1 /**************************************************************************
2  *
3  * Copyright 2013 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 
29 /**
30  * @file
31  * Format conversion code for srgb formats.
32  *
33  * Functions for converting from srgb to linear and vice versa.
34  * From http://www.opengl.org/registry/specs/EXT/texture_sRGB.txt:
35  *
36  * srgb->linear:
37  * cl = cs / 12.92,                 cs <= 0.04045
38  * cl = ((cs + 0.055)/1.055)^2.4,   cs >  0.04045
39  *
40  * linear->srgb:
41  * if (isnan(cl)) {
42  *    Map IEEE-754 Not-a-number to zero.
43  *    cs = 0.0;
44  * } else if (cl > 1.0) {
45  *    cs = 1.0;
46  * } else if (cl < 0.0) {
47  *    cs = 0.0;
48  * } else if (cl < 0.0031308) {
49  *    cs = 12.92 * cl;
50  * } else {
51  *    cs = 1.055 * pow(cl, 0.41666) - 0.055;
52  * }
53  *
54  * This does not need to be accurate, however at least for d3d10
55  * (http://msdn.microsoft.com/en-us/library/windows/desktop/dd607323%28v=vs.85%29.aspx):
56  * 1) For srgb->linear, it is required that the error on the srgb side is
57  *    not larger than 0.5f, which I interpret that if you map the value back
58  *    to srgb from linear using the ideal conversion, it would not be off by
59  *    more than 0.5f (that is, it would map to the same 8-bit integer value
60  *    as it was before conversion to linear).
61  * 2) linear->srgb is permitted 0.6f which luckily looks like quite a large
62  *    error is allowed.
63  * 3) Additionally, all srgb values converted to linear and back must result
64  *    in the same value as they were originally.
65  *
66  * @author Roland Scheidegger <sroland@vmware.com>
67  */
68 
69 
70 #include "util/u_debug.h"
71 #include "util/u_math.h"
72 
73 #include "lp_bld_type.h"
74 #include "lp_bld_const.h"
75 #include "lp_bld_arit.h"
76 #include "lp_bld_bitarit.h"
77 #include "lp_bld_logic.h"
78 #include "lp_bld_format.h"
79 
80 
81 
82 /**
83  * Convert srgb int values to linear float values.
84  * Several possibilities how to do this, e.g.
85  * - table
86  * - doing the pow() with int-to-float and float-to-int tricks
87  *   (http://stackoverflow.com/questions/6475373/optimizations-for-pow-with-const-non-integer-exponent)
88  * - just using standard polynomial approximation
89  *   (3rd order polynomial is required for crappy but just sufficient accuracy)
90  *
91  * @param src   integer (vector) value(s) to convert
92  *              (chan_bits bit values unpacked to 32 bit already).
93  */
94 LLVMValueRef
lp_build_srgb_to_linear(struct gallivm_state * gallivm,struct lp_type src_type,unsigned chan_bits,LLVMValueRef src)95 lp_build_srgb_to_linear(struct gallivm_state *gallivm,
96                         struct lp_type src_type,
97                         unsigned chan_bits,
98                         LLVMValueRef src)
99 {
100    struct lp_type f32_type = lp_type_float_vec(32, src_type.length * 32);
101    struct lp_build_context f32_bld;
102    LLVMValueRef srcf, part_lin, part_pow, is_linear, lin_const, lin_thresh;
103    double coeffs[4] = {0.0023f,
104                        0.0030f / 255.0f,
105                        0.6935f / (255.0f * 255.0f),
106                        0.3012f / (255.0f * 255.0f * 255.0f)
107    };
108 
109    assert(src_type.width == 32);
110    /* Technically this would work with more bits too but would be inaccurate. */
111    assert(chan_bits <= 8);
112 
113    lp_build_context_init(&f32_bld, gallivm, f32_type);
114 
115    /*
116     * using polynomial: (src * (src * (src * 0.3012 + 0.6935) + 0.0030) + 0.0023)
117     * ( poly =  0.3012*x^3 + 0.6935*x^2 + 0.0030*x + 0.0023)
118     * (found with octave polyfit and some magic as I couldn't get the error
119     * function right). Using the above mentioned error function, the values stay
120     * within +-0.35, except for the lowest values - hence tweaking linear segment
121     * to cover the first 16 instead of the first 11 values (the error stays
122     * just about acceptable there too).
123     * Hence: lin = src > 15 ? poly : src / 12.6
124     * This function really only makes sense for vectors, should use LUT otherwise.
125     * All in all (including float conversion) 11 instructions (with sse4.1),
126     * 6 constants (polynomial could be done with 1 instruction less at the cost
127     * of slightly worse dependency chain, fma should also help).
128     */
129    /* doing the 1/255 mul as part of the approximation */
130    srcf = lp_build_int_to_float(&f32_bld, src);
131    if (chan_bits != 8) {
132       /* could adjust all the constants instead */
133       LLVMValueRef rescale_const = lp_build_const_vec(gallivm, f32_type,
134                                                       255.0f / ((1 << chan_bits) - 1));
135       srcf = lp_build_mul(&f32_bld, srcf, rescale_const);
136    }
137    lin_const = lp_build_const_vec(gallivm, f32_type, 1.0f / (12.6f * 255.0f));
138    part_lin = lp_build_mul(&f32_bld, srcf, lin_const);
139 
140    part_pow = lp_build_polynomial(&f32_bld, srcf, coeffs, 4);
141 
142    lin_thresh = lp_build_const_vec(gallivm, f32_type, 15.0f);
143    is_linear = lp_build_compare(gallivm, f32_type, PIPE_FUNC_LEQUAL, srcf, lin_thresh);
144    return lp_build_select(&f32_bld, is_linear, part_lin, part_pow);
145 }
146 
147 
148 /**
149  * Convert linear float values to srgb int values.
150  * Several possibilities how to do this, e.g.
151  * - use table (based on exponent/highest order mantissa bits) and do
152  *   linear interpolation (https://gist.github.com/rygorous/2203834)
153  * - Chebyshev polynomial
154  * - Approximation using reciprocals
155  * - using int-to-float and float-to-int tricks for pow()
156  *   (http://stackoverflow.com/questions/6475373/optimizations-for-pow-with-const-non-integer-exponent)
157  *
158  * @param src   float (vector) value(s) to convert.
159  */
160 static LLVMValueRef
lp_build_linear_to_srgb(struct gallivm_state * gallivm,struct lp_type src_type,unsigned chan_bits,LLVMValueRef src)161 lp_build_linear_to_srgb(struct gallivm_state *gallivm,
162                         struct lp_type src_type,
163                         unsigned chan_bits,
164                         LLVMValueRef src)
165 {
166    LLVMBuilderRef builder = gallivm->builder;
167    struct lp_build_context f32_bld;
168    LLVMValueRef lin_thresh, lin, lin_const, is_linear, tmp, pow_final;
169 
170    lp_build_context_init(&f32_bld, gallivm, src_type);
171 
172    src = lp_build_clamp(&f32_bld, src, f32_bld.zero, f32_bld.one);
173 
174    if (0) {
175       /*
176        * using int-to-float and float-to-int trick for pow().
177        * This is much more accurate than necessary thanks to the correction,
178        * but it most certainly makes no sense without rsqrt available.
179        * Bonus points if you understand how this works...
180        * All in all (including min/max clamp, conversion) 19 instructions.
181        */
182 
183       float exp_f = 2.0f / 3.0f;
184       /* some compilers can't do exp2f, so this is exp2f(127.0f/exp_f - 127.0f) */
185       float exp2f_c = 1.30438178253e+19f;
186       float coeff_f = 0.62996f;
187       LLVMValueRef pow_approx, coeff, x2, exponent, pow_1, pow_2;
188       struct lp_type int_type = lp_int_type(src_type);
189 
190       /*
191        * First calculate approx x^8/12
192        */
193       exponent = lp_build_const_vec(gallivm, src_type, exp_f);
194       coeff = lp_build_const_vec(gallivm, src_type,
195                                  exp2f_c * powf(coeff_f, 1.0f / exp_f));
196 
197       /* premultiply src */
198       tmp = lp_build_mul(&f32_bld, coeff, src);
199       /* "log2" */
200       tmp = LLVMBuildBitCast(builder, tmp, lp_build_vec_type(gallivm, int_type), "");
201       tmp = lp_build_int_to_float(&f32_bld, tmp);
202       /* multiply for pow */
203       tmp = lp_build_mul(&f32_bld, tmp, exponent);
204       /* "exp2" */
205       pow_approx = lp_build_itrunc(&f32_bld, tmp);
206       pow_approx = LLVMBuildBitCast(builder, pow_approx,
207                                     lp_build_vec_type(gallivm, src_type), "");
208 
209       /*
210        * Since that pow was inaccurate (like 3 bits, though each sqrt step would
211        * give another bit), compensate the error (which is why we chose another
212        * exponent in the first place).
213        */
214       /* x * x^(8/12) = x^(20/12) */
215       pow_1 = lp_build_mul(&f32_bld, pow_approx, src);
216 
217       /* x * x * x^(-4/12) = x^(20/12) */
218       /* Should avoid using rsqrt if it's not available, but
219        * using x * x^(4/12) * x^(4/12) instead will change error weight */
220       tmp = lp_build_fast_rsqrt(&f32_bld, pow_approx);
221       x2 = lp_build_mul(&f32_bld, src, src);
222       pow_2 = lp_build_mul(&f32_bld, x2, tmp);
223 
224       /* average the values so the errors cancel out, compensate bias,
225        * we also squeeze the 1.055 mul of the srgb conversion plus the 255.0 mul
226        * for conversion to int in here */
227       tmp = lp_build_add(&f32_bld, pow_1, pow_2);
228       coeff = lp_build_const_vec(gallivm, src_type,
229                                  1.0f / (3.0f * coeff_f) * 0.999852f *
230                                  powf(1.055f * 255.0f, 4.0f));
231       pow_final = lp_build_mul(&f32_bld, tmp, coeff);
232 
233       /* x^(5/12) = rsqrt(rsqrt(x^20/12)) */
234       if (lp_build_fast_rsqrt_available(src_type)) {
235          pow_final = lp_build_fast_rsqrt(&f32_bld,
236                         lp_build_fast_rsqrt(&f32_bld, pow_final));
237       }
238       else {
239          pow_final = lp_build_sqrt(&f32_bld, lp_build_sqrt(&f32_bld, pow_final));
240       }
241       pow_final = lp_build_add(&f32_bld, pow_final,
242                                lp_build_const_vec(gallivm, src_type, -0.055f * 255.0f));
243    }
244 
245    else {
246       /*
247        * using "rational polynomial" approximation here.
248        * Essentially y = a*x^0.375 + b*x^0.5 + c, with also
249        * factoring in the 255.0 mul and the scaling mul.
250        * (a is closer to actual value so has higher weight than b.)
251        * Note: the constants are magic values. They were found empirically,
252        * possibly could be improved but good enough (be VERY careful with
253        * error metric if you'd want to tweak them, they also MUST fit with
254        * the crappy polynomial above for srgb->linear since it is required
255        * that each srgb value maps back to the same value).
256        * This function has an error of max +-0.17. Not sure this is actually
257        * enough, we require +-0.6 but that may include the +-0.5 from integer
258        * conversion. Seems to pass all relevant tests though...
259        * For the approximated srgb->linear values the error is naturally larger
260        * (+-0.42) but still accurate enough (required +-0.5 essentially).
261        * All in all (including min/max clamp, conversion) 15 instructions.
262        * FMA would help (minus 2 instructions).
263        */
264 
265       LLVMValueRef x05, x0375, a_const, b_const, c_const, tmp2;
266 
267       if (lp_build_fast_rsqrt_available(src_type)) {
268          tmp = lp_build_fast_rsqrt(&f32_bld, src);
269          x05 = lp_build_mul(&f32_bld, src, tmp);
270       }
271       else {
272          /*
273           * I don't really expect this to be practical without rsqrt
274           * but there's no reason for triple punishment so at least
275           * save the otherwise resulting division and unnecessary mul...
276           */
277          x05 = lp_build_sqrt(&f32_bld, src);
278       }
279 
280       tmp = lp_build_mul(&f32_bld, x05, src);
281       if (lp_build_fast_rsqrt_available(src_type)) {
282          x0375 = lp_build_fast_rsqrt(&f32_bld, lp_build_fast_rsqrt(&f32_bld, tmp));
283       }
284       else {
285          x0375 = lp_build_sqrt(&f32_bld, lp_build_sqrt(&f32_bld, tmp));
286       }
287 
288       a_const = lp_build_const_vec(gallivm, src_type, 0.675f * 1.0622 * 255.0f);
289       b_const = lp_build_const_vec(gallivm, src_type, 0.325f * 1.0622 * 255.0f);
290       c_const = lp_build_const_vec(gallivm, src_type, -0.0620f * 255.0f);
291 
292       tmp = lp_build_mul(&f32_bld, a_const, x0375);
293       tmp2 = lp_build_mad(&f32_bld, b_const, x05, c_const);
294       pow_final = lp_build_add(&f32_bld, tmp, tmp2);
295    }
296 
297    /* linear part is easy */
298    lin_const = lp_build_const_vec(gallivm, src_type, 12.92f * 255.0f);
299    lin = lp_build_mul(&f32_bld, src, lin_const);
300 
301    lin_thresh = lp_build_const_vec(gallivm, src_type, 0.0031308f);
302    is_linear = lp_build_compare(gallivm, src_type, PIPE_FUNC_LEQUAL, src, lin_thresh);
303    tmp = lp_build_select(&f32_bld, is_linear, lin, pow_final);
304 
305    if (chan_bits != 8) {
306       /* could adjust all the constants instead */
307       LLVMValueRef rescale_const = lp_build_const_vec(gallivm, src_type,
308                                                       ((1 << chan_bits) - 1) / 255.0f);
309       tmp = lp_build_mul(&f32_bld, tmp, rescale_const);
310    }
311 
312    f32_bld.type.sign = 0;
313    return lp_build_iround(&f32_bld, tmp);
314 }
315 
316 
317 /**
318  * Convert linear float soa values to packed srgb AoS values.
319  * This only handles packed formats which are 4x8bit in size
320  * (rgba and rgbx plus swizzles), and 16bit 565-style formats
321  * with no alpha. (In the latter case the return values won't be
322  * fully packed, it will look like r5g6b5x16r5g6b5x16...)
323  *
324  * @param src   float SoA (vector) values to convert.
325  */
326 LLVMValueRef
lp_build_float_to_srgb_packed(struct gallivm_state * gallivm,const struct util_format_description * dst_fmt,struct lp_type src_type,LLVMValueRef * src)327 lp_build_float_to_srgb_packed(struct gallivm_state *gallivm,
328                               const struct util_format_description *dst_fmt,
329                               struct lp_type src_type,
330                               LLVMValueRef *src)
331 {
332    LLVMBuilderRef builder = gallivm->builder;
333    unsigned chan;
334    struct lp_build_context f32_bld;
335    struct lp_type int32_type = lp_int_type(src_type);
336    LLVMValueRef tmpsrgb[4], alpha, dst;
337 
338    lp_build_context_init(&f32_bld, gallivm, src_type);
339 
340    /* rgb is subject to linear->srgb conversion, alpha is not */
341    for (chan = 0; chan < 3; chan++) {
342       unsigned chan_bits = dst_fmt->channel[dst_fmt->swizzle[chan]].size;
343       tmpsrgb[chan] = lp_build_linear_to_srgb(gallivm, src_type, chan_bits, src[chan]);
344    }
345    /*
346     * can't use lp_build_conv since we want to keep values as 32bit
347     * here so we can interleave with rgb to go from SoA->AoS.
348     */
349    alpha = lp_build_clamp_zero_one_nanzero(&f32_bld, src[3]);
350    alpha = lp_build_mul(&f32_bld, alpha,
351                         lp_build_const_vec(gallivm, src_type, 255.0f));
352    tmpsrgb[3] = lp_build_iround(&f32_bld, alpha);
353 
354    dst = lp_build_zero(gallivm, int32_type);
355    for (chan = 0; chan < dst_fmt->nr_channels; chan++) {
356       if (dst_fmt->swizzle[chan] <= PIPE_SWIZZLE_W) {
357          unsigned ls;
358          LLVMValueRef shifted, shift_val;
359          ls = dst_fmt->channel[dst_fmt->swizzle[chan]].shift;
360          shift_val = lp_build_const_int_vec(gallivm, int32_type, ls);
361          shifted = LLVMBuildShl(builder, tmpsrgb[chan], shift_val, "");
362          dst = LLVMBuildOr(builder, dst, shifted, "");
363       }
364    }
365    return dst;
366 }
367