsesWith(I, V);
1342 
1343   // (A + 1) + ~B --> A - B
1344   // ~B + (A + 1) --> A - B
1345   // (~B + A) + 1 --> A - B
1346   // (A + ~B) + 1 --> A - B
1347   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1348       match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1349     return BinaryOperator::CreateSub(A, B);
1350 
1351   // (A + RHS) + RHS --> A + (RHS << 1)
1352   if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1353     return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1354 
1355   // LHS + (A + LHS) --> A + (LHS << 1)
1356   if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1357     return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1358 
1359   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1360   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1361 
1362   // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1363   const APInt *C1, *C2;
1364   if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1365     APInt one(C2->getBitWidth(), 1);
1366     APInt minusC1 = -(*C1);
1367     if (minusC1 == (one << *C2)) {
1368       Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1369       return BinaryOperator::CreateSRem(RHS, NewRHS);
1370     }
1371   }
1372 
1373   // Disable this transformation for ISPC SPIR-V
1374   if (!Triple(I.getModule()->getTargetTriple()).isSPIR()) {
1375     // A+B --> A|B iff A and B have no bits set in common.
1376     if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1377       return BinaryOperator::CreateOr(LHS, RHS);
1378   }
1379 
1380   // add (select X 0 (sub n A)) A  -->  select X A n
1381   {
1382     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1383     Value *A = RHS;
1384     if (!SI) {
1385       SI = dyn_cast<SelectInst>(RHS);
1386       A = LHS;
1387     }
1388     if (SI && SI->hasOneUse()) {
1389       Value *TV = SI->getTrueValue();
1390       Value *FV = SI->getFalseValue();
1391       Value *N;
1392 
1393       // Can we fold the add into the argument of the select?
1394       // We check both true and false select arguments for a matching subtract.
1395       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1396         // Fold the add into the true select value.
1397         return SelectInst::Create(SI->getCondition(), N, A);
1398 
1399       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1400         // Fold the add into the false select value.
1401         return SelectInst::Create(SI->getCondition(), A, N);
1402     }
1403   }
1404 
1405   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1406     return Ext;
1407 
1408   // (add (xor A, B) (and A, B)) --> (or A, B)
1409   // (add (and A, B) (xor A, B)) --> (or A, B)
1410   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1411                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1412     return BinaryOperator::CreateOr(A, B);
1413 
1414   // (add (or A, B) (and A, B)) --> (add A, B)
1415   // (add (and A, B) (or A, B)) --> (add A, B)
1416   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1417                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1418     // Replacing operands in-place to preserve nuw/nsw flags.
1419     replaceOperand(I, 0, A);
1420     replaceOperand(I, 1, B);
1421     return &I;
1422   }
1423 
1424   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1425   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1426   // computeKnownBits.
1427   bool Changed = false;
1428   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1429     Changed = true;
1430     I.setHasNoSignedWrap(true);
1431   }
1432   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1433     Changed = true;
1434     I.setHasNoUnsignedWrap(true);
1435   }
1436 
1437   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1438     return V;
1439 
1440   if (Instruction *V =
1441           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1442     return V;
1443 
1444   if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1445     return SatAdd;
1446 
1447   // usub.sat(A, B) + B => umax(A, B)
1448   if (match(&I, m_c_BinOp(
1449           m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1450           m_Deferred(B)))) {
1451     return replaceInstUsesWith(I,
1452         Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1453   }
1454 
1455   // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1456   if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1457       match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1458       haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT))
1459     return replaceInstUsesWith(
1460         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1461                                    {Builder.CreateOr(A, B)}));
1462 
1463   return Changed ? &I : nullptr;
1464 }
1465 
1466 /// Eliminate an op from a linear interpolation (lerp) pattern.
factorizeLerp(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1467 static Instruction *factorizeLerp(BinaryOperator &I,
1468                                   InstCombiner::BuilderTy &Builder) {
1469   Value *X, *Y, *Z;
1470   if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1471                                             m_OneUse(m_FSub(m_FPOne(),
1472                                                             m_Value(Z))))),
1473                           m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1474     return nullptr;
1475 
1476   // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1477   Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1478   Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1479   return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1480 }
1481 
1482 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
factorizeFAddFSub(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1483 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1484                                       InstCombiner::BuilderTy &Builder) {
1485   assert((I.getOpcode() == Instruction::FAdd ||
1486           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1487   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1488          "FP factorization requires FMF");
1489 
1490   if (Instruction *Lerp = factorizeLerp(I, Builder))
1491     return Lerp;
1492 
1493   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1494   Value *X, *Y, *Z;
1495   bool IsFMul;
1496   if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1497        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1498       (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1499        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1500     IsFMul = true;
1501   else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1502            match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1503     IsFMul = false;
1504   else
1505     return nullptr;
1506 
1507   // (X * Z) + (Y * Z) --> (X + Y) * Z
1508   // (X * Z) - (Y * Z) --> (X - Y) * Z
1509   // (X / Z) + (Y / Z) --> (X + Y) / Z
1510   // (X / Z) - (Y / Z) --> (X - Y) / Z
1511   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1512   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1513                      : Builder.CreateFSubFMF(X, Y, &I);
1514 
1515   // Bail out if we just created a denormal constant.
1516   // TODO: This is copied from a previous implementation. Is it necessary?
1517   const APFloat *C;
1518   if (match(XY, m_APFloat(C)) && !C->isNormal())
1519     return nullptr;
1520 
1521   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1522                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1523 }
1524 
visitFAdd(BinaryOperator & I)1525 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1526   if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1527                                   I.getFastMathFlags(),
1528                                   SQ.getWithInstruction(&I)))
1529     return replaceInstUsesWith(I, V);
1530 
1531   if (SimplifyAssociativeOrCommutative(I))
1532     return &I;
1533 
1534   if (Instruction *X = foldVectorBinop(I))
1535     return X;
1536 
1537   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1538     return FoldedFAdd;
1539 
1540   // (-X) + Y --> Y - X
1541   Value *X, *Y;
1542   if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1543     return BinaryOperator::CreateFSubFMF(Y, X, &I);
1544 
1545   // Similar to above, but look through fmul/fdiv for the negated term.
1546   // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1547   Value *Z;
1548   if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1549                          m_Value(Z)))) {
1550     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1551     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1552   }
1553   // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1554   // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1555   if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1556                          m_Value(Z))) ||
1557       match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1558                          m_Value(Z)))) {
1559     Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1560     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1561   }
1562 
1563   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1564   // integer add followed by a promotion.
1565   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1566   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1567     Value *LHSIntVal = LHSConv->getOperand(0);
1568     Type *FPType = LHSConv->getType();
1569 
1570     // TODO: This check is overly conservative. In many cases known bits
1571     // analysis can tell us that the result of the addition has less significant
1572     // bits than the integer type can hold.
1573     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1574       Type *FScalarTy = FTy->getScalarType();
1575       Type *IScalarTy = ITy->getScalarType();
1576 
1577       // Do we have enough bits in the significand to represent the result of
1578       // the integer addition?
1579       unsigned MaxRepresentableBits =
1580           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1581       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1582     };
1583 
1584     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1585     // ... if the constant fits in the integer value.  This is useful for things
1586     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1587     // requires a constant pool load, and generally allows the add to be better
1588     // instcombined.
1589     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1590       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1591         Constant *CI =
1592           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1593         if (LHSConv->hasOneUse() &&
1594             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1595             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1596           // Insert the new integer add.
1597           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1598           return new SIToFPInst(NewAdd, I.getType());
1599         }
1600       }
1601 
1602     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1603     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1604       Value *RHSIntVal = RHSConv->getOperand(0);
1605       // It's enough to check LHS types only because we require int types to
1606       // be the same for this transform.
1607       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1608         // Only do this if x/y have the same type, if at least one of them has a
1609         // single use (so we don't increase the number of int->fp conversions),
1610         // and if the integer add will not overflow.
1611         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1612             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1613             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1614           // Insert the new integer add.
1615           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1616           return new SIToFPInst(NewAdd, I.getType());
1617         }
1618       }
1619     }
1620   }
1621 
1622   // Handle specials cases for FAdd with selects feeding the operation
1623   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1624     return replaceInstUsesWith(I, V);
1625 
1626   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1627     if (Instruction *F = factorizeFAddFSub(I, Builder))
1628       return F;
1629 
1630     // Try to fold fadd into start value of reduction intrinsic.
1631     if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1632                                m_AnyZeroFP(), m_Value(X))),
1633                            m_Value(Y)))) {
1634       // fadd (rdx 0.0, X), Y --> rdx Y, X
1635       return replaceInstUsesWith(
1636           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1637                                      {X->getType()}, {Y, X}, &I));
1638     }
1639     const APFloat *StartC, *C;
1640     if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1641                        m_APFloat(StartC), m_Value(X)))) &&
1642         match(RHS, m_APFloat(C))) {
1643       // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1644       Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
1645       return replaceInstUsesWith(
1646           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1647                                      {X->getType()}, {NewStartC, X}, &I));
1648     }
1649 
1650     if (Value *V = FAddCombine(Builder).simplify(&I))
1651       return replaceInstUsesWith(I, V);
1652   }
1653 
1654   return nullptr;
1655 }
1656 
1657 /// Optimize pointer differences into the same array into a size.  Consider:
1658 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1659 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
OptimizePointerDifference(Value * LHS,Value * RHS,Type * Ty,bool IsNUW)1660 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
1661                                                    Type *Ty, bool IsNUW) {
1662   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1663   // this.
1664   bool Swapped = false;
1665   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1666   if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
1667     std::swap(LHS, RHS);
1668     Swapped = true;
1669   }
1670 
1671   // Require at least one GEP with a common base pointer on both sides.
1672   if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1673     // (gep X, ...) - X
1674     if (LHSGEP->getOperand(0) == RHS) {
1675       GEP1 = LHSGEP;
1676     } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1677       // (gep X, ...) - (gep X, ...)
1678       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1679           RHSGEP->getOperand(0)->stripPointerCasts()) {
1680         GEP1 = LHSGEP;
1681         GEP2 = RHSGEP;
1682       }
1683     }
1684   }
1685 
1686   if (!GEP1)
1687     return nullptr;
1688 
1689   if (GEP2) {
1690     // (gep X, ...) - (gep X, ...)
1691     //
1692     // Avoid duplicating the arithmetic if there are more than one non-constant
1693     // indices between the two GEPs and either GEP has a non-constant index and
1694     // multiple users. If zero non-constant index, the result is a constant and
1695     // there is no duplication. If one non-constant index, the result is an add
1696     // or sub with a constant, which is no larger than the original code, and
1697     // there's no duplicated arithmetic, even if either GEP has multiple
1698     // users. If more than one non-constant indices combined, as long as the GEP
1699     // with at least one non-constant index doesn't have multiple users, there
1700     // is no duplication.
1701     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1702     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1703     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1704         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1705          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1706       return nullptr;
1707     }
1708   }
1709 
1710   // Emit the offset of the GEP and an intptr_t.
1711   Value *Result = EmitGEPOffset(GEP1);
1712 
1713   // If this is a single inbounds GEP and the original sub was nuw,
1714   // then the final multiplication is also nuw.
1715   if (auto *I = dyn_cast<Instruction>(Result))
1716     if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
1717         I->getOpcode() == Instruction::Mul)
1718       I->setHasNoUnsignedWrap();
1719 
1720   // If we have a 2nd GEP of the same base pointer, subtract the offsets.
1721   // If both GEPs are inbounds, then the subtract does not have signed overflow.
1722   if (GEP2) {
1723     Value *Offset = EmitGEPOffset(GEP2);
1724     Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
1725                                GEP1->isInBounds() && GEP2->isInBounds());
1726   }
1727 
1728   // If we have p - gep(p, ...)  then we have to negate the result.
1729   if (Swapped)
1730     Result = Builder.CreateNeg(Result, "diff.neg");
1731 
1732   return Builder.CreateIntCast(Result, Ty, true);
1733 }
1734 
visitSub(BinaryOperator & I)1735 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
1736   if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1737                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1738                                  SQ.getWithInstruction(&I)))
1739     return replaceInstUsesWith(I, V);
1740 
1741   if (Instruction *X = foldVectorBinop(I))
1742     return X;
1743 
1744   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1745 
1746   // If this is a 'B = x-(-A)', change to B = x+A.
1747   // We deal with this without involving Negator to preserve NSW flag.
1748   if (Value *V = dyn_castNegVal(Op1)) {
1749     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1750 
1751     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1752       assert(BO->getOpcode() == Instruction::Sub &&
1753              "Expected a subtraction operator!");
1754       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1755         Res->setHasNoSignedWrap(true);
1756     } else {
1757       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1758         Res->setHasNoSignedWrap(true);
1759     }
1760 
1761     return Res;
1762   }
1763 
1764   // Try this before Negator to preserve NSW flag.
1765   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1766     return R;
1767 
1768   Constant *C;
1769   if (match(Op0, m_ImmConstant(C))) {
1770     Value *X;
1771     Constant *C2;
1772 
1773     // C-(X+C2) --> (C-C2)-X
1774     if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2))))
1775       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1776   }
1777 
1778   auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
1779     if (Instruction *Ext = narrowMathIfNoOverflow(I))
1780       return Ext;
1781 
1782     bool Changed = false;
1783     if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1784       Changed = true;
1785       I.setHasNoSignedWrap(true);
1786     }
1787     if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1788       Changed = true;
1789       I.setHasNoUnsignedWrap(true);
1790     }
1791 
1792     return Changed ? &I : nullptr;
1793   };
1794 
1795   // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1796   // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1797   // a pure negation used by a select that looks like abs/nabs.
1798   bool IsNegation = match(Op0, m_ZeroInt());
1799   if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
1800         const Instruction *UI = dyn_cast<Instruction>(U);
1801         if (!UI)
1802           return false;
1803         return match(UI,
1804                      m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
1805                match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
1806       })) {
1807     if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
1808       return BinaryOperator::CreateAdd(NegOp1, Op0);
1809   }
1810   if (IsNegation)
1811     return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1812 
1813   // (A*B)-(A*C) -> A*(B-C) etc
1814   if (Value *V = SimplifyUsingDistributiveLaws(I))
1815     return replaceInstUsesWith(I, V);
1816 
1817   if (I.getType()->isIntOrIntVectorTy(1))
1818     return BinaryOperator::CreateXor(Op0, Op1);
1819 
1820   // Replace (-1 - A) with (~A).
1821   if (match(Op0, m_AllOnes()))
1822     return BinaryOperator::CreateNot(Op1);
1823 
1824   // (~X) - (~Y) --> Y - X
1825   Value *X, *Y;
1826   if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1827     return BinaryOperator::CreateSub(Y, X);
1828 
1829   // (X + -1) - Y --> ~Y + X
1830   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1831     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1832 
1833   // Reassociate sub/add sequences to create more add instructions and
1834   // reduce dependency chains:
1835   // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
1836   Value *Z;
1837   if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
1838                                   m_Value(Z))))) {
1839     Value *XZ = Builder.CreateAdd(X, Z);
1840     Value *YW = Builder.CreateAdd(Y, Op1);
1841     return BinaryOperator::CreateSub(XZ, YW);
1842   }
1843 
1844   // ((X - Y) - Op1)  -->  X - (Y + Op1)
1845   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
1846     Value *Add = Builder.CreateAdd(Y, Op1);
1847     return BinaryOperator::CreateSub(X, Add);
1848   }
1849 
1850   auto m_AddRdx = [](Value *&Vec) {
1851     return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
1852   };
1853   Value *V0, *V1;
1854   if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
1855       V0->getType() == V1->getType()) {
1856     // Difference of sums is sum of differences:
1857     // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
1858     Value *Sub = Builder.CreateSub(V0, V1);
1859     Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
1860                                          {Sub->getType()}, {Sub});
1861     return replaceInstUsesWith(I, Rdx);
1862   }
1863 
1864   if (Constant *C = dyn_cast<Constant>(Op0)) {
1865     Value *X;
1866     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1867       // C - (zext bool) --> bool ? C - 1 : C
1868       return SelectInst::Create(X, InstCombiner::SubOne(C), C);
1869     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1870       // C - (sext bool) --> bool ? C + 1 : C
1871       return SelectInst::Create(X, InstCombiner::AddOne(C), C);
1872 
1873     // C - ~X == X + (1+C)
1874     if (match(Op1, m_Not(m_Value(X))))
1875       return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
1876 
1877     // Try to fold constant sub into select arguments.
1878     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1879       if (Instruction *R = FoldOpIntoSelect(I, SI))
1880         return R;
1881 
1882     // Try to fold constant sub into PHI values.
1883     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1884       if (Instruction *R = foldOpIntoPhi(I, PN))
1885         return R;
1886 
1887     Constant *C2;
1888 
1889     // C-(C2-X) --> X+(C-C2)
1890     if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
1891       return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1892   }
1893 
1894   const APInt *Op0C;
1895   if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) {
1896     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1897     // zero.
1898     KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1899     if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1900       return BinaryOperator::CreateXor(Op1, Op0);
1901   }
1902 
1903   {
1904     Value *Y;
1905     // X-(X+Y) == -Y    X-(Y+X) == -Y
1906     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1907       return BinaryOperator::CreateNeg(Y);
1908 
1909     // (X-Y)-X == -Y
1910     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1911       return BinaryOperator::CreateNeg(Y);
1912   }
1913 
1914   // (sub (or A, B) (and A, B)) --> (xor A, B)
1915   {
1916     Value *A, *B;
1917     if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1918         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1919       return BinaryOperator::CreateXor(A, B);
1920   }
1921 
1922   // (sub (add A, B) (or A, B)) --> (and A, B)
1923   {
1924     Value *A, *B;
1925     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
1926         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
1927       return BinaryOperator::CreateAnd(A, B);
1928   }
1929 
1930   // (sub (add A, B) (and A, B)) --> (or A, B)
1931   {
1932     Value *A, *B;
1933     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
1934         match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
1935       return BinaryOperator::CreateOr(A, B);
1936   }
1937 
1938   // (sub (and A, B) (or A, B)) --> neg (xor A, B)
1939   {
1940     Value *A, *B;
1941     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1942         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1943         (Op0->hasOneUse() || Op1->hasOneUse()))
1944       return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
1945   }
1946 
1947   // (sub (or A, B), (xor A, B)) --> (and A, B)
1948   {
1949     Value *A, *B;
1950     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1951         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1952       return BinaryOperator::CreateAnd(A, B);
1953   }
1954 
1955   // (sub (xor A, B) (or A, B)) --> neg (and A, B)
1956   {
1957     Value *A, *B;
1958     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1959         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1960         (Op0->hasOneUse() || Op1->hasOneUse()))
1961       return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
1962   }
1963 
1964   {
1965     Value *Y;
1966     // ((X | Y) - X) --> (~X & Y)
1967     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1968       return BinaryOperator::CreateAnd(
1969           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1970   }
1971 
1972   {
1973     // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
1974     Value *X;
1975     if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
1976                                     m_OneUse(m_Neg(m_Value(X))))))) {
1977       return BinaryOperator::CreateNeg(Builder.CreateAnd(
1978           Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
1979     }
1980   }
1981 
1982   {
1983     // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
1984     Constant *C;
1985     if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
1986       return BinaryOperator::CreateNeg(
1987           Builder.CreateAnd(Op1, Builder.CreateNot(C)));
1988     }
1989   }
1990 
1991   {
1992     // If we have a subtraction between some value and a select between
1993     // said value and something else, sink subtraction into select hands, i.e.:
1994     //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
1995     //     ->
1996     //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
1997     //  or
1998     //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
1999     //     ->
2000     //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2001     // This will result in select between new subtraction and 0.
2002     auto SinkSubIntoSelect =
2003         [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2004                            auto SubBuilder) -> Instruction * {
2005       Value *Cond, *TrueVal, *FalseVal;
2006       if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2007                                            m_Value(FalseVal)))))
2008         return nullptr;
2009       if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2010         return nullptr;
2011       // While it is really tempting to just create two subtractions and let
2012       // InstCombine fold one of those to 0, it isn't possible to do so
2013       // because of worklist visitation order. So ugly it is.
2014       bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2015       Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2016       Constant *Zero = Constant::getNullValue(Ty);
2017       SelectInst *NewSel =
2018           SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2019                              OtherHandOfSubIsTrueVal ? NewSub : Zero);
2020       // Preserve prof metadata if any.
2021       NewSel->copyMetadata(cast<Instruction>(*Select));
2022       return NewSel;
2023     };
2024     if (Instruction *NewSel = SinkSubIntoSelect(
2025             /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2026             [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2027               return Builder->CreateSub(OtherHandOfSelect,
2028                                         /*OtherHandOfSub=*/Op1);
2029             }))
2030       return NewSel;
2031     if (Instruction *NewSel = SinkSubIntoSelect(
2032             /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2033             [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2034               return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2035                                         OtherHandOfSelect);
2036             }))
2037       return NewSel;
2038   }
2039 
2040   // (X - (X & Y))   -->   (X & ~Y)
2041   if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2042       (Op1->hasOneUse() || isa<Constant>(Y)))
2043     return BinaryOperator::CreateAnd(
2044         Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
2045 
2046   {
2047     // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
2048     // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
2049     // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
2050     // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
2051     // So long as O here is freely invertible, this will be neutral or a win.
2052     Value *LHS, *RHS, *A;
2053     Value *NotA = Op0, *MinMax = Op1;
2054     SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
2055     if (!SelectPatternResult::isMinOrMax(SPF)) {
2056       NotA = Op1;
2057       MinMax = Op0;
2058       SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
2059     }
2060     if (SelectPatternResult::isMinOrMax(SPF) &&
2061         match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
2062       if (NotA == LHS)
2063         std::swap(LHS, RHS);
2064       // LHS is now O above and expected to have at least 2 uses (the min/max)
2065       // NotA is epected to have 2 uses from the min/max and 1 from the sub.
2066       if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
2067           !NotA->hasNUsesOrMore(4)) {
2068         // Note: We don't generate the inverse max/min, just create the not of
2069         // it and let other folds do the rest.
2070         Value *Not = Builder.CreateNot(MinMax);
2071         if (NotA == Op0)
2072           return BinaryOperator::CreateSub(Not, A);
2073         else
2074           return BinaryOperator::CreateSub(A, Not);
2075       }
2076     }
2077   }
2078 
2079   // Optimize pointer differences into the same array into a size.  Consider:
2080   //  &A[10] - &A[0]: we should compile this to "10".
2081   Value *LHSOp, *RHSOp;
2082   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2083       match(Op1, m_PtrToInt(m_Value(RHSOp))))
2084     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2085                                                I.hasNoUnsignedWrap()))
2086       return replaceInstUsesWith(I, Res);
2087 
2088   // trunc(p)-trunc(q) -> trunc(p-q)
2089   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2090       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2091     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2092                                                /* IsNUW */ false))
2093       return replaceInstUsesWith(I, Res);
2094 
2095   // Canonicalize a shifty way to code absolute value to the common pattern.
2096   // There are 2 potential commuted variants.
2097   // We're relying on the fact that we only do this transform when the shift has
2098   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2099   // instructions).
2100   Value *A;
2101   const APInt *ShAmt;
2102   Type *Ty = I.getType();
2103   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2104       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
2105       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2106     // B = ashr i32 A, 31 ; smear the sign bit
2107     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
2108     // --> (A < 0) ? -A : A
2109     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
2110     // Copy the nuw/nsw flags from the sub to the negate.
2111     Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
2112                                    I.hasNoSignedWrap());
2113     return SelectInst::Create(Cmp, Neg, A);
2114   }
2115 
2116   // If we are subtracting a low-bit masked subset of some value from an add
2117   // of that same value with no low bits changed, that is clearing some low bits
2118   // of the sum:
2119   // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2120   const APInt *AddC, *AndC;
2121   if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2122       match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2123     unsigned BitWidth = Ty->getScalarSizeInBits();
2124     unsigned Cttz = AddC->countTrailingZeros();
2125     APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2126     if ((HighMask & *AndC).isNullValue())
2127       return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2128   }
2129 
2130   if (Instruction *V =
2131           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2132     return V;
2133 
2134   // X - usub.sat(X, Y) => umin(X, Y)
2135   if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2136                                                            m_Value(Y)))))
2137     return replaceInstUsesWith(
2138         I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2139 
2140   // C - ctpop(X) => ctpop(~X) if C is bitwidth
2141   if (match(Op0, m_SpecificInt(Ty->getScalarSizeInBits())) &&
2142       match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2143     return replaceInstUsesWith(
2144         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2145                                    {Builder.CreateNot(X)}));
2146 
2147   return TryToNarrowDeduceFlags();
2148 }
2149 
2150 /// This eliminates floating-point negation in either 'fneg(X)' or
2151 /// 'fsub(-0.0, X)' form by combining into a constant operand.
foldFNegIntoConstant(Instruction & I)2152 static Instruction *foldFNegIntoConstant(Instruction &I) {
2153   // This is limited with one-use because fneg is assumed better for
2154   // reassociation and cheaper in codegen than fmul/fdiv.
2155   // TODO: Should the m_OneUse restriction be removed?
2156   Instruction *FNegOp;
2157   if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2158     return nullptr;
2159 
2160   Value *X;
2161   Constant *C;
2162 
2163   // Fold negation into constant operand.
2164   // -(X * C) --> X * (-C)
2165   if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2166     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
2167   // -(X / C) --> X / (-C)
2168   if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2169     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
2170   // -(C / X) --> (-C) / X
2171   if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) {
2172     Instruction *FDiv =
2173         BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
2174 
2175     // Intersect 'nsz' and 'ninf' because those special value exceptions may not
2176     // apply to the fdiv. Everything else propagates from the fneg.
2177     // TODO: We could propagate nsz/ninf from fdiv alone?
2178     FastMathFlags FMF = I.getFastMathFlags();
2179     FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2180     FDiv->setHasNoSignedZeros(FMF.noSignedZeros() & OpFMF.noSignedZeros());
2181     FDiv->setHasNoInfs(FMF.noInfs() & OpFMF.noInfs());
2182     return FDiv;
2183   }
2184   // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2185   // -(X + C) --> -X + -C --> -C - X
2186   if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2187     return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I);
2188 
2189   return nullptr;
2190 }
2191 
hoistFNegAboveFMulFDiv(Instruction & I,InstCombiner::BuilderTy & Builder)2192 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
2193                                            InstCombiner::BuilderTy &Builder) {
2194   Value *FNeg;
2195   if (!match(&I, m_FNeg(m_Value(FNeg))))
2196     return nullptr;
2197 
2198   Value *X, *Y;
2199   if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
2200     return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2201 
2202   if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
2203     return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2204 
2205   return nullptr;
2206 }
2207 
visitFNeg(UnaryOperator & I)2208 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
2209   Value *Op = I.getOperand(0);
2210 
2211   if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
2212                                   getSimplifyQuery().getWithInstruction(&I)))
2213     return replaceInstUsesWith(I, V);
2214 
2215   if (Instruction *X = foldFNegIntoConstant(I))
2216     return X;
2217 
2218   Value *X, *Y;
2219 
2220   // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2221   if (I.hasNoSignedZeros() &&
2222       match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2223     return BinaryOperator::CreateFSubFMF(Y, X, &I);
2224 
2225   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2226     return R;
2227 
2228   // Try to eliminate fneg if at least 1 arm of the select is negated.
2229   Value *Cond;
2230   if (match(Op, m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) {
2231     // Unlike most transforms, this one is not safe to propagate nsz unless
2232     // it is present on the original select. (We are conservatively intersecting
2233     // the nsz flags from the select and root fneg instruction.)
2234     auto propagateSelectFMF = [&](SelectInst *S) {
2235       S->copyFastMathFlags(&I);
2236       if (auto *OldSel = dyn_cast<SelectInst>(Op))
2237         if (!OldSel->hasNoSignedZeros())
2238           S->setHasNoSignedZeros(false);
2239     };
2240     // -(Cond ? -P : Y) --> Cond ? P : -Y
2241     Value *P;
2242     if (match(X, m_FNeg(m_Value(P)))) {
2243       Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2244       SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
2245       propagateSelectFMF(NewSel);
2246       return NewSel;
2247     }
2248     // -(Cond ? X : -P) --> Cond ? -X : P
2249     if (match(Y, m_FNeg(m_Value(P)))) {
2250       Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2251       SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
2252       propagateSelectFMF(NewSel);
2253       return NewSel;
2254     }
2255   }
2256 
2257   return nullptr;
2258 }
2259 
visitFSub(BinaryOperator & I)2260 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2261   if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
2262                                   I.getFastMathFlags(),
2263                                   getSimplifyQuery().getWithInstruction(&I)))
2264     return replaceInstUsesWith(I, V);
2265 
2266   if (Instruction *X = foldVectorBinop(I))
2267     return X;
2268 
2269   // Subtraction from -0.0 is the canonical form of fneg.
2270   // fsub -0.0, X ==> fneg X
2271   // fsub nsz 0.0, X ==> fneg nsz X
2272   //
2273   // FIXME This matcher does not respect FTZ or DAZ yet:
2274   // fsub -0.0, Denorm ==> +-0
2275   // fneg Denorm ==> -Denorm
2276   Value *Op;
2277   if (match(&I, m_FNeg(m_Value(Op))))
2278     return UnaryOperator::CreateFNegFMF(Op, &I);
2279 
2280   if (Instruction *X = foldFNegIntoConstant(I))
2281     return X;
2282 
2283   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2284     return R;
2285 
2286   Value *X, *Y;
2287   Constant *C;
2288 
2289   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2290   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2291   // Canonicalize to fadd to make analysis easier.
2292   // This can also help codegen because fadd is commutative.
2293   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2294   // killed later. We still limit that particular transform with 'hasOneUse'
2295   // because an fneg is assumed better/cheaper than a generic fsub.
2296   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
2297     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2298       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2299       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2300     }
2301   }
2302 
2303   // (-X) - Op1 --> -(X + Op1)
2304   if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2305       match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2306     Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2307     return UnaryOperator::CreateFNegFMF(FAdd, &I);
2308   }
2309 
2310   if (isa<Constant>(Op0))
2311     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2312       if (Instruction *NV = FoldOpIntoSelect(I, SI))
2313         return NV;
2314 
2315   // X - C --> X + (-C)
2316   // But don't transform constant expressions because there's an inverse fold
2317   // for X + (-Y) --> X - Y.
2318   if (match(Op1, m_ImmConstant(C)))
2319     return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
2320 
2321   // X - (-Y) --> X + Y
2322   if (match(Op1, m_FNeg(m_Value(Y))))
2323     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2324 
2325   // Similar to above, but look through a cast of the negated value:
2326   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2327   Type *Ty = I.getType();
2328   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2329     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2330 
2331   // X - (fpext(-Y)) --> X + fpext(Y)
2332   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2333     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2334 
2335   // Similar to above, but look through fmul/fdiv of the negated value:
2336   // Op0 - (-X * Y) --> Op0 + (X * Y)
2337   // Op0 - (Y * -X) --> Op0 + (X * Y)
2338   if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2339     Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2340     return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2341   }
2342   // Op0 - (-X / Y) --> Op0 + (X / Y)
2343   // Op0 - (X / -Y) --> Op0 + (X / Y)
2344   if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2345       match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2346     Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2347     return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2348   }
2349 
2350   // Handle special cases for FSub with selects feeding the operation
2351   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2352     return replaceInstUsesWith(I, V);
2353 
2354   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2355     // (Y - X) - Y --> -X
2356     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2357       return UnaryOperator::CreateFNegFMF(X, &I);
2358 
2359     // Y - (X + Y) --> -X
2360     // Y - (Y + X) --> -X
2361     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2362       return UnaryOperator::CreateFNegFMF(X, &I);
2363 
2364     // (X * C) - X --> X * (C - 1.0)
2365     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2366       Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
2367       return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2368     }
2369     // X - (X * C) --> X * (1.0 - C)
2370     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2371       Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
2372       return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2373     }
2374 
2375     // Reassociate fsub/fadd sequences to create more fadd instructions and
2376     // reduce dependency chains:
2377     // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2378     Value *Z;
2379     if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2380                                      m_Value(Z))))) {
2381       Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2382       Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2383       return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2384     }
2385 
2386     auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2387       return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
2388                                                                  m_Value(Vec)));
2389     };
2390     Value *A0, *A1, *V0, *V1;
2391     if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2392         V0->getType() == V1->getType()) {
2393       // Difference of sums is sum of differences:
2394       // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2395       Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2396       Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2397                                            {Sub->getType()}, {A0, Sub}, &I);
2398       return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2399     }
2400 
2401     if (Instruction *F = factorizeFAddFSub(I, Builder))
2402       return F;
2403 
2404     // TODO: This performs reassociative folds for FP ops. Some fraction of the
2405     // functionality has been subsumed by simple pattern matching here and in
2406     // InstSimplify. We should let a dedicated reassociation pass handle more
2407     // complex pattern matching and remove this from InstCombine.
2408     if (Value *V = FAddCombine(Builder).simplify(&I))
2409       return replaceInstUsesWith(I, V);
2410 
2411     // (X - Y) - Op1 --> X - (Y + Op1)
2412     if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2413       Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2414       return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2415     }
2416   }
2417 
2418   return nullptr;
2419 }
2420