1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 /*
26  * Triangle Rasterizer Template
27  *
28  * This file is #include'd to generate custom triangle rasterizers.
29  *
30  * The following macros may be defined to indicate what auxillary information
31  * must be interpolated across the triangle:
32  *    INTERP_Z        - if defined, interpolate integer Z values
33  *    INTERP_RGB      - if defined, interpolate integer RGB values
34  *    INTERP_ALPHA    - if defined, interpolate integer Alpha values
35  *    INTERP_INT_TEX  - if defined, interpolate integer ST texcoords
36  *                         (fast, simple 2-D texture mapping, without
37  *                         perspective correction)
38  *    INTERP_ATTRIBS  - if defined, interpolate arbitrary attribs (texcoords,
39  *                         varying vars, etc)  This also causes W to be
40  *                         computed for perspective correction).
41  *
42  * When one can directly address pixels in the color buffer the following
43  * macros can be defined and used to compute pixel addresses during
44  * rasterization (see pRow):
45  *    PIXEL_TYPE          - the datatype of a pixel (GLubyte, GLushort, GLuint)
46  *    BYTES_PER_ROW       - number of bytes per row in the color buffer
47  *    PIXEL_ADDRESS(X,Y)  - returns the address of pixel at (X,Y) where
48  *                          Y==0 at bottom of screen and increases upward.
49  *
50  * Similarly, for direct depth buffer access, this type is used for depth
51  * buffer addressing (see zRow):
52  *    DEPTH_TYPE          - either GLushort or GLuint
53  *
54  * Optionally, one may provide one-time setup code per triangle:
55  *    SETUP_CODE    - code which is to be executed once per triangle
56  *
57  * The following macro MUST be defined:
58  *    RENDER_SPAN(span) - code to write a span of pixels.
59  *
60  * This code was designed for the origin to be in the lower-left corner.
61  *
62  * Inspired by triangle rasterizer code written by Allen Akin.  Thanks Allen!
63  *
64  *
65  * Some notes on rasterization accuracy:
66  *
67  * This code uses fixed point arithmetic (the GLfixed type) to iterate
68  * over the triangle edges and interpolate ancillary data (such as Z,
69  * color, secondary color, etc).  The number of fractional bits in
70  * GLfixed and the value of SUB_PIXEL_BITS has a direct bearing on the
71  * accuracy of rasterization.
72  *
73  * If SUB_PIXEL_BITS=4 then we'll snap the vertices to the nearest
74  * 1/16 of a pixel.  If we're walking up a long, nearly vertical edge
75  * (dx=1/16, dy=1024) we'll need 4 + 10 = 14 fractional bits in
76  * GLfixed to walk the edge without error.  If the maximum viewport
77  * height is 4K pixels, then we'll need 4 + 12 = 16 fractional bits.
78  *
79  * Historically, Mesa has used 11 fractional bits in GLfixed, snaps
80  * vertices to 1/16 pixel and allowed a maximum viewport height of 2K
81  * pixels.  11 fractional bits is actually insufficient for accurately
82  * rasterizing some triangles.  More recently, the maximum viewport
83  * height was increased to 4K pixels.  Thus, Mesa should be using 16
84  * fractional bits in GLfixed.  Unfortunately, there may be some issues
85  * with setting FIXED_FRAC_BITS=16, such as multiplication overflow.
86  * This will have to be examined in some detail...
87  *
88  * For now, if you find rasterization errors, particularly with tall,
89  * sliver triangles, try increasing FIXED_FRAC_BITS and/or decreasing
90  * SUB_PIXEL_BITS.
91  */
92 
93 #include "util/u_math.h"
94 
95 #ifndef MAX_GLUINT
96 #define MAX_GLUINT	0xffffffffu
97 #endif
98 
99 
100 /*
101  * Some code we unfortunately need to prevent negative interpolated colors.
102  */
103 #ifndef CLAMP_INTERPOLANT
104 #define CLAMP_INTERPOLANT(CHANNEL, CHANNELSTEP, LEN)		\
105 do {								\
106    GLfixed endVal = span.CHANNEL + (LEN) * span.CHANNELSTEP;	\
107    if (endVal < 0) {						\
108       span.CHANNEL -= endVal;					\
109    }								\
110    if (span.CHANNEL < 0) {					\
111       span.CHANNEL = 0;						\
112    }								\
113 } while (0)
114 #endif
115 
116 
NAME(struct gl_context * ctx,const SWvertex * v0,const SWvertex * v1,const SWvertex * v2)117 static void NAME(struct gl_context *ctx, const SWvertex *v0,
118                                  const SWvertex *v1,
119                                  const SWvertex *v2 )
120 {
121    typedef struct {
122       const SWvertex *v0, *v1;   /* Y(v0) < Y(v1) */
123       GLfloat dx;	/* X(v1) - X(v0) */
124       GLfloat dy;	/* Y(v1) - Y(v0) */
125       GLfloat dxdy;	/* dx/dy */
126       GLfixed fdxdy;	/* dx/dy in fixed-point */
127       GLfloat adjy;	/* adjust from v[0]->fy to fsy, scaled */
128       GLfixed fsx;	/* first sample point x coord */
129       GLfixed fsy;
130       GLfixed fx0;	/* fixed pt X of lower endpoint */
131       GLint lines;	/* number of lines to be sampled on this edge */
132    } EdgeT;
133 
134    const SWcontext *swrast = SWRAST_CONTEXT(ctx);
135 #ifdef INTERP_Z
136    const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
137    const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
138    const GLfloat maxDepth = ctx->DrawBuffer->_DepthMaxF;
139 #define FixedToDepth(F)  ((F) >> fixedToDepthShift)
140 #endif
141    EdgeT eMaj, eTop, eBot;
142    GLfloat oneOverArea;
143    const SWvertex *vMin, *vMid, *vMax;  /* Y(vMin)<=Y(vMid)<=Y(vMax) */
144    GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
145    const GLint snapMask = ~((FIXED_ONE / (1 << SUB_PIXEL_BITS)) - 1); /* for x/y coord snapping */
146    GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
147 
148    SWspan span;
149 
150    (void) swrast;
151 
152    INIT_SPAN(span, GL_POLYGON);
153    span.y = 0; /* silence warnings */
154 
155 #ifdef INTERP_Z
156    (void) fixedToDepthShift;
157 #endif
158 
159    /*
160    printf("%s()\n", __func__);
161    printf("  %g, %g, %g\n",
162           v0->attrib[VARYING_SLOT_POS][0],
163           v0->attrib[VARYING_SLOT_POS][1],
164           v0->attrib[VARYING_SLOT_POS][2]);
165    printf("  %g, %g, %g\n",
166           v1->attrib[VARYING_SLOT_POS][0],
167           v1->attrib[VARYING_SLOT_POS][1],
168           v1->attrib[VARYING_SLOT_POS][2]);
169    printf("  %g, %g, %g\n",
170           v2->attrib[VARYING_SLOT_POS][0],
171           v2->attrib[VARYING_SLOT_POS][1],
172           v2->attrib[VARYING_SLOT_POS][2]);
173    */
174 
175    /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
176     * And find the order of the 3 vertices along the Y axis.
177     */
178    {
179       const GLfixed fy0 = FloatToFixed(v0->attrib[VARYING_SLOT_POS][1] - 0.5F) & snapMask;
180       const GLfixed fy1 = FloatToFixed(v1->attrib[VARYING_SLOT_POS][1] - 0.5F) & snapMask;
181       const GLfixed fy2 = FloatToFixed(v2->attrib[VARYING_SLOT_POS][1] - 0.5F) & snapMask;
182       if (fy0 <= fy1) {
183          if (fy1 <= fy2) {
184             /* y0 <= y1 <= y2 */
185             vMin = v0;   vMid = v1;   vMax = v2;
186             vMin_fy = fy0;  vMid_fy = fy1;  vMax_fy = fy2;
187          }
188          else if (fy2 <= fy0) {
189             /* y2 <= y0 <= y1 */
190             vMin = v2;   vMid = v0;   vMax = v1;
191             vMin_fy = fy2;  vMid_fy = fy0;  vMax_fy = fy1;
192          }
193          else {
194             /* y0 <= y2 <= y1 */
195             vMin = v0;   vMid = v2;   vMax = v1;
196             vMin_fy = fy0;  vMid_fy = fy2;  vMax_fy = fy1;
197             bf = -bf;
198          }
199       }
200       else {
201          if (fy0 <= fy2) {
202             /* y1 <= y0 <= y2 */
203             vMin = v1;   vMid = v0;   vMax = v2;
204             vMin_fy = fy1;  vMid_fy = fy0;  vMax_fy = fy2;
205             bf = -bf;
206          }
207          else if (fy2 <= fy1) {
208             /* y2 <= y1 <= y0 */
209             vMin = v2;   vMid = v1;   vMax = v0;
210             vMin_fy = fy2;  vMid_fy = fy1;  vMax_fy = fy0;
211             bf = -bf;
212          }
213          else {
214             /* y1 <= y2 <= y0 */
215             vMin = v1;   vMid = v2;   vMax = v0;
216             vMin_fy = fy1;  vMid_fy = fy2;  vMax_fy = fy0;
217          }
218       }
219 
220       /* fixed point X coords */
221       vMin_fx = FloatToFixed(vMin->attrib[VARYING_SLOT_POS][0] + 0.5F) & snapMask;
222       vMid_fx = FloatToFixed(vMid->attrib[VARYING_SLOT_POS][0] + 0.5F) & snapMask;
223       vMax_fx = FloatToFixed(vMax->attrib[VARYING_SLOT_POS][0] + 0.5F) & snapMask;
224    }
225 
226    /* vertex/edge relationship */
227    eMaj.v0 = vMin;   eMaj.v1 = vMax;   /*TODO: .v1's not needed */
228    eTop.v0 = vMid;   eTop.v1 = vMax;
229    eBot.v0 = vMin;   eBot.v1 = vMid;
230 
231    /* compute deltas for each edge:  vertex[upper] - vertex[lower] */
232    eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
233    eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
234    eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
235    eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
236    eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
237    eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
238 
239    /* compute area, oneOverArea and perform backface culling */
240    {
241       const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
242 
243       if (util_is_inf_or_nan(area) || area == 0.0F)
244          return;
245 
246       if (area * bf * swrast->_BackfaceCullSign < 0.0F)
247          return;
248 
249       oneOverArea = 1.0F / area;
250 
251       /* 0 = front, 1 = back */
252       span.facing = oneOverArea * bf > 0.0F;
253    }
254 
255    /* Edge setup.  For a triangle strip these could be reused... */
256    {
257       eMaj.fsy = FixedCeil(vMin_fy);
258       eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
259       if (eMaj.lines > 0) {
260          eMaj.dxdy = eMaj.dx / eMaj.dy;
261          eMaj.fdxdy = SignedFloatToFixed(eMaj.dxdy);
262          eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy);  /* SCALED! */
263          eMaj.fx0 = vMin_fx;
264          eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * eMaj.dxdy);
265       }
266       else {
267          return;  /*CULLED*/
268       }
269 
270       eTop.fsy = FixedCeil(vMid_fy);
271       eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
272       if (eTop.lines > 0) {
273          eTop.dxdy = eTop.dx / eTop.dy;
274          eTop.fdxdy = SignedFloatToFixed(eTop.dxdy);
275          eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
276          eTop.fx0 = vMid_fx;
277          eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * eTop.dxdy);
278       }
279 
280       eBot.fsy = FixedCeil(vMin_fy);
281       eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
282       if (eBot.lines > 0) {
283          eBot.dxdy = eBot.dx / eBot.dy;
284          eBot.fdxdy = SignedFloatToFixed(eBot.dxdy);
285          eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy);  /* SCALED! */
286          eBot.fx0 = vMin_fx;
287          eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * eBot.dxdy);
288       }
289    }
290 
291    /*
292     * Conceptually, we view a triangle as two subtriangles
293     * separated by a perfectly horizontal line.  The edge that is
294     * intersected by this line is one with maximal absolute dy; we
295     * call it a ``major'' edge.  The other two edges are the
296     * ``top'' edge (for the upper subtriangle) and the ``bottom''
297     * edge (for the lower subtriangle).  If either of these two
298     * edges is horizontal or very close to horizontal, the
299     * corresponding subtriangle might cover zero sample points;
300     * we take care to handle such cases, for performance as well
301     * as correctness.
302     *
303     * By stepping rasterization parameters along the major edge,
304     * we can avoid recomputing them at the discontinuity where
305     * the top and bottom edges meet.  However, this forces us to
306     * be able to scan both left-to-right and right-to-left.
307     * Also, we must determine whether the major edge is at the
308     * left or right side of the triangle.  We do this by
309     * computing the magnitude of the cross-product of the major
310     * and top edges.  Since this magnitude depends on the sine of
311     * the angle between the two edges, its sign tells us whether
312     * we turn to the left or to the right when travelling along
313     * the major edge to the top edge, and from this we infer
314     * whether the major edge is on the left or the right.
315     *
316     * Serendipitously, this cross-product magnitude is also a
317     * value we need to compute the iteration parameter
318     * derivatives for the triangle, and it can be used to perform
319     * backface culling because its sign tells us whether the
320     * triangle is clockwise or counterclockwise.  In this code we
321     * refer to it as ``area'' because it's also proportional to
322     * the pixel area of the triangle.
323     */
324 
325    {
326       GLint scan_from_left_to_right;  /* true if scanning left-to-right */
327 
328       /*
329        * Execute user-supplied setup code
330        */
331 #ifdef SETUP_CODE
332       SETUP_CODE
333 #endif
334 
335       scan_from_left_to_right = (oneOverArea < 0.0F);
336 
337 
338       /* compute d?/dx and d?/dy derivatives */
339 #ifdef INTERP_Z
340       span.interpMask |= SPAN_Z;
341       {
342          GLfloat eMaj_dz = vMax->attrib[VARYING_SLOT_POS][2] - vMin->attrib[VARYING_SLOT_POS][2];
343          GLfloat eBot_dz = vMid->attrib[VARYING_SLOT_POS][2] - vMin->attrib[VARYING_SLOT_POS][2];
344          span.attrStepX[VARYING_SLOT_POS][2] = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
345          if (span.attrStepX[VARYING_SLOT_POS][2] > maxDepth ||
346              span.attrStepX[VARYING_SLOT_POS][2] < -maxDepth) {
347             /* probably a sliver triangle */
348             span.attrStepX[VARYING_SLOT_POS][2] = 0.0;
349             span.attrStepY[VARYING_SLOT_POS][2] = 0.0;
350          }
351          else {
352             span.attrStepY[VARYING_SLOT_POS][2] = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
353          }
354          if (depthBits <= 16)
355             span.zStep = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_POS][2]);
356          else
357             span.zStep = (GLint) span.attrStepX[VARYING_SLOT_POS][2];
358       }
359 #endif
360 #ifdef INTERP_RGB
361       span.interpMask |= SPAN_RGBA;
362       if (ctx->Light.ShadeModel == GL_SMOOTH) {
363          GLfloat eMaj_dr = (GLfloat) (vMax->color[RCOMP] - vMin->color[RCOMP]);
364          GLfloat eBot_dr = (GLfloat) (vMid->color[RCOMP] - vMin->color[RCOMP]);
365          GLfloat eMaj_dg = (GLfloat) (vMax->color[GCOMP] - vMin->color[GCOMP]);
366          GLfloat eBot_dg = (GLfloat) (vMid->color[GCOMP] - vMin->color[GCOMP]);
367          GLfloat eMaj_db = (GLfloat) (vMax->color[BCOMP] - vMin->color[BCOMP]);
368          GLfloat eBot_db = (GLfloat) (vMid->color[BCOMP] - vMin->color[BCOMP]);
369 #  ifdef INTERP_ALPHA
370          GLfloat eMaj_da = (GLfloat) (vMax->color[ACOMP] - vMin->color[ACOMP]);
371          GLfloat eBot_da = (GLfloat) (vMid->color[ACOMP] - vMin->color[ACOMP]);
372 #  endif
373          span.attrStepX[VARYING_SLOT_COL0][0] = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
374          span.attrStepY[VARYING_SLOT_COL0][0] = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
375          span.attrStepX[VARYING_SLOT_COL0][1] = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
376          span.attrStepY[VARYING_SLOT_COL0][1] = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
377          span.attrStepX[VARYING_SLOT_COL0][2] = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
378          span.attrStepY[VARYING_SLOT_COL0][2] = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
379          span.redStep   = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][0]);
380          span.greenStep = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][1]);
381          span.blueStep  = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][2]);
382 #  ifdef INTERP_ALPHA
383          span.attrStepX[VARYING_SLOT_COL0][3] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
384          span.attrStepY[VARYING_SLOT_COL0][3] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
385          span.alphaStep = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][3]);
386 #  endif /* INTERP_ALPHA */
387       }
388       else {
389          assert(ctx->Light.ShadeModel == GL_FLAT);
390          span.interpMask |= SPAN_FLAT;
391          span.attrStepX[VARYING_SLOT_COL0][0] = span.attrStepY[VARYING_SLOT_COL0][0] = 0.0F;
392          span.attrStepX[VARYING_SLOT_COL0][1] = span.attrStepY[VARYING_SLOT_COL0][1] = 0.0F;
393          span.attrStepX[VARYING_SLOT_COL0][2] = span.attrStepY[VARYING_SLOT_COL0][2] = 0.0F;
394 	 span.redStep   = 0;
395 	 span.greenStep = 0;
396 	 span.blueStep  = 0;
397 #  ifdef INTERP_ALPHA
398          span.attrStepX[VARYING_SLOT_COL0][3] = span.attrStepY[VARYING_SLOT_COL0][3] = 0.0F;
399 	 span.alphaStep = 0;
400 #  endif
401       }
402 #endif /* INTERP_RGB */
403 #ifdef INTERP_INT_TEX
404       {
405          GLfloat eMaj_ds = (vMax->attrib[VARYING_SLOT_TEX0][0] - vMin->attrib[VARYING_SLOT_TEX0][0]) * S_SCALE;
406          GLfloat eBot_ds = (vMid->attrib[VARYING_SLOT_TEX0][0] - vMin->attrib[VARYING_SLOT_TEX0][0]) * S_SCALE;
407          GLfloat eMaj_dt = (vMax->attrib[VARYING_SLOT_TEX0][1] - vMin->attrib[VARYING_SLOT_TEX0][1]) * T_SCALE;
408          GLfloat eBot_dt = (vMid->attrib[VARYING_SLOT_TEX0][1] - vMin->attrib[VARYING_SLOT_TEX0][1]) * T_SCALE;
409          span.attrStepX[VARYING_SLOT_TEX0][0] = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
410          span.attrStepY[VARYING_SLOT_TEX0][0] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
411          span.attrStepX[VARYING_SLOT_TEX0][1] = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
412          span.attrStepY[VARYING_SLOT_TEX0][1] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
413          span.intTexStep[0] = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_TEX0][0]);
414          span.intTexStep[1] = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_TEX0][1]);
415       }
416 #endif
417 #ifdef INTERP_ATTRIBS
418       {
419          /* attrib[VARYING_SLOT_POS][3] is 1/W */
420          const GLfloat wMax = vMax->attrib[VARYING_SLOT_POS][3];
421          const GLfloat wMin = vMin->attrib[VARYING_SLOT_POS][3];
422          const GLfloat wMid = vMid->attrib[VARYING_SLOT_POS][3];
423          {
424             const GLfloat eMaj_dw = wMax - wMin;
425             const GLfloat eBot_dw = wMid - wMin;
426             span.attrStepX[VARYING_SLOT_POS][3] = oneOverArea * (eMaj_dw * eBot.dy - eMaj.dy * eBot_dw);
427             span.attrStepY[VARYING_SLOT_POS][3] = oneOverArea * (eMaj.dx * eBot_dw - eMaj_dw * eBot.dx);
428          }
429          ATTRIB_LOOP_BEGIN
430             if (swrast->_InterpMode[attr] == GL_FLAT) {
431                ASSIGN_4V(span.attrStepX[attr], 0.0, 0.0, 0.0, 0.0);
432                ASSIGN_4V(span.attrStepY[attr], 0.0, 0.0, 0.0, 0.0);
433             }
434             else {
435                GLuint c;
436                for (c = 0; c < 4; c++) {
437                   GLfloat eMaj_da = vMax->attrib[attr][c] * wMax - vMin->attrib[attr][c] * wMin;
438                   GLfloat eBot_da = vMid->attrib[attr][c] * wMid - vMin->attrib[attr][c] * wMin;
439                   span.attrStepX[attr][c] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
440                   span.attrStepY[attr][c] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
441                }
442             }
443          ATTRIB_LOOP_END
444       }
445 #endif
446 
447       /*
448        * We always sample at pixel centers.  However, we avoid
449        * explicit half-pixel offsets in this code by incorporating
450        * the proper offset in each of x and y during the
451        * transformation to window coordinates.
452        *
453        * We also apply the usual rasterization rules to prevent
454        * cracks and overlaps.  A pixel is considered inside a
455        * subtriangle if it meets all of four conditions: it is on or
456        * to the right of the left edge, strictly to the left of the
457        * right edge, on or below the top edge, and strictly above
458        * the bottom edge.  (Some edges may be degenerate.)
459        *
460        * The following discussion assumes left-to-right scanning
461        * (that is, the major edge is on the left); the right-to-left
462        * case is a straightforward variation.
463        *
464        * We start by finding the half-integral y coordinate that is
465        * at or below the top of the triangle.  This gives us the
466        * first scan line that could possibly contain pixels that are
467        * inside the triangle.
468        *
469        * Next we creep down the major edge until we reach that y,
470        * and compute the corresponding x coordinate on the edge.
471        * Then we find the half-integral x that lies on or just
472        * inside the edge.  This is the first pixel that might lie in
473        * the interior of the triangle.  (We won't know for sure
474        * until we check the other edges.)
475        *
476        * As we rasterize the triangle, we'll step down the major
477        * edge.  For each step in y, we'll move an integer number
478        * of steps in x.  There are two possible x step sizes, which
479        * we'll call the ``inner'' step (guaranteed to land on the
480        * edge or inside it) and the ``outer'' step (guaranteed to
481        * land on the edge or outside it).  The inner and outer steps
482        * differ by one.  During rasterization we maintain an error
483        * term that indicates our distance from the true edge, and
484        * select either the inner step or the outer step, whichever
485        * gets us to the first pixel that falls inside the triangle.
486        *
487        * All parameters (z, red, etc.) as well as the buffer
488        * addresses for color and z have inner and outer step values,
489        * so that we can increment them appropriately.  This method
490        * eliminates the need to adjust parameters by creeping a
491        * sub-pixel amount into the triangle at each scanline.
492        */
493 
494       {
495          GLint subTriangle;
496          GLfixed fxLeftEdge = 0, fxRightEdge = 0;
497          GLfixed fdxLeftEdge = 0, fdxRightEdge = 0;
498          GLfixed fError = 0, fdError = 0;
499 #ifdef PIXEL_ADDRESS
500          PIXEL_TYPE *pRow = NULL;
501          GLint dPRowOuter = 0, dPRowInner;  /* offset in bytes */
502 #endif
503 #ifdef INTERP_Z
504 #  ifdef DEPTH_TYPE
505          struct gl_renderbuffer *zrb
506             = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
507          DEPTH_TYPE *zRow = NULL;
508          GLint dZRowOuter = 0, dZRowInner;  /* offset in bytes */
509 #  endif
510          GLuint zLeft = 0;
511          GLfixed fdzOuter = 0, fdzInner;
512 #endif
513 #ifdef INTERP_RGB
514          GLint rLeft = 0, fdrOuter = 0, fdrInner;
515          GLint gLeft = 0, fdgOuter = 0, fdgInner;
516          GLint bLeft = 0, fdbOuter = 0, fdbInner;
517 #endif
518 #ifdef INTERP_ALPHA
519          GLint aLeft = 0, fdaOuter = 0, fdaInner;
520 #endif
521 #ifdef INTERP_INT_TEX
522          GLfixed sLeft=0, dsOuter=0, dsInner;
523          GLfixed tLeft=0, dtOuter=0, dtInner;
524 #endif
525 #ifdef INTERP_ATTRIBS
526          GLfloat wLeft = 0, dwOuter = 0, dwInner;
527          GLfloat attrLeft[VARYING_SLOT_MAX][4];
528          GLfloat daOuter[VARYING_SLOT_MAX][4], daInner[VARYING_SLOT_MAX][4];
529 #endif
530 
531          for (subTriangle=0; subTriangle<=1; subTriangle++) {
532             EdgeT *eLeft, *eRight;
533             int setupLeft, setupRight;
534             int lines;
535 
536             if (subTriangle==0) {
537                /* bottom half */
538                if (scan_from_left_to_right) {
539                   eLeft = &eMaj;
540                   eRight = &eBot;
541                   lines = eRight->lines;
542                   setupLeft = 1;
543                   setupRight = 1;
544                }
545                else {
546                   eLeft = &eBot;
547                   eRight = &eMaj;
548                   lines = eLeft->lines;
549                   setupLeft = 1;
550                   setupRight = 1;
551                }
552             }
553             else {
554                /* top half */
555                if (scan_from_left_to_right) {
556                   eLeft = &eMaj;
557                   eRight = &eTop;
558                   lines = eRight->lines;
559                   setupLeft = 0;
560                   setupRight = 1;
561                }
562                else {
563                   eLeft = &eTop;
564                   eRight = &eMaj;
565                   lines = eLeft->lines;
566                   setupLeft = 1;
567                   setupRight = 0;
568                }
569                if (lines == 0)
570                   return;
571             }
572 
573             if (setupLeft && eLeft->lines > 0) {
574                const SWvertex *vLower = eLeft->v0;
575                const GLfixed fsy = eLeft->fsy;
576                const GLfixed fsx = eLeft->fsx;  /* no fractional part */
577                const GLfixed fx = FixedCeil(fsx);  /* no fractional part */
578                const GLfixed adjx = (GLfixed) (fx - eLeft->fx0); /* SCALED! */
579                const GLfixed adjy = (GLfixed) eLeft->adjy;      /* SCALED! */
580                GLint idxOuter;
581                GLfloat dxOuter;
582                GLfixed fdxOuter;
583 
584                fError = fx - fsx - FIXED_ONE;
585                fxLeftEdge = fsx - FIXED_EPSILON;
586                fdxLeftEdge = eLeft->fdxdy;
587                fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
588                fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
589                idxOuter = FixedToInt(fdxOuter);
590                dxOuter = (GLfloat) idxOuter;
591                span.y = FixedToInt(fsy);
592 
593                /* silence warnings on some compilers */
594                (void) dxOuter;
595                (void) adjx;
596                (void) adjy;
597                (void) vLower;
598 
599 #ifdef PIXEL_ADDRESS
600                {
601                   pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y);
602                   dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
603                   /* negative because Y=0 at bottom and increases upward */
604                }
605 #endif
606                /*
607                 * Now we need the set of parameter (z, color, etc.) values at
608                 * the point (fx, fsy).  This gives us properly-sampled parameter
609                 * values that we can step from pixel to pixel.  Furthermore,
610                 * although we might have intermediate results that overflow
611                 * the normal parameter range when we step temporarily outside
612                 * the triangle, we shouldn't overflow or underflow for any
613                 * pixel that's actually inside the triangle.
614                 */
615 
616 #ifdef INTERP_Z
617                {
618                   GLfloat z0 = vLower->attrib[VARYING_SLOT_POS][2];
619                   if (depthBits <= 16) {
620                      /* interpolate fixed-pt values */
621                      GLfloat tmp = (z0 * FIXED_SCALE
622                                     + span.attrStepX[VARYING_SLOT_POS][2] * adjx
623                                     + span.attrStepY[VARYING_SLOT_POS][2] * adjy) + FIXED_HALF;
624                      if (tmp < MAX_GLUINT / 2)
625                         zLeft = (GLfixed) tmp;
626                      else
627                         zLeft = MAX_GLUINT / 2;
628                      fdzOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_POS][2] +
629                                                    dxOuter * span.attrStepX[VARYING_SLOT_POS][2]);
630                   }
631                   else {
632                      /* interpolate depth values w/out scaling */
633                      zLeft = (GLuint) (z0 + span.attrStepX[VARYING_SLOT_POS][2] * FixedToFloat(adjx)
634                                           + span.attrStepY[VARYING_SLOT_POS][2] * FixedToFloat(adjy));
635                      fdzOuter = (GLint) (span.attrStepY[VARYING_SLOT_POS][2] +
636                                          dxOuter * span.attrStepX[VARYING_SLOT_POS][2]);
637                   }
638 #  ifdef DEPTH_TYPE
639                   zRow = (DEPTH_TYPE *)
640                     _swrast_pixel_address(zrb, FixedToInt(fxLeftEdge), span.y);
641                   dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
642 #  endif
643                }
644 #endif
645 #ifdef INTERP_RGB
646                if (ctx->Light.ShadeModel == GL_SMOOTH) {
647                   rLeft = (GLint)(ChanToFixed(vLower->color[RCOMP])
648                                   + span.attrStepX[VARYING_SLOT_COL0][0] * adjx
649                                   + span.attrStepY[VARYING_SLOT_COL0][0] * adjy) + FIXED_HALF;
650                   gLeft = (GLint)(ChanToFixed(vLower->color[GCOMP])
651                                   + span.attrStepX[VARYING_SLOT_COL0][1] * adjx
652                                   + span.attrStepY[VARYING_SLOT_COL0][1] * adjy) + FIXED_HALF;
653                   bLeft = (GLint)(ChanToFixed(vLower->color[BCOMP])
654                                   + span.attrStepX[VARYING_SLOT_COL0][2] * adjx
655                                   + span.attrStepY[VARYING_SLOT_COL0][2] * adjy) + FIXED_HALF;
656                   fdrOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][0]
657                                                 + dxOuter * span.attrStepX[VARYING_SLOT_COL0][0]);
658                   fdgOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][1]
659                                                 + dxOuter * span.attrStepX[VARYING_SLOT_COL0][1]);
660                   fdbOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][2]
661                                                 + dxOuter * span.attrStepX[VARYING_SLOT_COL0][2]);
662 #  ifdef INTERP_ALPHA
663                   aLeft = (GLint)(ChanToFixed(vLower->color[ACOMP])
664                                   + span.attrStepX[VARYING_SLOT_COL0][3] * adjx
665                                   + span.attrStepY[VARYING_SLOT_COL0][3] * adjy) + FIXED_HALF;
666                   fdaOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][3]
667                                                 + dxOuter * span.attrStepX[VARYING_SLOT_COL0][3]);
668 #  endif
669                }
670                else {
671                   assert(ctx->Light.ShadeModel == GL_FLAT);
672                   rLeft = ChanToFixed(v2->color[RCOMP]);
673                   gLeft = ChanToFixed(v2->color[GCOMP]);
674                   bLeft = ChanToFixed(v2->color[BCOMP]);
675                   fdrOuter = fdgOuter = fdbOuter = 0;
676 #  ifdef INTERP_ALPHA
677                   aLeft = ChanToFixed(v2->color[ACOMP]);
678                   fdaOuter = 0;
679 #  endif
680                }
681 #endif /* INTERP_RGB */
682 
683 
684 #ifdef INTERP_INT_TEX
685                {
686                   GLfloat s0, t0;
687                   s0 = vLower->attrib[VARYING_SLOT_TEX0][0] * S_SCALE;
688                   sLeft = (GLfixed)(s0 * FIXED_SCALE + span.attrStepX[VARYING_SLOT_TEX0][0] * adjx
689                                  + span.attrStepY[VARYING_SLOT_TEX0][0] * adjy) + FIXED_HALF;
690                   dsOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_TEX0][0]
691                                                + dxOuter * span.attrStepX[VARYING_SLOT_TEX0][0]);
692 
693                   t0 = vLower->attrib[VARYING_SLOT_TEX0][1] * T_SCALE;
694                   tLeft = (GLfixed)(t0 * FIXED_SCALE + span.attrStepX[VARYING_SLOT_TEX0][1] * adjx
695                                  + span.attrStepY[VARYING_SLOT_TEX0][1] * adjy) + FIXED_HALF;
696                   dtOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_TEX0][1]
697                                                + dxOuter * span.attrStepX[VARYING_SLOT_TEX0][1]);
698                }
699 #endif
700 #ifdef INTERP_ATTRIBS
701                {
702                   const GLuint attr = VARYING_SLOT_POS;
703                   wLeft = vLower->attrib[VARYING_SLOT_POS][3]
704                         + (span.attrStepX[attr][3] * adjx
705                            + span.attrStepY[attr][3] * adjy) * (1.0F/FIXED_SCALE);
706                   dwOuter = span.attrStepY[attr][3] + dxOuter * span.attrStepX[attr][3];
707                }
708                ATTRIB_LOOP_BEGIN
709                   const GLfloat invW = vLower->attrib[VARYING_SLOT_POS][3];
710                   if (swrast->_InterpMode[attr] == GL_FLAT) {
711                      GLuint c;
712                      for (c = 0; c < 4; c++) {
713                         attrLeft[attr][c] = v2->attrib[attr][c] * invW;
714                         daOuter[attr][c] = 0.0;
715                      }
716                   }
717                   else {
718                      GLuint c;
719                      for (c = 0; c < 4; c++) {
720                         const GLfloat a = vLower->attrib[attr][c] * invW;
721                         attrLeft[attr][c] = a + (  span.attrStepX[attr][c] * adjx
722                                                  + span.attrStepY[attr][c] * adjy) * (1.0F/FIXED_SCALE);
723                         daOuter[attr][c] = span.attrStepY[attr][c] + dxOuter * span.attrStepX[attr][c];
724                      }
725                   }
726                ATTRIB_LOOP_END
727 #endif
728             } /*if setupLeft*/
729 
730 
731             if (setupRight && eRight->lines>0) {
732                fxRightEdge = eRight->fsx - FIXED_EPSILON;
733                fdxRightEdge = eRight->fdxdy;
734             }
735 
736             if (lines==0) {
737                continue;
738             }
739 
740 
741             /* Rasterize setup */
742 #ifdef PIXEL_ADDRESS
743             dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
744 #endif
745 #ifdef INTERP_Z
746 #  ifdef DEPTH_TYPE
747             dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
748 #  endif
749             fdzInner = fdzOuter + span.zStep;
750 #endif
751 #ifdef INTERP_RGB
752             fdrInner = fdrOuter + span.redStep;
753             fdgInner = fdgOuter + span.greenStep;
754             fdbInner = fdbOuter + span.blueStep;
755 #endif
756 #ifdef INTERP_ALPHA
757             fdaInner = fdaOuter + span.alphaStep;
758 #endif
759 #ifdef INTERP_INT_TEX
760             dsInner = dsOuter + span.intTexStep[0];
761             dtInner = dtOuter + span.intTexStep[1];
762 #endif
763 #ifdef INTERP_ATTRIBS
764             dwInner = dwOuter + span.attrStepX[VARYING_SLOT_POS][3];
765             ATTRIB_LOOP_BEGIN
766                GLuint c;
767                for (c = 0; c < 4; c++) {
768                   daInner[attr][c] = daOuter[attr][c] + span.attrStepX[attr][c];
769                }
770             ATTRIB_LOOP_END
771 #endif
772 
773             while (lines > 0) {
774                /* initialize the span interpolants to the leftmost value */
775                /* ff = fixed-pt fragment */
776                const GLint right = FixedToInt(fxRightEdge);
777                span.x = FixedToInt(fxLeftEdge);
778                if (right <= span.x)
779                   span.end = 0;
780                else
781                   span.end = right - span.x;
782 
783 #ifdef INTERP_Z
784                span.z = zLeft;
785 #endif
786 #ifdef INTERP_RGB
787                span.red = rLeft;
788                span.green = gLeft;
789                span.blue = bLeft;
790 #endif
791 #ifdef INTERP_ALPHA
792                span.alpha = aLeft;
793 #endif
794 #ifdef INTERP_INT_TEX
795                span.intTex[0] = sLeft;
796                span.intTex[1] = tLeft;
797 #endif
798 
799 #ifdef INTERP_ATTRIBS
800                span.attrStart[VARYING_SLOT_POS][3] = wLeft;
801                ATTRIB_LOOP_BEGIN
802                   GLuint c;
803                   for (c = 0; c < 4; c++) {
804                      span.attrStart[attr][c] = attrLeft[attr][c];
805                   }
806                ATTRIB_LOOP_END
807 #endif
808 
809                /* This is where we actually generate fragments */
810                /* XXX the test for span.y > 0 _shouldn't_ be needed but
811                 * it fixes a problem on 64-bit Opterons (bug 4842).
812                 */
813                if (span.end > 0 && span.y >= 0) {
814                   const GLint len = span.end - 1;
815                   (void) len;
816 #ifdef INTERP_RGB
817                   CLAMP_INTERPOLANT(red, redStep, len);
818                   CLAMP_INTERPOLANT(green, greenStep, len);
819                   CLAMP_INTERPOLANT(blue, blueStep, len);
820 #endif
821 #ifdef INTERP_ALPHA
822                   CLAMP_INTERPOLANT(alpha, alphaStep, len);
823 #endif
824                   {
825                      RENDER_SPAN( span );
826                   }
827                }
828 
829                /*
830                 * Advance to the next scan line.  Compute the
831                 * new edge coordinates, and adjust the
832                 * pixel-center x coordinate so that it stays
833                 * on or inside the major edge.
834                 */
835                span.y++;
836                lines--;
837 
838                fxLeftEdge += fdxLeftEdge;
839                fxRightEdge += fdxRightEdge;
840 
841                fError += fdError;
842                if (fError >= 0) {
843                   fError -= FIXED_ONE;
844 
845 #ifdef PIXEL_ADDRESS
846                   pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
847 #endif
848 #ifdef INTERP_Z
849 #  ifdef DEPTH_TYPE
850                   zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
851 #  endif
852                   zLeft += fdzOuter;
853 #endif
854 #ifdef INTERP_RGB
855                   rLeft += fdrOuter;
856                   gLeft += fdgOuter;
857                   bLeft += fdbOuter;
858 #endif
859 #ifdef INTERP_ALPHA
860                   aLeft += fdaOuter;
861 #endif
862 #ifdef INTERP_INT_TEX
863                   sLeft += dsOuter;
864                   tLeft += dtOuter;
865 #endif
866 #ifdef INTERP_ATTRIBS
867                   wLeft += dwOuter;
868                   ATTRIB_LOOP_BEGIN
869                      GLuint c;
870                      for (c = 0; c < 4; c++) {
871                         attrLeft[attr][c] += daOuter[attr][c];
872                      }
873                   ATTRIB_LOOP_END
874 #endif
875                }
876                else {
877 #ifdef PIXEL_ADDRESS
878                   pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
879 #endif
880 #ifdef INTERP_Z
881 #  ifdef DEPTH_TYPE
882                   zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
883 #  endif
884                   zLeft += fdzInner;
885 #endif
886 #ifdef INTERP_RGB
887                   rLeft += fdrInner;
888                   gLeft += fdgInner;
889                   bLeft += fdbInner;
890 #endif
891 #ifdef INTERP_ALPHA
892                   aLeft += fdaInner;
893 #endif
894 #ifdef INTERP_INT_TEX
895                   sLeft += dsInner;
896                   tLeft += dtInner;
897 #endif
898 #ifdef INTERP_ATTRIBS
899                   wLeft += dwInner;
900                   ATTRIB_LOOP_BEGIN
901                      GLuint c;
902                      for (c = 0; c < 4; c++) {
903                         attrLeft[attr][c] += daInner[attr][c];
904                      }
905                   ATTRIB_LOOP_END
906 #endif
907                }
908             } /*while lines>0*/
909 
910          } /* for subTriangle */
911 
912       }
913    }
914 }
915 
916 #undef SETUP_CODE
917 #undef RENDER_SPAN
918 
919 #undef PIXEL_TYPE
920 #undef BYTES_PER_ROW
921 #undef PIXEL_ADDRESS
922 #undef DEPTH_TYPE
923 
924 #undef INTERP_Z
925 #undef INTERP_RGB
926 #undef INTERP_ALPHA
927 #undef INTERP_INT_TEX
928 #undef INTERP_ATTRIBS
929 
930 #undef S_SCALE
931 #undef T_SCALE
932 
933 #undef FixedToDepth
934 
935 #undef NAME
936