1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_eu.h"
29 #include "brw_fs.h"
30 #include "brw_cfg.h"
31 #include "util/set.h"
32 #include "util/register_allocate.h"
33 
34 using namespace brw;
35 
36 static void
assign_reg(unsigned * reg_hw_locations,fs_reg * reg)37 assign_reg(unsigned *reg_hw_locations, fs_reg *reg)
38 {
39    if (reg->file == VGRF) {
40       reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
41       reg->offset %= REG_SIZE;
42    }
43 }
44 
45 void
assign_regs_trivial()46 fs_visitor::assign_regs_trivial()
47 {
48    unsigned hw_reg_mapping[this->alloc.count + 1];
49    unsigned i;
50    int reg_width = dispatch_width / 8;
51 
52    /* Note that compressed instructions require alignment to 2 registers. */
53    hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
54    for (i = 1; i <= this->alloc.count; i++) {
55       hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
56 			   this->alloc.sizes[i - 1]);
57    }
58    this->grf_used = hw_reg_mapping[this->alloc.count];
59 
60    foreach_block_and_inst(block, fs_inst, inst, cfg) {
61       assign_reg(hw_reg_mapping, &inst->dst);
62       for (i = 0; i < inst->sources; i++) {
63          assign_reg(hw_reg_mapping, &inst->src[i]);
64       }
65    }
66 
67    if (this->grf_used >= max_grf) {
68       fail("Ran out of regs on trivial allocator (%d/%d)\n",
69 	   this->grf_used, max_grf);
70    } else {
71       this->alloc.count = this->grf_used;
72    }
73 
74 }
75 
76 /**
77  * Size of a register from the aligned_bary_class register class.
78  */
79 static unsigned
aligned_bary_size(unsigned dispatch_width)80 aligned_bary_size(unsigned dispatch_width)
81 {
82    return (dispatch_width == 8 ? 2 : 4);
83 }
84 
85 static void
brw_alloc_reg_set(struct brw_compiler * compiler,int dispatch_width)86 brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width)
87 {
88    const struct intel_device_info *devinfo = compiler->devinfo;
89    int base_reg_count = BRW_MAX_GRF;
90    const int index = util_logbase2(dispatch_width / 8);
91 
92    if (dispatch_width > 8 && devinfo->ver >= 7) {
93       /* For IVB+, we don't need the PLN hacks or the even-reg alignment in
94        * SIMD16.  Therefore, we can use the exact same register sets for
95        * SIMD16 as we do for SIMD8 and we don't need to recalculate them.
96        */
97       compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0];
98       return;
99    }
100 
101    /* The registers used to make up almost all values handled in the compiler
102     * are a scalar value occupying a single register (or 2 registers in the
103     * case of SIMD16, which is handled by dividing base_reg_count by 2 and
104     * multiplying allocated register numbers by 2).  Things that were
105     * aggregates of scalar values at the GLSL level were split to scalar
106     * values by split_virtual_grfs().
107     *
108     * However, texture SEND messages return a series of contiguous registers
109     * to write into.  We currently always ask for 4 registers, but we may
110     * convert that to use less some day.
111     *
112     * Additionally, on gfx5 we need aligned pairs of registers for the PLN
113     * instruction, and on gfx4 we need 8 contiguous regs for workaround simd16
114     * texturing.
115     */
116    const int class_count = MAX_VGRF_SIZE;
117    int class_sizes[MAX_VGRF_SIZE];
118    for (unsigned i = 0; i < MAX_VGRF_SIZE; i++)
119       class_sizes[i] = i + 1;
120 
121    struct ra_regs *regs = ra_alloc_reg_set(compiler, BRW_MAX_GRF, false);
122    if (devinfo->ver >= 6)
123       ra_set_allocate_round_robin(regs);
124    struct ra_class **classes = ralloc_array(compiler, struct ra_class *, class_count);
125    struct ra_class *aligned_bary_class = NULL;
126 
127    /* Now, make the register classes for each size of contiguous register
128     * allocation we might need to make.
129     */
130    for (int i = 0; i < class_count; i++) {
131       classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]);
132 
133       if (devinfo->ver <= 5 && dispatch_width >= 16) {
134          /* From the G45 PRM:
135           *
136           * In order to reduce the hardware complexity, the following
137           * rules and restrictions apply to the compressed instruction:
138           * ...
139           * * Operand Alignment Rule: With the exceptions listed below, a
140           *   source/destination operand in general should be aligned to
141           *   even 256-bit physical register with a region size equal to
142           *   two 256-bit physical register
143           */
144          for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg += 2)
145             ra_class_add_reg(classes[i], reg);
146       } else {
147          for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++)
148             ra_class_add_reg(classes[i], reg);
149       }
150    }
151 
152    /* Add a special class for aligned barycentrics, which we'll put the
153     * first source of LINTERP on so that we can do PLN on Gen <= 6.
154     */
155    if (devinfo->has_pln && (devinfo->ver == 6 ||
156                             (dispatch_width == 8 && devinfo->ver <= 5))) {
157       int contig_len = aligned_bary_size(dispatch_width);
158       aligned_bary_class = ra_alloc_contig_reg_class(regs, contig_len);
159 
160       for (int i = 0; i <= base_reg_count - contig_len; i += 2)
161          ra_class_add_reg(aligned_bary_class, i);
162    }
163 
164    ra_set_finalize(regs, NULL);
165 
166    compiler->fs_reg_sets[index].regs = regs;
167    for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
168       compiler->fs_reg_sets[index].classes[i] = NULL;
169    for (int i = 0; i < class_count; i++)
170       compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
171    compiler->fs_reg_sets[index].aligned_bary_class = aligned_bary_class;
172 }
173 
174 void
brw_fs_alloc_reg_sets(struct brw_compiler * compiler)175 brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
176 {
177    brw_alloc_reg_set(compiler, 8);
178    brw_alloc_reg_set(compiler, 16);
179    brw_alloc_reg_set(compiler, 32);
180 }
181 
182 static int
count_to_loop_end(const bblock_t * block)183 count_to_loop_end(const bblock_t *block)
184 {
185    if (block->end()->opcode == BRW_OPCODE_WHILE)
186       return block->end_ip;
187 
188    int depth = 1;
189    /* Skip the first block, since we don't want to count the do the calling
190     * function found.
191     */
192    for (block = block->next();
193         depth > 0;
194         block = block->next()) {
195       if (block->start()->opcode == BRW_OPCODE_DO)
196          depth++;
197       if (block->end()->opcode == BRW_OPCODE_WHILE) {
198          depth--;
199          if (depth == 0)
200             return block->end_ip;
201       }
202    }
203    unreachable("not reached");
204 }
205 
calculate_payload_ranges(int payload_node_count,int * payload_last_use_ip) const206 void fs_visitor::calculate_payload_ranges(int payload_node_count,
207                                           int *payload_last_use_ip) const
208 {
209    int loop_depth = 0;
210    int loop_end_ip = 0;
211 
212    for (int i = 0; i < payload_node_count; i++)
213       payload_last_use_ip[i] = -1;
214 
215    int ip = 0;
216    foreach_block_and_inst(block, fs_inst, inst, cfg) {
217       switch (inst->opcode) {
218       case BRW_OPCODE_DO:
219          loop_depth++;
220 
221          /* Since payload regs are deffed only at the start of the shader
222           * execution, any uses of the payload within a loop mean the live
223           * interval extends to the end of the outermost loop.  Find the ip of
224           * the end now.
225           */
226          if (loop_depth == 1)
227             loop_end_ip = count_to_loop_end(block);
228          break;
229       case BRW_OPCODE_WHILE:
230          loop_depth--;
231          break;
232       default:
233          break;
234       }
235 
236       int use_ip;
237       if (loop_depth > 0)
238          use_ip = loop_end_ip;
239       else
240          use_ip = ip;
241 
242       /* Note that UNIFORM args have been turned into FIXED_GRF by
243        * assign_curbe_setup(), and interpolation uses fixed hardware regs from
244        * the start (see interp_reg()).
245        */
246       for (int i = 0; i < inst->sources; i++) {
247          if (inst->src[i].file == FIXED_GRF) {
248             int node_nr = inst->src[i].nr;
249             if (node_nr >= payload_node_count)
250                continue;
251 
252             for (unsigned j = 0; j < regs_read(inst, i); j++) {
253                payload_last_use_ip[node_nr + j] = use_ip;
254                assert(node_nr + j < unsigned(payload_node_count));
255             }
256          }
257       }
258 
259       if (inst->dst.file == FIXED_GRF) {
260          int node_nr = inst->dst.nr;
261          if (node_nr < payload_node_count) {
262             for (unsigned j = 0; j < regs_written(inst); j++) {
263                payload_last_use_ip[node_nr + j] = use_ip;
264                assert(node_nr + j < unsigned(payload_node_count));
265             }
266          }
267       }
268 
269       /* Special case instructions which have extra implied registers used. */
270       switch (inst->opcode) {
271       case CS_OPCODE_CS_TERMINATE:
272          payload_last_use_ip[0] = use_ip;
273          break;
274 
275       default:
276          if (inst->eot) {
277             /* We could omit this for the !inst->header_present case, except
278              * that the simulator apparently incorrectly reads from g0/g1
279              * instead of sideband.  It also really freaks out driver
280              * developers to see g0 used in unusual places, so just always
281              * reserve it.
282              */
283             payload_last_use_ip[0] = use_ip;
284             payload_last_use_ip[1] = use_ip;
285          }
286          break;
287       }
288 
289       ip++;
290    }
291 }
292 
293 class fs_reg_alloc {
294 public:
fs_reg_alloc(fs_visitor * fs)295    fs_reg_alloc(fs_visitor *fs):
296       fs(fs), devinfo(fs->devinfo), compiler(fs->compiler),
297       live(fs->live_analysis.require()), g(NULL),
298       have_spill_costs(false)
299    {
300       mem_ctx = ralloc_context(NULL);
301 
302       /* Stash the number of instructions so we can sanity check that our
303        * counts still match liveness.
304        */
305       live_instr_count = fs->cfg->last_block()->end_ip + 1;
306 
307       spill_insts = _mesa_pointer_set_create(mem_ctx);
308 
309       /* Most of this allocation was written for a reg_width of 1
310        * (dispatch_width == 8).  In extending to SIMD16, the code was
311        * left in place and it was converted to have the hardware
312        * registers it's allocating be contiguous physical pairs of regs
313        * for reg_width == 2.
314        */
315       int reg_width = fs->dispatch_width / 8;
316       rsi = util_logbase2(reg_width);
317       payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);
318 
319       /* Get payload IP information */
320       payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);
321 
322       node_count = 0;
323       first_payload_node = 0;
324       first_mrf_hack_node = 0;
325       scratch_header_node = 0;
326       grf127_send_hack_node = 0;
327       first_vgrf_node = 0;
328       last_vgrf_node = 0;
329       first_spill_node = 0;
330 
331       spill_vgrf_ip = NULL;
332       spill_vgrf_ip_alloc = 0;
333       spill_node_count = 0;
334    }
335 
~fs_reg_alloc()336    ~fs_reg_alloc()
337    {
338       ralloc_free(mem_ctx);
339    }
340 
341    bool assign_regs(bool allow_spilling, bool spill_all);
342 
343 private:
344    void setup_live_interference(unsigned node,
345                                 int node_start_ip, int node_end_ip);
346    void setup_inst_interference(const fs_inst *inst);
347 
348    void build_interference_graph(bool allow_spilling);
349    void discard_interference_graph();
350 
351    void emit_unspill(const fs_builder &bld, fs_reg dst,
352                      uint32_t spill_offset, unsigned count);
353    void emit_spill(const fs_builder &bld, fs_reg src,
354                    uint32_t spill_offset, unsigned count);
355 
356    void set_spill_costs();
357    int choose_spill_reg();
358    fs_reg alloc_scratch_header();
359    fs_reg alloc_spill_reg(unsigned size, int ip);
360    void spill_reg(unsigned spill_reg);
361 
362    void *mem_ctx;
363    fs_visitor *fs;
364    const intel_device_info *devinfo;
365    const brw_compiler *compiler;
366    const fs_live_variables &live;
367    int live_instr_count;
368 
369    set *spill_insts;
370 
371    /* Which compiler->fs_reg_sets[] to use */
372    int rsi;
373 
374    ra_graph *g;
375    bool have_spill_costs;
376 
377    int payload_node_count;
378    int *payload_last_use_ip;
379 
380    int node_count;
381    int first_payload_node;
382    int first_mrf_hack_node;
383    int scratch_header_node;
384    int grf127_send_hack_node;
385    int first_vgrf_node;
386    int last_vgrf_node;
387    int first_spill_node;
388 
389    int *spill_vgrf_ip;
390    int spill_vgrf_ip_alloc;
391    int spill_node_count;
392 
393    fs_reg scratch_header;
394 };
395 
396 /**
397  * Sets the mrf_used array to indicate which MRFs are used by the shader IR
398  *
399  * This is used in assign_regs() to decide which of the GRFs that we use as
400  * MRFs on gfx7 get normally register allocated, and in register spilling to
401  * see if we can actually use MRFs to do spills without overwriting normal MRF
402  * contents.
403  */
404 static void
get_used_mrfs(const fs_visitor * v,bool * mrf_used)405 get_used_mrfs(const fs_visitor *v, bool *mrf_used)
406 {
407    int reg_width = v->dispatch_width / 8;
408 
409    memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->ver) * sizeof(bool));
410 
411    foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
412       if (inst->dst.file == MRF) {
413          int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
414          mrf_used[reg] = true;
415          if (reg_width == 2) {
416             if (inst->dst.nr & BRW_MRF_COMPR4) {
417                mrf_used[reg + 4] = true;
418             } else {
419                mrf_used[reg + 1] = true;
420             }
421          }
422       }
423 
424       if (inst->mlen > 0) {
425 	 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
426             mrf_used[inst->base_mrf + i] = true;
427          }
428       }
429    }
430 }
431 
432 namespace {
433    /**
434     * Maximum spill block size we expect to encounter in 32B units.
435     *
436     * This is somewhat arbitrary and doesn't necessarily limit the maximum
437     * variable size that can be spilled -- A higher value will allow a
438     * variable of a given size to be spilled more efficiently with a smaller
439     * number of scratch messages, but will increase the likelihood of a
440     * collision between the MRFs reserved for spilling and other MRFs used by
441     * the program (and possibly increase GRF register pressure on platforms
442     * without hardware MRFs), what could cause register allocation to fail.
443     *
444     * For the moment reserve just enough space so a register of 32 bit
445     * component type and natural region width can be spilled without splitting
446     * into multiple (force_writemask_all) scratch messages.
447     */
448    unsigned
spill_max_size(const backend_shader * s)449    spill_max_size(const backend_shader *s)
450    {
451       /* FINISHME - On Gfx7+ it should be possible to avoid this limit
452        *            altogether by spilling directly from the temporary GRF
453        *            allocated to hold the result of the instruction (and the
454        *            scratch write header).
455        */
456       /* FINISHME - The shader's dispatch width probably belongs in
457        *            backend_shader (or some nonexistent fs_shader class?)
458        *            rather than in the visitor class.
459        */
460       return static_cast<const fs_visitor *>(s)->dispatch_width / 8;
461    }
462 
463    /**
464     * First MRF register available for spilling.
465     */
466    unsigned
spill_base_mrf(const backend_shader * s)467    spill_base_mrf(const backend_shader *s)
468    {
469       /* We don't use the MRF hack on Gfx9+ */
470       assert(s->devinfo->ver < 9);
471       return BRW_MAX_MRF(s->devinfo->ver) - spill_max_size(s) - 1;
472    }
473 }
474 
475 void
setup_live_interference(unsigned node,int node_start_ip,int node_end_ip)476 fs_reg_alloc::setup_live_interference(unsigned node,
477                                       int node_start_ip, int node_end_ip)
478 {
479    /* Mark any virtual grf that is live between the start of the program and
480     * the last use of a payload node interfering with that payload node.
481     */
482    for (int i = 0; i < payload_node_count; i++) {
483       if (payload_last_use_ip[i] == -1)
484          continue;
485 
486       /* Note that we use a <= comparison, unlike vgrfs_interfere(),
487        * in order to not have to worry about the uniform issue described in
488        * calculate_live_intervals().
489        */
490       if (node_start_ip <= payload_last_use_ip[i])
491          ra_add_node_interference(g, node, first_payload_node + i);
492    }
493 
494    /* If we have the MRF hack enabled, mark this node as interfering with all
495     * MRF registers.
496     */
497    if (first_mrf_hack_node >= 0) {
498       for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->ver); i++)
499          ra_add_node_interference(g, node, first_mrf_hack_node + i);
500    }
501 
502    /* Everything interferes with the scratch header */
503    if (scratch_header_node >= 0)
504       ra_add_node_interference(g, node, scratch_header_node);
505 
506    /* Add interference with every vgrf whose live range intersects this
507     * node's.  We only need to look at nodes below this one as the reflexivity
508     * of interference will take care of the rest.
509     */
510    for (unsigned n2 = first_vgrf_node;
511         n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) {
512       unsigned vgrf = n2 - first_vgrf_node;
513       if (!(node_end_ip <= live.vgrf_start[vgrf] ||
514             live.vgrf_end[vgrf] <= node_start_ip))
515          ra_add_node_interference(g, node, n2);
516    }
517 }
518 
519 void
setup_inst_interference(const fs_inst * inst)520 fs_reg_alloc::setup_inst_interference(const fs_inst *inst)
521 {
522    /* Certain instructions can't safely use the same register for their
523     * sources and destination.  Add interference.
524     */
525    if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
526       for (unsigned i = 0; i < inst->sources; i++) {
527          if (inst->src[i].file == VGRF) {
528             ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
529                                         first_vgrf_node + inst->src[i].nr);
530          }
531       }
532    }
533 
534    /* In 16-wide instructions we have an issue where a compressed
535     * instruction is actually two instructions executed simultaneously.
536     * It's actually ok to have the source and destination registers be
537     * the same.  In this case, each instruction over-writes its own
538     * source and there's no problem.  The real problem here is if the
539     * source and destination registers are off by one.  Then you can end
540     * up in a scenario where the first instruction over-writes the
541     * source of the second instruction.  Since the compiler doesn't know
542     * about this level of granularity, we simply make the source and
543     * destination interfere.
544     */
545    if (inst->exec_size >= 16 && inst->dst.file == VGRF) {
546       for (int i = 0; i < inst->sources; ++i) {
547          if (inst->src[i].file == VGRF) {
548             ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
549                                         first_vgrf_node + inst->src[i].nr);
550          }
551       }
552    }
553 
554    if (grf127_send_hack_node >= 0) {
555       /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
556        * subsection "EUISA Instructions", Send Message (page 990):
557        *
558        * "r127 must not be used for return address when there is a src and
559        * dest overlap in send instruction."
560        *
561        * We are avoiding using grf127 as part of the destination of send
562        * messages adding a node interference to the grf127_send_hack_node.
563        * This node has a fixed asignment to grf127.
564        *
565        * We don't apply it to SIMD16 instructions because previous code avoids
566        * any register overlap between sources and destination.
567        */
568       if (inst->exec_size < 16 && inst->is_send_from_grf() &&
569           inst->dst.file == VGRF)
570          ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
571                                      grf127_send_hack_node);
572 
573       /* Spilling instruction are genereated as SEND messages from MRF but as
574        * Gfx7+ supports sending from GRF the driver will maps assingn these
575        * MRF registers to a GRF. Implementations reuses the dest of the send
576        * message as source. So as we will have an overlap for sure, we create
577        * an interference between destination and grf127.
578        */
579       if ((inst->opcode == SHADER_OPCODE_GFX7_SCRATCH_READ ||
580            inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_READ) &&
581           inst->dst.file == VGRF)
582          ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
583                                      grf127_send_hack_node);
584    }
585 
586    /* From the Skylake PRM Vol. 2a docs for sends:
587     *
588     *    "It is required that the second block of GRFs does not overlap with
589     *    the first block."
590     *
591     * Normally, this is taken care of by fixup_sends_duplicate_payload() but
592     * in the case where one of the registers is an undefined value, the
593     * register allocator may decide that they don't interfere even though
594     * they're used as sources in the same instruction.  We also need to add
595     * interference here.
596     */
597    if (devinfo->ver >= 9) {
598       if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
599           inst->src[2].file == VGRF && inst->src[3].file == VGRF &&
600           inst->src[2].nr != inst->src[3].nr)
601          ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr,
602                                      first_vgrf_node + inst->src[3].nr);
603    }
604 
605    /* When we do send-from-GRF for FB writes, we need to ensure that the last
606     * write instruction sends from a high register.  This is because the
607     * vertex fetcher wants to start filling the low payload registers while
608     * the pixel data port is still working on writing out the memory.  If we
609     * don't do this, we get rendering artifacts.
610     *
611     * We could just do "something high".  Instead, we just pick the highest
612     * register that works.
613     */
614    if (inst->eot) {
615       const int vgrf = inst->opcode == SHADER_OPCODE_SEND ?
616                        inst->src[2].nr : inst->src[0].nr;
617       int size = fs->alloc.sizes[vgrf];
618       int reg = BRW_MAX_GRF - size;
619 
620       if (first_mrf_hack_node >= 0) {
621          /* If something happened to spill, we want to push the EOT send
622           * register early enough in the register file that we don't
623           * conflict with any used MRF hack registers.
624           */
625          reg -= BRW_MAX_MRF(devinfo->ver) - spill_base_mrf(fs);
626       } else if (grf127_send_hack_node >= 0) {
627          /* Avoid r127 which might be unusable if the node was previously
628           * written by a SIMD8 SEND message with source/destination overlap.
629           */
630          reg--;
631       }
632 
633       ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
634    }
635 }
636 
637 void
build_interference_graph(bool allow_spilling)638 fs_reg_alloc::build_interference_graph(bool allow_spilling)
639 {
640    /* Compute the RA node layout */
641    node_count = 0;
642    first_payload_node = node_count;
643    node_count += payload_node_count;
644    if (devinfo->ver >= 7 && devinfo->ver < 9 && allow_spilling) {
645       first_mrf_hack_node = node_count;
646       node_count += BRW_MAX_GRF - GFX7_MRF_HACK_START;
647    } else {
648       first_mrf_hack_node = -1;
649    }
650    if (devinfo->ver >= 8) {
651       grf127_send_hack_node = node_count;
652       node_count ++;
653    } else {
654       grf127_send_hack_node = -1;
655    }
656    first_vgrf_node = node_count;
657    node_count += fs->alloc.count;
658    last_vgrf_node = node_count - 1;
659    if (devinfo->ver >= 9 && allow_spilling) {
660       scratch_header_node = node_count++;
661    } else {
662       scratch_header_node = -1;
663    }
664    first_spill_node = node_count;
665 
666    fs->calculate_payload_ranges(payload_node_count,
667                                 payload_last_use_ip);
668 
669    assert(g == NULL);
670    g = ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
671    ralloc_steal(mem_ctx, g);
672 
673    /* Set up the payload nodes */
674    for (int i = 0; i < payload_node_count; i++)
675       ra_set_node_reg(g, first_payload_node + i, i);
676 
677    if (first_mrf_hack_node >= 0) {
678       /* Mark each MRF reg node as being allocated to its physical
679        * register.
680        *
681        * The alternative would be to have per-physical-register classes,
682        * which would just be silly.
683        */
684       for (int i = 0; i < BRW_MAX_MRF(devinfo->ver); i++) {
685          ra_set_node_reg(g, first_mrf_hack_node + i,
686                             GFX7_MRF_HACK_START + i);
687       }
688    }
689 
690    if (grf127_send_hack_node >= 0)
691       ra_set_node_reg(g, grf127_send_hack_node, 127);
692 
693    /* Specify the classes of each virtual register. */
694    for (unsigned i = 0; i < fs->alloc.count; i++) {
695       unsigned size = fs->alloc.sizes[i];
696 
697       assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
698              "Register allocation relies on split_virtual_grfs()");
699 
700       ra_set_node_class(g, first_vgrf_node + i,
701                         compiler->fs_reg_sets[rsi].classes[size - 1]);
702    }
703 
704    /* Special case: on pre-Gfx7 hardware that supports PLN, the second operand
705     * of a PLN instruction needs to be an even-numbered register, so we have a
706     * special register class aligned_bary_class to handle this case.
707     */
708    if (compiler->fs_reg_sets[rsi].aligned_bary_class) {
709       foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
710          if (inst->opcode == FS_OPCODE_LINTERP && inst->src[0].file == VGRF &&
711              fs->alloc.sizes[inst->src[0].nr] ==
712                aligned_bary_size(fs->dispatch_width)) {
713             ra_set_node_class(g, first_vgrf_node + inst->src[0].nr,
714                               compiler->fs_reg_sets[rsi].aligned_bary_class);
715          }
716       }
717    }
718 
719    /* Add interference based on the live range of the register */
720    for (unsigned i = 0; i < fs->alloc.count; i++) {
721       setup_live_interference(first_vgrf_node + i,
722                               live.vgrf_start[i],
723                               live.vgrf_end[i]);
724    }
725 
726    /* Add interference based on the instructions in which a register is used.
727     */
728    foreach_block_and_inst(block, fs_inst, inst, fs->cfg)
729       setup_inst_interference(inst);
730 }
731 
732 void
discard_interference_graph()733 fs_reg_alloc::discard_interference_graph()
734 {
735    ralloc_free(g);
736    g = NULL;
737    have_spill_costs = false;
738 }
739 
740 void
emit_unspill(const fs_builder & bld,fs_reg dst,uint32_t spill_offset,unsigned count)741 fs_reg_alloc::emit_unspill(const fs_builder &bld, fs_reg dst,
742                            uint32_t spill_offset, unsigned count)
743 {
744    const intel_device_info *devinfo = bld.shader->devinfo;
745    const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
746                              REG_SIZE;
747    assert(count % reg_size == 0);
748 
749    for (unsigned i = 0; i < count / reg_size; i++) {
750       fs_inst *unspill_inst;
751       if (devinfo->ver >= 9) {
752          fs_reg header = this->scratch_header;
753          fs_builder ubld = bld.exec_all().group(1, 0);
754          assert(spill_offset % 16 == 0);
755          unspill_inst = ubld.MOV(component(header, 2),
756                                  brw_imm_ud(spill_offset / 16));
757          _mesa_set_add(spill_insts, unspill_inst);
758 
759          unsigned bti;
760          fs_reg ex_desc;
761          if (devinfo->verx10 >= 125) {
762             bti = GFX9_BTI_BINDLESS;
763             ex_desc = component(this->scratch_header, 0);
764          } else {
765             bti = GFX8_BTI_STATELESS_NON_COHERENT;
766             ex_desc = brw_imm_ud(0);
767          }
768 
769          fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header };
770          unspill_inst = bld.emit(SHADER_OPCODE_SEND, dst,
771                                  srcs, ARRAY_SIZE(srcs));
772          unspill_inst->mlen = 1;
773          unspill_inst->header_size = 1;
774          unspill_inst->size_written = reg_size * REG_SIZE;
775          unspill_inst->send_has_side_effects = false;
776          unspill_inst->send_is_volatile = true;
777          unspill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
778          unspill_inst->desc =
779             brw_dp_desc(devinfo, bti,
780                         BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ,
781                         BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8));
782       } else if (devinfo->ver >= 7 && spill_offset < (1 << 12) * REG_SIZE) {
783          /* The Gfx7 descriptor-based offset is 12 bits of HWORD units.
784           * Because the Gfx7-style scratch block read is hardwired to BTI 255,
785           * on Gfx9+ it would cause the DC to do an IA-coherent read, what
786           * largely outweighs the slight advantage from not having to provide
787           * the address as part of the message header, so we're better off
788           * using plain old oword block reads.
789           */
790          unspill_inst = bld.emit(SHADER_OPCODE_GFX7_SCRATCH_READ, dst);
791          unspill_inst->offset = spill_offset;
792       } else {
793          unspill_inst = bld.emit(SHADER_OPCODE_GFX4_SCRATCH_READ, dst);
794          unspill_inst->offset = spill_offset;
795          unspill_inst->base_mrf = spill_base_mrf(bld.shader);
796          unspill_inst->mlen = 1; /* header contains offset */
797       }
798       _mesa_set_add(spill_insts, unspill_inst);
799 
800       dst.offset += reg_size * REG_SIZE;
801       spill_offset += reg_size * REG_SIZE;
802    }
803 }
804 
805 void
emit_spill(const fs_builder & bld,fs_reg src,uint32_t spill_offset,unsigned count)806 fs_reg_alloc::emit_spill(const fs_builder &bld, fs_reg src,
807                          uint32_t spill_offset, unsigned count)
808 {
809    const intel_device_info *devinfo = bld.shader->devinfo;
810    const unsigned reg_size = src.component_size(bld.dispatch_width()) /
811                              REG_SIZE;
812    assert(count % reg_size == 0);
813 
814    for (unsigned i = 0; i < count / reg_size; i++) {
815       fs_inst *spill_inst;
816       if (devinfo->ver >= 9) {
817          fs_reg header = this->scratch_header;
818          fs_builder ubld = bld.exec_all().group(1, 0);
819          assert(spill_offset % 16 == 0);
820          spill_inst = ubld.MOV(component(header, 2),
821                                brw_imm_ud(spill_offset / 16));
822          _mesa_set_add(spill_insts, spill_inst);
823 
824          unsigned bti;
825          fs_reg ex_desc;
826          if (devinfo->verx10 >= 125) {
827             bti = GFX9_BTI_BINDLESS;
828             ex_desc = component(this->scratch_header, 0);
829          } else {
830             bti = GFX8_BTI_STATELESS_NON_COHERENT;
831             ex_desc = brw_imm_ud(0);
832          }
833 
834          fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header, src };
835          spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(),
836                                srcs, ARRAY_SIZE(srcs));
837          spill_inst->mlen = 1;
838          spill_inst->ex_mlen = reg_size;
839          spill_inst->size_written = 0;
840          spill_inst->header_size = 1;
841          spill_inst->send_has_side_effects = true;
842          spill_inst->send_is_volatile = false;
843          spill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
844          spill_inst->desc =
845             brw_dp_desc(devinfo, bti,
846                         GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE,
847                         BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8));
848       } else {
849          spill_inst = bld.emit(SHADER_OPCODE_GFX4_SCRATCH_WRITE,
850                                bld.null_reg_f(), src);
851          spill_inst->offset = spill_offset;
852          spill_inst->mlen = 1 + reg_size; /* header, value */
853          spill_inst->base_mrf = spill_base_mrf(bld.shader);
854       }
855       _mesa_set_add(spill_insts, spill_inst);
856 
857       src.offset += reg_size * REG_SIZE;
858       spill_offset += reg_size * REG_SIZE;
859    }
860 }
861 
862 void
set_spill_costs()863 fs_reg_alloc::set_spill_costs()
864 {
865    float block_scale = 1.0;
866    float spill_costs[fs->alloc.count];
867    bool no_spill[fs->alloc.count];
868 
869    for (unsigned i = 0; i < fs->alloc.count; i++) {
870       spill_costs[i] = 0.0;
871       no_spill[i] = false;
872    }
873 
874    /* Calculate costs for spilling nodes.  Call it a cost of 1 per
875     * spill/unspill we'll have to do, and guess that the insides of
876     * loops run 10 times.
877     */
878    foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
879       for (unsigned int i = 0; i < inst->sources; i++) {
880 	 if (inst->src[i].file == VGRF)
881             spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale;
882       }
883 
884       if (inst->dst.file == VGRF)
885          spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
886 
887       /* Don't spill anything we generated while spilling */
888       if (_mesa_set_search(spill_insts, inst)) {
889          for (unsigned int i = 0; i < inst->sources; i++) {
890 	    if (inst->src[i].file == VGRF)
891                no_spill[inst->src[i].nr] = true;
892          }
893 	 if (inst->dst.file == VGRF)
894             no_spill[inst->dst.nr] = true;
895       }
896 
897       switch (inst->opcode) {
898 
899       case BRW_OPCODE_DO:
900 	 block_scale *= 10;
901 	 break;
902 
903       case BRW_OPCODE_WHILE:
904 	 block_scale /= 10;
905 	 break;
906 
907       case BRW_OPCODE_IF:
908       case BRW_OPCODE_IFF:
909          block_scale *= 0.5;
910          break;
911 
912       case BRW_OPCODE_ENDIF:
913          block_scale /= 0.5;
914          break;
915 
916       default:
917 	 break;
918       }
919    }
920 
921    for (unsigned i = 0; i < fs->alloc.count; i++) {
922       /* Do the no_spill check first.  Registers that are used as spill
923        * temporaries may have been allocated after we calculated liveness so
924        * we shouldn't look their liveness up.  Fortunately, they're always
925        * used in SCRATCH_READ/WRITE instructions so they'll always be flagged
926        * no_spill.
927        */
928       if (no_spill[i])
929          continue;
930 
931       int live_length = live.vgrf_end[i] - live.vgrf_start[i];
932       if (live_length <= 0)
933          continue;
934 
935       /* Divide the cost (in number of spills/fills) by the log of the length
936        * of the live range of the register.  This will encourage spill logic
937        * to spill long-living things before spilling short-lived things where
938        * spilling is less likely to actually do us any good.  We use the log
939        * of the length because it will fall off very quickly and not cause us
940        * to spill medium length registers with more uses.
941        */
942       float adjusted_cost = spill_costs[i] / logf(live_length);
943       ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
944    }
945 
946    have_spill_costs = true;
947 }
948 
949 int
choose_spill_reg()950 fs_reg_alloc::choose_spill_reg()
951 {
952    if (!have_spill_costs)
953       set_spill_costs();
954 
955    int node = ra_get_best_spill_node(g);
956    if (node < 0)
957       return -1;
958 
959    assert(node >= first_vgrf_node);
960    return node - first_vgrf_node;
961 }
962 
963 fs_reg
alloc_scratch_header()964 fs_reg_alloc::alloc_scratch_header()
965 {
966    int vgrf = fs->alloc.allocate(1);
967    assert(first_vgrf_node + vgrf == scratch_header_node);
968    ra_set_node_class(g, scratch_header_node,
969                         compiler->fs_reg_sets[rsi].classes[0]);
970 
971    setup_live_interference(scratch_header_node, 0, INT_MAX);
972 
973    return fs_reg(VGRF, vgrf, BRW_REGISTER_TYPE_UD);
974 }
975 
976 fs_reg
alloc_spill_reg(unsigned size,int ip)977 fs_reg_alloc::alloc_spill_reg(unsigned size, int ip)
978 {
979    int vgrf = fs->alloc.allocate(size);
980    int n = ra_add_node(g, compiler->fs_reg_sets[rsi].classes[size - 1]);
981    assert(n == first_vgrf_node + vgrf);
982    assert(n == first_spill_node + spill_node_count);
983 
984    setup_live_interference(n, ip - 1, ip + 1);
985 
986    /* Add interference between this spill node and any other spill nodes for
987     * the same instruction.
988     */
989    for (int s = 0; s < spill_node_count; s++) {
990       if (spill_vgrf_ip[s] == ip)
991          ra_add_node_interference(g, n, first_spill_node + s);
992    }
993 
994    /* Add this spill node to the list for next time */
995    if (spill_node_count >= spill_vgrf_ip_alloc) {
996       if (spill_vgrf_ip_alloc == 0)
997          spill_vgrf_ip_alloc = 16;
998       else
999          spill_vgrf_ip_alloc *= 2;
1000       spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
1001                                spill_vgrf_ip_alloc);
1002    }
1003    spill_vgrf_ip[spill_node_count++] = ip;
1004 
1005    return fs_reg(VGRF, vgrf);
1006 }
1007 
1008 void
spill_reg(unsigned spill_reg)1009 fs_reg_alloc::spill_reg(unsigned spill_reg)
1010 {
1011    int size = fs->alloc.sizes[spill_reg];
1012    unsigned int spill_offset = fs->last_scratch;
1013    assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
1014 
1015    /* Spills may use MRFs 13-15 in the SIMD16 case.  Our texturing is done
1016     * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
1017     * up to m13 (gfx6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
1018     * m15 (gfx4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
1019     * depth), starting from m1.  In summary: We may not be able to spill in
1020     * SIMD16 mode, because we'd stomp the FB writes.
1021     */
1022    if (!fs->spilled_any_registers) {
1023       if (devinfo->ver >= 9) {
1024          this->scratch_header = alloc_scratch_header();
1025          fs_builder ubld = fs->bld.exec_all().group(8, 0).at(
1026             fs->cfg->first_block(), fs->cfg->first_block()->start());
1027 
1028          fs_inst *inst;
1029          if (devinfo->verx10 >= 125) {
1030             inst = ubld.MOV(this->scratch_header, brw_imm_ud(0));
1031             _mesa_set_add(spill_insts, inst);
1032             inst = ubld.group(1, 0).AND(component(this->scratch_header, 0),
1033                                         retype(brw_vec1_grf(0, 5),
1034                                                BRW_REGISTER_TYPE_UD),
1035                                         brw_imm_ud(INTEL_MASK(31, 10)));
1036             _mesa_set_add(spill_insts, inst);
1037          } else {
1038             inst = ubld.emit(SHADER_OPCODE_SCRATCH_HEADER,
1039                              this->scratch_header);
1040             _mesa_set_add(spill_insts, inst);
1041          }
1042       } else {
1043          bool mrf_used[BRW_MAX_MRF(devinfo->ver)];
1044          get_used_mrfs(fs, mrf_used);
1045 
1046          for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->ver); i++) {
1047             if (mrf_used[i]) {
1048                fs->fail("Register spilling not supported with m%d used", i);
1049              return;
1050             }
1051          }
1052       }
1053 
1054       fs->spilled_any_registers = true;
1055    }
1056 
1057    fs->last_scratch += size * REG_SIZE;
1058 
1059    /* We're about to replace all uses of this register.  It no longer
1060     * conflicts with anything so we can get rid of its interference.
1061     */
1062    ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
1063    ra_reset_node_interference(g, first_vgrf_node + spill_reg);
1064 
1065    /* Generate spill/unspill instructions for the objects being
1066     * spilled.  Right now, we spill or unspill the whole thing to a
1067     * virtual grf of the same size.  For most instructions, though, we
1068     * could just spill/unspill the GRF being accessed.
1069     */
1070    int ip = 0;
1071    foreach_block_and_inst (block, fs_inst, inst, fs->cfg) {
1072       const fs_builder ibld = fs_builder(fs, block, inst);
1073       exec_node *before = inst->prev;
1074       exec_node *after = inst->next;
1075 
1076       for (unsigned int i = 0; i < inst->sources; i++) {
1077 	 if (inst->src[i].file == VGRF &&
1078              inst->src[i].nr == spill_reg) {
1079             int count = regs_read(inst, i);
1080             int subset_spill_offset = spill_offset +
1081                ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE);
1082             fs_reg unspill_dst = alloc_spill_reg(count, ip);
1083 
1084             inst->src[i].nr = unspill_dst.nr;
1085             inst->src[i].offset %= REG_SIZE;
1086 
1087             /* We read the largest power-of-two divisor of the register count
1088              * (because only POT scratch read blocks are allowed by the
1089              * hardware) up to the maximum supported block size.
1090              */
1091             const unsigned width =
1092                MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
1093 
1094             /* Set exec_all() on unspill messages under the (rather
1095              * pessimistic) assumption that there is no one-to-one
1096              * correspondence between channels of the spilled variable in
1097              * scratch space and the scratch read message, which operates on
1098              * 32 bit channels.  It shouldn't hurt in any case because the
1099              * unspill destination is a block-local temporary.
1100              */
1101             emit_unspill(ibld.exec_all().group(width, 0), unspill_dst,
1102                          subset_spill_offset, count);
1103 	 }
1104       }
1105 
1106       if (inst->dst.file == VGRF &&
1107           inst->dst.nr == spill_reg &&
1108           inst->opcode != SHADER_OPCODE_UNDEF) {
1109          int subset_spill_offset = spill_offset +
1110             ROUND_DOWN_TO(inst->dst.offset, REG_SIZE);
1111          fs_reg spill_src = alloc_spill_reg(regs_written(inst), ip);
1112 
1113          inst->dst.nr = spill_src.nr;
1114          inst->dst.offset %= REG_SIZE;
1115 
1116          /* If we're immediately spilling the register, we should not use
1117           * destination dependency hints.  Doing so will cause the GPU do
1118           * try to read and write the register at the same time and may
1119           * hang the GPU.
1120           */
1121          inst->no_dd_clear = false;
1122          inst->no_dd_check = false;
1123 
1124          /* Calculate the execution width of the scratch messages (which work
1125           * in terms of 32 bit components so we have a fixed number of eight
1126           * channels per spilled register).  We attempt to write one
1127           * exec_size-wide component of the variable at a time without
1128           * exceeding the maximum number of (fake) MRF registers reserved for
1129           * spills.
1130           */
1131          const unsigned width = 8 * MIN2(
1132             DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE),
1133             spill_max_size(fs));
1134 
1135          /* Spills should only write data initialized by the instruction for
1136           * whichever channels are enabled in the excution mask.  If that's
1137           * not possible we'll have to emit a matching unspill before the
1138           * instruction and set force_writemask_all on the spill.
1139           */
1140          const bool per_channel =
1141             inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 &&
1142             inst->exec_size == width;
1143 
1144          /* Builder used to emit the scratch messages. */
1145          const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
1146 
1147 	 /* If our write is going to affect just part of the
1148           * regs_written(inst), then we need to unspill the destination since
1149           * we write back out all of the regs_written().  If the original
1150           * instruction had force_writemask_all set and is not a partial
1151           * write, there should be no need for the unspill since the
1152           * instruction will be overwriting the whole destination in any case.
1153 	  */
1154          if (inst->is_partial_write() ||
1155              (!inst->force_writemask_all && !per_channel))
1156             emit_unspill(ubld, spill_src, subset_spill_offset,
1157                          regs_written(inst));
1158 
1159          emit_spill(ubld.at(block, inst->next), spill_src,
1160                     subset_spill_offset, regs_written(inst));
1161       }
1162 
1163       for (fs_inst *inst = (fs_inst *)before->next;
1164            inst != after; inst = (fs_inst *)inst->next)
1165          setup_inst_interference(inst);
1166 
1167       /* We don't advance the ip for scratch read/write instructions
1168        * because we consider them to have the same ip as instruction we're
1169        * spilling around for the purposes of interference.  Also, we're
1170        * inserting spill instructions without re-running liveness analysis
1171        * and we don't want to mess up our IPs.
1172        */
1173       if (!_mesa_set_search(spill_insts, inst))
1174          ip++;
1175    }
1176 
1177    assert(ip == live_instr_count);
1178 }
1179 
1180 bool
assign_regs(bool allow_spilling,bool spill_all)1181 fs_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
1182 {
1183    build_interference_graph(fs->spilled_any_registers || spill_all);
1184 
1185    bool spilled = false;
1186    while (1) {
1187       /* Debug of register spilling: Go spill everything. */
1188       if (unlikely(spill_all)) {
1189          int reg = choose_spill_reg();
1190          if (reg != -1) {
1191             spill_reg(reg);
1192             continue;
1193          }
1194       }
1195 
1196       if (ra_allocate(g))
1197          break;
1198 
1199       if (!allow_spilling)
1200          return false;
1201 
1202       /* Failed to allocate registers.  Spill a reg, and the caller will
1203        * loop back into here to try again.
1204        */
1205       int reg = choose_spill_reg();
1206       if (reg == -1)
1207          return false;
1208 
1209       /* If we're going to spill but we've never spilled before, we need to
1210        * re-build the interference graph with MRFs enabled to allow spilling.
1211        */
1212       if (!fs->spilled_any_registers) {
1213          discard_interference_graph();
1214          build_interference_graph(true);
1215       }
1216 
1217       spilled = true;
1218 
1219       spill_reg(reg);
1220    }
1221 
1222    if (spilled)
1223       fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
1224 
1225    /* Get the chosen virtual registers for each node, and map virtual
1226     * regs in the register classes back down to real hardware reg
1227     * numbers.
1228     */
1229    unsigned hw_reg_mapping[fs->alloc.count];
1230    fs->grf_used = fs->first_non_payload_grf;
1231    for (unsigned i = 0; i < fs->alloc.count; i++) {
1232       int reg = ra_get_node_reg(g, first_vgrf_node + i);
1233 
1234       hw_reg_mapping[i] = reg;
1235       fs->grf_used = MAX2(fs->grf_used,
1236 			  hw_reg_mapping[i] + fs->alloc.sizes[i]);
1237    }
1238 
1239    foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
1240       assign_reg(hw_reg_mapping, &inst->dst);
1241       for (int i = 0; i < inst->sources; i++) {
1242          assign_reg(hw_reg_mapping, &inst->src[i]);
1243       }
1244    }
1245 
1246    fs->alloc.count = fs->grf_used;
1247 
1248    return true;
1249 }
1250 
1251 bool
assign_regs(bool allow_spilling,bool spill_all)1252 fs_visitor::assign_regs(bool allow_spilling, bool spill_all)
1253 {
1254    fs_reg_alloc alloc(this);
1255    bool success = alloc.assign_regs(allow_spilling, spill_all);
1256    if (!success && allow_spilling) {
1257       fail("no register to spill:\n");
1258       dump_instructions(NULL);
1259    }
1260    return success;
1261 }
1262