1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 /**
26  * @file
27  *
28  * We use the bindless descriptor model, which maps fairly closely to how
29  * Vulkan descriptor sets work. The two exceptions are input attachments and
30  * dynamic descriptors, which have to be patched when recording command
31  * buffers. We reserve an extra descriptor set for these. This descriptor set
32  * contains all the input attachments in the pipeline, in order, and then all
33  * the dynamic descriptors. The dynamic descriptors are stored in the CPU-side
34  * datastructure for each tu_descriptor_set, and then combined into one big
35  * descriptor set at CmdBindDescriptors time/draw time.
36  */
37 
38 #include "tu_private.h"
39 
40 #include <assert.h>
41 #include <fcntl.h>
42 #include <stdbool.h>
43 #include <string.h>
44 #include <unistd.h>
45 
46 #include "util/mesa-sha1.h"
47 #include "vk_descriptors.h"
48 #include "vk_util.h"
49 
50 static inline uint8_t *
pool_base(struct tu_descriptor_pool * pool)51 pool_base(struct tu_descriptor_pool *pool)
52 {
53    return pool->host_bo ?: pool->bo.map;
54 }
55 
56 static uint32_t
descriptor_size(VkDescriptorType type)57 descriptor_size(VkDescriptorType type)
58 {
59    switch (type) {
60    case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
61    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
62    case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
63       /* These are remapped to the special driver-managed descriptor set,
64        * hence they don't take up any space in the original descriptor set:
65        * Input attachment doesn't use descriptor sets at all
66        */
67       return 0;
68    case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
69       /* We make offsets and sizes all 16 dwords, to match how the hardware
70        * interprets indices passed to sample/load/store instructions in
71        * multiples of 16 dwords.  This means that "normal" descriptors are all
72        * of size 16, with padding for smaller descriptors like uniform storage
73        * descriptors which are less than 16 dwords. However combined images
74        * and samplers are actually two descriptors, so they have size 2.
75        */
76       return A6XX_TEX_CONST_DWORDS * 4 * 2;
77    default:
78       return A6XX_TEX_CONST_DWORDS * 4;
79    }
80 }
81 
82 static uint32_t
mutable_descriptor_size(const VkMutableDescriptorTypeListVALVE * list)83 mutable_descriptor_size(const VkMutableDescriptorTypeListVALVE *list)
84 {
85    uint32_t max_size = 0;
86 
87    /* Since we don't support VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER for
88     * mutable descriptors, max_size should be always A6XX_TEX_CONST_DWORDS * 4.
89     * But we leave this as-is and add an assert.
90     */
91    for (uint32_t i = 0; i < list->descriptorTypeCount; i++) {
92       uint32_t size = descriptor_size(list->pDescriptorTypes[i]);
93       max_size = MAX2(max_size, size);
94    }
95 
96    assert(max_size == A6XX_TEX_CONST_DWORDS * 4);
97 
98    return max_size;
99 }
100 
101 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorSetLayout(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorSetLayout * pSetLayout)102 tu_CreateDescriptorSetLayout(
103    VkDevice _device,
104    const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
105    const VkAllocationCallbacks *pAllocator,
106    VkDescriptorSetLayout *pSetLayout)
107 {
108    TU_FROM_HANDLE(tu_device, device, _device);
109    struct tu_descriptor_set_layout *set_layout;
110 
111    assert(pCreateInfo->sType ==
112           VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
113    const VkDescriptorSetLayoutBindingFlagsCreateInfoEXT *variable_flags =
114       vk_find_struct_const(
115          pCreateInfo->pNext,
116          DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT);
117    const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info =
118       vk_find_struct_const(
119          pCreateInfo->pNext,
120          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE);
121 
122    uint32_t num_bindings = 0;
123    uint32_t immutable_sampler_count = 0;
124    uint32_t ycbcr_sampler_count = 0;
125    for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
126       num_bindings = MAX2(num_bindings, pCreateInfo->pBindings[j].binding + 1);
127       if ((pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
128            pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
129            pCreateInfo->pBindings[j].pImmutableSamplers) {
130          immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
131 
132          bool has_ycbcr_sampler = false;
133          for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
134             if (tu_sampler_from_handle(pCreateInfo->pBindings[j].pImmutableSamplers[i])->ycbcr_sampler)
135                has_ycbcr_sampler = true;
136          }
137 
138          if (has_ycbcr_sampler)
139             ycbcr_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
140       }
141    }
142 
143    uint32_t samplers_offset =
144          offsetof(struct tu_descriptor_set_layout, binding[num_bindings]);
145 
146    /* note: only need to store TEX_SAMP_DWORDS for immutable samples,
147     * but using struct tu_sampler makes things simpler */
148    uint32_t size = samplers_offset +
149       immutable_sampler_count * sizeof(struct tu_sampler) +
150       ycbcr_sampler_count * sizeof(struct tu_sampler_ycbcr_conversion);
151 
152    set_layout = vk_object_zalloc(&device->vk, pAllocator, size,
153                                  VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT);
154    if (!set_layout)
155       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
156 
157    set_layout->flags = pCreateInfo->flags;
158 
159    /* We just allocate all the immutable samplers at the end of the struct */
160    struct tu_sampler *samplers = (void*) &set_layout->binding[num_bindings];
161    struct tu_sampler_ycbcr_conversion *ycbcr_samplers =
162       (void*) &samplers[immutable_sampler_count];
163 
164    VkDescriptorSetLayoutBinding *bindings = NULL;
165    VkResult result = vk_create_sorted_bindings(
166       pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
167    if (result != VK_SUCCESS) {
168       vk_object_free(&device->vk, pAllocator, set_layout);
169       return vk_error(device, result);
170    }
171 
172    set_layout->binding_count = num_bindings;
173    set_layout->shader_stages = 0;
174    set_layout->has_immutable_samplers = false;
175    set_layout->size = 0;
176    set_layout->dynamic_ubo = 0;
177 
178    uint32_t dynamic_offset_count = 0;
179 
180    for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
181       const VkDescriptorSetLayoutBinding *binding = bindings + j;
182       uint32_t b = binding->binding;
183 
184       set_layout->binding[b].type = binding->descriptorType;
185       set_layout->binding[b].array_size = binding->descriptorCount;
186       set_layout->binding[b].offset = set_layout->size;
187       set_layout->binding[b].dynamic_offset_offset = dynamic_offset_count;
188       set_layout->binding[b].shader_stages = binding->stageFlags;
189 
190       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_VALVE) {
191          /* For mutable descriptor types we must allocate a size that fits the
192           * largest descriptor type that the binding can mutate to.
193           */
194          set_layout->binding[b].size =
195             mutable_descriptor_size(&mutable_info->pMutableDescriptorTypeLists[j]);
196       } else {
197          set_layout->binding[b].size = descriptor_size(binding->descriptorType);
198       }
199 
200       if (variable_flags && binding->binding < variable_flags->bindingCount &&
201           (variable_flags->pBindingFlags[binding->binding] &
202            VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT)) {
203          assert(!binding->pImmutableSamplers); /* Terribly ill defined  how
204                                                   many samplers are valid */
205          assert(binding->binding == num_bindings - 1);
206 
207          set_layout->has_variable_descriptors = true;
208       }
209 
210       if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
211            binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
212           binding->pImmutableSamplers) {
213          set_layout->binding[b].immutable_samplers_offset = samplers_offset;
214          set_layout->has_immutable_samplers = true;
215 
216          for (uint32_t i = 0; i < binding->descriptorCount; i++)
217             samplers[i] = *tu_sampler_from_handle(binding->pImmutableSamplers[i]);
218 
219          samplers += binding->descriptorCount;
220          samplers_offset += sizeof(struct tu_sampler) * binding->descriptorCount;
221 
222          bool has_ycbcr_sampler = false;
223          for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
224             if (tu_sampler_from_handle(binding->pImmutableSamplers[i])->ycbcr_sampler)
225                has_ycbcr_sampler = true;
226          }
227 
228          if (has_ycbcr_sampler) {
229             set_layout->binding[b].ycbcr_samplers_offset =
230                (const char*)ycbcr_samplers - (const char*)set_layout;
231             for (uint32_t i = 0; i < binding->descriptorCount; i++) {
232                struct tu_sampler *sampler = tu_sampler_from_handle(binding->pImmutableSamplers[i]);
233                if (sampler->ycbcr_sampler)
234                   ycbcr_samplers[i] = *sampler->ycbcr_sampler;
235                else
236                   ycbcr_samplers[i].ycbcr_model = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
237             }
238             ycbcr_samplers += binding->descriptorCount;
239          } else {
240             set_layout->binding[b].ycbcr_samplers_offset = 0;
241          }
242       }
243 
244       set_layout->size +=
245          binding->descriptorCount * set_layout->binding[b].size;
246       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC ||
247           binding->descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
248          if (binding->descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
249             STATIC_ASSERT(MAX_DYNAMIC_BUFFERS <= 8 * sizeof(set_layout->dynamic_ubo));
250             set_layout->dynamic_ubo |=
251                ((1u << binding->descriptorCount) - 1) << dynamic_offset_count;
252          }
253 
254          dynamic_offset_count += binding->descriptorCount;
255       }
256 
257       set_layout->shader_stages |= binding->stageFlags;
258    }
259 
260    free(bindings);
261 
262    set_layout->dynamic_offset_count = dynamic_offset_count;
263 
264    *pSetLayout = tu_descriptor_set_layout_to_handle(set_layout);
265 
266    return VK_SUCCESS;
267 }
268 
269 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorSetLayout(VkDevice _device,VkDescriptorSetLayout _set_layout,const VkAllocationCallbacks * pAllocator)270 tu_DestroyDescriptorSetLayout(VkDevice _device,
271                               VkDescriptorSetLayout _set_layout,
272                               const VkAllocationCallbacks *pAllocator)
273 {
274    TU_FROM_HANDLE(tu_device, device, _device);
275    TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout, _set_layout);
276 
277    if (!set_layout)
278       return;
279 
280    vk_object_free(&device->vk, pAllocator, set_layout);
281 }
282 
283 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSupport(VkDevice device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,VkDescriptorSetLayoutSupport * pSupport)284 tu_GetDescriptorSetLayoutSupport(
285    VkDevice device,
286    const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
287    VkDescriptorSetLayoutSupport *pSupport)
288 {
289    VkDescriptorSetLayoutBinding *bindings = NULL;
290    VkResult result = vk_create_sorted_bindings(
291       pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
292    if (result != VK_SUCCESS) {
293       pSupport->supported = false;
294       return;
295    }
296 
297    const VkDescriptorSetLayoutBindingFlagsCreateInfoEXT *variable_flags =
298       vk_find_struct_const(
299          pCreateInfo->pNext,
300          DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT);
301    VkDescriptorSetVariableDescriptorCountLayoutSupportEXT *variable_count =
302       vk_find_struct(
303          (void *) pCreateInfo->pNext,
304          DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT_EXT);
305    const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info =
306       vk_find_struct_const(
307          pCreateInfo->pNext,
308          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE);
309 
310    if (variable_count) {
311       variable_count->maxVariableDescriptorCount = 0;
312    }
313 
314    bool supported = true;
315    uint64_t size = 0;
316    for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) {
317       const VkDescriptorSetLayoutBinding *binding = bindings + i;
318 
319       uint64_t descriptor_sz;
320 
321       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_VALVE) {
322          const VkMutableDescriptorTypeListVALVE *list =
323             &mutable_info->pMutableDescriptorTypeLists[i];
324 
325          for (uint32_t j = 0; j < list->descriptorTypeCount; j++) {
326             /* Don't support the input attachement and combined image sampler type
327              * for mutable descriptors */
328             if (list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT ||
329                 list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) {
330                supported = false;
331                goto out;
332             }
333          }
334 
335          descriptor_sz =
336             mutable_descriptor_size(&mutable_info->pMutableDescriptorTypeLists[i]);
337       } else {
338          descriptor_sz = descriptor_size(binding->descriptorType);
339       }
340       uint64_t descriptor_alignment = 8;
341 
342       if (size && !ALIGN_POT(size, descriptor_alignment)) {
343          supported = false;
344       }
345       size = ALIGN_POT(size, descriptor_alignment);
346 
347       uint64_t max_count = UINT64_MAX;
348       if (descriptor_sz)
349          max_count = (UINT64_MAX - size) / descriptor_sz;
350 
351       if (max_count < binding->descriptorCount) {
352          supported = false;
353       }
354 
355       if (variable_flags && binding->binding < variable_flags->bindingCount &&
356           variable_count &&
357           (variable_flags->pBindingFlags[binding->binding] &
358            VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT)) {
359          variable_count->maxVariableDescriptorCount =
360             MIN2(UINT32_MAX, max_count);
361       }
362       size += binding->descriptorCount * descriptor_sz;
363    }
364 
365 out:
366    free(bindings);
367 
368    pSupport->supported = supported;
369 }
370 
371 /*
372  * Pipeline layouts.  These have nothing to do with the pipeline.  They are
373  * just multiple descriptor set layouts pasted together.
374  */
375 
376 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreatePipelineLayout(VkDevice _device,const VkPipelineLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineLayout * pPipelineLayout)377 tu_CreatePipelineLayout(VkDevice _device,
378                         const VkPipelineLayoutCreateInfo *pCreateInfo,
379                         const VkAllocationCallbacks *pAllocator,
380                         VkPipelineLayout *pPipelineLayout)
381 {
382    TU_FROM_HANDLE(tu_device, device, _device);
383    struct tu_pipeline_layout *layout;
384 
385    assert(pCreateInfo->sType ==
386           VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
387 
388    layout = vk_object_alloc(&device->vk, pAllocator, sizeof(*layout),
389                             VK_OBJECT_TYPE_PIPELINE_LAYOUT);
390    if (layout == NULL)
391       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
392 
393    layout->num_sets = pCreateInfo->setLayoutCount;
394    layout->dynamic_offset_count = 0;
395 
396    unsigned dynamic_offset_count = 0;
397 
398    for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
399       TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout,
400                      pCreateInfo->pSetLayouts[set]);
401       layout->set[set].layout = set_layout;
402       layout->set[set].dynamic_offset_start = dynamic_offset_count;
403       dynamic_offset_count += set_layout->dynamic_offset_count;
404    }
405 
406    layout->dynamic_offset_count = dynamic_offset_count;
407    layout->push_constant_size = 0;
408 
409    for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
410       const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i;
411       layout->push_constant_size =
412          MAX2(layout->push_constant_size, range->offset + range->size);
413    }
414 
415    layout->push_constant_size = align(layout->push_constant_size, 16);
416    *pPipelineLayout = tu_pipeline_layout_to_handle(layout);
417 
418    return VK_SUCCESS;
419 }
420 
421 VKAPI_ATTR void VKAPI_CALL
tu_DestroyPipelineLayout(VkDevice _device,VkPipelineLayout _pipelineLayout,const VkAllocationCallbacks * pAllocator)422 tu_DestroyPipelineLayout(VkDevice _device,
423                          VkPipelineLayout _pipelineLayout,
424                          const VkAllocationCallbacks *pAllocator)
425 {
426    TU_FROM_HANDLE(tu_device, device, _device);
427    TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, _pipelineLayout);
428 
429    if (!pipeline_layout)
430       return;
431 
432    vk_object_free(&device->vk, pAllocator, pipeline_layout);
433 }
434 
435 #define EMPTY 1
436 
437 static VkResult
tu_descriptor_set_create(struct tu_device * device,struct tu_descriptor_pool * pool,const struct tu_descriptor_set_layout * layout,const uint32_t * variable_count,struct tu_descriptor_set ** out_set)438 tu_descriptor_set_create(struct tu_device *device,
439             struct tu_descriptor_pool *pool,
440             const struct tu_descriptor_set_layout *layout,
441             const uint32_t *variable_count,
442             struct tu_descriptor_set **out_set)
443 {
444    struct tu_descriptor_set *set;
445    unsigned dynamic_offset = sizeof(struct tu_descriptor_set);
446    unsigned mem_size = dynamic_offset +
447       A6XX_TEX_CONST_DWORDS * 4 * layout->dynamic_offset_count;
448 
449    if (pool->host_memory_base) {
450       if (pool->host_memory_end - pool->host_memory_ptr < mem_size)
451          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
452 
453       set = (struct tu_descriptor_set*)pool->host_memory_ptr;
454       pool->host_memory_ptr += mem_size;
455    } else {
456       set = vk_alloc2(&device->vk.alloc, NULL, mem_size, 8,
457                       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
458 
459       if (!set)
460          return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
461    }
462 
463    memset(set, 0, mem_size);
464    vk_object_base_init(&device->vk, &set->base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
465 
466    if (layout->dynamic_offset_count) {
467       set->dynamic_descriptors = (uint32_t *)((uint8_t*)set + dynamic_offset);
468    }
469 
470    set->layout = layout;
471    set->pool = pool;
472    uint32_t layout_size = layout->size;
473    if (variable_count) {
474       assert(layout->has_variable_descriptors);
475       uint32_t stride = layout->binding[layout->binding_count - 1].size;
476       layout_size = layout->binding[layout->binding_count - 1].offset +
477                     *variable_count * stride;
478    }
479 
480    if (layout_size) {
481       set->size = layout_size;
482 
483       if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) {
484          vk_object_free(&device->vk, NULL, set);
485          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
486       }
487 
488       /* try to allocate linearly first, so that we don't spend
489        * time looking for gaps if the app only allocates &
490        * resets via the pool. */
491       if (pool->current_offset + layout_size <= pool->size) {
492          set->mapped_ptr = (uint32_t*)(pool_base(pool) + pool->current_offset);
493          set->va = pool->host_bo ? 0 : pool->bo.iova + pool->current_offset;
494 
495          if (!pool->host_memory_base) {
496             pool->entries[pool->entry_count].offset = pool->current_offset;
497             pool->entries[pool->entry_count].size = layout_size;
498             pool->entries[pool->entry_count].set = set;
499             pool->entry_count++;
500          }
501          pool->current_offset += layout_size;
502       } else if (!pool->host_memory_base) {
503          uint64_t offset = 0;
504          int index;
505 
506          for (index = 0; index < pool->entry_count; ++index) {
507             if (pool->entries[index].offset - offset >= layout_size)
508                break;
509             offset = pool->entries[index].offset + pool->entries[index].size;
510          }
511 
512          if (pool->size - offset < layout_size) {
513             vk_object_free(&device->vk, NULL, set);
514             return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
515          }
516 
517          set->mapped_ptr = (uint32_t*)(pool_base(pool) + offset);
518          set->va = pool->host_bo ? 0 : pool->bo.iova + offset;
519 
520          memmove(&pool->entries[index + 1], &pool->entries[index],
521             sizeof(pool->entries[0]) * (pool->entry_count - index));
522          pool->entries[index].offset = offset;
523          pool->entries[index].size = layout_size;
524          pool->entries[index].set = set;
525          pool->entry_count++;
526       } else
527          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
528    }
529 
530    if (layout->has_immutable_samplers) {
531       for (unsigned i = 0; i < layout->binding_count; ++i) {
532          if (!layout->binding[i].immutable_samplers_offset)
533             continue;
534 
535          unsigned offset = layout->binding[i].offset / 4;
536          if (layout->binding[i].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
537             offset += A6XX_TEX_CONST_DWORDS;
538 
539          const struct tu_sampler *samplers =
540             (const struct tu_sampler *)((const char *)layout +
541                                layout->binding[i].immutable_samplers_offset);
542          for (unsigned j = 0; j < layout->binding[i].array_size; ++j) {
543             memcpy(set->mapped_ptr + offset, samplers[j].descriptor,
544                    sizeof(samplers[j].descriptor));
545             offset += layout->binding[i].size / 4;
546          }
547       }
548    }
549 
550    *out_set = set;
551    return VK_SUCCESS;
552 }
553 
554 static void
tu_descriptor_set_destroy(struct tu_device * device,struct tu_descriptor_pool * pool,struct tu_descriptor_set * set,bool free_bo)555 tu_descriptor_set_destroy(struct tu_device *device,
556              struct tu_descriptor_pool *pool,
557              struct tu_descriptor_set *set,
558              bool free_bo)
559 {
560    assert(!pool->host_memory_base);
561 
562    if (free_bo && set->size && !pool->host_memory_base) {
563       uint32_t offset = (uint8_t*)set->mapped_ptr - pool_base(pool);
564 
565       for (int i = 0; i < pool->entry_count; ++i) {
566          if (pool->entries[i].offset == offset) {
567             memmove(&pool->entries[i], &pool->entries[i+1],
568                sizeof(pool->entries[i]) * (pool->entry_count - i - 1));
569             --pool->entry_count;
570             break;
571          }
572       }
573    }
574 
575    vk_object_free(&device->vk, NULL, set);
576 }
577 
578 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorPool(VkDevice _device,const VkDescriptorPoolCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorPool * pDescriptorPool)579 tu_CreateDescriptorPool(VkDevice _device,
580                         const VkDescriptorPoolCreateInfo *pCreateInfo,
581                         const VkAllocationCallbacks *pAllocator,
582                         VkDescriptorPool *pDescriptorPool)
583 {
584    TU_FROM_HANDLE(tu_device, device, _device);
585    struct tu_descriptor_pool *pool;
586    uint64_t size = sizeof(struct tu_descriptor_pool);
587    uint64_t bo_size = 0, bo_count = 0, dynamic_count = 0;
588    VkResult ret;
589 
590    const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info =
591       vk_find_struct_const( pCreateInfo->pNext,
592          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE);
593 
594    for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) {
595       if (pCreateInfo->pPoolSizes[i].type != VK_DESCRIPTOR_TYPE_SAMPLER)
596          bo_count += pCreateInfo->pPoolSizes[i].descriptorCount;
597 
598       switch(pCreateInfo->pPoolSizes[i].type) {
599       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
600       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
601          dynamic_count += pCreateInfo->pPoolSizes[i].descriptorCount;
602          break;
603       case VK_DESCRIPTOR_TYPE_MUTABLE_VALVE:
604          if (mutable_info && i < mutable_info->mutableDescriptorTypeListCount &&
605              mutable_info->pMutableDescriptorTypeLists[i].descriptorTypeCount > 0) {
606             bo_size +=
607                mutable_descriptor_size(&mutable_info->pMutableDescriptorTypeLists[i]) *
608                   pCreateInfo->pPoolSizes[i].descriptorCount;
609          } else {
610             /* Allocate the maximum size possible.
611              * Since we don't support VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER for
612              * mutable descriptors, we can set the default size of descriptor types.
613              */
614             bo_size += A6XX_TEX_CONST_DWORDS * 4 *
615                   pCreateInfo->pPoolSizes[i].descriptorCount;
616          }
617          continue;
618       default:
619          break;
620       }
621 
622       bo_size += descriptor_size(pCreateInfo->pPoolSizes[i].type) *
623                            pCreateInfo->pPoolSizes[i].descriptorCount;
624    }
625 
626    if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
627       uint64_t host_size = pCreateInfo->maxSets * sizeof(struct tu_descriptor_set);
628       host_size += sizeof(struct tu_bo*) * bo_count;
629       host_size += A6XX_TEX_CONST_DWORDS * 4 * dynamic_count;
630       size += host_size;
631    } else {
632       size += sizeof(struct tu_descriptor_pool_entry) * pCreateInfo->maxSets;
633    }
634 
635    pool = vk_object_zalloc(&device->vk, pAllocator, size,
636                           VK_OBJECT_TYPE_DESCRIPTOR_POOL);
637    if (!pool)
638       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
639 
640    if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
641       pool->host_memory_base = (uint8_t*)pool + sizeof(struct tu_descriptor_pool);
642       pool->host_memory_ptr = pool->host_memory_base;
643       pool->host_memory_end = (uint8_t*)pool + size;
644    }
645 
646    if (bo_size) {
647       if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_VALVE)) {
648          ret = tu_bo_init_new(device, &pool->bo, bo_size, TU_BO_ALLOC_ALLOW_DUMP);
649          if (ret)
650             goto fail_alloc;
651 
652          ret = tu_bo_map(device, &pool->bo);
653          if (ret)
654             goto fail_map;
655       } else {
656          pool->host_bo = vk_alloc2(&device->vk.alloc, pAllocator, bo_size, 8,
657                                    VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
658          if (!pool->host_bo) {
659             ret = VK_ERROR_OUT_OF_HOST_MEMORY;
660             goto fail_alloc;
661          }
662       }
663    }
664    pool->size = bo_size;
665    pool->max_entry_count = pCreateInfo->maxSets;
666 
667    *pDescriptorPool = tu_descriptor_pool_to_handle(pool);
668    return VK_SUCCESS;
669 
670 fail_map:
671    tu_bo_finish(device, &pool->bo);
672 fail_alloc:
673    vk_object_free(&device->vk, pAllocator, pool);
674    return ret;
675 }
676 
677 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorPool(VkDevice _device,VkDescriptorPool _pool,const VkAllocationCallbacks * pAllocator)678 tu_DestroyDescriptorPool(VkDevice _device,
679                          VkDescriptorPool _pool,
680                          const VkAllocationCallbacks *pAllocator)
681 {
682    TU_FROM_HANDLE(tu_device, device, _device);
683    TU_FROM_HANDLE(tu_descriptor_pool, pool, _pool);
684 
685    if (!pool)
686       return;
687 
688    if (!pool->host_memory_base) {
689       for(int i = 0; i < pool->entry_count; ++i) {
690          tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
691       }
692    }
693 
694    if (pool->size) {
695       if (pool->host_bo)
696          vk_free2(&device->vk.alloc, pAllocator, pool->host_bo);
697       else
698          tu_bo_finish(device, &pool->bo);
699    }
700 
701    vk_object_free(&device->vk, pAllocator, pool);
702 }
703 
704 VKAPI_ATTR VkResult VKAPI_CALL
tu_ResetDescriptorPool(VkDevice _device,VkDescriptorPool descriptorPool,VkDescriptorPoolResetFlags flags)705 tu_ResetDescriptorPool(VkDevice _device,
706                        VkDescriptorPool descriptorPool,
707                        VkDescriptorPoolResetFlags flags)
708 {
709    TU_FROM_HANDLE(tu_device, device, _device);
710    TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
711 
712    if (!pool->host_memory_base) {
713       for(int i = 0; i < pool->entry_count; ++i) {
714          tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
715       }
716       pool->entry_count = 0;
717    }
718 
719    pool->current_offset = 0;
720    pool->host_memory_ptr = pool->host_memory_base;
721 
722    return VK_SUCCESS;
723 }
724 
725 VKAPI_ATTR VkResult VKAPI_CALL
tu_AllocateDescriptorSets(VkDevice _device,const VkDescriptorSetAllocateInfo * pAllocateInfo,VkDescriptorSet * pDescriptorSets)726 tu_AllocateDescriptorSets(VkDevice _device,
727                           const VkDescriptorSetAllocateInfo *pAllocateInfo,
728                           VkDescriptorSet *pDescriptorSets)
729 {
730    TU_FROM_HANDLE(tu_device, device, _device);
731    TU_FROM_HANDLE(tu_descriptor_pool, pool, pAllocateInfo->descriptorPool);
732 
733    VkResult result = VK_SUCCESS;
734    uint32_t i;
735    struct tu_descriptor_set *set = NULL;
736 
737    const VkDescriptorSetVariableDescriptorCountAllocateInfoEXT *variable_counts =
738       vk_find_struct_const(pAllocateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT);
739    const uint32_t zero = 0;
740 
741    /* allocate a set of buffers for each shader to contain descriptors */
742    for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
743       TU_FROM_HANDLE(tu_descriptor_set_layout, layout,
744              pAllocateInfo->pSetLayouts[i]);
745 
746       const uint32_t *variable_count = NULL;
747       if (variable_counts) {
748          if (i < variable_counts->descriptorSetCount)
749             variable_count = variable_counts->pDescriptorCounts + i;
750          else
751             variable_count = &zero;
752       }
753 
754       assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
755 
756       result = tu_descriptor_set_create(device, pool, layout, variable_count, &set);
757       if (result != VK_SUCCESS)
758          break;
759 
760       pDescriptorSets[i] = tu_descriptor_set_to_handle(set);
761    }
762 
763    if (result != VK_SUCCESS) {
764       tu_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
765                i, pDescriptorSets);
766       for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
767          pDescriptorSets[i] = VK_NULL_HANDLE;
768       }
769    }
770    return result;
771 }
772 
773 VKAPI_ATTR VkResult VKAPI_CALL
tu_FreeDescriptorSets(VkDevice _device,VkDescriptorPool descriptorPool,uint32_t count,const VkDescriptorSet * pDescriptorSets)774 tu_FreeDescriptorSets(VkDevice _device,
775                       VkDescriptorPool descriptorPool,
776                       uint32_t count,
777                       const VkDescriptorSet *pDescriptorSets)
778 {
779    TU_FROM_HANDLE(tu_device, device, _device);
780    TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
781 
782    for (uint32_t i = 0; i < count; i++) {
783       TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
784 
785       if (set && !pool->host_memory_base)
786          tu_descriptor_set_destroy(device, pool, set, true);
787    }
788    return VK_SUCCESS;
789 }
790 
791 static void
write_texel_buffer_descriptor(uint32_t * dst,const VkBufferView buffer_view)792 write_texel_buffer_descriptor(uint32_t *dst, const VkBufferView buffer_view)
793 {
794    if (buffer_view == VK_NULL_HANDLE) {
795       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
796    } else {
797       TU_FROM_HANDLE(tu_buffer_view, view, buffer_view);
798 
799       memcpy(dst, view->descriptor, sizeof(view->descriptor));
800    }
801 }
802 
get_range(struct tu_buffer * buf,VkDeviceSize offset,VkDeviceSize range)803 static uint32_t get_range(struct tu_buffer *buf, VkDeviceSize offset,
804                           VkDeviceSize range)
805 {
806    if (range == VK_WHOLE_SIZE) {
807       return buf->size - offset;
808    } else {
809       return range;
810    }
811 }
812 
813 static void
write_buffer_descriptor(const struct tu_device * device,uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)814 write_buffer_descriptor(const struct tu_device *device,
815                         uint32_t *dst,
816                         const VkDescriptorBufferInfo *buffer_info)
817 {
818    if (buffer_info->buffer == VK_NULL_HANDLE) {
819       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
820       return;
821    }
822 
823    TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer);
824 
825    assert((buffer_info->offset & 63) == 0); /* minStorageBufferOffsetAlignment */
826    uint64_t va = tu_buffer_iova(buffer) + buffer_info->offset;
827    uint32_t range = get_range(buffer, buffer_info->offset, buffer_info->range);
828 
829    /* newer a6xx allows using 16-bit descriptor for both 16-bit and 32-bit access */
830    if (device->physical_device->info->a6xx.storage_16bit) {
831       dst[0] = A6XX_IBO_0_TILE_MODE(TILE6_LINEAR) | A6XX_IBO_0_FMT(FMT6_16_UINT);
832       dst[1] = DIV_ROUND_UP(range, 2);
833    } else {
834       dst[0] = A6XX_IBO_0_TILE_MODE(TILE6_LINEAR) | A6XX_IBO_0_FMT(FMT6_32_UINT);
835       dst[1] = DIV_ROUND_UP(range, 4);
836    }
837    dst[2] =
838       A6XX_IBO_2_UNK4 | A6XX_IBO_2_TYPE(A6XX_TEX_1D) | A6XX_IBO_2_UNK31;
839    dst[3] = 0;
840    dst[4] = A6XX_IBO_4_BASE_LO(va);
841    dst[5] = A6XX_IBO_5_BASE_HI(va >> 32);
842    for (int i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
843       dst[i] = 0;
844 }
845 
846 static void
write_ubo_descriptor(uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)847 write_ubo_descriptor(uint32_t *dst, const VkDescriptorBufferInfo *buffer_info)
848 {
849    if (buffer_info->buffer == VK_NULL_HANDLE) {
850       dst[0] = dst[1] = 0;
851       return;
852    }
853 
854    TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer);
855 
856    uint32_t range = get_range(buffer, buffer_info->offset, buffer_info->range);
857    /* The HW range is in vec4 units */
858    range = ALIGN_POT(range, 16) / 16;
859    uint64_t va = tu_buffer_iova(buffer) + buffer_info->offset;
860 
861    dst[0] = A6XX_UBO_0_BASE_LO(va);
862    dst[1] = A6XX_UBO_1_BASE_HI(va >> 32) | A6XX_UBO_1_SIZE(range);
863 }
864 
865 static void
write_image_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info)866 write_image_descriptor(uint32_t *dst,
867                        VkDescriptorType descriptor_type,
868                        const VkDescriptorImageInfo *image_info)
869 {
870    if (image_info->imageView == VK_NULL_HANDLE) {
871       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
872       return;
873    }
874 
875    TU_FROM_HANDLE(tu_image_view, iview, image_info->imageView);
876 
877    if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) {
878       memcpy(dst, iview->storage_descriptor, sizeof(iview->storage_descriptor));
879    } else {
880       memcpy(dst, iview->descriptor, sizeof(iview->descriptor));
881    }
882 }
883 
884 static void
write_combined_image_sampler_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info,bool has_sampler)885 write_combined_image_sampler_descriptor(uint32_t *dst,
886                                         VkDescriptorType descriptor_type,
887                                         const VkDescriptorImageInfo *image_info,
888                                         bool has_sampler)
889 {
890    write_image_descriptor(dst, descriptor_type, image_info);
891    /* copy over sampler state */
892    if (has_sampler) {
893       TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler);
894       memcpy(dst + A6XX_TEX_CONST_DWORDS, sampler->descriptor, sizeof(sampler->descriptor));
895    }
896 }
897 
898 static void
write_sampler_descriptor(uint32_t * dst,const VkDescriptorImageInfo * image_info)899 write_sampler_descriptor(uint32_t *dst, const VkDescriptorImageInfo *image_info)
900 {
901    TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler);
902 
903    memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
904 }
905 
906 /* note: this is used with immutable samplers in push descriptors */
907 static void
write_sampler_push(uint32_t * dst,const struct tu_sampler * sampler)908 write_sampler_push(uint32_t *dst, const struct tu_sampler *sampler)
909 {
910    memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
911 }
912 
913 void
tu_update_descriptor_sets(const struct tu_device * device,VkDescriptorSet dstSetOverride,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)914 tu_update_descriptor_sets(const struct tu_device *device,
915                           VkDescriptorSet dstSetOverride,
916                           uint32_t descriptorWriteCount,
917                           const VkWriteDescriptorSet *pDescriptorWrites,
918                           uint32_t descriptorCopyCount,
919                           const VkCopyDescriptorSet *pDescriptorCopies)
920 {
921    uint32_t i, j;
922    for (i = 0; i < descriptorWriteCount; i++) {
923       const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
924       TU_FROM_HANDLE(tu_descriptor_set, set, dstSetOverride ?: writeset->dstSet);
925       const struct tu_descriptor_set_binding_layout *binding_layout =
926          set->layout->binding + writeset->dstBinding;
927       uint32_t *ptr = set->mapped_ptr;
928       /* for immutable samplers with push descriptors: */
929       const bool copy_immutable_samplers =
930          dstSetOverride && binding_layout->immutable_samplers_offset;
931       const struct tu_sampler *samplers =
932          tu_immutable_samplers(set->layout, binding_layout);
933 
934       ptr += binding_layout->offset / 4;
935 
936       ptr += (binding_layout->size / 4) * writeset->dstArrayElement;
937       for (j = 0; j < writeset->descriptorCount; ++j) {
938          switch(writeset->descriptorType) {
939          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: {
940             assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
941             unsigned idx = writeset->dstArrayElement + j;
942             idx += binding_layout->dynamic_offset_offset;
943             write_ubo_descriptor(set->dynamic_descriptors + A6XX_TEX_CONST_DWORDS * idx,
944                                  writeset->pBufferInfo + j);
945             break;
946          }
947          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
948             write_ubo_descriptor(ptr, writeset->pBufferInfo + j);
949             break;
950          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
951             assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
952             unsigned idx = writeset->dstArrayElement + j;
953             idx += binding_layout->dynamic_offset_offset;
954             write_buffer_descriptor(device, set->dynamic_descriptors + A6XX_TEX_CONST_DWORDS * idx,
955                                     writeset->pBufferInfo + j);
956             break;
957          }
958          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
959             write_buffer_descriptor(device, ptr, writeset->pBufferInfo + j);
960             break;
961          case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
962          case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
963             write_texel_buffer_descriptor(ptr, writeset->pTexelBufferView[j]);
964             break;
965          case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
966          case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
967             write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j);
968             break;
969          case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
970             write_combined_image_sampler_descriptor(ptr,
971                                                     writeset->descriptorType,
972                                                     writeset->pImageInfo + j,
973                                                     !binding_layout->immutable_samplers_offset);
974 
975             if (copy_immutable_samplers)
976                write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[writeset->dstArrayElement + j]);
977             break;
978          case VK_DESCRIPTOR_TYPE_SAMPLER:
979             if (!binding_layout->immutable_samplers_offset)
980                write_sampler_descriptor(ptr, writeset->pImageInfo + j);
981             else if (copy_immutable_samplers)
982                write_sampler_push(ptr, &samplers[writeset->dstArrayElement + j]);
983             break;
984          case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
985             /* nothing in descriptor set - framebuffer state is used instead */
986             break;
987          default:
988             unreachable("unimplemented descriptor type");
989             break;
990          }
991          ptr += binding_layout->size / 4;
992       }
993    }
994 
995    for (i = 0; i < descriptorCopyCount; i++) {
996       const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i];
997       TU_FROM_HANDLE(tu_descriptor_set, src_set,
998                        copyset->srcSet);
999       TU_FROM_HANDLE(tu_descriptor_set, dst_set,
1000                        copyset->dstSet);
1001       const struct tu_descriptor_set_binding_layout *src_binding_layout =
1002          src_set->layout->binding + copyset->srcBinding;
1003       const struct tu_descriptor_set_binding_layout *dst_binding_layout =
1004          dst_set->layout->binding + copyset->dstBinding;
1005       uint32_t *src_ptr = src_set->mapped_ptr;
1006       uint32_t *dst_ptr = dst_set->mapped_ptr;
1007 
1008       src_ptr += src_binding_layout->offset / 4;
1009       dst_ptr += dst_binding_layout->offset / 4;
1010 
1011       src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4;
1012       dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4;
1013 
1014       /* In case of copies between mutable descriptor types
1015        * and non-mutable descriptor types.
1016        */
1017       uint32_t copy_size = MIN2(src_binding_layout->size, dst_binding_layout->size);
1018 
1019       for (j = 0; j < copyset->descriptorCount; ++j) {
1020          switch (src_binding_layout->type) {
1021          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1022          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1023             unsigned src_idx = copyset->srcArrayElement + j;
1024             unsigned dst_idx = copyset->dstArrayElement + j;
1025             src_idx += src_binding_layout->dynamic_offset_offset;
1026             dst_idx += dst_binding_layout->dynamic_offset_offset;
1027 
1028             uint32_t *src_dynamic, *dst_dynamic;
1029             src_dynamic = src_set->dynamic_descriptors + src_idx * A6XX_TEX_CONST_DWORDS;
1030             dst_dynamic = dst_set->dynamic_descriptors + dst_idx * A6XX_TEX_CONST_DWORDS;
1031             memcpy(dst_dynamic, src_dynamic, A6XX_TEX_CONST_DWORDS * 4);
1032             break;
1033          }
1034          default:
1035             memcpy(dst_ptr, src_ptr, copy_size);
1036          }
1037 
1038          src_ptr += src_binding_layout->size / 4;
1039          dst_ptr += dst_binding_layout->size / 4;
1040       }
1041    }
1042 }
1043 
1044 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSets(VkDevice _device,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1045 tu_UpdateDescriptorSets(VkDevice _device,
1046                         uint32_t descriptorWriteCount,
1047                         const VkWriteDescriptorSet *pDescriptorWrites,
1048                         uint32_t descriptorCopyCount,
1049                         const VkCopyDescriptorSet *pDescriptorCopies)
1050 {
1051    TU_FROM_HANDLE(tu_device, device, _device);
1052    tu_update_descriptor_sets(device, VK_NULL_HANDLE,
1053                              descriptorWriteCount, pDescriptorWrites,
1054                              descriptorCopyCount, pDescriptorCopies);
1055 }
1056 
1057 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorUpdateTemplate(VkDevice _device,const VkDescriptorUpdateTemplateCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorUpdateTemplate * pDescriptorUpdateTemplate)1058 tu_CreateDescriptorUpdateTemplate(
1059    VkDevice _device,
1060    const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo,
1061    const VkAllocationCallbacks *pAllocator,
1062    VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate)
1063 {
1064    TU_FROM_HANDLE(tu_device, device, _device);
1065    TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout,
1066                   pCreateInfo->descriptorSetLayout);
1067    const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount;
1068    const size_t size =
1069       sizeof(struct tu_descriptor_update_template) +
1070       sizeof(struct tu_descriptor_update_template_entry) * entry_count;
1071    struct tu_descriptor_update_template *templ;
1072 
1073    templ = vk_object_alloc(&device->vk, pAllocator, size,
1074                            VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE);
1075    if (!templ)
1076       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1077 
1078    templ->entry_count = entry_count;
1079 
1080    if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
1081       TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, pCreateInfo->pipelineLayout);
1082 
1083       /* descriptorSetLayout should be ignored for push descriptors
1084        * and instead it refers to pipelineLayout and set.
1085        */
1086       assert(pCreateInfo->set < MAX_SETS);
1087       set_layout = pipeline_layout->set[pCreateInfo->set].layout;
1088 
1089       templ->bind_point = pCreateInfo->pipelineBindPoint;
1090    }
1091 
1092    for (uint32_t i = 0; i < entry_count; i++) {
1093       const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
1094 
1095       const struct tu_descriptor_set_binding_layout *binding_layout =
1096          set_layout->binding + entry->dstBinding;
1097       uint32_t dst_offset, dst_stride;
1098       const struct tu_sampler *immutable_samplers = NULL;
1099 
1100       /* dst_offset is an offset into dynamic_descriptors when the descriptor
1101        * is dynamic, and an offset into mapped_ptr otherwise.
1102        */
1103       switch (entry->descriptorType) {
1104       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1105       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1106          dst_offset = (binding_layout->dynamic_offset_offset +
1107             entry->dstArrayElement) * A6XX_TEX_CONST_DWORDS;
1108          dst_stride = A6XX_TEX_CONST_DWORDS;
1109          break;
1110       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1111       case VK_DESCRIPTOR_TYPE_SAMPLER:
1112          if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR &&
1113              binding_layout->immutable_samplers_offset) {
1114             immutable_samplers =
1115                tu_immutable_samplers(set_layout, binding_layout) + entry->dstArrayElement;
1116          }
1117          FALLTHROUGH;
1118       default:
1119          dst_offset = binding_layout->offset / 4;
1120          dst_offset += (binding_layout->size * entry->dstArrayElement) / 4;
1121          dst_stride = binding_layout->size / 4;
1122       }
1123 
1124       templ->entry[i] = (struct tu_descriptor_update_template_entry) {
1125          .descriptor_type = entry->descriptorType,
1126          .descriptor_count = entry->descriptorCount,
1127          .src_offset = entry->offset,
1128          .src_stride = entry->stride,
1129          .dst_offset = dst_offset,
1130          .dst_stride = dst_stride,
1131          .has_sampler = !binding_layout->immutable_samplers_offset,
1132          .immutable_samplers = immutable_samplers,
1133       };
1134    }
1135 
1136    *pDescriptorUpdateTemplate =
1137       tu_descriptor_update_template_to_handle(templ);
1138 
1139    return VK_SUCCESS;
1140 }
1141 
1142 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorUpdateTemplate(VkDevice _device,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const VkAllocationCallbacks * pAllocator)1143 tu_DestroyDescriptorUpdateTemplate(
1144    VkDevice _device,
1145    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1146    const VkAllocationCallbacks *pAllocator)
1147 {
1148    TU_FROM_HANDLE(tu_device, device, _device);
1149    TU_FROM_HANDLE(tu_descriptor_update_template, templ,
1150                   descriptorUpdateTemplate);
1151 
1152    if (!templ)
1153       return;
1154 
1155    vk_object_free(&device->vk, pAllocator, templ);
1156 }
1157 
1158 void
tu_update_descriptor_set_with_template(const struct tu_device * device,struct tu_descriptor_set * set,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1159 tu_update_descriptor_set_with_template(
1160    const struct tu_device *device,
1161    struct tu_descriptor_set *set,
1162    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1163    const void *pData)
1164 {
1165    TU_FROM_HANDLE(tu_descriptor_update_template, templ,
1166                   descriptorUpdateTemplate);
1167 
1168    for (uint32_t i = 0; i < templ->entry_count; i++) {
1169       uint32_t *ptr = set->mapped_ptr;
1170       const void *src = ((const char *) pData) + templ->entry[i].src_offset;
1171       const struct tu_sampler *samplers = templ->entry[i].immutable_samplers;
1172 
1173       ptr += templ->entry[i].dst_offset;
1174       unsigned dst_offset = templ->entry[i].dst_offset;
1175       for (unsigned j = 0; j < templ->entry[i].descriptor_count; ++j) {
1176          switch(templ->entry[i].descriptor_type) {
1177          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: {
1178             assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1179             write_ubo_descriptor(set->dynamic_descriptors + dst_offset, src);
1180             break;
1181          }
1182          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1183             write_ubo_descriptor(ptr, src);
1184             break;
1185          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1186             assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1187             write_buffer_descriptor(device, set->dynamic_descriptors + dst_offset, src);
1188             break;
1189          }
1190          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1191             write_buffer_descriptor(device, ptr, src);
1192             break;
1193          case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1194          case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1195             write_texel_buffer_descriptor(ptr, *(VkBufferView *) src);
1196             break;
1197          case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1198          case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1199             write_image_descriptor(ptr, templ->entry[i].descriptor_type,  src);
1200             break;
1201          }
1202          case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1203             write_combined_image_sampler_descriptor(ptr,
1204                                                     templ->entry[i].descriptor_type,
1205                                                     src,
1206                                                     templ->entry[i].has_sampler);
1207             if (samplers)
1208                write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[j]);
1209             break;
1210          case VK_DESCRIPTOR_TYPE_SAMPLER:
1211             if (templ->entry[i].has_sampler)
1212                write_sampler_descriptor(ptr, src);
1213             else if (samplers)
1214                write_sampler_push(ptr, &samplers[j]);
1215             break;
1216          case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1217             /* nothing in descriptor set - framebuffer state is used instead */
1218             break;
1219          default:
1220             unreachable("unimplemented descriptor type");
1221             break;
1222          }
1223          src = (char *) src + templ->entry[i].src_stride;
1224          ptr += templ->entry[i].dst_stride;
1225          dst_offset += templ->entry[i].dst_stride;
1226       }
1227    }
1228 }
1229 
1230 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSetWithTemplate(VkDevice _device,VkDescriptorSet descriptorSet,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1231 tu_UpdateDescriptorSetWithTemplate(
1232    VkDevice _device,
1233    VkDescriptorSet descriptorSet,
1234    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1235    const void *pData)
1236 {
1237    TU_FROM_HANDLE(tu_device, device, _device);
1238    TU_FROM_HANDLE(tu_descriptor_set, set, descriptorSet);
1239 
1240    tu_update_descriptor_set_with_template(device, set, descriptorUpdateTemplate, pData);
1241 }
1242 
1243 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateSamplerYcbcrConversion(VkDevice _device,const VkSamplerYcbcrConversionCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkSamplerYcbcrConversion * pYcbcrConversion)1244 tu_CreateSamplerYcbcrConversion(
1245    VkDevice _device,
1246    const VkSamplerYcbcrConversionCreateInfo *pCreateInfo,
1247    const VkAllocationCallbacks *pAllocator,
1248    VkSamplerYcbcrConversion *pYcbcrConversion)
1249 {
1250    TU_FROM_HANDLE(tu_device, device, _device);
1251    struct tu_sampler_ycbcr_conversion *conversion;
1252 
1253    conversion = vk_object_alloc(&device->vk, pAllocator, sizeof(*conversion),
1254                                 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION);
1255    if (!conversion)
1256       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1257 
1258    conversion->format = pCreateInfo->format;
1259    conversion->ycbcr_model = pCreateInfo->ycbcrModel;
1260    conversion->ycbcr_range = pCreateInfo->ycbcrRange;
1261    conversion->components = pCreateInfo->components;
1262    conversion->chroma_offsets[0] = pCreateInfo->xChromaOffset;
1263    conversion->chroma_offsets[1] = pCreateInfo->yChromaOffset;
1264    conversion->chroma_filter = pCreateInfo->chromaFilter;
1265 
1266    *pYcbcrConversion = tu_sampler_ycbcr_conversion_to_handle(conversion);
1267    return VK_SUCCESS;
1268 }
1269 
1270 VKAPI_ATTR void VKAPI_CALL
tu_DestroySamplerYcbcrConversion(VkDevice _device,VkSamplerYcbcrConversion ycbcrConversion,const VkAllocationCallbacks * pAllocator)1271 tu_DestroySamplerYcbcrConversion(VkDevice _device,
1272                                  VkSamplerYcbcrConversion ycbcrConversion,
1273                                  const VkAllocationCallbacks *pAllocator)
1274 {
1275    TU_FROM_HANDLE(tu_device, device, _device);
1276    TU_FROM_HANDLE(tu_sampler_ycbcr_conversion, ycbcr_conversion, ycbcrConversion);
1277 
1278    if (!ycbcr_conversion)
1279       return;
1280 
1281    vk_object_free(&device->vk, pAllocator, ycbcr_conversion);
1282 }
1283