1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass merges loads/stores to/from sequential memory addresses into vector
10 // loads/stores.  Although there's nothing GPU-specific in here, this pass is
11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs.
12 //
13 // (For simplicity below we talk about loads only, but everything also applies
14 // to stores.)
15 //
16 // This pass is intended to be run late in the pipeline, after other
17 // vectorization opportunities have been exploited.  So the assumption here is
18 // that immediately following our new vector load we'll need to extract out the
19 // individual elements of the load, so we can operate on them individually.
20 //
21 // On CPUs this transformation is usually not beneficial, because extracting the
22 // elements of a vector register is expensive on most architectures.  It's
23 // usually better just to load each element individually into its own scalar
24 // register.
25 //
26 // However, nVidia and AMD GPUs don't have proper vector registers.  Instead, a
27 // "vector load" loads directly into a series of scalar registers.  In effect,
28 // extracting the elements of the vector is free.  It's therefore always
29 // beneficial to vectorize a sequence of loads on these architectures.
30 //
31 // Vectorizing (perhaps a better name might be "coalescing") loads can have
32 // large performance impacts on GPU kernels, and opportunities for vectorizing
33 // are common in GPU code.  This pass tries very hard to find such
34 // opportunities; its runtime is quadratic in the number of loads in a BB.
35 //
36 // Some CPU architectures, such as ARM, have instructions that load into
37 // multiple scalar registers, similar to a GPU vectorized load.  In theory ARM
38 // could use this pass (with some modifications), but currently it implements
39 // its own pass to do something similar to what we do here.
40 
41 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
42 #include "llvm/ADT/APInt.h"
43 #include "llvm/ADT/ArrayRef.h"
44 #include "llvm/ADT/MapVector.h"
45 #include "llvm/ADT/PostOrderIterator.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/ADT/iterator_range.h"
51 #include "llvm/Analysis/AliasAnalysis.h"
52 #include "llvm/Analysis/AssumptionCache.h"
53 #include "llvm/Analysis/MemoryLocation.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/TargetTransformInfo.h"
56 #include "llvm/Analysis/ValueTracking.h"
57 #include "llvm/Analysis/VectorUtils.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/InstrTypes.h"
67 #include "llvm/IR/Instruction.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/IntrinsicInst.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/InitializePasses.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/KnownBits.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Transforms/Utils/Local.h"
82 #include "llvm/Transforms/Vectorize.h"
83 #include <algorithm>
84 #include <cassert>
85 #include <cstdlib>
86 #include <tuple>
87 #include <utility>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "load-store-vectorizer"
92 
93 STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
94 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
95 
96 // FIXME: Assuming stack alignment of 4 is always good enough
97 static const unsigned StackAdjustedAlignment = 4;
98 
99 namespace {
100 
101 /// ChainID is an arbitrary token that is allowed to be different only for the
102 /// accesses that are guaranteed to be considered non-consecutive by
103 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions
104 /// together and reducing the number of instructions the main search operates on
105 /// at a time, i.e. this is to reduce compile time and nothing else as the main
106 /// search has O(n^2) time complexity. The underlying type of ChainID should not
107 /// be relied upon.
108 using ChainID = const Value *;
109 using InstrList = SmallVector<Instruction *, 8>;
110 using InstrListMap = MapVector<ChainID, InstrList>;
111 
112 class Vectorizer {
113   Function &F;
114   AliasAnalysis &AA;
115   AssumptionCache &AC;
116   DominatorTree &DT;
117   ScalarEvolution &SE;
118   TargetTransformInfo &TTI;
119   const DataLayout &DL;
120   IRBuilder<> Builder;
121 
122 public:
Vectorizer(Function & F,AliasAnalysis & AA,AssumptionCache & AC,DominatorTree & DT,ScalarEvolution & SE,TargetTransformInfo & TTI)123   Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC,
124              DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI)
125       : F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI),
126         DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
127 
128   bool run();
129 
130 private:
131   unsigned getPointerAddressSpace(Value *I);
132 
133   static const unsigned MaxDepth = 3;
134 
135   bool isConsecutiveAccess(Value *A, Value *B);
136   bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta,
137                               unsigned Depth = 0) const;
138   bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta,
139                                    unsigned Depth) const;
140   bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
141                           unsigned Depth) const;
142 
143   /// After vectorization, reorder the instructions that I depends on
144   /// (the instructions defining its operands), to ensure they dominate I.
145   void reorder(Instruction *I);
146 
147   /// Returns the first and the last instructions in Chain.
148   std::pair<BasicBlock::iterator, BasicBlock::iterator>
149   getBoundaryInstrs(ArrayRef<Instruction *> Chain);
150 
151   /// Erases the original instructions after vectorizing.
152   void eraseInstructions(ArrayRef<Instruction *> Chain);
153 
154   /// "Legalize" the vector type that would be produced by combining \p
155   /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
156   /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
157   /// expected to have more than 4 elements.
158   std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
159   splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits);
160 
161   /// Finds the largest prefix of Chain that's vectorizable, checking for
162   /// intervening instructions which may affect the memory accessed by the
163   /// instructions within Chain.
164   ///
165   /// The elements of \p Chain must be all loads or all stores and must be in
166   /// address order.
167   ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain);
168 
169   /// Collects load and store instructions to vectorize.
170   std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB);
171 
172   /// Processes the collected instructions, the \p Map. The values of \p Map
173   /// should be all loads or all stores.
174   bool vectorizeChains(InstrListMap &Map);
175 
176   /// Finds the load/stores to consecutive memory addresses and vectorizes them.
177   bool vectorizeInstructions(ArrayRef<Instruction *> Instrs);
178 
179   /// Vectorizes the load instructions in Chain.
180   bool
181   vectorizeLoadChain(ArrayRef<Instruction *> Chain,
182                      SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
183 
184   /// Vectorizes the store instructions in Chain.
185   bool
186   vectorizeStoreChain(ArrayRef<Instruction *> Chain,
187                       SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
188 
189   /// Check if this load/store access is misaligned accesses.
190   bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
191                           Align Alignment);
192 };
193 
194 class LoadStoreVectorizerLegacyPass : public FunctionPass {
195 public:
196   static char ID;
197 
LoadStoreVectorizerLegacyPass()198   LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
199     initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry());
200   }
201 
202   bool runOnFunction(Function &F) override;
203 
getPassName() const204   StringRef getPassName() const override {
205     return "GPU Load and Store Vectorizer";
206   }
207 
getAnalysisUsage(AnalysisUsage & AU) const208   void getAnalysisUsage(AnalysisUsage &AU) const override {
209     AU.addRequired<AAResultsWrapperPass>();
210     AU.addRequired<AssumptionCacheTracker>();
211     AU.addRequired<ScalarEvolutionWrapperPass>();
212     AU.addRequired<DominatorTreeWrapperPass>();
213     AU.addRequired<TargetTransformInfoWrapperPass>();
214     AU.setPreservesCFG();
215   }
216 };
217 
218 } // end anonymous namespace
219 
220 char LoadStoreVectorizerLegacyPass::ID = 0;
221 
222 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
223                       "Vectorize load and Store instructions", false, false)
224 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
225 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
226 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)227 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
228 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
229 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
230 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
231                     "Vectorize load and store instructions", false, false)
232 
233 Pass *llvm::createLoadStoreVectorizerPass() {
234   return new LoadStoreVectorizerLegacyPass();
235 }
236 
runOnFunction(Function & F)237 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
238   // Don't vectorize when the attribute NoImplicitFloat is used.
239   if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
240     return false;
241 
242   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
243   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
244   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
245   TargetTransformInfo &TTI =
246       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
247 
248   AssumptionCache &AC =
249       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
250 
251   Vectorizer V(F, AA, AC, DT, SE, TTI);
252   return V.run();
253 }
254 
run(Function & F,FunctionAnalysisManager & AM)255 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
256   // Don't vectorize when the attribute NoImplicitFloat is used.
257   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
258     return PreservedAnalyses::all();
259 
260   AliasAnalysis &AA = AM.getResult<AAManager>(F);
261   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
262   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
263   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
264   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
265 
266   Vectorizer V(F, AA, AC, DT, SE, TTI);
267   bool Changed = V.run();
268   PreservedAnalyses PA;
269   PA.preserveSet<CFGAnalyses>();
270   return Changed ? PA : PreservedAnalyses::all();
271 }
272 
273 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in
274 // vectors of Instructions.
propagateMetadata(Instruction * I,ArrayRef<Instruction * > IL)275 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) {
276   SmallVector<Value *, 8> VL(IL.begin(), IL.end());
277   propagateMetadata(I, VL);
278 }
279 
280 // Vectorizer Implementation
run()281 bool Vectorizer::run() {
282   bool Changed = false;
283 
284   // Scan the blocks in the function in post order.
285   for (BasicBlock *BB : post_order(&F)) {
286     InstrListMap LoadRefs, StoreRefs;
287     std::tie(LoadRefs, StoreRefs) = collectInstructions(BB);
288     Changed |= vectorizeChains(LoadRefs);
289     Changed |= vectorizeChains(StoreRefs);
290   }
291 
292   return Changed;
293 }
294 
getPointerAddressSpace(Value * I)295 unsigned Vectorizer::getPointerAddressSpace(Value *I) {
296   if (LoadInst *L = dyn_cast<LoadInst>(I))
297     return L->getPointerAddressSpace();
298   if (StoreInst *S = dyn_cast<StoreInst>(I))
299     return S->getPointerAddressSpace();
300   return -1;
301 }
302 
303 // FIXME: Merge with llvm::isConsecutiveAccess
isConsecutiveAccess(Value * A,Value * B)304 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
305   Value *PtrA = getLoadStorePointerOperand(A);
306   Value *PtrB = getLoadStorePointerOperand(B);
307   unsigned ASA = getPointerAddressSpace(A);
308   unsigned ASB = getPointerAddressSpace(B);
309 
310   // Check that the address spaces match and that the pointers are valid.
311   if (!PtrA || !PtrB || (ASA != ASB))
312     return false;
313 
314   // Make sure that A and B are different pointers of the same size type.
315   Type *PtrATy = getLoadStoreType(A);
316   Type *PtrBTy = getLoadStoreType(B);
317   if (PtrA == PtrB ||
318       PtrATy->isVectorTy() != PtrBTy->isVectorTy() ||
319       DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
320       DL.getTypeStoreSize(PtrATy->getScalarType()) !=
321           DL.getTypeStoreSize(PtrBTy->getScalarType()))
322     return false;
323 
324   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
325   APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
326 
327   return areConsecutivePointers(PtrA, PtrB, Size);
328 }
329 
areConsecutivePointers(Value * PtrA,Value * PtrB,APInt PtrDelta,unsigned Depth) const330 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB,
331                                         APInt PtrDelta, unsigned Depth) const {
332   unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType());
333   APInt OffsetA(PtrBitWidth, 0);
334   APInt OffsetB(PtrBitWidth, 0);
335   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
336   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
337 
338   unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
339 
340   if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
341     return false;
342 
343   // In case if we have to shrink the pointer
344   // stripAndAccumulateInBoundsConstantOffsets should properly handle a
345   // possible overflow and the value should fit into a smallest data type
346   // used in the cast/gep chain.
347   assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth &&
348          OffsetB.getMinSignedBits() <= NewPtrBitWidth);
349 
350   OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
351   OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
352   PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth);
353 
354   APInt OffsetDelta = OffsetB - OffsetA;
355 
356   // Check if they are based on the same pointer. That makes the offsets
357   // sufficient.
358   if (PtrA == PtrB)
359     return OffsetDelta == PtrDelta;
360 
361   // Compute the necessary base pointer delta to have the necessary final delta
362   // equal to the pointer delta requested.
363   APInt BaseDelta = PtrDelta - OffsetDelta;
364 
365   // Compute the distance with SCEV between the base pointers.
366   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
367   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
368   const SCEV *C = SE.getConstant(BaseDelta);
369   const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
370   if (X == PtrSCEVB)
371     return true;
372 
373   // The above check will not catch the cases where one of the pointers is
374   // factorized but the other one is not, such as (C + (S * (A + B))) vs
375   // (AS + BS). Get the minus scev. That will allow re-combining the expresions
376   // and getting the simplified difference.
377   const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA);
378   if (C == Dist)
379     return true;
380 
381   // Sometimes even this doesn't work, because SCEV can't always see through
382   // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
383   // things the hard way.
384   return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth);
385 }
386 
checkNoWrapFlags(Instruction * I,bool Signed)387 static bool checkNoWrapFlags(Instruction *I, bool Signed) {
388   BinaryOperator *BinOpI = cast<BinaryOperator>(I);
389   return (Signed && BinOpI->hasNoSignedWrap()) ||
390          (!Signed && BinOpI->hasNoUnsignedWrap());
391 }
392 
checkIfSafeAddSequence(const APInt & IdxDiff,Instruction * AddOpA,unsigned MatchingOpIdxA,Instruction * AddOpB,unsigned MatchingOpIdxB,bool Signed)393 static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA,
394                                    unsigned MatchingOpIdxA, Instruction *AddOpB,
395                                    unsigned MatchingOpIdxB, bool Signed) {
396   // If both OpA and OpB is an add with NSW/NUW and with
397   // one of the operands being the same, we can guarantee that the
398   // transformation is safe if we can prove that OpA won't overflow when
399   // IdxDiff added to the other operand of OpA.
400   // For example:
401   //  %tmp7 = add nsw i32 %tmp2, %v0
402   //  %tmp8 = sext i32 %tmp7 to i64
403   //  ...
404   //  %tmp11 = add nsw i32 %v0, 1
405   //  %tmp12 = add nsw i32 %tmp2, %tmp11
406   //  %tmp13 = sext i32 %tmp12 to i64
407   //
408   //  Both %tmp7 and %tmp2 has the nsw flag and the first operand
409   //  is %tmp2. It's guaranteed that adding 1 to %tmp7 won't overflow
410   //  because %tmp11 adds 1 to %v0 and both %tmp11 and %tmp12 has the
411   //  nsw flag.
412   assert(AddOpA->getOpcode() == Instruction::Add &&
413          AddOpB->getOpcode() == Instruction::Add &&
414          checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed));
415   if (AddOpA->getOperand(MatchingOpIdxA) ==
416       AddOpB->getOperand(MatchingOpIdxB)) {
417     Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1);
418     Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1);
419     Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA);
420     Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB);
421     // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`.
422     if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add &&
423         checkNoWrapFlags(OtherInstrB, Signed) &&
424         isa<ConstantInt>(OtherInstrB->getOperand(1))) {
425       int64_t CstVal =
426           cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
427       if (OtherInstrB->getOperand(0) == OtherOperandA &&
428           IdxDiff.getSExtValue() == CstVal)
429         return true;
430     }
431     // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`.
432     if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add &&
433         checkNoWrapFlags(OtherInstrA, Signed) &&
434         isa<ConstantInt>(OtherInstrA->getOperand(1))) {
435       int64_t CstVal =
436           cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
437       if (OtherInstrA->getOperand(0) == OtherOperandB &&
438           IdxDiff.getSExtValue() == -CstVal)
439         return true;
440     }
441     // Match `x +nsw/nuw (y +nsw/nuw c)` and
442     // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`.
443     if (OtherInstrA && OtherInstrB &&
444         OtherInstrA->getOpcode() == Instruction::Add &&
445         OtherInstrB->getOpcode() == Instruction::Add &&
446         checkNoWrapFlags(OtherInstrA, Signed) &&
447         checkNoWrapFlags(OtherInstrB, Signed) &&
448         isa<ConstantInt>(OtherInstrA->getOperand(1)) &&
449         isa<ConstantInt>(OtherInstrB->getOperand(1))) {
450       int64_t CstValA =
451           cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
452       int64_t CstValB =
453           cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
454       if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) &&
455           IdxDiff.getSExtValue() == (CstValB - CstValA))
456         return true;
457     }
458   }
459   return false;
460 }
461 
lookThroughComplexAddresses(Value * PtrA,Value * PtrB,APInt PtrDelta,unsigned Depth) const462 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB,
463                                              APInt PtrDelta,
464                                              unsigned Depth) const {
465   auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
466   auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
467   if (!GEPA || !GEPB)
468     return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth);
469 
470   // Look through GEPs after checking they're the same except for the last
471   // index.
472   if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
473       GEPA->getPointerOperand() != GEPB->getPointerOperand())
474     return false;
475   gep_type_iterator GTIA = gep_type_begin(GEPA);
476   gep_type_iterator GTIB = gep_type_begin(GEPB);
477   for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
478     if (GTIA.getOperand() != GTIB.getOperand())
479       return false;
480     ++GTIA;
481     ++GTIB;
482   }
483 
484   Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
485   Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
486   if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
487       OpA->getType() != OpB->getType())
488     return false;
489 
490   if (PtrDelta.isNegative()) {
491     if (PtrDelta.isMinSignedValue())
492       return false;
493     PtrDelta.negate();
494     std::swap(OpA, OpB);
495   }
496   uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
497   if (PtrDelta.urem(Stride) != 0)
498     return false;
499   unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits();
500   APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth);
501 
502   // Only look through a ZExt/SExt.
503   if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
504     return false;
505 
506   bool Signed = isa<SExtInst>(OpA);
507 
508   // At this point A could be a function parameter, i.e. not an instruction
509   Value *ValA = OpA->getOperand(0);
510   OpB = dyn_cast<Instruction>(OpB->getOperand(0));
511   if (!OpB || ValA->getType() != OpB->getType())
512     return false;
513 
514   // Now we need to prove that adding IdxDiff to ValA won't overflow.
515   bool Safe = false;
516 
517   // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
518   // ValA, we're okay.
519   if (OpB->getOpcode() == Instruction::Add &&
520       isa<ConstantInt>(OpB->getOperand(1)) &&
521       IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) &&
522       checkNoWrapFlags(OpB, Signed))
523     Safe = true;
524 
525   // Second attempt: check if we have eligible add NSW/NUW instruction
526   // sequences.
527   OpA = dyn_cast<Instruction>(ValA);
528   if (!Safe && OpA && OpA->getOpcode() == Instruction::Add &&
529       OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) &&
530       checkNoWrapFlags(OpB, Signed)) {
531     // In the checks below a matching operand in OpA and OpB is
532     // an operand which is the same in those two instructions.
533     // Below we account for possible orders of the operands of
534     // these add instructions.
535     for (unsigned MatchingOpIdxA : {0, 1})
536       for (unsigned MatchingOpIdxB : {0, 1})
537         if (!Safe)
538           Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB,
539                                         MatchingOpIdxB, Signed);
540   }
541 
542   unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
543 
544   // Third attempt:
545   // If all set bits of IdxDiff or any higher order bit other than the sign bit
546   // are known to be zero in ValA, we can add Diff to it while guaranteeing no
547   // overflow of any sort.
548   if (!Safe) {
549     KnownBits Known(BitWidth);
550     computeKnownBits(ValA, Known, DL, 0, &AC, OpB, &DT);
551     APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
552     if (Signed)
553       BitsAllowedToBeSet.clearBit(BitWidth - 1);
554     if (BitsAllowedToBeSet.ult(IdxDiff))
555       return false;
556   }
557 
558   const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
559   const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
560   const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth));
561   const SCEV *X = SE.getAddExpr(OffsetSCEVA, C);
562   return X == OffsetSCEVB;
563 }
564 
lookThroughSelects(Value * PtrA,Value * PtrB,const APInt & PtrDelta,unsigned Depth) const565 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB,
566                                     const APInt &PtrDelta,
567                                     unsigned Depth) const {
568   if (Depth++ == MaxDepth)
569     return false;
570 
571   if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
572     if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
573       return SelectA->getCondition() == SelectB->getCondition() &&
574              areConsecutivePointers(SelectA->getTrueValue(),
575                                     SelectB->getTrueValue(), PtrDelta, Depth) &&
576              areConsecutivePointers(SelectA->getFalseValue(),
577                                     SelectB->getFalseValue(), PtrDelta, Depth);
578     }
579   }
580   return false;
581 }
582 
reorder(Instruction * I)583 void Vectorizer::reorder(Instruction *I) {
584   SmallPtrSet<Instruction *, 16> InstructionsToMove;
585   SmallVector<Instruction *, 16> Worklist;
586 
587   Worklist.push_back(I);
588   while (!Worklist.empty()) {
589     Instruction *IW = Worklist.pop_back_val();
590     int NumOperands = IW->getNumOperands();
591     for (int i = 0; i < NumOperands; i++) {
592       Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
593       if (!IM || IM->getOpcode() == Instruction::PHI)
594         continue;
595 
596       // If IM is in another BB, no need to move it, because this pass only
597       // vectorizes instructions within one BB.
598       if (IM->getParent() != I->getParent())
599         continue;
600 
601       if (!IM->comesBefore(I)) {
602         InstructionsToMove.insert(IM);
603         Worklist.push_back(IM);
604       }
605     }
606   }
607 
608   // All instructions to move should follow I. Start from I, not from begin().
609   for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
610        ++BBI) {
611     if (!InstructionsToMove.count(&*BBI))
612       continue;
613     Instruction *IM = &*BBI;
614     --BBI;
615     IM->removeFromParent();
616     IM->insertBefore(I);
617   }
618 }
619 
620 std::pair<BasicBlock::iterator, BasicBlock::iterator>
getBoundaryInstrs(ArrayRef<Instruction * > Chain)621 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) {
622   Instruction *C0 = Chain[0];
623   BasicBlock::iterator FirstInstr = C0->getIterator();
624   BasicBlock::iterator LastInstr = C0->getIterator();
625 
626   BasicBlock *BB = C0->getParent();
627   unsigned NumFound = 0;
628   for (Instruction &I : *BB) {
629     if (!is_contained(Chain, &I))
630       continue;
631 
632     ++NumFound;
633     if (NumFound == 1) {
634       FirstInstr = I.getIterator();
635     }
636     if (NumFound == Chain.size()) {
637       LastInstr = I.getIterator();
638       break;
639     }
640   }
641 
642   // Range is [first, last).
643   return std::make_pair(FirstInstr, ++LastInstr);
644 }
645 
eraseInstructions(ArrayRef<Instruction * > Chain)646 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) {
647   SmallVector<Instruction *, 16> Instrs;
648   for (Instruction *I : Chain) {
649     Value *PtrOperand = getLoadStorePointerOperand(I);
650     assert(PtrOperand && "Instruction must have a pointer operand.");
651     Instrs.push_back(I);
652     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
653       Instrs.push_back(GEP);
654   }
655 
656   // Erase instructions.
657   for (Instruction *I : Instrs)
658     if (I->use_empty())
659       I->eraseFromParent();
660 }
661 
662 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
splitOddVectorElts(ArrayRef<Instruction * > Chain,unsigned ElementSizeBits)663 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain,
664                                unsigned ElementSizeBits) {
665   unsigned ElementSizeBytes = ElementSizeBits / 8;
666   unsigned SizeBytes = ElementSizeBytes * Chain.size();
667   unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes;
668   if (NumLeft == Chain.size()) {
669     if ((NumLeft & 1) == 0)
670       NumLeft /= 2; // Split even in half
671     else
672       --NumLeft;    // Split off last element
673   } else if (NumLeft == 0)
674     NumLeft = 1;
675   return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
676 }
677 
678 ArrayRef<Instruction *>
getVectorizablePrefix(ArrayRef<Instruction * > Chain)679 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) {
680   // These are in BB order, unlike Chain, which is in address order.
681   SmallVector<Instruction *, 16> MemoryInstrs;
682   SmallVector<Instruction *, 16> ChainInstrs;
683 
684   bool IsLoadChain = isa<LoadInst>(Chain[0]);
685   LLVM_DEBUG({
686     for (Instruction *I : Chain) {
687       if (IsLoadChain)
688         assert(isa<LoadInst>(I) &&
689                "All elements of Chain must be loads, or all must be stores.");
690       else
691         assert(isa<StoreInst>(I) &&
692                "All elements of Chain must be loads, or all must be stores.");
693     }
694   });
695 
696   for (Instruction &I : make_range(getBoundaryInstrs(Chain))) {
697     if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
698       if (!is_contained(Chain, &I))
699         MemoryInstrs.push_back(&I);
700       else
701         ChainInstrs.push_back(&I);
702     } else if (isa<IntrinsicInst>(&I) &&
703                cast<IntrinsicInst>(&I)->getIntrinsicID() ==
704                    Intrinsic::sideeffect) {
705       // Ignore llvm.sideeffect calls.
706     } else if (isa<IntrinsicInst>(&I) &&
707                cast<IntrinsicInst>(&I)->getIntrinsicID() ==
708                    Intrinsic::pseudoprobe) {
709       // Ignore llvm.pseudoprobe calls.
710     } else if (isa<IntrinsicInst>(&I) &&
711                cast<IntrinsicInst>(&I)->getIntrinsicID() == Intrinsic::assume) {
712       // Ignore llvm.assume calls.
713     } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) {
714       LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I
715                         << '\n');
716       break;
717     } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) {
718       LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I
719                         << '\n');
720       break;
721     }
722   }
723 
724   // Loop until we find an instruction in ChainInstrs that we can't vectorize.
725   unsigned ChainInstrIdx = 0;
726   Instruction *BarrierMemoryInstr = nullptr;
727 
728   for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) {
729     Instruction *ChainInstr = ChainInstrs[ChainInstrIdx];
730 
731     // If a barrier memory instruction was found, chain instructions that follow
732     // will not be added to the valid prefix.
733     if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(ChainInstr))
734       break;
735 
736     // Check (in BB order) if any instruction prevents ChainInstr from being
737     // vectorized. Find and store the first such "conflicting" instruction.
738     for (Instruction *MemInstr : MemoryInstrs) {
739       // If a barrier memory instruction was found, do not check past it.
740       if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(MemInstr))
741         break;
742 
743       auto *MemLoad = dyn_cast<LoadInst>(MemInstr);
744       auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr);
745       if (MemLoad && ChainLoad)
746         continue;
747 
748       // We can ignore the alias if the we have a load store pair and the load
749       // is known to be invariant. The load cannot be clobbered by the store.
750       auto IsInvariantLoad = [](const LoadInst *LI) -> bool {
751         return LI->hasMetadata(LLVMContext::MD_invariant_load);
752       };
753 
754       // We can ignore the alias as long as the load comes before the store,
755       // because that means we won't be moving the load past the store to
756       // vectorize it (the vectorized load is inserted at the location of the
757       // first load in the chain).
758       if (isa<StoreInst>(MemInstr) && ChainLoad &&
759           (IsInvariantLoad(ChainLoad) || ChainLoad->comesBefore(MemInstr)))
760         continue;
761 
762       // Same case, but in reverse.
763       if (MemLoad && isa<StoreInst>(ChainInstr) &&
764           (IsInvariantLoad(MemLoad) || MemLoad->comesBefore(ChainInstr)))
765         continue;
766 
767       if (!AA.isNoAlias(MemoryLocation::get(MemInstr),
768                         MemoryLocation::get(ChainInstr))) {
769         LLVM_DEBUG({
770           dbgs() << "LSV: Found alias:\n"
771                     "  Aliasing instruction and pointer:\n"
772                  << "  " << *MemInstr << '\n'
773                  << "  " << *getLoadStorePointerOperand(MemInstr) << '\n'
774                  << "  Aliased instruction and pointer:\n"
775                  << "  " << *ChainInstr << '\n'
776                  << "  " << *getLoadStorePointerOperand(ChainInstr) << '\n';
777         });
778         // Save this aliasing memory instruction as a barrier, but allow other
779         // instructions that precede the barrier to be vectorized with this one.
780         BarrierMemoryInstr = MemInstr;
781         break;
782       }
783     }
784     // Continue the search only for store chains, since vectorizing stores that
785     // precede an aliasing load is valid. Conversely, vectorizing loads is valid
786     // up to an aliasing store, but should not pull loads from further down in
787     // the basic block.
788     if (IsLoadChain && BarrierMemoryInstr) {
789       // The BarrierMemoryInstr is a store that precedes ChainInstr.
790       assert(BarrierMemoryInstr->comesBefore(ChainInstr));
791       break;
792     }
793   }
794 
795   // Find the largest prefix of Chain whose elements are all in
796   // ChainInstrs[0, ChainInstrIdx).  This is the largest vectorizable prefix of
797   // Chain.  (Recall that Chain is in address order, but ChainInstrs is in BB
798   // order.)
799   SmallPtrSet<Instruction *, 8> VectorizableChainInstrs(
800       ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx);
801   unsigned ChainIdx = 0;
802   for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) {
803     if (!VectorizableChainInstrs.count(Chain[ChainIdx]))
804       break;
805   }
806   return Chain.slice(0, ChainIdx);
807 }
808 
getChainID(const Value * Ptr)809 static ChainID getChainID(const Value *Ptr) {
810   const Value *ObjPtr = getUnderlyingObject(Ptr);
811   if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
812     // The select's themselves are distinct instructions even if they share the
813     // same condition and evaluate to consecutive pointers for true and false
814     // values of the condition. Therefore using the select's themselves for
815     // grouping instructions would put consecutive accesses into different lists
816     // and they won't be even checked for being consecutive, and won't be
817     // vectorized.
818     return Sel->getCondition();
819   }
820   return ObjPtr;
821 }
822 
823 std::pair<InstrListMap, InstrListMap>
collectInstructions(BasicBlock * BB)824 Vectorizer::collectInstructions(BasicBlock *BB) {
825   InstrListMap LoadRefs;
826   InstrListMap StoreRefs;
827 
828   for (Instruction &I : *BB) {
829     if (!I.mayReadOrWriteMemory())
830       continue;
831 
832     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
833       if (!LI->isSimple())
834         continue;
835 
836       // Skip if it's not legal.
837       if (!TTI.isLegalToVectorizeLoad(LI))
838         continue;
839 
840       Type *Ty = LI->getType();
841       if (!VectorType::isValidElementType(Ty->getScalarType()))
842         continue;
843 
844       // Skip weird non-byte sizes. They probably aren't worth the effort of
845       // handling correctly.
846       unsigned TySize = DL.getTypeSizeInBits(Ty);
847       if ((TySize % 8) != 0)
848         continue;
849 
850       // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
851       // functions are currently using an integer type for the vectorized
852       // load/store, and does not support casting between the integer type and a
853       // vector of pointers (e.g. i64 to <2 x i16*>)
854       if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
855         continue;
856 
857       Value *Ptr = LI->getPointerOperand();
858       unsigned AS = Ptr->getType()->getPointerAddressSpace();
859       unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
860 
861       unsigned VF = VecRegSize / TySize;
862       VectorType *VecTy = dyn_cast<VectorType>(Ty);
863 
864       // No point in looking at these if they're too big to vectorize.
865       if (TySize > VecRegSize / 2 ||
866           (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
867         continue;
868 
869       // Make sure all the users of a vector are constant-index extracts.
870       if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) {
871             const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
872             return EEI && isa<ConstantInt>(EEI->getOperand(1));
873           }))
874         continue;
875 
876       // Save the load locations.
877       const ChainID ID = getChainID(Ptr);
878       LoadRefs[ID].push_back(LI);
879     } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
880       if (!SI->isSimple())
881         continue;
882 
883       // Skip if it's not legal.
884       if (!TTI.isLegalToVectorizeStore(SI))
885         continue;
886 
887       Type *Ty = SI->getValueOperand()->getType();
888       if (!VectorType::isValidElementType(Ty->getScalarType()))
889         continue;
890 
891       // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
892       // functions are currently using an integer type for the vectorized
893       // load/store, and does not support casting between the integer type and a
894       // vector of pointers (e.g. i64 to <2 x i16*>)
895       if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
896         continue;
897 
898       // Skip weird non-byte sizes. They probably aren't worth the effort of
899       // handling correctly.
900       unsigned TySize = DL.getTypeSizeInBits(Ty);
901       if ((TySize % 8) != 0)
902         continue;
903 
904       Value *Ptr = SI->getPointerOperand();
905       unsigned AS = Ptr->getType()->getPointerAddressSpace();
906       unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
907 
908       unsigned VF = VecRegSize / TySize;
909       VectorType *VecTy = dyn_cast<VectorType>(Ty);
910 
911       // No point in looking at these if they're too big to vectorize.
912       if (TySize > VecRegSize / 2 ||
913           (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
914         continue;
915 
916       if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) {
917             const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
918             return EEI && isa<ConstantInt>(EEI->getOperand(1));
919           }))
920         continue;
921 
922       // Save store location.
923       const ChainID ID = getChainID(Ptr);
924       StoreRefs[ID].push_back(SI);
925     }
926   }
927 
928   return {LoadRefs, StoreRefs};
929 }
930 
vectorizeChains(InstrListMap & Map)931 bool Vectorizer::vectorizeChains(InstrListMap &Map) {
932   bool Changed = false;
933 
934   for (const std::pair<ChainID, InstrList> &Chain : Map) {
935     unsigned Size = Chain.second.size();
936     if (Size < 2)
937       continue;
938 
939     LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
940 
941     // Process the stores in chunks of 64.
942     for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
943       unsigned Len = std::min<unsigned>(CE - CI, 64);
944       ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len);
945       Changed |= vectorizeInstructions(Chunk);
946     }
947   }
948 
949   return Changed;
950 }
951 
vectorizeInstructions(ArrayRef<Instruction * > Instrs)952 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) {
953   LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size()
954                     << " instructions.\n");
955   SmallVector<int, 16> Heads, Tails;
956   int ConsecutiveChain[64];
957 
958   // Do a quadratic search on all of the given loads/stores and find all of the
959   // pairs of loads/stores that follow each other.
960   for (int i = 0, e = Instrs.size(); i < e; ++i) {
961     ConsecutiveChain[i] = -1;
962     for (int j = e - 1; j >= 0; --j) {
963       if (i == j)
964         continue;
965 
966       if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
967         if (ConsecutiveChain[i] != -1) {
968           int CurDistance = std::abs(ConsecutiveChain[i] - i);
969           int NewDistance = std::abs(ConsecutiveChain[i] - j);
970           if (j < i || NewDistance > CurDistance)
971             continue; // Should not insert.
972         }
973 
974         Tails.push_back(j);
975         Heads.push_back(i);
976         ConsecutiveChain[i] = j;
977       }
978     }
979   }
980 
981   bool Changed = false;
982   SmallPtrSet<Instruction *, 16> InstructionsProcessed;
983 
984   for (int Head : Heads) {
985     if (InstructionsProcessed.count(Instrs[Head]))
986       continue;
987     bool LongerChainExists = false;
988     for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
989       if (Head == Tails[TIt] &&
990           !InstructionsProcessed.count(Instrs[Heads[TIt]])) {
991         LongerChainExists = true;
992         break;
993       }
994     if (LongerChainExists)
995       continue;
996 
997     // We found an instr that starts a chain. Now follow the chain and try to
998     // vectorize it.
999     SmallVector<Instruction *, 16> Operands;
1000     int I = Head;
1001     while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) {
1002       if (InstructionsProcessed.count(Instrs[I]))
1003         break;
1004 
1005       Operands.push_back(Instrs[I]);
1006       I = ConsecutiveChain[I];
1007     }
1008 
1009     bool Vectorized = false;
1010     if (isa<LoadInst>(*Operands.begin()))
1011       Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
1012     else
1013       Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);
1014 
1015     Changed |= Vectorized;
1016   }
1017 
1018   return Changed;
1019 }
1020 
vectorizeStoreChain(ArrayRef<Instruction * > Chain,SmallPtrSet<Instruction *,16> * InstructionsProcessed)1021 bool Vectorizer::vectorizeStoreChain(
1022     ArrayRef<Instruction *> Chain,
1023     SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
1024   StoreInst *S0 = cast<StoreInst>(Chain[0]);
1025 
1026   // If the vector has an int element, default to int for the whole store.
1027   Type *StoreTy = nullptr;
1028   for (Instruction *I : Chain) {
1029     StoreTy = cast<StoreInst>(I)->getValueOperand()->getType();
1030     if (StoreTy->isIntOrIntVectorTy())
1031       break;
1032 
1033     if (StoreTy->isPtrOrPtrVectorTy()) {
1034       StoreTy = Type::getIntNTy(F.getParent()->getContext(),
1035                                 DL.getTypeSizeInBits(StoreTy));
1036       break;
1037     }
1038   }
1039   assert(StoreTy && "Failed to find store type");
1040 
1041   unsigned Sz = DL.getTypeSizeInBits(StoreTy);
1042   unsigned AS = S0->getPointerAddressSpace();
1043   unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1044   unsigned VF = VecRegSize / Sz;
1045   unsigned ChainSize = Chain.size();
1046   Align Alignment = S0->getAlign();
1047 
1048   if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
1049     InstructionsProcessed->insert(Chain.begin(), Chain.end());
1050     return false;
1051   }
1052 
1053   ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
1054   if (NewChain.empty()) {
1055     // No vectorization possible.
1056     InstructionsProcessed->insert(Chain.begin(), Chain.end());
1057     return false;
1058   }
1059   if (NewChain.size() == 1) {
1060     // Failed after the first instruction. Discard it and try the smaller chain.
1061     InstructionsProcessed->insert(NewChain.front());
1062     return false;
1063   }
1064 
1065   // Update Chain to the valid vectorizable subchain.
1066   Chain = NewChain;
1067   ChainSize = Chain.size();
1068 
1069   // Check if it's legal to vectorize this chain. If not, split the chain and
1070   // try again.
1071   unsigned EltSzInBytes = Sz / 8;
1072   unsigned SzInBytes = EltSzInBytes * ChainSize;
1073 
1074   FixedVectorType *VecTy;
1075   auto *VecStoreTy = dyn_cast<FixedVectorType>(StoreTy);
1076   if (VecStoreTy)
1077     VecTy = FixedVectorType::get(StoreTy->getScalarType(),
1078                                  Chain.size() * VecStoreTy->getNumElements());
1079   else
1080     VecTy = FixedVectorType::get(StoreTy, Chain.size());
1081 
1082   // If it's more than the max vector size or the target has a better
1083   // vector factor, break it into two pieces.
1084   unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy);
1085   if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1086     LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1087                          " Creating two separate arrays.\n");
1088     return vectorizeStoreChain(Chain.slice(0, TargetVF),
1089                                InstructionsProcessed) |
1090            vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed);
1091   }
1092 
1093   LLVM_DEBUG({
1094     dbgs() << "LSV: Stores to vectorize:\n";
1095     for (Instruction *I : Chain)
1096       dbgs() << "  " << *I << "\n";
1097   });
1098 
1099   // We won't try again to vectorize the elements of the chain, regardless of
1100   // whether we succeed below.
1101   InstructionsProcessed->insert(Chain.begin(), Chain.end());
1102 
1103   // If the store is going to be misaligned, don't vectorize it.
1104   if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
1105     if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1106       auto Chains = splitOddVectorElts(Chain, Sz);
1107       return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
1108              vectorizeStoreChain(Chains.second, InstructionsProcessed);
1109     }
1110 
1111     Align NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(),
1112                                                 Align(StackAdjustedAlignment),
1113                                                 DL, S0, nullptr, &DT);
1114     if (NewAlign >= Alignment)
1115       Alignment = NewAlign;
1116     else
1117       return false;
1118   }
1119 
1120   if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) {
1121     auto Chains = splitOddVectorElts(Chain, Sz);
1122     return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
1123            vectorizeStoreChain(Chains.second, InstructionsProcessed);
1124   }
1125 
1126   BasicBlock::iterator First, Last;
1127   std::tie(First, Last) = getBoundaryInstrs(Chain);
1128   Builder.SetInsertPoint(&*Last);
1129 
1130   Value *Vec = UndefValue::get(VecTy);
1131 
1132   if (VecStoreTy) {
1133     unsigned VecWidth = VecStoreTy->getNumElements();
1134     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1135       StoreInst *Store = cast<StoreInst>(Chain[I]);
1136       for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
1137         unsigned NewIdx = J + I * VecWidth;
1138         Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
1139                                                       Builder.getInt32(J));
1140         if (Extract->getType() != StoreTy->getScalarType())
1141           Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
1142 
1143         Value *Insert =
1144             Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
1145         Vec = Insert;
1146       }
1147     }
1148   } else {
1149     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1150       StoreInst *Store = cast<StoreInst>(Chain[I]);
1151       Value *Extract = Store->getValueOperand();
1152       if (Extract->getType() != StoreTy->getScalarType())
1153         Extract =
1154             Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());
1155 
1156       Value *Insert =
1157           Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
1158       Vec = Insert;
1159     }
1160   }
1161 
1162   StoreInst *SI = Builder.CreateAlignedStore(
1163     Vec,
1164     Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)),
1165     Alignment);
1166   propagateMetadata(SI, Chain);
1167 
1168   eraseInstructions(Chain);
1169   ++NumVectorInstructions;
1170   NumScalarsVectorized += Chain.size();
1171   return true;
1172 }
1173 
vectorizeLoadChain(ArrayRef<Instruction * > Chain,SmallPtrSet<Instruction *,16> * InstructionsProcessed)1174 bool Vectorizer::vectorizeLoadChain(
1175     ArrayRef<Instruction *> Chain,
1176     SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
1177   LoadInst *L0 = cast<LoadInst>(Chain[0]);
1178 
1179   // If the vector has an int element, default to int for the whole load.
1180   Type *LoadTy = nullptr;
1181   for (const auto &V : Chain) {
1182     LoadTy = cast<LoadInst>(V)->getType();
1183     if (LoadTy->isIntOrIntVectorTy())
1184       break;
1185 
1186     if (LoadTy->isPtrOrPtrVectorTy()) {
1187       LoadTy = Type::getIntNTy(F.getParent()->getContext(),
1188                                DL.getTypeSizeInBits(LoadTy));
1189       break;
1190     }
1191   }
1192   assert(LoadTy && "Can't determine LoadInst type from chain");
1193 
1194   unsigned Sz = DL.getTypeSizeInBits(LoadTy);
1195   unsigned AS = L0->getPointerAddressSpace();
1196   unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1197   unsigned VF = VecRegSize / Sz;
1198   unsigned ChainSize = Chain.size();
1199   Align Alignment = L0->getAlign();
1200 
1201   if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
1202     InstructionsProcessed->insert(Chain.begin(), Chain.end());
1203     return false;
1204   }
1205 
1206   ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
1207   if (NewChain.empty()) {
1208     // No vectorization possible.
1209     InstructionsProcessed->insert(Chain.begin(), Chain.end());
1210     return false;
1211   }
1212   if (NewChain.size() == 1) {
1213     // Failed after the first instruction. Discard it and try the smaller chain.
1214     InstructionsProcessed->insert(NewChain.front());
1215     return false;
1216   }
1217 
1218   // Update Chain to the valid vectorizable subchain.
1219   Chain = NewChain;
1220   ChainSize = Chain.size();
1221 
1222   // Check if it's legal to vectorize this chain. If not, split the chain and
1223   // try again.
1224   unsigned EltSzInBytes = Sz / 8;
1225   unsigned SzInBytes = EltSzInBytes * ChainSize;
1226   VectorType *VecTy;
1227   auto *VecLoadTy = dyn_cast<FixedVectorType>(LoadTy);
1228   if (VecLoadTy)
1229     VecTy = FixedVectorType::get(LoadTy->getScalarType(),
1230                                  Chain.size() * VecLoadTy->getNumElements());
1231   else
1232     VecTy = FixedVectorType::get(LoadTy, Chain.size());
1233 
1234   // If it's more than the max vector size or the target has a better
1235   // vector factor, break it into two pieces.
1236   unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy);
1237   if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1238     LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1239                          " Creating two separate arrays.\n");
1240     return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) |
1241            vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed);
1242   }
1243 
1244   // We won't try again to vectorize the elements of the chain, regardless of
1245   // whether we succeed below.
1246   InstructionsProcessed->insert(Chain.begin(), Chain.end());
1247 
1248   // If the load is going to be misaligned, don't vectorize it.
1249   if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
1250     if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1251       auto Chains = splitOddVectorElts(Chain, Sz);
1252       return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
1253              vectorizeLoadChain(Chains.second, InstructionsProcessed);
1254     }
1255 
1256     Align NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(),
1257                                                 Align(StackAdjustedAlignment),
1258                                                 DL, L0, nullptr, &DT);
1259     if (NewAlign >= Alignment)
1260       Alignment = NewAlign;
1261     else
1262       return false;
1263   }
1264 
1265   if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) {
1266     auto Chains = splitOddVectorElts(Chain, Sz);
1267     return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
1268            vectorizeLoadChain(Chains.second, InstructionsProcessed);
1269   }
1270 
1271   LLVM_DEBUG({
1272     dbgs() << "LSV: Loads to vectorize:\n";
1273     for (Instruction *I : Chain)
1274       I->dump();
1275   });
1276 
1277   // getVectorizablePrefix already computed getBoundaryInstrs.  The value of
1278   // Last may have changed since then, but the value of First won't have.  If it
1279   // matters, we could compute getBoundaryInstrs only once and reuse it here.
1280   BasicBlock::iterator First, Last;
1281   std::tie(First, Last) = getBoundaryInstrs(Chain);
1282   Builder.SetInsertPoint(&*First);
1283 
1284   Value *Bitcast =
1285       Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
1286   LoadInst *LI =
1287       Builder.CreateAlignedLoad(VecTy, Bitcast, MaybeAlign(Alignment));
1288   propagateMetadata(LI, Chain);
1289 
1290   if (VecLoadTy) {
1291     SmallVector<Instruction *, 16> InstrsToErase;
1292 
1293     unsigned VecWidth = VecLoadTy->getNumElements();
1294     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1295       for (auto Use : Chain[I]->users()) {
1296         // All users of vector loads are ExtractElement instructions with
1297         // constant indices, otherwise we would have bailed before now.
1298         Instruction *UI = cast<Instruction>(Use);
1299         unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
1300         unsigned NewIdx = Idx + I * VecWidth;
1301         Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx),
1302                                                 UI->getName());
1303         if (V->getType() != UI->getType())
1304           V = Builder.CreateBitCast(V, UI->getType());
1305 
1306         // Replace the old instruction.
1307         UI->replaceAllUsesWith(V);
1308         InstrsToErase.push_back(UI);
1309       }
1310     }
1311 
1312     // Bitcast might not be an Instruction, if the value being loaded is a
1313     // constant.  In that case, no need to reorder anything.
1314     if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1315       reorder(BitcastInst);
1316 
1317     for (auto I : InstrsToErase)
1318       I->eraseFromParent();
1319   } else {
1320     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1321       Value *CV = Chain[I];
1322       Value *V =
1323           Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName());
1324       if (V->getType() != CV->getType()) {
1325         V = Builder.CreateBitOrPointerCast(V, CV->getType());
1326       }
1327 
1328       // Replace the old instruction.
1329       CV->replaceAllUsesWith(V);
1330     }
1331 
1332     if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1333       reorder(BitcastInst);
1334   }
1335 
1336   eraseInstructions(Chain);
1337 
1338   ++NumVectorInstructions;
1339   NumScalarsVectorized += Chain.size();
1340   return true;
1341 }
1342 
accessIsMisaligned(unsigned SzInBytes,unsigned AddressSpace,Align Alignment)1343 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
1344                                     Align Alignment) {
1345   if (Alignment.value() % SzInBytes == 0)
1346     return false;
1347 
1348   bool Fast = false;
1349   bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(),
1350                                                    SzInBytes * 8, AddressSpace,
1351                                                    Alignment, &Fast);
1352   LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows
1353                     << " and fast? " << Fast << "\n";);
1354   return !Allows || !Fast;
1355 }
1356