1 /*
2  * Copyright © 2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 
26 #include "main/samplerobj.h"
27 
28 #include "dev/intel_device_info.h"
29 #include "common/intel_sample_positions.h"
30 #include "genxml/gen_macros.h"
31 #include "common/intel_guardband.h"
32 
33 #include "main/bufferobj.h"
34 #include "main/context.h"
35 #include "main/enums.h"
36 #include "main/macros.h"
37 #include "main/state.h"
38 
39 #include "genX_boilerplate.h"
40 
41 #include "brw_context.h"
42 #include "brw_cs.h"
43 #include "brw_draw.h"
44 #include "brw_multisample_state.h"
45 #include "brw_state.h"
46 #include "brw_wm.h"
47 #include "brw_util.h"
48 
49 #include "brw_batch.h"
50 #include "brw_buffer_objects.h"
51 #include "brw_fbo.h"
52 
53 #include "main/enums.h"
54 #include "main/fbobject.h"
55 #include "main/framebuffer.h"
56 #include "main/glformats.h"
57 #include "main/shaderapi.h"
58 #include "main/stencil.h"
59 #include "main/transformfeedback.h"
60 #include "main/varray.h"
61 #include "main/viewport.h"
62 #include "util/half_float.h"
63 
64 #if GFX_VER == 4
65 static struct brw_address
KSP(struct brw_context * brw,uint32_t offset)66 KSP(struct brw_context *brw, uint32_t offset)
67 {
68    return ro_bo(brw->cache.bo, offset);
69 }
70 #else
71 static uint32_t
KSP(UNUSED struct brw_context * brw,uint32_t offset)72 KSP(UNUSED struct brw_context *brw, uint32_t offset)
73 {
74    return offset;
75 }
76 #endif
77 
78 #if GFX_VER >= 7
79 static void
emit_lrm(struct brw_context * brw,uint32_t reg,struct brw_address addr)80 emit_lrm(struct brw_context *brw, uint32_t reg, struct brw_address addr)
81 {
82    brw_batch_emit(brw, GENX(MI_LOAD_REGISTER_MEM), lrm) {
83       lrm.RegisterAddress  = reg;
84       lrm.MemoryAddress    = addr;
85    }
86 }
87 #endif
88 
89 #if GFX_VER == 7
90 static void
emit_lri(struct brw_context * brw,uint32_t reg,uint32_t imm)91 emit_lri(struct brw_context *brw, uint32_t reg, uint32_t imm)
92 {
93    brw_batch_emit(brw, GENX(MI_LOAD_REGISTER_IMM), lri) {
94       lri.RegisterOffset   = reg;
95       lri.DataDWord        = imm;
96    }
97 }
98 #endif
99 
100 /**
101  * Polygon stipple packet
102  */
103 static void
genX(upload_polygon_stipple)104 genX(upload_polygon_stipple)(struct brw_context *brw)
105 {
106    struct gl_context *ctx = &brw->ctx;
107 
108    /* _NEW_POLYGON */
109    if (!ctx->Polygon.StippleFlag)
110       return;
111 
112    brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
113       /* Polygon stipple is provided in OpenGL order, i.e. bottom
114        * row first.  If we're rendering to a window (i.e. the
115        * default frame buffer object, 0), then we need to invert
116        * it to match our pixel layout.  But if we're rendering
117        * to a FBO (i.e. any named frame buffer object), we *don't*
118        * need to invert - we already match the layout.
119        */
120       if (ctx->DrawBuffer->FlipY) {
121          for (unsigned i = 0; i < 32; i++)
122             poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
123       } else {
124          for (unsigned i = 0; i < 32; i++)
125             poly.PatternRow[i] = ctx->PolygonStipple[i];
126       }
127    }
128 }
129 
130 static const struct brw_tracked_state genX(polygon_stipple) = {
131    .dirty = {
132       .mesa = _NEW_POLYGON |
133               _NEW_POLYGONSTIPPLE,
134       .brw = BRW_NEW_CONTEXT,
135    },
136    .emit = genX(upload_polygon_stipple),
137 };
138 
139 /**
140  * Polygon stipple offset packet
141  */
142 static void
genX(upload_polygon_stipple_offset)143 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
144 {
145    struct gl_context *ctx = &brw->ctx;
146 
147    /* _NEW_POLYGON */
148    if (!ctx->Polygon.StippleFlag)
149       return;
150 
151    brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
152       /* _NEW_BUFFERS
153        *
154        * If we're drawing to a system window we have to invert the Y axis
155        * in order to match the OpenGL pixel coordinate system, and our
156        * offset must be matched to the window position.  If we're drawing
157        * to a user-created FBO then our native pixel coordinate system
158        * works just fine, and there's no window system to worry about.
159        */
160       if (ctx->DrawBuffer->FlipY) {
161          poly.PolygonStippleYOffset =
162             (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
163       }
164    }
165 }
166 
167 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
168    .dirty = {
169       .mesa = _NEW_BUFFERS |
170               _NEW_POLYGON,
171       .brw = BRW_NEW_CONTEXT,
172    },
173    .emit = genX(upload_polygon_stipple_offset),
174 };
175 
176 /**
177  * Line stipple packet
178  */
179 static void
genX(upload_line_stipple)180 genX(upload_line_stipple)(struct brw_context *brw)
181 {
182    struct gl_context *ctx = &brw->ctx;
183 
184    if (!ctx->Line.StippleFlag)
185       return;
186 
187    brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
188       line.LineStipplePattern = ctx->Line.StipplePattern;
189 
190       line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
191       line.LineStippleRepeatCount = ctx->Line.StippleFactor;
192    }
193 }
194 
195 static const struct brw_tracked_state genX(line_stipple) = {
196    .dirty = {
197       .mesa = _NEW_LINE,
198       .brw = BRW_NEW_CONTEXT,
199    },
200    .emit = genX(upload_line_stipple),
201 };
202 
203 /* Constant single cliprect for framebuffer object or DRI2 drawing */
204 static void
genX(upload_drawing_rect)205 genX(upload_drawing_rect)(struct brw_context *brw)
206 {
207    struct gl_context *ctx = &brw->ctx;
208    const struct gl_framebuffer *fb = ctx->DrawBuffer;
209    const unsigned int fb_width = _mesa_geometric_width(fb);
210    const unsigned int fb_height = _mesa_geometric_height(fb);
211 
212    brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
213       rect.ClippedDrawingRectangleXMax = fb_width - 1;
214       rect.ClippedDrawingRectangleYMax = fb_height - 1;
215    }
216 }
217 
218 static const struct brw_tracked_state genX(drawing_rect) = {
219    .dirty = {
220       .mesa = _NEW_BUFFERS,
221       .brw = BRW_NEW_BLORP |
222              BRW_NEW_CONTEXT,
223    },
224    .emit = genX(upload_drawing_rect),
225 };
226 
227 static uint32_t *
genX(emit_vertex_buffer_state)228 genX(emit_vertex_buffer_state)(struct brw_context *brw,
229                                uint32_t *dw,
230                                unsigned buffer_nr,
231                                struct brw_bo *bo,
232                                unsigned start_offset,
233                                UNUSED unsigned end_offset,
234                                unsigned stride,
235                                UNUSED unsigned step_rate)
236 {
237    struct GENX(VERTEX_BUFFER_STATE) buf_state = {
238       .VertexBufferIndex = buffer_nr,
239       .BufferPitch = stride,
240 
241       /* The VF cache designers apparently cut corners, and made the cache
242        * only consider the bottom 32 bits of memory addresses.  If you happen
243        * to have two vertex buffers which get placed exactly 4 GiB apart and
244        * use them in back-to-back draw calls, you can get collisions.  To work
245        * around this problem, we restrict vertex buffers to the low 32 bits of
246        * the address space.
247        */
248       .BufferStartingAddress = ro_32_bo(bo, start_offset),
249 #if GFX_VER >= 8
250       .BufferSize = end_offset - start_offset,
251 #endif
252 
253 #if GFX_VER >= 7
254       .AddressModifyEnable = true,
255 #endif
256 
257 #if GFX_VER < 8
258       .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
259       .InstanceDataStepRate = step_rate,
260 #if GFX_VER >= 5
261       .EndAddress = ro_bo(bo, end_offset - 1),
262 #endif
263 #endif
264 
265 #if GFX_VER == 11
266       .MOCS = ICL_MOCS_WB,
267 #elif GFX_VER == 10
268       .MOCS = CNL_MOCS_WB,
269 #elif GFX_VER == 9
270       .MOCS = SKL_MOCS_WB,
271 #elif GFX_VER == 8
272       .MOCS = BDW_MOCS_WB,
273 #elif GFX_VER == 7
274       .MOCS = GFX7_MOCS_L3,
275 #endif
276    };
277 
278    GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
279    return dw + GENX(VERTEX_BUFFER_STATE_length);
280 }
281 
282 UNUSED static bool
is_passthru_format(uint32_t format)283 is_passthru_format(uint32_t format)
284 {
285    switch (format) {
286    case ISL_FORMAT_R64_PASSTHRU:
287    case ISL_FORMAT_R64G64_PASSTHRU:
288    case ISL_FORMAT_R64G64B64_PASSTHRU:
289    case ISL_FORMAT_R64G64B64A64_PASSTHRU:
290       return true;
291    default:
292       return false;
293    }
294 }
295 
296 UNUSED static int
uploads_needed(uint32_t format,bool is_dual_slot)297 uploads_needed(uint32_t format,
298                bool is_dual_slot)
299 {
300    if (!is_passthru_format(format))
301       return 1;
302 
303    if (is_dual_slot)
304       return 2;
305 
306    switch (format) {
307    case ISL_FORMAT_R64_PASSTHRU:
308    case ISL_FORMAT_R64G64_PASSTHRU:
309       return 1;
310    case ISL_FORMAT_R64G64B64_PASSTHRU:
311    case ISL_FORMAT_R64G64B64A64_PASSTHRU:
312       return 2;
313    default:
314       unreachable("not reached");
315    }
316 }
317 
318 /*
319  * Returns the format that we are finally going to use when upload a vertex
320  * element. It will only change if we are using *64*PASSTHRU formats, as for
321  * gen < 8 they need to be splitted on two *32*FLOAT formats.
322  *
323  * @upload points in which upload we are. Valid values are [0,1]
324  */
325 static uint32_t
downsize_format_if_needed(uint32_t format,int upload)326 downsize_format_if_needed(uint32_t format,
327                           int upload)
328 {
329    assert(upload == 0 || upload == 1);
330 
331    if (!is_passthru_format(format))
332       return format;
333 
334    /* ISL_FORMAT_R64_PASSTHRU and ISL_FORMAT_R64G64_PASSTHRU with an upload ==
335     * 1 means that we have been forced to do 2 uploads for a size <= 2. This
336     * happens with gen < 8 and dvec3 or dvec4 vertex shader input
337     * variables. In those cases, we return ISL_FORMAT_R32_FLOAT as a way of
338     * flagging that we want to fill with zeroes this second forced upload.
339     */
340    switch (format) {
341    case ISL_FORMAT_R64_PASSTHRU:
342       return upload == 0 ? ISL_FORMAT_R32G32_FLOAT
343                          : ISL_FORMAT_R32_FLOAT;
344    case ISL_FORMAT_R64G64_PASSTHRU:
345       return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
346                          : ISL_FORMAT_R32_FLOAT;
347    case ISL_FORMAT_R64G64B64_PASSTHRU:
348       return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
349                          : ISL_FORMAT_R32G32_FLOAT;
350    case ISL_FORMAT_R64G64B64A64_PASSTHRU:
351       return ISL_FORMAT_R32G32B32A32_FLOAT;
352    default:
353       unreachable("not reached");
354    }
355 }
356 
357 /*
358  * Returns the number of componentes associated with a format that is used on
359  * a 64 to 32 format split. See downsize_format()
360  */
361 static int
upload_format_size(uint32_t upload_format)362 upload_format_size(uint32_t upload_format)
363 {
364    switch (upload_format) {
365    case ISL_FORMAT_R32_FLOAT:
366 
367       /* downsized_format has returned this one in order to flag that we are
368        * performing a second upload which we want to have filled with
369        * zeroes. This happens with gen < 8, a size <= 2, and dvec3 or dvec4
370        * vertex shader input variables.
371        */
372 
373       return 0;
374    case ISL_FORMAT_R32G32_FLOAT:
375       return 2;
376    case ISL_FORMAT_R32G32B32A32_FLOAT:
377       return 4;
378    default:
379       unreachable("not reached");
380    }
381 }
382 
383 static UNUSED uint16_t
pinned_bo_high_bits(struct brw_bo * bo)384 pinned_bo_high_bits(struct brw_bo *bo)
385 {
386    return (bo->kflags & EXEC_OBJECT_PINNED) ? bo->gtt_offset >> 32ull : 0;
387 }
388 
389 /* The VF cache designers apparently cut corners, and made the cache key's
390  * <VertexBufferIndex, Memory Address> tuple only consider the bottom 32 bits
391  * of the address.  If you happen to have two vertex buffers which get placed
392  * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
393  * collisions.  (These collisions can happen within a single batch.)
394  *
395  * In the soft-pin world, we'd like to assign addresses up front, and never
396  * move buffers.  So, we need to do a VF cache invalidate if the buffer for
397  * a particular VB slot has different [48:32] address bits than the last one.
398  *
399  * In the relocation world, we have no idea what the addresses will be, so
400  * we can't apply this workaround.  Instead, we tell the kernel to move it
401  * to the low 4GB regardless.
402  *
403  * This HW issue is gone on Gfx11+.
404  */
405 static void
vf_invalidate_for_vb_48bit_transitions(UNUSED struct brw_context * brw)406 vf_invalidate_for_vb_48bit_transitions(UNUSED struct brw_context *brw)
407 {
408 #if GFX_VER >= 8 && GFX_VER < 11
409    bool need_invalidate = false;
410 
411    for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
412       uint16_t high_bits = pinned_bo_high_bits(brw->vb.buffers[i].bo);
413 
414       if (high_bits != brw->vb.last_bo_high_bits[i]) {
415          need_invalidate = true;
416          brw->vb.last_bo_high_bits[i] = high_bits;
417       }
418    }
419 
420    if (brw->draw.draw_params_bo) {
421       uint16_t high_bits = pinned_bo_high_bits(brw->draw.draw_params_bo);
422 
423       if (brw->vb.last_bo_high_bits[brw->vb.nr_buffers] != high_bits) {
424          need_invalidate = true;
425          brw->vb.last_bo_high_bits[brw->vb.nr_buffers] = high_bits;
426       }
427    }
428 
429    if (brw->draw.derived_draw_params_bo) {
430       uint16_t high_bits = pinned_bo_high_bits(brw->draw.derived_draw_params_bo);
431 
432       if (brw->vb.last_bo_high_bits[brw->vb.nr_buffers + 1] != high_bits) {
433          need_invalidate = true;
434          brw->vb.last_bo_high_bits[brw->vb.nr_buffers + 1] = high_bits;
435       }
436    }
437 
438    if (need_invalidate) {
439       brw_emit_pipe_control_flush(brw, PIPE_CONTROL_VF_CACHE_INVALIDATE | PIPE_CONTROL_CS_STALL);
440    }
441 #endif
442 }
443 
444 static void
vf_invalidate_for_ib_48bit_transition(UNUSED struct brw_context * brw)445 vf_invalidate_for_ib_48bit_transition(UNUSED struct brw_context *brw)
446 {
447 #if GFX_VER >= 8
448    uint16_t high_bits = pinned_bo_high_bits(brw->ib.bo);
449 
450    if (high_bits != brw->ib.last_bo_high_bits) {
451       brw_emit_pipe_control_flush(brw, PIPE_CONTROL_VF_CACHE_INVALIDATE);
452       brw->ib.last_bo_high_bits = high_bits;
453    }
454 #endif
455 }
456 
457 static void
genX(emit_vertices)458 genX(emit_vertices)(struct brw_context *brw)
459 {
460    const struct intel_device_info *devinfo = &brw->screen->devinfo;
461    uint32_t *dw;
462 
463    brw_prepare_vertices(brw);
464    brw_prepare_shader_draw_parameters(brw);
465 
466 #if GFX_VER < 6
467    brw_emit_query_begin(brw);
468 #endif
469 
470    const struct brw_vs_prog_data *vs_prog_data =
471       brw_vs_prog_data(brw->vs.base.prog_data);
472 
473 #if GFX_VER >= 8
474    struct gl_context *ctx = &brw->ctx;
475    const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
476                                 ctx->Polygon.BackMode != GL_FILL);
477 
478    if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
479       unsigned vue = brw->vb.nr_enabled;
480 
481       /* The element for the edge flags must always be last, so we have to
482        * insert the SGVS before it in that case.
483        */
484       if (uses_edge_flag) {
485          assert(vue > 0);
486          vue--;
487       }
488 
489       WARN_ONCE(vue >= 33,
490                 "Trying to insert VID/IID past 33rd vertex element, "
491                 "need to reorder the vertex attrbutes.");
492 
493       brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
494          if (vs_prog_data->uses_vertexid) {
495             vfs.VertexIDEnable = true;
496             vfs.VertexIDComponentNumber = 2;
497             vfs.VertexIDElementOffset = vue;
498          }
499 
500          if (vs_prog_data->uses_instanceid) {
501             vfs.InstanceIDEnable = true;
502             vfs.InstanceIDComponentNumber = 3;
503             vfs.InstanceIDElementOffset = vue;
504          }
505       }
506 
507       brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
508          vfi.InstancingEnable = true;
509          vfi.VertexElementIndex = vue;
510       }
511    } else {
512       brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
513    }
514 #endif
515 
516    const bool uses_draw_params =
517       vs_prog_data->uses_firstvertex ||
518       vs_prog_data->uses_baseinstance;
519 
520    const bool uses_derived_draw_params =
521       vs_prog_data->uses_drawid ||
522       vs_prog_data->uses_is_indexed_draw;
523 
524    const bool needs_sgvs_element = (uses_draw_params ||
525                                     vs_prog_data->uses_instanceid ||
526                                     vs_prog_data->uses_vertexid);
527 
528    unsigned nr_elements =
529       brw->vb.nr_enabled + needs_sgvs_element + uses_derived_draw_params;
530 
531 #if GFX_VER < 8
532    /* If any of the formats of vb.enabled needs more that one upload, we need
533     * to add it to nr_elements
534     */
535    for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
536       struct brw_vertex_element *input = brw->vb.enabled[i];
537       uint32_t format = brw_get_vertex_surface_type(brw, input->glformat);
538 
539       if (uploads_needed(format, input->is_dual_slot) > 1)
540          nr_elements++;
541    }
542 #endif
543 
544    /* If the VS doesn't read any inputs (calculating vertex position from
545     * a state variable for some reason, for example), emit a single pad
546     * VERTEX_ELEMENT struct and bail.
547     *
548     * The stale VB state stays in place, but they don't do anything unless
549     * a VE loads from them.
550     */
551    if (nr_elements == 0) {
552       dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
553                            1 + GENX(VERTEX_ELEMENT_STATE_length));
554       struct GENX(VERTEX_ELEMENT_STATE) elem = {
555          .Valid = true,
556          .SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
557          .Component0Control = VFCOMP_STORE_0,
558          .Component1Control = VFCOMP_STORE_0,
559          .Component2Control = VFCOMP_STORE_0,
560          .Component3Control = VFCOMP_STORE_1_FP,
561       };
562       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
563       return;
564    }
565 
566    /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
567    const unsigned nr_buffers = brw->vb.nr_buffers +
568       uses_draw_params + uses_derived_draw_params;
569 
570    vf_invalidate_for_vb_48bit_transitions(brw);
571 
572    if (nr_buffers) {
573       assert(nr_buffers <= (GFX_VER >= 6 ? 33 : 17));
574 
575       dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
576                            1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
577 
578       for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
579          const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
580          /* Prior to Haswell and Bay Trail we have to use 4-component formats
581           * to fake 3-component ones.  In particular, we do this for
582           * half-float and 8 and 16-bit integer formats.  This means that the
583           * vertex element may poke over the end of the buffer by 2 bytes.
584           */
585          const unsigned padding =
586             (GFX_VERx10 < 75 && !devinfo->is_baytrail) * 2;
587          const unsigned end = buffer->offset + buffer->size + padding;
588          dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
589                                              buffer->offset,
590                                              end,
591                                              buffer->stride,
592                                              buffer->step_rate);
593       }
594 
595       if (uses_draw_params) {
596          dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
597                                              brw->draw.draw_params_bo,
598                                              brw->draw.draw_params_offset,
599                                              brw->draw.draw_params_bo->size,
600                                              0 /* stride */,
601                                              0 /* step rate */);
602       }
603 
604       if (uses_derived_draw_params) {
605          dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
606                                              brw->draw.derived_draw_params_bo,
607                                              brw->draw.derived_draw_params_offset,
608                                              brw->draw.derived_draw_params_bo->size,
609                                              0 /* stride */,
610                                              0 /* step rate */);
611       }
612    }
613 
614    /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
615     * presumably for VertexID/InstanceID.
616     */
617 #if GFX_VER >= 6
618    assert(nr_elements <= 34);
619    const struct brw_vertex_element *gfx6_edgeflag_input = NULL;
620 #else
621    assert(nr_elements <= 18);
622 #endif
623 
624    dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
625                         1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
626    unsigned i;
627    for (i = 0; i < brw->vb.nr_enabled; i++) {
628       const struct brw_vertex_element *input = brw->vb.enabled[i];
629       const struct gl_vertex_format *glformat = input->glformat;
630       uint32_t format = brw_get_vertex_surface_type(brw, glformat);
631       uint32_t comp0 = VFCOMP_STORE_SRC;
632       uint32_t comp1 = VFCOMP_STORE_SRC;
633       uint32_t comp2 = VFCOMP_STORE_SRC;
634       uint32_t comp3 = VFCOMP_STORE_SRC;
635       const unsigned num_uploads = GFX_VER < 8 ?
636          uploads_needed(format, input->is_dual_slot) : 1;
637 
638 #if GFX_VER >= 8
639       /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
640        * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
641        * element which has edge flag enabled."
642        */
643       assert(!(is_passthru_format(format) && uses_edge_flag));
644 #endif
645 
646       /* The gfx4 driver expects edgeflag to come in as a float, and passes
647        * that float on to the tests in the clipper.  Mesa's current vertex
648        * attribute value for EdgeFlag is stored as a float, which works out.
649        * glEdgeFlagPointer, on the other hand, gives us an unnormalized
650        * integer ubyte.  Just rewrite that to convert to a float.
651        *
652        * Gfx6+ passes edgeflag as sideband along with the vertex, instead
653        * of in the VUE.  We have to upload it sideband as the last vertex
654        * element according to the B-Spec.
655        */
656 #if GFX_VER >= 6
657       if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
658          gfx6_edgeflag_input = input;
659          continue;
660       }
661 #endif
662 
663       for (unsigned c = 0; c < num_uploads; c++) {
664          const uint32_t upload_format = GFX_VER >= 8 ? format :
665             downsize_format_if_needed(format, c);
666          /* If we need more that one upload, the offset stride would be 128
667           * bits (16 bytes), as for previous uploads we are using the full
668           * entry. */
669          const unsigned offset = input->offset + c * 16;
670 
671          const int size = (GFX_VER < 8 && is_passthru_format(format)) ?
672             upload_format_size(upload_format) : glformat->Size;
673 
674          switch (size) {
675             case 0: comp0 = VFCOMP_STORE_0; FALLTHROUGH;
676             case 1: comp1 = VFCOMP_STORE_0; FALLTHROUGH;
677             case 2: comp2 = VFCOMP_STORE_0; FALLTHROUGH;
678             case 3:
679                if (GFX_VER >= 8 && glformat->Doubles) {
680                   comp3 = VFCOMP_STORE_0;
681                } else if (glformat->Integer) {
682                   comp3 = VFCOMP_STORE_1_INT;
683                } else {
684                   comp3 = VFCOMP_STORE_1_FP;
685                }
686 
687                break;
688          }
689 
690 #if GFX_VER >= 8
691          /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
692           *
693           *     "When SourceElementFormat is set to one of the *64*_PASSTHRU
694           *     formats, 64-bit components are stored in the URB without any
695           *     conversion. In this case, vertex elements must be written as 128
696           *     or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
697           *     required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
698           *     component into the URB, Component 1 must be specified as
699           *     VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
700           *     order to output a 128-bit vertex element, or Components 1-3 must
701           *     be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
702           *     element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
703           *     to be specified as VFCOMP_STORE_0 in order to output a 256-bit
704           *     vertex element."
705           */
706          if (glformat->Doubles && !input->is_dual_slot) {
707             /* Store vertex elements which correspond to double and dvec2 vertex
708              * shader inputs as 128-bit vertex elements, instead of 256-bits.
709              */
710             comp2 = VFCOMP_NOSTORE;
711             comp3 = VFCOMP_NOSTORE;
712          }
713 #endif
714 
715          struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
716             .VertexBufferIndex = input->buffer,
717             .Valid = true,
718             .SourceElementFormat = upload_format,
719             .SourceElementOffset = offset,
720             .Component0Control = comp0,
721             .Component1Control = comp1,
722             .Component2Control = comp2,
723             .Component3Control = comp3,
724 #if GFX_VER < 5
725             .DestinationElementOffset = i * 4,
726 #endif
727          };
728 
729          GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
730          dw += GENX(VERTEX_ELEMENT_STATE_length);
731       }
732    }
733 
734    if (needs_sgvs_element) {
735       struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
736          .Valid = true,
737          .Component0Control = VFCOMP_STORE_0,
738          .Component1Control = VFCOMP_STORE_0,
739          .Component2Control = VFCOMP_STORE_0,
740          .Component3Control = VFCOMP_STORE_0,
741 #if GFX_VER < 5
742          .DestinationElementOffset = i * 4,
743 #endif
744       };
745 
746 #if GFX_VER >= 8
747       if (uses_draw_params) {
748          elem_state.VertexBufferIndex = brw->vb.nr_buffers;
749          elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
750          elem_state.Component0Control = VFCOMP_STORE_SRC;
751          elem_state.Component1Control = VFCOMP_STORE_SRC;
752       }
753 #else
754       elem_state.VertexBufferIndex = brw->vb.nr_buffers;
755       elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
756       if (uses_draw_params) {
757          elem_state.Component0Control = VFCOMP_STORE_SRC;
758          elem_state.Component1Control = VFCOMP_STORE_SRC;
759       }
760 
761       if (vs_prog_data->uses_vertexid)
762          elem_state.Component2Control = VFCOMP_STORE_VID;
763 
764       if (vs_prog_data->uses_instanceid)
765          elem_state.Component3Control = VFCOMP_STORE_IID;
766 #endif
767 
768       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
769       dw += GENX(VERTEX_ELEMENT_STATE_length);
770    }
771 
772    if (uses_derived_draw_params) {
773       struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
774          .Valid = true,
775          .VertexBufferIndex = brw->vb.nr_buffers + 1,
776          .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
777          .Component0Control = VFCOMP_STORE_SRC,
778          .Component1Control = VFCOMP_STORE_SRC,
779          .Component2Control = VFCOMP_STORE_0,
780          .Component3Control = VFCOMP_STORE_0,
781 #if GFX_VER < 5
782          .DestinationElementOffset = i * 4,
783 #endif
784       };
785 
786       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
787       dw += GENX(VERTEX_ELEMENT_STATE_length);
788    }
789 
790 #if GFX_VER >= 6
791    if (gfx6_edgeflag_input) {
792       const struct gl_vertex_format *glformat = gfx6_edgeflag_input->glformat;
793       const uint32_t format = brw_get_vertex_surface_type(brw, glformat);
794 
795       struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
796          .Valid = true,
797          .VertexBufferIndex = gfx6_edgeflag_input->buffer,
798          .EdgeFlagEnable = true,
799          .SourceElementFormat = format,
800          .SourceElementOffset = gfx6_edgeflag_input->offset,
801          .Component0Control = VFCOMP_STORE_SRC,
802          .Component1Control = VFCOMP_STORE_0,
803          .Component2Control = VFCOMP_STORE_0,
804          .Component3Control = VFCOMP_STORE_0,
805       };
806 
807       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
808       dw += GENX(VERTEX_ELEMENT_STATE_length);
809    }
810 #endif
811 
812 #if GFX_VER >= 8
813    for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
814       const struct brw_vertex_element *input = brw->vb.enabled[i];
815       const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
816       unsigned element_index;
817 
818       /* The edge flag element is reordered to be the last one in the code
819        * above so we need to compensate for that in the element indices used
820        * below.
821        */
822       if (input == gfx6_edgeflag_input)
823          element_index = nr_elements - 1;
824       else
825          element_index = j++;
826 
827       brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
828          vfi.VertexElementIndex = element_index;
829          vfi.InstancingEnable = buffer->step_rate != 0;
830          vfi.InstanceDataStepRate = buffer->step_rate;
831       }
832    }
833 
834    if (vs_prog_data->uses_drawid) {
835       const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
836 
837       brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
838          vfi.VertexElementIndex = element;
839       }
840    }
841 #endif
842 }
843 
844 static const struct brw_tracked_state genX(vertices) = {
845    .dirty = {
846       .mesa = _NEW_POLYGON,
847       .brw = BRW_NEW_BATCH |
848              BRW_NEW_BLORP |
849              BRW_NEW_VERTEX_PROGRAM |
850              BRW_NEW_VERTICES |
851              BRW_NEW_VS_PROG_DATA,
852    },
853    .emit = genX(emit_vertices),
854 };
855 
856 static void
genX(emit_index_buffer)857 genX(emit_index_buffer)(struct brw_context *brw)
858 {
859    const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
860 
861    if (index_buffer == NULL)
862       return;
863 
864    vf_invalidate_for_ib_48bit_transition(brw);
865 
866    brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
867 #if GFX_VERx10 < 75
868       assert(brw->ib.enable_cut_index == brw->prim_restart.enable_cut_index);
869       ib.CutIndexEnable = brw->ib.enable_cut_index;
870 #endif
871       ib.IndexFormat = brw_get_index_type(1 << index_buffer->index_size_shift);
872 
873       /* The VF cache designers apparently cut corners, and made the cache
874        * only consider the bottom 32 bits of memory addresses.  If you happen
875        * to have two index buffers which get placed exactly 4 GiB apart and
876        * use them in back-to-back draw calls, you can get collisions.  To work
877        * around this problem, we restrict index buffers to the low 32 bits of
878        * the address space.
879        */
880       ib.BufferStartingAddress = ro_32_bo(brw->ib.bo, 0);
881 #if GFX_VER >= 8
882       ib.MOCS = GFX_VER >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
883       ib.BufferSize = brw->ib.size;
884 #else
885       ib.BufferEndingAddress = ro_bo(brw->ib.bo, brw->ib.size - 1);
886 #endif
887    }
888 }
889 
890 static const struct brw_tracked_state genX(index_buffer) = {
891    .dirty = {
892       .mesa = 0,
893       .brw = BRW_NEW_BATCH |
894              BRW_NEW_BLORP |
895              BRW_NEW_INDEX_BUFFER,
896    },
897    .emit = genX(emit_index_buffer),
898 };
899 
900 #if GFX_VERx10 >= 75
901 static void
genX(upload_cut_index)902 genX(upload_cut_index)(struct brw_context *brw)
903 {
904    brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
905       if (brw->prim_restart.enable_cut_index && brw->ib.ib) {
906          vf.IndexedDrawCutIndexEnable = true;
907          vf.CutIndex = brw->prim_restart.restart_index;
908       }
909    }
910 }
911 
912 const struct brw_tracked_state genX(cut_index) = {
913    .dirty = {
914       .mesa  = _NEW_TRANSFORM,
915       .brw   = BRW_NEW_INDEX_BUFFER,
916    },
917    .emit = genX(upload_cut_index),
918 };
919 #endif
920 
921 static void
genX(upload_vf_statistics)922 genX(upload_vf_statistics)(struct brw_context *brw)
923 {
924    brw_batch_emit(brw, GENX(3DSTATE_VF_STATISTICS), vf) {
925       vf.StatisticsEnable = true;
926    }
927 }
928 
929 const struct brw_tracked_state genX(vf_statistics) = {
930    .dirty = {
931       .mesa  = 0,
932       .brw   = BRW_NEW_BLORP | BRW_NEW_CONTEXT,
933    },
934    .emit = genX(upload_vf_statistics),
935 };
936 
937 #if GFX_VER >= 6
938 /**
939  * Determine the appropriate attribute override value to store into the
940  * 3DSTATE_SF structure for a given fragment shader attribute.  The attribute
941  * override value contains two pieces of information: the location of the
942  * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
943  * flag indicating whether to "swizzle" the attribute based on the direction
944  * the triangle is facing.
945  *
946  * If an attribute is "swizzled", then the given VUE location is used for
947  * front-facing triangles, and the VUE location that immediately follows is
948  * used for back-facing triangles.  We use this to implement the mapping from
949  * gl_FrontColor/gl_BackColor to gl_Color.
950  *
951  * urb_entry_read_offset is the offset into the VUE at which the SF unit is
952  * being instructed to begin reading attribute data.  It can be set to a
953  * nonzero value to prevent the SF unit from wasting time reading elements of
954  * the VUE that are not needed by the fragment shader.  It is measured in
955  * 256-bit increments.
956  */
957 static void
genX(get_attr_override)958 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
959                         const struct brw_vue_map *vue_map,
960                         int urb_entry_read_offset, int fs_attr,
961                         bool two_side_color, uint32_t *max_source_attr)
962 {
963    /* Find the VUE slot for this attribute. */
964    int slot = vue_map->varying_to_slot[fs_attr];
965 
966    /* Viewport and Layer are stored in the VUE header.  We need to override
967     * them to zero if earlier stages didn't write them, as GL requires that
968     * they read back as zero when not explicitly set.
969     */
970    if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
971       attr->ComponentOverrideX = true;
972       attr->ComponentOverrideW = true;
973       attr->ConstantSource = CONST_0000;
974 
975       if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
976          attr->ComponentOverrideY = true;
977       if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
978          attr->ComponentOverrideZ = true;
979 
980       return;
981    }
982 
983    /* If there was only a back color written but not front, use back
984     * as the color instead of undefined
985     */
986    if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
987       slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
988    if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
989       slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
990 
991    if (slot == -1) {
992       /* This attribute does not exist in the VUE--that means that the vertex
993        * shader did not write to it.  This means that either:
994        *
995        * (a) This attribute is a texture coordinate, and it is going to be
996        * replaced with point coordinates (as a consequence of a call to
997        * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
998        * hardware will ignore whatever attribute override we supply.
999        *
1000        * (b) This attribute is read by the fragment shader but not written by
1001        * the vertex shader, so its value is undefined.  Therefore the
1002        * attribute override we supply doesn't matter.
1003        *
1004        * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
1005        * previous shader stage.
1006        *
1007        * Note that we don't have to worry about the cases where the attribute
1008        * is gl_PointCoord or is undergoing point sprite coordinate
1009        * replacement, because in those cases, this function isn't called.
1010        *
1011        * In case (c), we need to program the attribute overrides so that the
1012        * primitive ID will be stored in this slot.  In every other case, the
1013        * attribute override we supply doesn't matter.  So just go ahead and
1014        * program primitive ID in every case.
1015        */
1016       attr->ComponentOverrideW = true;
1017       attr->ComponentOverrideX = true;
1018       attr->ComponentOverrideY = true;
1019       attr->ComponentOverrideZ = true;
1020       attr->ConstantSource = PRIM_ID;
1021       return;
1022    }
1023 
1024    /* Compute the location of the attribute relative to urb_entry_read_offset.
1025     * Each increment of urb_entry_read_offset represents a 256-bit value, so
1026     * it counts for two 128-bit VUE slots.
1027     */
1028    int source_attr = slot - 2 * urb_entry_read_offset;
1029    assert(source_attr >= 0 && source_attr < 32);
1030 
1031    /* If we are doing two-sided color, and the VUE slot following this one
1032     * represents a back-facing color, then we need to instruct the SF unit to
1033     * do back-facing swizzling.
1034     */
1035    bool swizzling = two_side_color &&
1036       ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1037         vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1038        (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1039         vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1040 
1041    /* Update max_source_attr.  If swizzling, the SF will read this slot + 1. */
1042    if (*max_source_attr < source_attr + swizzling)
1043       *max_source_attr = source_attr + swizzling;
1044 
1045    attr->SourceAttribute = source_attr;
1046    if (swizzling)
1047       attr->SwizzleSelect = INPUTATTR_FACING;
1048 }
1049 
1050 
1051 static void
genX(calculate_attr_overrides)1052 genX(calculate_attr_overrides)(const struct brw_context *brw,
1053                                struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1054                                uint32_t *point_sprite_enables,
1055                                uint32_t *urb_entry_read_length,
1056                                uint32_t *urb_entry_read_offset)
1057 {
1058    const struct gl_context *ctx = &brw->ctx;
1059 
1060    /* _NEW_POINT */
1061    const struct gl_point_attrib *point = &ctx->Point;
1062 
1063    /* BRW_NEW_FRAGMENT_PROGRAM */
1064    const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1065 
1066    /* BRW_NEW_FS_PROG_DATA */
1067    const struct brw_wm_prog_data *wm_prog_data =
1068       brw_wm_prog_data(brw->wm.base.prog_data);
1069    uint32_t max_source_attr = 0;
1070 
1071    *point_sprite_enables = 0;
1072 
1073    int first_slot =
1074       brw_compute_first_urb_slot_required(fp->info.inputs_read,
1075                                           &brw->vue_map_geom_out);
1076 
1077    /* Each URB offset packs two varying slots */
1078    assert(first_slot % 2 == 0);
1079    *urb_entry_read_offset = first_slot / 2;
1080 
1081    /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1082     * description of dw10 Point Sprite Texture Coordinate Enable:
1083     *
1084     * "This field must be programmed to zero when non-point primitives
1085     * are rendered."
1086     *
1087     * The SandyBridge PRM doesn't explicitly say that point sprite enables
1088     * must be programmed to zero when rendering non-point primitives, but
1089     * the IvyBridge PRM does, and if we don't, we get garbage.
1090     *
1091     * This is not required on Haswell, as the hardware ignores this state
1092     * when drawing non-points -- although we do still need to be careful to
1093     * correctly set the attr overrides.
1094     *
1095     * _NEW_POLYGON
1096     * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1097     */
1098    bool drawing_points = brw_is_drawing_points(brw);
1099 
1100    for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
1101       uint8_t attr = wm_prog_data->urb_setup_attribs[idx];
1102       int input_index = wm_prog_data->urb_setup[attr];
1103 
1104       assert(0 <= input_index);
1105 
1106       /* _NEW_POINT */
1107       bool point_sprite = false;
1108       if (drawing_points) {
1109          if (point->PointSprite &&
1110              (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1111              (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1112             point_sprite = true;
1113          }
1114 
1115          if (attr == VARYING_SLOT_PNTC)
1116             point_sprite = true;
1117 
1118          if (point_sprite)
1119             *point_sprite_enables |= (1 << input_index);
1120       }
1121 
1122       /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1123       struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1124 
1125       if (!point_sprite) {
1126          genX(get_attr_override)(&attribute,
1127                                  &brw->vue_map_geom_out,
1128                                  *urb_entry_read_offset, attr,
1129                                  _mesa_vertex_program_two_side_enabled(ctx),
1130                                  &max_source_attr);
1131       }
1132 
1133       /* The hardware can only do the overrides on 16 overrides at a
1134        * time, and the other up to 16 have to be lined up so that the
1135        * input index = the output index.  We'll need to do some
1136        * tweaking to make sure that's the case.
1137        */
1138       if (input_index < 16)
1139          attr_overrides[input_index] = attribute;
1140       else
1141          assert(attribute.SourceAttribute == input_index);
1142    }
1143 
1144    /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1145     * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1146     *
1147     * "This field should be set to the minimum length required to read the
1148     *  maximum source attribute.  The maximum source attribute is indicated
1149     *  by the maximum value of the enabled Attribute # Source Attribute if
1150     *  Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1151     *  enable is not set.
1152     *  read_length = ceiling((max_source_attr + 1) / 2)
1153     *
1154     *  [errata] Corruption/Hang possible if length programmed larger than
1155     *  recommended"
1156     *
1157     * Similar text exists for Ivy Bridge.
1158     */
1159    *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1160 }
1161 #endif
1162 
1163 /* ---------------------------------------------------------------------- */
1164 
1165 #if GFX_VER >= 8
1166 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1167 #elif GFX_VER >= 6
1168 typedef struct GENX(DEPTH_STENCIL_STATE)      DEPTH_STENCIL_GENXML;
1169 #else
1170 typedef struct GENX(COLOR_CALC_STATE)         DEPTH_STENCIL_GENXML;
1171 #endif
1172 
1173 static inline void
1174 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1175 {
1176    struct gl_context *ctx = &brw->ctx;
1177 
1178    /* _NEW_BUFFERS */
1179    struct brw_renderbuffer *depth_irb =
1180       brw_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1181 
1182    /* _NEW_DEPTH */
1183    struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1184 
1185    /* _NEW_STENCIL */
1186    struct gl_stencil_attrib *stencil = &ctx->Stencil;
1187    const int b = stencil->_BackFace;
1188 
1189    if (depth->Test && depth_irb) {
1190       ds->DepthTestEnable = true;
1191       ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1192       ds->DepthTestFunction = brw_translate_compare_func(depth->Func);
1193    }
1194 
1195    if (brw->stencil_enabled) {
1196       ds->StencilTestEnable = true;
1197       ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1198       ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1199 
1200       ds->StencilTestFunction =
1201          brw_translate_compare_func(stencil->Function[0]);
1202       ds->StencilFailOp =
1203          brw_translate_stencil_op(stencil->FailFunc[0]);
1204       ds->StencilPassDepthPassOp =
1205          brw_translate_stencil_op(stencil->ZPassFunc[0]);
1206       ds->StencilPassDepthFailOp =
1207          brw_translate_stencil_op(stencil->ZFailFunc[0]);
1208 
1209       ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1210 
1211       if (brw->stencil_two_sided) {
1212          ds->DoubleSidedStencilEnable = true;
1213          ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1214          ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1215 
1216          ds->BackfaceStencilTestFunction =
1217             brw_translate_compare_func(stencil->Function[b]);
1218          ds->BackfaceStencilFailOp =
1219             brw_translate_stencil_op(stencil->FailFunc[b]);
1220          ds->BackfaceStencilPassDepthPassOp =
1221             brw_translate_stencil_op(stencil->ZPassFunc[b]);
1222          ds->BackfaceStencilPassDepthFailOp =
1223             brw_translate_stencil_op(stencil->ZFailFunc[b]);
1224       }
1225 
1226 #if GFX_VER <= 5 || GFX_VER >= 9
1227       ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1228       ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1229 #endif
1230    }
1231 }
1232 
1233 #if GFX_VER >= 6
1234 static void
genX(upload_depth_stencil_state)1235 genX(upload_depth_stencil_state)(struct brw_context *brw)
1236 {
1237 #if GFX_VER >= 8
1238    brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1239       set_depth_stencil_bits(brw, &wmds);
1240    }
1241 #else
1242    uint32_t ds_offset;
1243    brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1244       set_depth_stencil_bits(brw, &ds);
1245    }
1246 
1247    /* Now upload a pointer to the indirect state */
1248 #if GFX_VER == 6
1249    brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1250       ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1251       ptr.DEPTH_STENCIL_STATEChange = true;
1252    }
1253 #else
1254    brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1255       ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1256    }
1257 #endif
1258 #endif
1259 }
1260 
1261 static const struct brw_tracked_state genX(depth_stencil_state) = {
1262    .dirty = {
1263       .mesa = _NEW_BUFFERS |
1264               _NEW_DEPTH |
1265               _NEW_STENCIL,
1266       .brw  = BRW_NEW_BLORP |
1267               (GFX_VER >= 8 ? BRW_NEW_CONTEXT
1268                             : BRW_NEW_BATCH |
1269                               BRW_NEW_STATE_BASE_ADDRESS),
1270    },
1271    .emit = genX(upload_depth_stencil_state),
1272 };
1273 #endif
1274 
1275 /* ---------------------------------------------------------------------- */
1276 
1277 #if GFX_VER <= 5
1278 
1279 static void
genX(upload_clip_state)1280 genX(upload_clip_state)(struct brw_context *brw)
1281 {
1282    struct gl_context *ctx = &brw->ctx;
1283 
1284    ctx->NewDriverState |= BRW_NEW_GFX4_UNIT_STATE;
1285    brw_state_emit(brw, GENX(CLIP_STATE), 32, &brw->clip.state_offset, clip) {
1286       clip.KernelStartPointer = KSP(brw, brw->clip.prog_offset);
1287       clip.GRFRegisterCount =
1288          DIV_ROUND_UP(brw->clip.prog_data->total_grf, 16) - 1;
1289       clip.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1290       clip.SingleProgramFlow = true;
1291       clip.VertexURBEntryReadLength = brw->clip.prog_data->urb_read_length;
1292       clip.ConstantURBEntryReadLength = brw->clip.prog_data->curb_read_length;
1293 
1294       /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1295       clip.ConstantURBEntryReadOffset = brw->curbe.clip_start * 2;
1296       clip.DispatchGRFStartRegisterForURBData = 1;
1297       clip.VertexURBEntryReadOffset = 0;
1298 
1299       /* BRW_NEW_URB_FENCE */
1300       clip.NumberofURBEntries = brw->urb.nr_clip_entries;
1301       clip.URBEntryAllocationSize = brw->urb.vsize - 1;
1302 
1303       if (brw->urb.nr_clip_entries >= 10) {
1304          /* Half of the URB entries go to each thread, and it has to be an
1305           * even number.
1306           */
1307          assert(brw->urb.nr_clip_entries % 2 == 0);
1308 
1309          /* Although up to 16 concurrent Clip threads are allowed on Ironlake,
1310           * only 2 threads can output VUEs at a time.
1311           */
1312          clip.MaximumNumberofThreads = (GFX_VER == 5 ? 16 : 2) - 1;
1313       } else {
1314          assert(brw->urb.nr_clip_entries >= 5);
1315          clip.MaximumNumberofThreads = 1 - 1;
1316       }
1317 
1318       clip.VertexPositionSpace = VPOS_NDCSPACE;
1319       clip.UserClipFlagsMustClipEnable = true;
1320       clip.GuardbandClipTestEnable = true;
1321 
1322       clip.ClipperViewportStatePointer =
1323          ro_bo(brw->batch.state.bo, brw->clip.vp_offset);
1324 
1325       clip.ScreenSpaceViewportXMin = -1;
1326       clip.ScreenSpaceViewportXMax = 1;
1327       clip.ScreenSpaceViewportYMin = -1;
1328       clip.ScreenSpaceViewportYMax = 1;
1329 
1330       clip.ViewportXYClipTestEnable = true;
1331       clip.ViewportZClipTestEnable = !(ctx->Transform.DepthClampNear &&
1332                                        ctx->Transform.DepthClampFar);
1333 
1334       /* _NEW_TRANSFORM */
1335       if (GFX_VER == 5 || GFX_VERx10 == 45) {
1336          clip.UserClipDistanceClipTestEnableBitmask =
1337             ctx->Transform.ClipPlanesEnabled;
1338       } else {
1339          /* Up to 6 actual clip flags, plus the 7th for the negative RHW
1340           * workaround.
1341           */
1342          clip.UserClipDistanceClipTestEnableBitmask =
1343             (ctx->Transform.ClipPlanesEnabled & 0x3f) | 0x40;
1344       }
1345 
1346       if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1347          clip.APIMode = APIMODE_D3D;
1348       else
1349          clip.APIMode = APIMODE_OGL;
1350 
1351       clip.GuardbandClipTestEnable = true;
1352 
1353       clip.ClipMode = brw->clip.prog_data->clip_mode;
1354 
1355 #if GFX_VERx10 == 45
1356       clip.NegativeWClipTestEnable = true;
1357 #endif
1358    }
1359 }
1360 
1361 const struct brw_tracked_state genX(clip_state) = {
1362    .dirty = {
1363       .mesa  = _NEW_TRANSFORM |
1364                _NEW_VIEWPORT,
1365       .brw   = BRW_NEW_BATCH |
1366                BRW_NEW_BLORP |
1367                BRW_NEW_CLIP_PROG_DATA |
1368                BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1369                BRW_NEW_PROGRAM_CACHE |
1370                BRW_NEW_URB_FENCE,
1371    },
1372    .emit = genX(upload_clip_state),
1373 };
1374 
1375 #else
1376 
1377 static void
genX(upload_clip_state)1378 genX(upload_clip_state)(struct brw_context *brw)
1379 {
1380    struct gl_context *ctx = &brw->ctx;
1381 
1382    /* _NEW_BUFFERS */
1383    struct gl_framebuffer *fb = ctx->DrawBuffer;
1384 
1385    /* BRW_NEW_FS_PROG_DATA */
1386    struct brw_wm_prog_data *wm_prog_data =
1387       brw_wm_prog_data(brw->wm.base.prog_data);
1388 
1389    brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1390       clip.StatisticsEnable = !brw->meta_in_progress;
1391 
1392       if (wm_prog_data->barycentric_interp_modes &
1393           BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1394          clip.NonPerspectiveBarycentricEnable = true;
1395 
1396 #if GFX_VER >= 7
1397       clip.EarlyCullEnable = true;
1398 #endif
1399 
1400 #if GFX_VER == 7
1401       clip.FrontWinding = brw->polygon_front_bit != fb->FlipY;
1402 
1403       if (ctx->Polygon.CullFlag) {
1404          switch (ctx->Polygon.CullFaceMode) {
1405          case GL_FRONT:
1406             clip.CullMode = CULLMODE_FRONT;
1407             break;
1408          case GL_BACK:
1409             clip.CullMode = CULLMODE_BACK;
1410             break;
1411          case GL_FRONT_AND_BACK:
1412             clip.CullMode = CULLMODE_BOTH;
1413             break;
1414          default:
1415             unreachable("Should not get here: invalid CullFlag");
1416          }
1417       } else {
1418          clip.CullMode = CULLMODE_NONE;
1419       }
1420 #endif
1421 
1422 #if GFX_VER < 8
1423       clip.UserClipDistanceCullTestEnableBitmask =
1424          brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1425 
1426       clip.ViewportZClipTestEnable = !(ctx->Transform.DepthClampNear &&
1427                                        ctx->Transform.DepthClampFar);
1428 #endif
1429 
1430       /* _NEW_LIGHT */
1431       if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1432          clip.TriangleStripListProvokingVertexSelect = 0;
1433          clip.TriangleFanProvokingVertexSelect = 1;
1434          clip.LineStripListProvokingVertexSelect = 0;
1435       } else {
1436          clip.TriangleStripListProvokingVertexSelect = 2;
1437          clip.TriangleFanProvokingVertexSelect = 2;
1438          clip.LineStripListProvokingVertexSelect = 1;
1439       }
1440 
1441       /* _NEW_TRANSFORM */
1442       clip.UserClipDistanceClipTestEnableBitmask =
1443          ctx->Transform.ClipPlanesEnabled;
1444 
1445 #if GFX_VER >= 8
1446       clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1447 #endif
1448 
1449       if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1450          clip.APIMode = APIMODE_D3D;
1451       else
1452          clip.APIMode = APIMODE_OGL;
1453 
1454       clip.GuardbandClipTestEnable = true;
1455 
1456       /* BRW_NEW_VIEWPORT_COUNT */
1457       const unsigned viewport_count = brw->clip.viewport_count;
1458 
1459       if (ctx->RasterDiscard) {
1460          clip.ClipMode = CLIPMODE_REJECT_ALL;
1461 #if GFX_VER == 6
1462          perf_debug("Rasterizer discard is currently implemented via the "
1463                     "clipper; having the GS not write primitives would "
1464                     "likely be faster.\n");
1465 #endif
1466       } else {
1467          clip.ClipMode = CLIPMODE_NORMAL;
1468       }
1469 
1470       clip.ClipEnable = true;
1471 
1472       /* _NEW_POLYGON,
1473        * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1474        */
1475       if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1476          clip.ViewportXYClipTestEnable = true;
1477 
1478       clip.MinimumPointWidth = 0.125;
1479       clip.MaximumPointWidth = 255.875;
1480       clip.MaximumVPIndex = viewport_count - 1;
1481       if (_mesa_geometric_layers(fb) == 0)
1482          clip.ForceZeroRTAIndexEnable = true;
1483    }
1484 }
1485 
1486 static const struct brw_tracked_state genX(clip_state) = {
1487    .dirty = {
1488       .mesa  = _NEW_BUFFERS |
1489                _NEW_LIGHT |
1490                _NEW_POLYGON |
1491                _NEW_TRANSFORM,
1492       .brw   = BRW_NEW_BLORP |
1493                BRW_NEW_CONTEXT |
1494                BRW_NEW_FS_PROG_DATA |
1495                BRW_NEW_GS_PROG_DATA |
1496                BRW_NEW_VS_PROG_DATA |
1497                BRW_NEW_META_IN_PROGRESS |
1498                BRW_NEW_PRIMITIVE |
1499                BRW_NEW_RASTERIZER_DISCARD |
1500                BRW_NEW_TES_PROG_DATA |
1501                BRW_NEW_VIEWPORT_COUNT,
1502    },
1503    .emit = genX(upload_clip_state),
1504 };
1505 #endif
1506 
1507 /* ---------------------------------------------------------------------- */
1508 
1509 static void
genX(upload_sf)1510 genX(upload_sf)(struct brw_context *brw)
1511 {
1512    struct gl_context *ctx = &brw->ctx;
1513    float point_size;
1514 
1515 #if GFX_VER <= 7
1516    /* _NEW_BUFFERS */
1517    bool flip_y = ctx->DrawBuffer->FlipY;
1518    UNUSED const bool multisampled_fbo =
1519       _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1520 #endif
1521 
1522 #if GFX_VER < 6
1523    const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1524 
1525    ctx->NewDriverState |= BRW_NEW_GFX4_UNIT_STATE;
1526 
1527    brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1528       sf.KernelStartPointer = KSP(brw, brw->sf.prog_offset);
1529       sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1530       sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1531       sf.DispatchGRFStartRegisterForURBData = 3;
1532       sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1533       sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1534       sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1535       sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1536 
1537       /* STATE_PREFETCH command description describes this state as being
1538        * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1539        * domain.
1540        */
1541       sf.SetupViewportStateOffset =
1542          ro_bo(brw->batch.state.bo, brw->sf.vp_offset);
1543 
1544       sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1545 
1546       /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1547       /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1548 
1549       sf.MaximumNumberofThreads =
1550          MIN2(GFX_VER == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1551 
1552       sf.SpritePointEnable = ctx->Point.PointSprite;
1553 
1554       sf.DestinationOriginHorizontalBias = 0.5;
1555       sf.DestinationOriginVerticalBias = 0.5;
1556 #else
1557    brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1558       sf.StatisticsEnable = true;
1559 #endif
1560       sf.ViewportTransformEnable = true;
1561 
1562 #if GFX_VER == 7
1563       /* _NEW_BUFFERS */
1564       sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1565 #endif
1566 
1567 #if GFX_VER <= 7
1568       /* _NEW_POLYGON */
1569       sf.FrontWinding = brw->polygon_front_bit != flip_y;
1570 #if GFX_VER >= 6
1571       sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1572       sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1573       sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1574 
1575       switch (ctx->Polygon.FrontMode) {
1576          case GL_FILL:
1577             sf.FrontFaceFillMode = FILL_MODE_SOLID;
1578             break;
1579          case GL_LINE:
1580             sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1581             break;
1582          case GL_POINT:
1583             sf.FrontFaceFillMode = FILL_MODE_POINT;
1584             break;
1585          default:
1586             unreachable("not reached");
1587       }
1588 
1589       switch (ctx->Polygon.BackMode) {
1590          case GL_FILL:
1591             sf.BackFaceFillMode = FILL_MODE_SOLID;
1592             break;
1593          case GL_LINE:
1594             sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1595             break;
1596          case GL_POINT:
1597             sf.BackFaceFillMode = FILL_MODE_POINT;
1598             break;
1599          default:
1600             unreachable("not reached");
1601       }
1602 
1603       if (multisampled_fbo && ctx->Multisample.Enabled)
1604          sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1605 
1606       sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1607       sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1608       sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1609 #endif
1610 
1611       sf.ScissorRectangleEnable = true;
1612 
1613       if (ctx->Polygon.CullFlag) {
1614          switch (ctx->Polygon.CullFaceMode) {
1615             case GL_FRONT:
1616                sf.CullMode = CULLMODE_FRONT;
1617                break;
1618             case GL_BACK:
1619                sf.CullMode = CULLMODE_BACK;
1620                break;
1621             case GL_FRONT_AND_BACK:
1622                sf.CullMode = CULLMODE_BOTH;
1623                break;
1624             default:
1625                unreachable("not reached");
1626          }
1627       } else {
1628          sf.CullMode = CULLMODE_NONE;
1629       }
1630 
1631 #if GFX_VERx10 == 75
1632       sf.LineStippleEnable = ctx->Line.StippleFlag;
1633 #endif
1634 
1635 #endif
1636 
1637       /* _NEW_LINE */
1638 #if GFX_VER == 8
1639       const struct intel_device_info *devinfo = &brw->screen->devinfo;
1640 
1641       if (devinfo->is_cherryview)
1642          sf.CHVLineWidth = brw_get_line_width(brw);
1643       else
1644          sf.LineWidth = brw_get_line_width(brw);
1645 #else
1646       sf.LineWidth = brw_get_line_width(brw);
1647 #endif
1648 
1649       if (ctx->Line.SmoothFlag) {
1650          sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1651 #if GFX_VER <= 7
1652          sf.AntialiasingEnable = true;
1653 #endif
1654       }
1655 
1656       /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1657       point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1658       /* Clamp to the hardware limits */
1659       sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1660 
1661       /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1662       if (use_state_point_size(brw))
1663          sf.PointWidthSource = State;
1664 
1665 #if GFX_VER >= 8
1666       /* _NEW_POINT | _NEW_MULTISAMPLE */
1667       if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1668           !ctx->Point.PointSprite)
1669          sf.SmoothPointEnable = true;
1670 #endif
1671 
1672 #if GFX_VER == 10
1673       /* _NEW_BUFFERS
1674        * Smooth Point Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
1675        */
1676       const bool multisampled_fbo =
1677          _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1678       if (multisampled_fbo)
1679          sf.SmoothPointEnable = false;
1680 #endif
1681 
1682 #if GFX_VERx10 >= 45
1683       sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1684 #endif
1685 
1686       /* _NEW_LIGHT */
1687       if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1688          sf.TriangleStripListProvokingVertexSelect = 2;
1689          sf.TriangleFanProvokingVertexSelect = 2;
1690          sf.LineStripListProvokingVertexSelect = 1;
1691       } else {
1692          sf.TriangleFanProvokingVertexSelect = 1;
1693       }
1694 
1695 #if GFX_VER == 6
1696       /* BRW_NEW_FS_PROG_DATA */
1697       const struct brw_wm_prog_data *wm_prog_data =
1698          brw_wm_prog_data(brw->wm.base.prog_data);
1699 
1700       sf.AttributeSwizzleEnable = true;
1701       sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1702 
1703       /*
1704        * Window coordinates in an FBO are inverted, which means point
1705        * sprite origin must be inverted, too.
1706        */
1707       if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) == flip_y) {
1708          sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1709       } else {
1710          sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1711       }
1712 
1713       /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1714        * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1715        */
1716       uint32_t urb_entry_read_length;
1717       uint32_t urb_entry_read_offset;
1718       uint32_t point_sprite_enables;
1719       genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1720                                      &urb_entry_read_length,
1721                                      &urb_entry_read_offset);
1722       sf.VertexURBEntryReadLength = urb_entry_read_length;
1723       sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1724       sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1725       sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1726 #endif
1727    }
1728 }
1729 
1730 static const struct brw_tracked_state genX(sf_state) = {
1731    .dirty = {
1732       .mesa  = _NEW_LIGHT |
1733                _NEW_LINE |
1734                _NEW_POINT |
1735                _NEW_PROGRAM |
1736                (GFX_VER >= 6 ? _NEW_MULTISAMPLE : 0) |
1737                (GFX_VER <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0) |
1738                (GFX_VER == 10 ? _NEW_BUFFERS : 0),
1739       .brw   = BRW_NEW_BLORP |
1740                BRW_NEW_VUE_MAP_GEOM_OUT |
1741                (GFX_VER <= 5 ? BRW_NEW_BATCH |
1742                                BRW_NEW_PROGRAM_CACHE |
1743                                BRW_NEW_SF_PROG_DATA |
1744                                BRW_NEW_SF_VP |
1745                                BRW_NEW_URB_FENCE
1746                              : 0) |
1747                (GFX_VER >= 6 ? BRW_NEW_CONTEXT : 0) |
1748                (GFX_VER >= 6 && GFX_VER <= 7 ?
1749                                BRW_NEW_GS_PROG_DATA |
1750                                BRW_NEW_PRIMITIVE |
1751                                BRW_NEW_TES_PROG_DATA
1752                              : 0) |
1753                (GFX_VER == 6 ? BRW_NEW_FS_PROG_DATA |
1754                                BRW_NEW_FRAGMENT_PROGRAM
1755                              : 0),
1756    },
1757    .emit = genX(upload_sf),
1758 };
1759 
1760 /* ---------------------------------------------------------------------- */
1761 
1762 static bool
1763 brw_color_buffer_write_enabled(struct brw_context *brw)
1764 {
1765    struct gl_context *ctx = &brw->ctx;
1766    /* BRW_NEW_FRAGMENT_PROGRAM */
1767    const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1768    unsigned i;
1769 
1770    /* _NEW_BUFFERS */
1771    for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1772       struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
1773       uint64_t outputs_written = fp->info.outputs_written;
1774 
1775       /* _NEW_COLOR */
1776       if (rb && (outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR) ||
1777                  outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA0 + i)) &&
1778           GET_COLORMASK(ctx->Color.ColorMask, i)) {
1779          return true;
1780       }
1781    }
1782 
1783    return false;
1784 }
1785 
1786 static void
1787 genX(upload_wm)(struct brw_context *brw)
1788 {
1789    struct gl_context *ctx = &brw->ctx;
1790 
1791    /* BRW_NEW_FS_PROG_DATA */
1792    const struct brw_wm_prog_data *wm_prog_data =
1793       brw_wm_prog_data(brw->wm.base.prog_data);
1794 
1795    UNUSED bool writes_depth =
1796       wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1797    UNUSED struct brw_stage_state *stage_state = &brw->wm.base;
1798    UNUSED const struct intel_device_info *devinfo = &brw->screen->devinfo;
1799 
1800 #if GFX_VER == 6
1801    /* We can't fold this into gfx6_upload_wm_push_constants(), because
1802     * according to the SNB PRM, vol 2 part 1 section 7.2.2
1803     * (3DSTATE_CONSTANT_PS [DevSNB]):
1804     *
1805     *     "[DevSNB]: This packet must be followed by WM_STATE."
1806     */
1807    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1808       if (wm_prog_data->base.nr_params != 0) {
1809          wmcp.Buffer0Valid = true;
1810          /* Pointer to the WM constant buffer.  Covered by the set of
1811           * state flags from gfx6_upload_wm_push_constants.
1812           */
1813          wmcp.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
1814          wmcp.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1815       }
1816    }
1817 #endif
1818 
1819 #if GFX_VER >= 6
1820    brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1821 #else
1822    ctx->NewDriverState |= BRW_NEW_GFX4_UNIT_STATE;
1823    brw_state_emit(brw, GENX(WM_STATE), 64, &stage_state->state_offset, wm) {
1824 #endif
1825 
1826 #if GFX_VER <= 6
1827       wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1828       wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1829       wm._32PixelDispatchEnable = wm_prog_data->dispatch_32;
1830 #endif
1831 
1832 #if GFX_VER == 4
1833       /* On gfx4, we only have one shader kernel */
1834       if (brw_wm_state_has_ksp(wm, 0)) {
1835          assert(brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0) == 0);
1836          wm.KernelStartPointer0 = KSP(brw, stage_state->prog_offset);
1837          wm.GRFRegisterCount0 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 0);
1838          wm.DispatchGRFStartRegisterForConstantSetupData0 =
1839             brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 0);
1840       }
1841 #elif GFX_VER == 5
1842       /* On gfx5, we have multiple shader kernels but only one GRF start
1843        * register for all kernels
1844        */
1845       wm.KernelStartPointer0 = stage_state->prog_offset +
1846                                brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0);
1847       wm.KernelStartPointer1 = stage_state->prog_offset +
1848                                brw_wm_prog_data_prog_offset(wm_prog_data, wm, 1);
1849       wm.KernelStartPointer2 = stage_state->prog_offset +
1850                                brw_wm_prog_data_prog_offset(wm_prog_data, wm, 2);
1851 
1852       wm.GRFRegisterCount0 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 0);
1853       wm.GRFRegisterCount1 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 1);
1854       wm.GRFRegisterCount2 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 2);
1855 
1856       wm.DispatchGRFStartRegisterForConstantSetupData0 =
1857          wm_prog_data->base.dispatch_grf_start_reg;
1858 
1859       /* Dispatch GRF Start should be the same for all shaders on gfx5 */
1860       if (brw_wm_state_has_ksp(wm, 1)) {
1861          assert(wm_prog_data->base.dispatch_grf_start_reg ==
1862                 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 1));
1863       }
1864       if (brw_wm_state_has_ksp(wm, 2)) {
1865          assert(wm_prog_data->base.dispatch_grf_start_reg ==
1866                 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 2));
1867       }
1868 #elif GFX_VER == 6
1869       /* On gfx6, we have multiple shader kernels and we no longer specify a
1870        * register count for each one.
1871        */
1872       wm.KernelStartPointer0 = stage_state->prog_offset +
1873                                brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0);
1874       wm.KernelStartPointer1 = stage_state->prog_offset +
1875                                brw_wm_prog_data_prog_offset(wm_prog_data, wm, 1);
1876       wm.KernelStartPointer2 = stage_state->prog_offset +
1877                                brw_wm_prog_data_prog_offset(wm_prog_data, wm, 2);
1878 
1879       wm.DispatchGRFStartRegisterForConstantSetupData0 =
1880          brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 0);
1881       wm.DispatchGRFStartRegisterForConstantSetupData1 =
1882          brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 1);
1883       wm.DispatchGRFStartRegisterForConstantSetupData2 =
1884          brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 2);
1885 #endif
1886 
1887 #if GFX_VER <= 5
1888       wm.ConstantURBEntryReadLength = wm_prog_data->base.curb_read_length;
1889       /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1890       wm.ConstantURBEntryReadOffset = brw->curbe.wm_start * 2;
1891       wm.SetupURBEntryReadLength = wm_prog_data->num_varying_inputs * 2;
1892       wm.SetupURBEntryReadOffset = 0;
1893       wm.EarlyDepthTestEnable = true;
1894 #endif
1895 
1896 #if GFX_VER >= 6
1897       wm.LineAntialiasingRegionWidth = _10pixels;
1898       wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1899 
1900       wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1901       wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1902 #else
1903       if (stage_state->sampler_count)
1904          wm.SamplerStatePointer =
1905             ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
1906 
1907       wm.LineAntialiasingRegionWidth = _05pixels;
1908       wm.LineEndCapAntialiasingRegionWidth = _10pixels;
1909 
1910       /* _NEW_POLYGON */
1911       if (ctx->Polygon.OffsetFill) {
1912          wm.GlobalDepthOffsetEnable = true;
1913          /* Something weird going on with legacy_global_depth_bias,
1914           * offset_constant, scaling and MRD.  This value passes glean
1915           * but gives some odd results elsewere (eg. the
1916           * quad-offset-units test).
1917           */
1918          wm.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1919 
1920          /* This is the only value that passes glean:
1921          */
1922          wm.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1923       }
1924 
1925       wm.DepthCoefficientURBReadOffset = 1;
1926 #endif
1927 
1928       /* BRW_NEW_STATS_WM */
1929       wm.StatisticsEnable = GFX_VER >= 6 || brw->stats_wm;
1930 
1931 #if GFX_VER < 7
1932       if (wm_prog_data->base.use_alt_mode)
1933          wm.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1934 
1935       wm.SamplerCount = GFX_VER == 5 ?
1936          0 : DIV_ROUND_UP(stage_state->sampler_count, 4);
1937 
1938       wm.BindingTableEntryCount =
1939          wm_prog_data->base.binding_table.size_bytes / 4;
1940       wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1941 
1942 #if GFX_VER == 6
1943       wm.DualSourceBlendEnable =
1944          wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1945          ctx->Color._BlendUsesDualSrc & 0x1;
1946       wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1947       wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1948 
1949       /* From the SNB PRM, volume 2 part 1, page 281:
1950        * "If the PS kernel does not need the Position XY Offsets
1951        * to compute a Position XY value, then this field should be
1952        * programmed to POSOFFSET_NONE."
1953        *
1954        * "SW Recommendation: If the PS kernel needs the Position Offsets
1955        * to compute a Position XY value, this field should match Position
1956        * ZW Interpolation Mode to ensure a consistent position.xyzw
1957        * computation."
1958        * We only require XY sample offsets. So, this recommendation doesn't
1959        * look useful at the moment. We might need this in future.
1960        */
1961       if (wm_prog_data->uses_pos_offset)
1962          wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1963       else
1964          wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1965 #endif
1966 
1967       if (wm_prog_data->base.total_scratch) {
1968          wm.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0);
1969          wm.PerThreadScratchSpace =
1970             ffs(stage_state->per_thread_scratch) - 11;
1971       }
1972 
1973       wm.PixelShaderComputedDepth = writes_depth;
1974 #endif
1975 
1976       /* _NEW_LINE */
1977       wm.LineStippleEnable = ctx->Line.StippleFlag;
1978 
1979       /* _NEW_POLYGON */
1980       wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1981 
1982 #if GFX_VER < 8
1983 
1984 #if GFX_VER >= 6
1985       wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1986 
1987       /* _NEW_BUFFERS */
1988       const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1989 
1990       if (multisampled_fbo) {
1991          /* _NEW_MULTISAMPLE */
1992          if (ctx->Multisample.Enabled)
1993             wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1994          else
1995             wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1996 
1997          if (wm_prog_data->persample_dispatch)
1998             wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1999          else
2000             wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
2001       } else {
2002          wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
2003          wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
2004       }
2005 #endif
2006       wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
2007       if (wm_prog_data->uses_kill ||
2008           _mesa_is_alpha_test_enabled(ctx) ||
2009           _mesa_is_alpha_to_coverage_enabled(ctx) ||
2010           (GFX_VER >= 6 && wm_prog_data->uses_omask)) {
2011          wm.PixelShaderKillsPixel = true;
2012       }
2013 
2014       /* _NEW_BUFFERS | _NEW_COLOR */
2015       if (brw_color_buffer_write_enabled(brw) || writes_depth ||
2016           wm.PixelShaderKillsPixel ||
2017           (GFX_VER >= 6 && wm_prog_data->has_side_effects)) {
2018          wm.ThreadDispatchEnable = true;
2019       }
2020 
2021 #if GFX_VER >= 7
2022       wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
2023       wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
2024 #endif
2025 
2026       /* The "UAV access enable" bits are unnecessary on HSW because they only
2027        * seem to have an effect on the HW-assisted coherency mechanism which we
2028        * don't need, and the rasterization-related UAV_ONLY flag and the
2029        * DISPATCH_ENABLE bit can be set independently from it.
2030        * C.f. gfx8_upload_ps_extra().
2031        *
2032        * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
2033        * _NEW_COLOR
2034        */
2035 #if GFX_VERx10 == 75
2036       if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
2037           wm_prog_data->has_side_effects)
2038          wm.PSUAVonly = ON;
2039 #endif
2040 #endif
2041 
2042 #if GFX_VER >= 7
2043       /* BRW_NEW_FS_PROG_DATA */
2044       if (wm_prog_data->early_fragment_tests)
2045          wm.EarlyDepthStencilControl = EDSC_PREPS;
2046       else if (wm_prog_data->has_side_effects)
2047          wm.EarlyDepthStencilControl = EDSC_PSEXEC;
2048 #endif
2049    }
2050 
2051 #if GFX_VER <= 5
2052    if (brw->wm.offset_clamp != ctx->Polygon.OffsetClamp) {
2053       brw_batch_emit(brw, GENX(3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP), clamp) {
2054          clamp.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
2055       }
2056 
2057       brw->wm.offset_clamp = ctx->Polygon.OffsetClamp;
2058    }
2059 #endif
2060 }
2061 
2062 static const struct brw_tracked_state genX(wm_state) = {
2063    .dirty = {
2064       .mesa  = _NEW_LINE |
2065                _NEW_POLYGON |
2066                (GFX_VER < 8 ? _NEW_BUFFERS |
2067                               _NEW_COLOR :
2068                               0) |
2069                (GFX_VER == 6 ? _NEW_PROGRAM_CONSTANTS : 0) |
2070                (GFX_VER < 6 ? _NEW_POLYGONSTIPPLE : 0) |
2071                (GFX_VER < 8 && GFX_VER >= 6 ? _NEW_MULTISAMPLE : 0),
2072       .brw   = BRW_NEW_BLORP |
2073                BRW_NEW_FS_PROG_DATA |
2074                (GFX_VER < 6 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2075                               BRW_NEW_FRAGMENT_PROGRAM |
2076                               BRW_NEW_PROGRAM_CACHE |
2077                               BRW_NEW_SAMPLER_STATE_TABLE |
2078                               BRW_NEW_STATS_WM
2079                             : 0) |
2080                (GFX_VER < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
2081    },
2082    .emit = genX(upload_wm),
2083 };
2084 
2085 /* ---------------------------------------------------------------------- */
2086 
2087 /* We restrict scratch buffers to the bottom 32 bits of the address space
2088  * by using rw_32_bo().
2089  *
2090  * General State Base Address is a bit broken.  If the address + size as
2091  * seen by STATE_BASE_ADDRESS overflows 48 bits, the GPU appears to treat
2092  * all accesses to the buffer as being out of bounds and returns zero.
2093  */
2094 
2095 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2096    pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset);           \
2097    /* Wa_1606682166 */                                                    \
2098    pkt.SamplerCount       =                                               \
2099       GFX_VER == 11 ?                                                     \
2100       0 :                                                                 \
2101       DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);          \
2102    pkt.BindingTableEntryCount =                                           \
2103       stage_prog_data->binding_table.size_bytes / 4;                      \
2104    pkt.FloatingPointMode  = stage_prog_data->use_alt_mode;                \
2105                                                                           \
2106    if (stage_prog_data->total_scratch) {                                  \
2107       pkt.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0); \
2108       pkt.PerThreadScratchSpace =                                         \
2109          ffs(stage_state->per_thread_scratch) - 11;                       \
2110    }                                                                      \
2111                                                                           \
2112    pkt.DispatchGRFStartRegisterForURBData =                               \
2113       stage_prog_data->dispatch_grf_start_reg;                            \
2114    pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length;       \
2115    pkt.prefix##URBEntryReadOffset = 0;                                    \
2116                                                                           \
2117    pkt.StatisticsEnable = true;                                           \
2118    pkt.Enable           = true;
2119 
2120 static void
2121 genX(upload_vs_state)(struct brw_context *brw)
2122 {
2123    UNUSED struct gl_context *ctx = &brw->ctx;
2124    const struct intel_device_info *devinfo = &brw->screen->devinfo;
2125    struct brw_stage_state *stage_state = &brw->vs.base;
2126 
2127    /* BRW_NEW_VS_PROG_DATA */
2128    const struct brw_vue_prog_data *vue_prog_data =
2129       brw_vue_prog_data(brw->vs.base.prog_data);
2130    const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
2131 
2132    assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
2133           vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
2134    assert(GFX_VER < 11 ||
2135           vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8);
2136 
2137 #if GFX_VER == 6
2138    /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
2139     * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
2140     *
2141     *   [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
2142     *   command that causes the VS Function Enable to toggle. Pipeline
2143     *   flush can be executed by sending a PIPE_CONTROL command with CS
2144     *   stall bit set and a post sync operation.
2145     *
2146     * We've already done such a flush at the start of state upload, so we
2147     * don't need to do another one here.
2148     */
2149    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
2150       if (stage_state->push_const_size != 0) {
2151          cvs.Buffer0Valid = true;
2152          cvs.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
2153          cvs.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2154       }
2155    }
2156 #endif
2157 
2158    if (GFX_VER == 7 && devinfo->is_ivybridge)
2159       gfx7_emit_vs_workaround_flush(brw);
2160 
2161 #if GFX_VER >= 6
2162    brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
2163 #else
2164    ctx->NewDriverState |= BRW_NEW_GFX4_UNIT_STATE;
2165    brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
2166 #endif
2167       INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2168 
2169       vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2170 
2171 #if GFX_VER < 6
2172       vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
2173       vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
2174       vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
2175 
2176       vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GFX_VER == 5 ? 2 : 0);
2177       vs.URBEntryAllocationSize = brw->urb.vsize - 1;
2178 
2179       vs.MaximumNumberofThreads =
2180          CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
2181 
2182       vs.StatisticsEnable = false;
2183       vs.SamplerStatePointer =
2184          ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
2185 #endif
2186 
2187 #if GFX_VER == 5
2188       /* Force single program flow on Ironlake.  We cannot reliably get
2189        * all applications working without it.  See:
2190        * https://bugs.freedesktop.org/show_bug.cgi?id=29172
2191        *
2192        * The most notable and reliably failing application is the Humus
2193        * demo "CelShading"
2194        */
2195       vs.SingleProgramFlow = true;
2196       vs.SamplerCount = 0; /* hardware requirement */
2197 #endif
2198 
2199 #if GFX_VER >= 8
2200       vs.SIMD8DispatchEnable =
2201          vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
2202 
2203       vs.UserClipDistanceCullTestEnableBitmask =
2204          vue_prog_data->cull_distance_mask;
2205 #endif
2206    }
2207 
2208 #if GFX_VER == 6
2209    /* Based on my reading of the simulator, the VS constants don't get
2210     * pulled into the VS FF unit until an appropriate pipeline flush
2211     * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
2212     * references to them into a little FIFO.  The flushes are common,
2213     * but don't reliably happen between this and a 3DPRIMITIVE, causing
2214     * the primitive to use the wrong constants.  Then the FIFO
2215     * containing the constant setup gets added to again on the next
2216     * constants change, and eventually when a flush does happen the
2217     * unit is overwhelmed by constant changes and dies.
2218     *
2219     * To avoid this, send a PIPE_CONTROL down the line that will
2220     * update the unit immediately loading the constants.  The flush
2221     * type bits here were those set by the STATE_BASE_ADDRESS whose
2222     * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
2223     * bug reports that led to this workaround, and may be more than
2224     * what is strictly required to avoid the issue.
2225     */
2226    brw_emit_pipe_control_flush(brw,
2227                                PIPE_CONTROL_DEPTH_STALL |
2228                                PIPE_CONTROL_INSTRUCTION_INVALIDATE |
2229                                PIPE_CONTROL_STATE_CACHE_INVALIDATE);
2230 #endif
2231 }
2232 
2233 static const struct brw_tracked_state genX(vs_state) = {
2234    .dirty = {
2235       .mesa  = (GFX_VER == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
2236       .brw   = BRW_NEW_BATCH |
2237                BRW_NEW_BLORP |
2238                BRW_NEW_CONTEXT |
2239                BRW_NEW_VS_PROG_DATA |
2240                (GFX_VER == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
2241                (GFX_VER <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2242                                BRW_NEW_PROGRAM_CACHE |
2243                                BRW_NEW_SAMPLER_STATE_TABLE |
2244                                BRW_NEW_URB_FENCE
2245                              : 0),
2246    },
2247    .emit = genX(upload_vs_state),
2248 };
2249 
2250 /* ---------------------------------------------------------------------- */
2251 
2252 static void
2253 genX(upload_cc_viewport)(struct brw_context *brw)
2254 {
2255    struct gl_context *ctx = &brw->ctx;
2256 
2257    /* BRW_NEW_VIEWPORT_COUNT */
2258    const unsigned viewport_count = brw->clip.viewport_count;
2259 
2260    struct GENX(CC_VIEWPORT) ccv;
2261    uint32_t cc_vp_offset;
2262    uint32_t *cc_map =
2263       brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
2264                       32, &cc_vp_offset);
2265 
2266    for (unsigned i = 0; i < viewport_count; i++) {
2267       /* _NEW_VIEWPORT | _NEW_TRANSFORM */
2268       const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
2269       if (ctx->Transform.DepthClampNear && ctx->Transform.DepthClampFar) {
2270          ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2271          ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2272       } else if (ctx->Transform.DepthClampNear) {
2273          ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2274          ccv.MaximumDepth = 0.0;
2275       } else if (ctx->Transform.DepthClampFar) {
2276          ccv.MinimumDepth = 0.0;
2277          ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2278       } else {
2279          ccv.MinimumDepth = 0.0;
2280          ccv.MaximumDepth = 1.0;
2281       }
2282       GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2283       cc_map += GENX(CC_VIEWPORT_length);
2284    }
2285 
2286 #if GFX_VER >= 7
2287    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2288       ptr.CCViewportPointer = cc_vp_offset;
2289    }
2290 #elif GFX_VER == 6
2291    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2292       vp.CCViewportStateChange = 1;
2293       vp.PointertoCC_VIEWPORT = cc_vp_offset;
2294    }
2295 #else
2296    brw->cc.vp_offset = cc_vp_offset;
2297    ctx->NewDriverState |= BRW_NEW_CC_VP;
2298 #endif
2299 }
2300 
2301 const struct brw_tracked_state genX(cc_vp) = {
2302    .dirty = {
2303       .mesa = _NEW_TRANSFORM |
2304               _NEW_VIEWPORT,
2305       .brw = BRW_NEW_BATCH |
2306              BRW_NEW_BLORP |
2307              BRW_NEW_VIEWPORT_COUNT,
2308    },
2309    .emit = genX(upload_cc_viewport)
2310 };
2311 
2312 /* ---------------------------------------------------------------------- */
2313 
2314 static void
2315 set_scissor_bits(const struct gl_context *ctx, int i,
2316                  bool flip_y, unsigned fb_width, unsigned fb_height,
2317                  struct GENX(SCISSOR_RECT) *sc)
2318 {
2319    int bbox[4];
2320 
2321    bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2322    bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2323    bbox[2] = CLAMP(ctx->ViewportArray[i].Y, 0, fb_height);
2324    bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2325    _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2326 
2327    if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2328       /* If the scissor was out of bounds and got clamped to 0 width/height
2329        * at the bounds, the subtraction of 1 from maximums could produce a
2330        * negative number and thus not clip anything.  Instead, just provide
2331        * a min > max scissor inside the bounds, which produces the expected
2332        * no rendering.
2333        */
2334       sc->ScissorRectangleXMin = 1;
2335       sc->ScissorRectangleXMax = 0;
2336       sc->ScissorRectangleYMin = 1;
2337       sc->ScissorRectangleYMax = 0;
2338    } else if (!flip_y) {
2339       /* texmemory: Y=0=bottom */
2340       sc->ScissorRectangleXMin = bbox[0];
2341       sc->ScissorRectangleXMax = bbox[1] - 1;
2342       sc->ScissorRectangleYMin = bbox[2];
2343       sc->ScissorRectangleYMax = bbox[3] - 1;
2344    } else {
2345       /* memory: Y=0=top */
2346       sc->ScissorRectangleXMin = bbox[0];
2347       sc->ScissorRectangleXMax = bbox[1] - 1;
2348       sc->ScissorRectangleYMin = fb_height - bbox[3];
2349       sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2350    }
2351 }
2352 
2353 #if GFX_VER >= 6
2354 static void
2355 genX(upload_scissor_state)(struct brw_context *brw)
2356 {
2357    struct gl_context *ctx = &brw->ctx;
2358    const bool flip_y = ctx->DrawBuffer->FlipY;
2359    struct GENX(SCISSOR_RECT) scissor;
2360    uint32_t scissor_state_offset;
2361    const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2362    const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2363    uint32_t *scissor_map;
2364 
2365    /* BRW_NEW_VIEWPORT_COUNT */
2366    const unsigned viewport_count = brw->clip.viewport_count;
2367    /* Wa_1409725701:
2368     *    "The viewport-specific state used by the SF unit (SCISSOR_RECT) is
2369     *    stored as an array of up to 16 elements. The location of first
2370     *    element of the array, as specified by Pointer to SCISSOR_RECT, should
2371     *    be aligned to a 64-byte boundary.
2372     */
2373    const unsigned alignment = 64;
2374    scissor_map = brw_state_batch(
2375       brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2376       alignment, &scissor_state_offset);
2377 
2378    /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2379 
2380    /* The scissor only needs to handle the intersection of drawable and
2381     * scissor rect.  Clipping to the boundaries of static shared buffers
2382     * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2383     *
2384     * Note that the hardware's coordinates are inclusive, while Mesa's min is
2385     * inclusive but max is exclusive.
2386     */
2387    for (unsigned i = 0; i < viewport_count; i++) {
2388       set_scissor_bits(ctx, i, flip_y, fb_width, fb_height, &scissor);
2389       GENX(SCISSOR_RECT_pack)(
2390          NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2391    }
2392 
2393    brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2394       ptr.ScissorRectPointer = scissor_state_offset;
2395    }
2396 }
2397 
2398 static const struct brw_tracked_state genX(scissor_state) = {
2399    .dirty = {
2400       .mesa = _NEW_BUFFERS |
2401               _NEW_SCISSOR |
2402               _NEW_VIEWPORT,
2403       .brw = BRW_NEW_BATCH |
2404              BRW_NEW_BLORP |
2405              BRW_NEW_VIEWPORT_COUNT,
2406    },
2407    .emit = genX(upload_scissor_state),
2408 };
2409 #endif
2410 
2411 /* ---------------------------------------------------------------------- */
2412 
2413 static void
2414 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2415 {
2416    struct gl_context *ctx = &brw->ctx;
2417    float y_scale, y_bias;
2418 
2419    /* BRW_NEW_VIEWPORT_COUNT */
2420    const unsigned viewport_count = brw->clip.viewport_count;
2421 
2422    /* _NEW_BUFFERS */
2423    const bool flip_y = ctx->DrawBuffer->FlipY;
2424    const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2425    const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2426 
2427 #if GFX_VER >= 7
2428 #define clv sfv
2429    struct GENX(SF_CLIP_VIEWPORT) sfv;
2430    uint32_t sf_clip_vp_offset;
2431    uint32_t *sf_clip_map =
2432       brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2433                       64, &sf_clip_vp_offset);
2434 #else
2435    struct GENX(SF_VIEWPORT) sfv;
2436    struct GENX(CLIP_VIEWPORT) clv;
2437    uint32_t sf_vp_offset, clip_vp_offset;
2438    uint32_t *sf_map =
2439       brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2440                       32, &sf_vp_offset);
2441    uint32_t *clip_map =
2442       brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2443                       32, &clip_vp_offset);
2444 #endif
2445 
2446    /* _NEW_BUFFERS */
2447    if (flip_y) {
2448       y_scale = -1.0;
2449       y_bias = (float)fb_height;
2450    } else {
2451       y_scale = 1.0;
2452       y_bias = 0;
2453    }
2454 
2455    for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2456       /* _NEW_VIEWPORT: Guardband Clipping */
2457       float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2458       _mesa_get_viewport_xform(ctx, i, scale, translate);
2459 
2460       sfv.ViewportMatrixElementm00 = scale[0];
2461       sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2462       sfv.ViewportMatrixElementm22 = scale[2],
2463       sfv.ViewportMatrixElementm30 = translate[0],
2464       sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2465       sfv.ViewportMatrixElementm32 = translate[2],
2466       intel_calculate_guardband_size(fb_width, fb_height,
2467                                      sfv.ViewportMatrixElementm00,
2468                                      sfv.ViewportMatrixElementm11,
2469                                      sfv.ViewportMatrixElementm30,
2470                                      sfv.ViewportMatrixElementm31,
2471                                      &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2472 
2473 
2474       clv.XMinClipGuardband = gb_xmin;
2475       clv.XMaxClipGuardband = gb_xmax;
2476       clv.YMinClipGuardband = gb_ymin;
2477       clv.YMaxClipGuardband = gb_ymax;
2478 
2479 #if GFX_VER < 6
2480       set_scissor_bits(ctx, i, flip_y, fb_width, fb_height,
2481                        &sfv.ScissorRectangle);
2482 #elif GFX_VER >= 8
2483       /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2484        * The hardware will take the intersection of the drawing rectangle,
2485        * scissor rectangle, and the viewport extents.  However, emitting
2486        * 3DSTATE_DRAWING_RECTANGLE is expensive since it requires a full
2487        * pipeline stall so we're better off just being a little more clever
2488        * with our viewport so we can emit it once at context creation time.
2489        */
2490       const float viewport_Xmin = MAX2(ctx->ViewportArray[i].X, 0);
2491       const float viewport_Ymin = MAX2(ctx->ViewportArray[i].Y, 0);
2492       const float viewport_Xmax =
2493          MIN2(ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width, fb_width);
2494       const float viewport_Ymax =
2495          MIN2(ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height, fb_height);
2496 
2497       if (flip_y) {
2498          sfv.XMinViewPort = viewport_Xmin;
2499          sfv.XMaxViewPort = viewport_Xmax - 1;
2500          sfv.YMinViewPort = fb_height - viewport_Ymax;
2501          sfv.YMaxViewPort = fb_height - viewport_Ymin - 1;
2502       } else {
2503          sfv.XMinViewPort = viewport_Xmin;
2504          sfv.XMaxViewPort = viewport_Xmax - 1;
2505          sfv.YMinViewPort = viewport_Ymin;
2506          sfv.YMaxViewPort = viewport_Ymax - 1;
2507       }
2508 #endif
2509 
2510 #if GFX_VER >= 7
2511       GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2512       sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2513 #else
2514       GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2515       GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2516       sf_map += GENX(SF_VIEWPORT_length);
2517       clip_map += GENX(CLIP_VIEWPORT_length);
2518 #endif
2519    }
2520 
2521 #if GFX_VER >= 7
2522    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2523       ptr.SFClipViewportPointer = sf_clip_vp_offset;
2524    }
2525 #elif GFX_VER == 6
2526    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2527       vp.SFViewportStateChange = 1;
2528       vp.CLIPViewportStateChange = 1;
2529       vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2530       vp.PointertoSF_VIEWPORT = sf_vp_offset;
2531    }
2532 #else
2533    brw->sf.vp_offset = sf_vp_offset;
2534    brw->clip.vp_offset = clip_vp_offset;
2535    brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2536 #endif
2537 }
2538 
2539 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2540    .dirty = {
2541       .mesa = _NEW_BUFFERS |
2542               _NEW_VIEWPORT |
2543               (GFX_VER <= 5 ? _NEW_SCISSOR : 0),
2544       .brw = BRW_NEW_BATCH |
2545              BRW_NEW_BLORP |
2546              BRW_NEW_VIEWPORT_COUNT,
2547    },
2548    .emit = genX(upload_sf_clip_viewport),
2549 };
2550 
2551 /* ---------------------------------------------------------------------- */
2552 
2553 static void
2554 genX(upload_gs_state)(struct brw_context *brw)
2555 {
2556    UNUSED struct gl_context *ctx = &brw->ctx;
2557    UNUSED const struct intel_device_info *devinfo = &brw->screen->devinfo;
2558    const struct brw_stage_state *stage_state = &brw->gs.base;
2559    const struct gl_program *gs_prog = brw->programs[MESA_SHADER_GEOMETRY];
2560    /* BRW_NEW_GEOMETRY_PROGRAM */
2561    bool active = GFX_VER >= 6 && gs_prog;
2562 
2563    /* BRW_NEW_GS_PROG_DATA */
2564    struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2565    UNUSED const struct brw_vue_prog_data *vue_prog_data =
2566       brw_vue_prog_data(stage_prog_data);
2567 #if GFX_VER >= 7
2568    const struct brw_gs_prog_data *gs_prog_data =
2569       brw_gs_prog_data(stage_prog_data);
2570 #endif
2571 
2572 #if GFX_VER == 6
2573    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2574       if (active && stage_state->push_const_size != 0) {
2575          cgs.Buffer0Valid = true;
2576          cgs.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
2577          cgs.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2578       }
2579    }
2580 #endif
2581 
2582 #if GFX_VERx10 == 70
2583    /**
2584     * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2585     * Geometry > Geometry Shader > State:
2586     *
2587     *     "Note: Because of corruption in IVB:GT2, software needs to flush the
2588     *     whole fixed function pipeline when the GS enable changes value in
2589     *     the 3DSTATE_GS."
2590     *
2591     * The hardware architects have clarified that in this context "flush the
2592     * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2593     * Stall" bit set.
2594     */
2595    if (devinfo->gt == 2 && brw->gs.enabled != active)
2596       gfx7_emit_cs_stall_flush(brw);
2597 #endif
2598 
2599 #if GFX_VER >= 6
2600    brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2601 #else
2602    ctx->NewDriverState |= BRW_NEW_GFX4_UNIT_STATE;
2603    brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
2604 #endif
2605 
2606 #if GFX_VER >= 6
2607       if (active) {
2608          INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2609 
2610 #if GFX_VER >= 7
2611          gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2612          gs.OutputTopology = gs_prog_data->output_topology;
2613          gs.ControlDataHeaderSize =
2614             gs_prog_data->control_data_header_size_hwords;
2615 
2616          gs.InstanceControl = gs_prog_data->invocations - 1;
2617          gs.DispatchMode = vue_prog_data->dispatch_mode;
2618 
2619          gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2620 
2621          gs.ControlDataFormat = gs_prog_data->control_data_format;
2622 #endif
2623 
2624          /* Note: the meaning of the GFX7_GS_REORDER_TRAILING bit changes between
2625           * Ivy Bridge and Haswell.
2626           *
2627           * On Ivy Bridge, setting this bit causes the vertices of a triangle
2628           * strip to be delivered to the geometry shader in an order that does
2629           * not strictly follow the OpenGL spec, but preserves triangle
2630           * orientation.  For example, if the vertices are (1, 2, 3, 4, 5), then
2631           * the geometry shader sees triangles:
2632           *
2633           * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2634           *
2635           * (Clearing the bit is even worse, because it fails to preserve
2636           * orientation).
2637           *
2638           * Triangle strips with adjacency always ordered in a way that preserves
2639           * triangle orientation but does not strictly follow the OpenGL spec,
2640           * regardless of the setting of this bit.
2641           *
2642           * On Haswell, both triangle strips and triangle strips with adjacency
2643           * are always ordered in a way that preserves triangle orientation.
2644           * Setting this bit causes the ordering to strictly follow the OpenGL
2645           * spec.
2646           *
2647           * So in either case we want to set the bit.  Unfortunately on Ivy
2648           * Bridge this will get the order close to correct but not perfect.
2649           */
2650          gs.ReorderMode = TRAILING;
2651          gs.MaximumNumberofThreads =
2652             GFX_VER == 8 ? (devinfo->max_gs_threads / 2 - 1)
2653                          : (devinfo->max_gs_threads - 1);
2654 
2655 #if GFX_VER < 7
2656          gs.SOStatisticsEnable = true;
2657          if (gs_prog->info.has_transform_feedback_varyings)
2658             gs.SVBIPayloadEnable = _mesa_is_xfb_active_and_unpaused(ctx);
2659 
2660          /* GFX6_GS_SPF_MODE and GFX6_GS_VECTOR_MASK_ENABLE are enabled as it
2661           * was previously done for gfx6.
2662           *
2663           * TODO: test with both disabled to see if the HW is behaving
2664           * as expected, like in gfx7.
2665           */
2666          gs.SingleProgramFlow = true;
2667          gs.VectorMaskEnable = true;
2668 #endif
2669 
2670 #if GFX_VER >= 8
2671          gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2672 
2673          if (gs_prog_data->static_vertex_count != -1) {
2674             gs.StaticOutput = true;
2675             gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2676          }
2677          gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2678 
2679          gs.UserClipDistanceCullTestEnableBitmask =
2680             vue_prog_data->cull_distance_mask;
2681 
2682          const int urb_entry_write_offset = 1;
2683          const uint32_t urb_entry_output_length =
2684             DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2685             urb_entry_write_offset;
2686 
2687          gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2688          gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2689 #endif
2690       }
2691 #endif
2692 
2693 #if GFX_VER <= 6
2694       if (!active && brw->ff_gs.prog_active) {
2695          /* In gfx6, transform feedback for the VS stage is done with an
2696           * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2697           * for this.
2698           */
2699          gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2700          gs.SingleProgramFlow = true;
2701          gs.DispatchGRFStartRegisterForURBData = GFX_VER == 6 ? 2 : 1;
2702          gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2703 
2704 #if GFX_VER <= 5
2705          gs.GRFRegisterCount =
2706             DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
2707          /* BRW_NEW_URB_FENCE */
2708          gs.NumberofURBEntries = brw->urb.nr_gs_entries;
2709          gs.URBEntryAllocationSize = brw->urb.vsize - 1;
2710          gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
2711          gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2712 #else
2713          gs.Enable = true;
2714          gs.VectorMaskEnable = true;
2715          gs.SVBIPayloadEnable = true;
2716          gs.SVBIPostIncrementEnable = true;
2717          gs.SVBIPostIncrementValue =
2718             brw->ff_gs.prog_data->svbi_postincrement_value;
2719          gs.SOStatisticsEnable = true;
2720          gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2721 #endif
2722       }
2723 #endif
2724       if (!active && !brw->ff_gs.prog_active) {
2725 #if GFX_VER < 8
2726          gs.DispatchGRFStartRegisterForURBData = 1;
2727 #if GFX_VER >= 7
2728          gs.IncludeVertexHandles = true;
2729 #endif
2730 #endif
2731       }
2732 
2733 #if GFX_VER >= 6
2734       gs.StatisticsEnable = true;
2735 #endif
2736 #if GFX_VER == 5 || GFX_VER == 6
2737       gs.RenderingEnabled = true;
2738 #endif
2739 #if GFX_VER <= 5
2740       gs.MaximumVPIndex = brw->clip.viewport_count - 1;
2741 #endif
2742    }
2743 
2744 #if GFX_VER == 6
2745    brw->gs.enabled = active;
2746 #endif
2747 }
2748 
2749 static const struct brw_tracked_state genX(gs_state) = {
2750    .dirty = {
2751       .mesa  = (GFX_VER == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
2752       .brw   = BRW_NEW_BATCH |
2753                BRW_NEW_BLORP |
2754                (GFX_VER <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2755                                BRW_NEW_PROGRAM_CACHE |
2756                                BRW_NEW_URB_FENCE |
2757                                BRW_NEW_VIEWPORT_COUNT
2758                              : 0) |
2759                (GFX_VER >= 6 ? BRW_NEW_CONTEXT |
2760                                BRW_NEW_GEOMETRY_PROGRAM |
2761                                BRW_NEW_GS_PROG_DATA
2762                              : 0) |
2763                (GFX_VER < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2764    },
2765    .emit = genX(upload_gs_state),
2766 };
2767 
2768 /* ---------------------------------------------------------------------- */
2769 
2770 UNUSED static GLenum
2771 fix_dual_blend_alpha_to_one(GLenum function)
2772 {
2773    switch (function) {
2774    case GL_SRC1_ALPHA:
2775       return GL_ONE;
2776 
2777    case GL_ONE_MINUS_SRC1_ALPHA:
2778       return GL_ZERO;
2779    }
2780 
2781    return function;
2782 }
2783 
2784 #define blend_factor(x) brw_translate_blend_factor(x)
2785 #define blend_eqn(x) brw_translate_blend_equation(x)
2786 
2787 /**
2788  * Modify blend function to force destination alpha to 1.0
2789  *
2790  * If \c function specifies a blend function that uses destination alpha,
2791  * replace it with a function that hard-wires destination alpha to 1.0.  This
2792  * is used when rendering to xRGB targets.
2793  */
2794 static GLenum
2795 brw_fix_xRGB_alpha(GLenum function)
2796 {
2797    switch (function) {
2798    case GL_DST_ALPHA:
2799       return GL_ONE;
2800 
2801    case GL_ONE_MINUS_DST_ALPHA:
2802    case GL_SRC_ALPHA_SATURATE:
2803       return GL_ZERO;
2804    }
2805 
2806    return function;
2807 }
2808 
2809 #if GFX_VER >= 6
2810 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2811 #else
2812 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2813 #endif
2814 
2815 UNUSED static bool
2816 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2817                      bool alpha_to_one)
2818 {
2819    struct gl_context *ctx = &brw->ctx;
2820 
2821    /* _NEW_BUFFERS */
2822    const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2823 
2824    bool independent_alpha_blend = false;
2825 
2826    /* Used for implementing the following bit of GL_EXT_texture_integer:
2827     * "Per-fragment operations that require floating-point color
2828     *  components, including multisample alpha operations, alpha test,
2829     *  blending, and dithering, have no effect when the corresponding
2830     *  colors are written to an integer color buffer."
2831     */
2832    const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2833 
2834    const unsigned blend_enabled = GFX_VER >= 6 ?
2835       ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2836 
2837    /* _NEW_COLOR */
2838    if (ctx->Color.ColorLogicOpEnabled) {
2839       GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2840          : GL_UNSIGNED_NORMALIZED;
2841       WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2842                 rb_type != GL_UNSIGNED_NORMALIZED &&
2843                 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2844                 "renderbuffer\n",
2845                 _mesa_enum_to_string(ctx->Color.LogicOp),
2846                 _mesa_enum_to_string(rb_type));
2847       if (GFX_VER >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2848          entry->LogicOpEnable = true;
2849          entry->LogicOpFunction = ctx->Color._LogicOp;
2850       }
2851    } else if (blend_enabled &&
2852               ctx->Color._AdvancedBlendMode == BLEND_NONE
2853               && (GFX_VER <= 5 || !integer)) {
2854       GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2855       GLenum eqA = ctx->Color.Blend[i].EquationA;
2856       GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2857       GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2858       GLenum srcA = ctx->Color.Blend[i].SrcA;
2859       GLenum dstA = ctx->Color.Blend[i].DstA;
2860 
2861       if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2862          srcRGB = dstRGB = GL_ONE;
2863 
2864       if (eqA == GL_MIN || eqA == GL_MAX)
2865          srcA = dstA = GL_ONE;
2866 
2867       /* Due to hardware limitations, the destination may have information
2868        * in an alpha channel even when the format specifies no alpha
2869        * channel. In order to avoid getting any incorrect blending due to
2870        * that alpha channel, coerce the blend factors to values that will
2871        * not read the alpha channel, but will instead use the correct
2872        * implicit value for alpha.
2873        */
2874       if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2875                                                GL_TEXTURE_ALPHA_TYPE)) {
2876          srcRGB = brw_fix_xRGB_alpha(srcRGB);
2877          srcA = brw_fix_xRGB_alpha(srcA);
2878          dstRGB = brw_fix_xRGB_alpha(dstRGB);
2879          dstA = brw_fix_xRGB_alpha(dstA);
2880       }
2881 
2882       /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2883        * "If Dual Source Blending is enabled, this bit must be disabled."
2884        *
2885        * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
2886        * and leave it enabled anyway.
2887        */
2888       if (GFX_VER >= 6 && ctx->Color._BlendUsesDualSrc & (1 << i) && alpha_to_one) {
2889          srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
2890          srcA = fix_dual_blend_alpha_to_one(srcA);
2891          dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
2892          dstA = fix_dual_blend_alpha_to_one(dstA);
2893       }
2894 
2895       /* BRW_NEW_FS_PROG_DATA */
2896       const struct brw_wm_prog_data *wm_prog_data =
2897          brw_wm_prog_data(brw->wm.base.prog_data);
2898 
2899       /* The Dual Source Blending documentation says:
2900        *
2901        * "If SRC1 is included in a src/dst blend factor and
2902        * a DualSource RT Write message is not used, results
2903        * are UNDEFINED. (This reflects the same restriction in DX APIs,
2904        * where undefined results are produced if “o1” is not written
2905        * by a PS – there are no default values defined).
2906        * If SRC1 is not included in a src/dst blend factor,
2907        * dual source blending must be disabled."
2908        *
2909        * There is no way to gracefully fix this undefined situation
2910        * so we just disable the blending to prevent possible issues.
2911        */
2912       entry->ColorBufferBlendEnable =
2913          !(ctx->Color._BlendUsesDualSrc & 0x1) || wm_prog_data->dual_src_blend;
2914 
2915       entry->DestinationBlendFactor = blend_factor(dstRGB);
2916       entry->SourceBlendFactor = blend_factor(srcRGB);
2917       entry->DestinationAlphaBlendFactor = blend_factor(dstA);
2918       entry->SourceAlphaBlendFactor = blend_factor(srcA);
2919       entry->ColorBlendFunction = blend_eqn(eqRGB);
2920       entry->AlphaBlendFunction = blend_eqn(eqA);
2921 
2922       if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2923          independent_alpha_blend = true;
2924    }
2925 
2926    return independent_alpha_blend;
2927 }
2928 
2929 #if GFX_VER >= 6
2930 static void
2931 genX(upload_blend_state)(struct brw_context *brw)
2932 {
2933    struct gl_context *ctx = &brw->ctx;
2934    int size;
2935 
2936    /* We need at least one BLEND_STATE written, because we might do
2937     * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2938     * for computed depth or alpha test), which will do an FB write
2939     * with render target 0, which will reference BLEND_STATE[0] for
2940     * alpha test enable.
2941     */
2942    int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2943    if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2944       nr_draw_buffers = 1;
2945 
2946    size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2947 #if GFX_VER >= 8
2948    size += GENX(BLEND_STATE_length) * 4;
2949 #endif
2950 
2951    uint32_t *blend_map;
2952    blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2953 
2954 #if GFX_VER >= 8
2955    struct GENX(BLEND_STATE) blend = { 0 };
2956    {
2957 #else
2958    for (int i = 0; i < nr_draw_buffers; i++) {
2959       struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2960 #define blend entry
2961 #endif
2962       /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2963        * "If drawbuffer zero is not NONE and the buffer it references has an
2964        * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2965        * operations are skipped."
2966        */
2967       if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2968          /* _NEW_MULTISAMPLE */
2969          if (_mesa_is_multisample_enabled(ctx)) {
2970             if (ctx->Multisample.SampleAlphaToCoverage) {
2971                blend.AlphaToCoverageEnable = true;
2972                blend.AlphaToCoverageDitherEnable = GFX_VER >= 7;
2973             }
2974             if (ctx->Multisample.SampleAlphaToOne)
2975                blend.AlphaToOneEnable = true;
2976          }
2977 
2978          /* _NEW_COLOR */
2979          if (ctx->Color.AlphaEnabled) {
2980             blend.AlphaTestEnable = true;
2981             blend.AlphaTestFunction =
2982                brw_translate_compare_func(ctx->Color.AlphaFunc);
2983          }
2984 
2985          if (ctx->Color.DitherFlag) {
2986             blend.ColorDitherEnable = true;
2987          }
2988       }
2989 
2990 #if GFX_VER >= 8
2991       for (int i = 0; i < nr_draw_buffers; i++) {
2992          struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2993 #else
2994       {
2995 #endif
2996          blend.IndependentAlphaBlendEnable =
2997             set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
2998             blend.IndependentAlphaBlendEnable;
2999 
3000          /* See section 8.1.6 "Pre-Blend Color Clamping" of the
3001           * SandyBridge PRM Volume 2 Part 1 for HW requirements.
3002           *
3003           * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
3004           * clamping in the fragment shader.  For its clamping of
3005           * blending, the spec says:
3006           *
3007           *     "RESOLVED: For fixed-point color buffers, the inputs and
3008           *      the result of the blending equation are clamped.  For
3009           *      floating-point color buffers, no clamping occurs."
3010           *
3011           * So, generally, we want clamping to the render target's range.
3012           * And, good news, the hardware tables for both pre- and
3013           * post-blend color clamping are either ignored, or any are
3014           * allowed, or clamping is required but RT range clamping is a
3015           * valid option.
3016           */
3017          entry.PreBlendColorClampEnable = true;
3018          entry.PostBlendColorClampEnable = true;
3019          entry.ColorClampRange = COLORCLAMP_RTFORMAT;
3020 
3021          entry.WriteDisableRed   = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 0);
3022          entry.WriteDisableGreen = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 1);
3023          entry.WriteDisableBlue  = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 2);
3024          entry.WriteDisableAlpha = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 3);
3025 
3026 #if GFX_VER >= 8
3027          GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
3028 #else
3029          GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
3030 #endif
3031       }
3032    }
3033 
3034 #if GFX_VER >= 8
3035    GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
3036 #endif
3037 
3038 #if GFX_VER < 7
3039    brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3040       ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
3041       ptr.BLEND_STATEChange = true;
3042    }
3043 #else
3044    brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
3045       ptr.BlendStatePointer = brw->cc.blend_state_offset;
3046 #if GFX_VER >= 8
3047       ptr.BlendStatePointerValid = true;
3048 #endif
3049    }
3050 #endif
3051 }
3052 
3053 UNUSED static const struct brw_tracked_state genX(blend_state) = {
3054    .dirty = {
3055       .mesa = _NEW_BUFFERS |
3056               _NEW_COLOR |
3057               _NEW_MULTISAMPLE,
3058       .brw = BRW_NEW_BATCH |
3059              BRW_NEW_BLORP |
3060              BRW_NEW_FS_PROG_DATA |
3061              BRW_NEW_STATE_BASE_ADDRESS,
3062    },
3063    .emit = genX(upload_blend_state),
3064 };
3065 #endif
3066 
3067 /* ---------------------------------------------------------------------- */
3068 
3069 #if GFX_VER >= 7
3070 UNUSED static const uint32_t push_constant_opcodes[] = {
3071    [MESA_SHADER_VERTEX]                      = 21,
3072    [MESA_SHADER_TESS_CTRL]                   = 25, /* HS */
3073    [MESA_SHADER_TESS_EVAL]                   = 26, /* DS */
3074    [MESA_SHADER_GEOMETRY]                    = 22,
3075    [MESA_SHADER_FRAGMENT]                    = 23,
3076    [MESA_SHADER_COMPUTE]                     = 0,
3077 };
3078 
3079 static void
3080 genX(upload_push_constant_packets)(struct brw_context *brw)
3081 {
3082    const struct intel_device_info *devinfo = &brw->screen->devinfo;
3083    struct gl_context *ctx = &brw->ctx;
3084 
3085    UNUSED uint32_t mocs = GFX_VER < 8 ? GFX7_MOCS_L3 : 0;
3086 
3087    struct brw_stage_state *stage_states[] = {
3088       &brw->vs.base,
3089       &brw->tcs.base,
3090       &brw->tes.base,
3091       &brw->gs.base,
3092       &brw->wm.base,
3093    };
3094 
3095    if (GFX_VERx10 == 70 && !devinfo->is_baytrail &&
3096        stage_states[MESA_SHADER_VERTEX]->push_constants_dirty)
3097       gfx7_emit_vs_workaround_flush(brw);
3098 
3099    for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3100       struct brw_stage_state *stage_state = stage_states[stage];
3101       UNUSED struct gl_program *prog = ctx->_Shader->CurrentProgram[stage];
3102 
3103       if (!stage_state->push_constants_dirty)
3104          continue;
3105 
3106       brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
3107          pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
3108          if (stage_state->prog_data) {
3109 #if GFX_VERx10 >= 75
3110             /* The Skylake PRM contains the following restriction:
3111              *
3112              *    "The driver must ensure The following case does not occur
3113              *     without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3114              *     buffer 3 read length equal to zero committed followed by a
3115              *     3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3116              *     zero committed."
3117              *
3118              * To avoid this, we program the buffers in the highest slots.
3119              * This way, slot 0 is only used if slot 3 is also used.
3120              */
3121             int n = 3;
3122 
3123             for (int i = 3; i >= 0; i--) {
3124                const struct brw_ubo_range *range =
3125                   &stage_state->prog_data->ubo_ranges[i];
3126 
3127                if (range->length == 0)
3128                   continue;
3129 
3130                const struct gl_uniform_block *block =
3131                   prog->sh.UniformBlocks[range->block];
3132                const struct gl_buffer_binding *binding =
3133                   &ctx->UniformBufferBindings[block->Binding];
3134 
3135                if (!binding->BufferObject) {
3136                   static unsigned msg_id = 0;
3137                   _mesa_gl_debugf(ctx, &msg_id, MESA_DEBUG_SOURCE_API,
3138                                   MESA_DEBUG_TYPE_UNDEFINED,
3139                                   MESA_DEBUG_SEVERITY_HIGH,
3140                                   "UBO %d unbound, %s shader uniform data "
3141                                   "will be undefined.",
3142                                   range->block,
3143                                   _mesa_shader_stage_to_string(stage));
3144                   continue;
3145                }
3146 
3147                assert(binding->Offset % 32 == 0);
3148 
3149                struct brw_bo *bo = brw_bufferobj_buffer(brw,
3150                   brw_buffer_object(binding->BufferObject),
3151                   binding->Offset, range->length * 32, false);
3152 
3153                pkt.ConstantBody.ReadLength[n] = range->length;
3154                pkt.ConstantBody.Buffer[n] =
3155                   ro_bo(bo, range->start * 32 + binding->Offset);
3156                n--;
3157             }
3158 
3159             if (stage_state->push_const_size > 0) {
3160                assert(n >= 0);
3161                pkt.ConstantBody.ReadLength[n] = stage_state->push_const_size;
3162                pkt.ConstantBody.Buffer[n] =
3163                   ro_bo(stage_state->push_const_bo,
3164                         stage_state->push_const_offset);
3165             }
3166 #else
3167             pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
3168             pkt.ConstantBody.Buffer[0].offset =
3169                stage_state->push_const_offset | mocs;
3170 #endif
3171          }
3172       }
3173 
3174       stage_state->push_constants_dirty = false;
3175       brw->ctx.NewDriverState |= GFX_VER >= 9 ? BRW_NEW_SURFACES : 0;
3176    }
3177 }
3178 
3179 const struct brw_tracked_state genX(push_constant_packets) = {
3180    .dirty = {
3181       .mesa  = 0,
3182       .brw   = BRW_NEW_DRAW_CALL,
3183    },
3184    .emit = genX(upload_push_constant_packets),
3185 };
3186 #endif
3187 
3188 #if GFX_VER >= 6
3189 static void
3190 genX(upload_vs_push_constants)(struct brw_context *brw)
3191 {
3192    struct brw_stage_state *stage_state = &brw->vs.base;
3193 
3194    /* BRW_NEW_VERTEX_PROGRAM */
3195    const struct gl_program *vp = brw->programs[MESA_SHADER_VERTEX];
3196    /* BRW_NEW_VS_PROG_DATA */
3197    const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
3198 
3199    gfx6_upload_push_constants(brw, vp, prog_data, stage_state);
3200 }
3201 
3202 static const struct brw_tracked_state genX(vs_push_constants) = {
3203    .dirty = {
3204       .mesa  = _NEW_PROGRAM_CONSTANTS |
3205                _NEW_TRANSFORM,
3206       .brw   = BRW_NEW_BATCH |
3207                BRW_NEW_BLORP |
3208                BRW_NEW_VERTEX_PROGRAM |
3209                BRW_NEW_VS_PROG_DATA,
3210    },
3211    .emit = genX(upload_vs_push_constants),
3212 };
3213 
3214 static void
3215 genX(upload_gs_push_constants)(struct brw_context *brw)
3216 {
3217    struct brw_stage_state *stage_state = &brw->gs.base;
3218 
3219    /* BRW_NEW_GEOMETRY_PROGRAM */
3220    const struct gl_program *gp = brw->programs[MESA_SHADER_GEOMETRY];
3221 
3222    /* BRW_NEW_GS_PROG_DATA */
3223    struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
3224 
3225    gfx6_upload_push_constants(brw, gp, prog_data, stage_state);
3226 }
3227 
3228 static const struct brw_tracked_state genX(gs_push_constants) = {
3229    .dirty = {
3230       .mesa  = _NEW_PROGRAM_CONSTANTS |
3231                _NEW_TRANSFORM,
3232       .brw   = BRW_NEW_BATCH |
3233                BRW_NEW_BLORP |
3234                BRW_NEW_GEOMETRY_PROGRAM |
3235                BRW_NEW_GS_PROG_DATA,
3236    },
3237    .emit = genX(upload_gs_push_constants),
3238 };
3239 
3240 static void
3241 genX(upload_wm_push_constants)(struct brw_context *brw)
3242 {
3243    struct brw_stage_state *stage_state = &brw->wm.base;
3244    /* BRW_NEW_FRAGMENT_PROGRAM */
3245    const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3246    /* BRW_NEW_FS_PROG_DATA */
3247    const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
3248 
3249    gfx6_upload_push_constants(brw, fp, prog_data, stage_state);
3250 }
3251 
3252 static const struct brw_tracked_state genX(wm_push_constants) = {
3253    .dirty = {
3254       .mesa  = _NEW_PROGRAM_CONSTANTS,
3255       .brw   = BRW_NEW_BATCH |
3256                BRW_NEW_BLORP |
3257                BRW_NEW_FRAGMENT_PROGRAM |
3258                BRW_NEW_FS_PROG_DATA,
3259    },
3260    .emit = genX(upload_wm_push_constants),
3261 };
3262 #endif
3263 
3264 /* ---------------------------------------------------------------------- */
3265 
3266 #if GFX_VER >= 6
3267 static unsigned
3268 genX(determine_sample_mask)(struct brw_context *brw)
3269 {
3270    struct gl_context *ctx = &brw->ctx;
3271    float coverage = 1.0f;
3272    float coverage_invert = false;
3273    unsigned sample_mask = ~0u;
3274 
3275    /* BRW_NEW_NUM_SAMPLES */
3276    unsigned num_samples = brw->num_samples;
3277 
3278    if (_mesa_is_multisample_enabled(ctx)) {
3279       if (ctx->Multisample.SampleCoverage) {
3280          coverage = ctx->Multisample.SampleCoverageValue;
3281          coverage_invert = ctx->Multisample.SampleCoverageInvert;
3282       }
3283       if (ctx->Multisample.SampleMask) {
3284          sample_mask = ctx->Multisample.SampleMaskValue;
3285       }
3286    }
3287 
3288    if (num_samples > 1) {
3289       int coverage_int = (int) (num_samples * coverage + 0.5f);
3290       uint32_t coverage_bits = (1 << coverage_int) - 1;
3291       if (coverage_invert)
3292          coverage_bits ^= (1 << num_samples) - 1;
3293       return coverage_bits & sample_mask;
3294    } else {
3295       return 1;
3296    }
3297 }
3298 
3299 static void
3300 genX(emit_3dstate_multisample2)(struct brw_context *brw,
3301                                 unsigned num_samples)
3302 {
3303    unsigned log2_samples = ffs(num_samples) - 1;
3304 
3305    brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
3306       multi.PixelLocation = CENTER;
3307       multi.NumberofMultisamples = log2_samples;
3308 #if GFX_VER == 6
3309       INTEL_SAMPLE_POS_4X(multi.Sample);
3310 #elif GFX_VER == 7
3311       switch (num_samples) {
3312       case 1:
3313          INTEL_SAMPLE_POS_1X(multi.Sample);
3314          break;
3315       case 2:
3316          INTEL_SAMPLE_POS_2X(multi.Sample);
3317          break;
3318       case 4:
3319          INTEL_SAMPLE_POS_4X(multi.Sample);
3320          break;
3321       case 8:
3322          INTEL_SAMPLE_POS_8X(multi.Sample);
3323          break;
3324       default:
3325          break;
3326       }
3327 #endif
3328    }
3329 }
3330 
3331 static void
3332 genX(upload_multisample_state)(struct brw_context *brw)
3333 {
3334    assert(brw->num_samples > 0 && brw->num_samples <= 16);
3335 
3336    genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3337 
3338    brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3339       sm.SampleMask = genX(determine_sample_mask)(brw);
3340    }
3341 }
3342 
3343 static const struct brw_tracked_state genX(multisample_state) = {
3344    .dirty = {
3345       .mesa = _NEW_MULTISAMPLE |
3346               (GFX_VER == 10 ? _NEW_BUFFERS : 0),
3347       .brw = BRW_NEW_BLORP |
3348              BRW_NEW_CONTEXT |
3349              BRW_NEW_NUM_SAMPLES,
3350    },
3351    .emit = genX(upload_multisample_state)
3352 };
3353 #endif
3354 
3355 /* ---------------------------------------------------------------------- */
3356 
3357 static void
3358 genX(upload_color_calc_state)(struct brw_context *brw)
3359 {
3360    struct gl_context *ctx = &brw->ctx;
3361 
3362    brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3363 #if GFX_VER <= 5
3364       cc.IndependentAlphaBlendEnable =
3365          set_blend_entry_bits(brw, &cc, 0, false);
3366       set_depth_stencil_bits(brw, &cc);
3367 
3368       if (ctx->Color.AlphaEnabled &&
3369           ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3370          cc.AlphaTestEnable = true;
3371          cc.AlphaTestFunction =
3372             brw_translate_compare_func(ctx->Color.AlphaFunc);
3373       }
3374 
3375       cc.ColorDitherEnable = ctx->Color.DitherFlag;
3376 
3377       cc.StatisticsEnable = brw->stats_wm;
3378 
3379       cc.CCViewportStatePointer =
3380          ro_bo(brw->batch.state.bo, brw->cc.vp_offset);
3381 #else
3382       /* _NEW_COLOR */
3383       cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3384       cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3385       cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3386       cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3387 
3388 #if GFX_VER < 9
3389       /* _NEW_STENCIL */
3390       cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3391       cc.BackfaceStencilReferenceValue =
3392          _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3393 #endif
3394 
3395 #endif
3396 
3397       /* _NEW_COLOR */
3398       UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3399                                ctx->Color.AlphaRef);
3400    }
3401 
3402 #if GFX_VER >= 6
3403    brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3404       ptr.ColorCalcStatePointer = brw->cc.state_offset;
3405 #if GFX_VER != 7
3406       ptr.ColorCalcStatePointerValid = true;
3407 #endif
3408    }
3409 #else
3410    brw->ctx.NewDriverState |= BRW_NEW_GFX4_UNIT_STATE;
3411 #endif
3412 }
3413 
3414 UNUSED static const struct brw_tracked_state genX(color_calc_state) = {
3415    .dirty = {
3416       .mesa = _NEW_COLOR |
3417               _NEW_STENCIL |
3418               (GFX_VER <= 5 ? _NEW_BUFFERS |
3419                               _NEW_DEPTH
3420                             : 0),
3421       .brw = BRW_NEW_BATCH |
3422              BRW_NEW_BLORP |
3423              (GFX_VER <= 5 ? BRW_NEW_CC_VP |
3424                              BRW_NEW_STATS_WM
3425                            : BRW_NEW_CC_STATE |
3426                              BRW_NEW_STATE_BASE_ADDRESS),
3427    },
3428    .emit = genX(upload_color_calc_state),
3429 };
3430 
3431 
3432 /* ---------------------------------------------------------------------- */
3433 
3434 #if GFX_VERx10 == 75
3435 static void
3436 genX(upload_color_calc_and_blend_state)(struct brw_context *brw)
3437 {
3438    genX(upload_blend_state)(brw);
3439    genX(upload_color_calc_state)(brw);
3440 }
3441 
3442 /* On Haswell when BLEND_STATE is emitted CC_STATE should also be re-emitted,
3443  * this workarounds the flickering shadows in several games.
3444  */
3445 static const struct brw_tracked_state genX(cc_and_blend_state) = {
3446    .dirty = {
3447       .mesa = _NEW_BUFFERS |
3448               _NEW_COLOR |
3449               _NEW_STENCIL |
3450               _NEW_MULTISAMPLE,
3451       .brw = BRW_NEW_BATCH |
3452              BRW_NEW_BLORP |
3453              BRW_NEW_CC_STATE |
3454              BRW_NEW_FS_PROG_DATA |
3455              BRW_NEW_STATE_BASE_ADDRESS,
3456    },
3457    .emit = genX(upload_color_calc_and_blend_state),
3458 };
3459 #endif
3460 
3461 /* ---------------------------------------------------------------------- */
3462 
3463 #if GFX_VER >= 7
3464 static void
3465 genX(upload_sbe)(struct brw_context *brw)
3466 {
3467    struct gl_context *ctx = &brw->ctx;
3468    /* BRW_NEW_FRAGMENT_PROGRAM */
3469    UNUSED const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3470    /* BRW_NEW_FS_PROG_DATA */
3471    const struct brw_wm_prog_data *wm_prog_data =
3472       brw_wm_prog_data(brw->wm.base.prog_data);
3473 #if GFX_VER >= 8
3474    struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3475 #else
3476 #define attr_overrides sbe.Attribute
3477 #endif
3478    uint32_t urb_entry_read_length;
3479    uint32_t urb_entry_read_offset;
3480    uint32_t point_sprite_enables;
3481 
3482    brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3483       sbe.AttributeSwizzleEnable = true;
3484       sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3485 
3486       /* _NEW_BUFFERS */
3487       bool flip_y = ctx->DrawBuffer->FlipY;
3488 
3489       /* _NEW_POINT
3490        *
3491        * Window coordinates in an FBO are inverted, which means point
3492        * sprite origin must be inverted.
3493        */
3494       if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) == flip_y)
3495          sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3496       else
3497          sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3498 
3499       /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3500        * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3501        * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3502        * BRW_NEW_VUE_MAP_GEOM_OUT
3503        */
3504       genX(calculate_attr_overrides)(brw,
3505                                      attr_overrides,
3506                                      &point_sprite_enables,
3507                                      &urb_entry_read_length,
3508                                      &urb_entry_read_offset);
3509 
3510       /* Typically, the URB entry read length and offset should be programmed
3511        * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3512        * stage which produces geometry.  However, we don't know the proper
3513        * value until we call calculate_attr_overrides().
3514        *
3515        * To fit with our existing code, we override the inherited values and
3516        * specify it here directly, as we did on previous generations.
3517        */
3518       sbe.VertexURBEntryReadLength = urb_entry_read_length;
3519       sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3520       sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3521       sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3522 
3523 #if GFX_VER >= 8
3524       sbe.ForceVertexURBEntryReadLength = true;
3525       sbe.ForceVertexURBEntryReadOffset = true;
3526 #endif
3527 
3528 #if GFX_VER >= 9
3529       /* prepare the active component dwords */
3530       for (int i = 0; i < 32; i++)
3531          sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3532 #endif
3533    }
3534 
3535 #if GFX_VER >= 8
3536    brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3537       for (int i = 0; i < 16; i++)
3538          sbes.Attribute[i] = attr_overrides[i];
3539    }
3540 #endif
3541 
3542 #undef attr_overrides
3543 }
3544 
3545 static const struct brw_tracked_state genX(sbe_state) = {
3546    .dirty = {
3547       .mesa  = _NEW_BUFFERS |
3548                _NEW_LIGHT |
3549                _NEW_POINT |
3550                _NEW_POLYGON |
3551                _NEW_PROGRAM,
3552       .brw   = BRW_NEW_BLORP |
3553                BRW_NEW_CONTEXT |
3554                BRW_NEW_FRAGMENT_PROGRAM |
3555                BRW_NEW_FS_PROG_DATA |
3556                BRW_NEW_GS_PROG_DATA |
3557                BRW_NEW_TES_PROG_DATA |
3558                BRW_NEW_VUE_MAP_GEOM_OUT |
3559                (GFX_VER == 7 ? BRW_NEW_PRIMITIVE
3560                              : 0),
3561    },
3562    .emit = genX(upload_sbe),
3563 };
3564 #endif
3565 
3566 /* ---------------------------------------------------------------------- */
3567 
3568 #if GFX_VER >= 7
3569 /**
3570  * Outputs the 3DSTATE_SO_DECL_LIST command.
3571  *
3572  * The data output is a series of 64-bit entries containing a SO_DECL per
3573  * stream.  We only have one stream of rendering coming out of the GS unit, so
3574  * we only emit stream 0 (low 16 bits) SO_DECLs.
3575  */
3576 static void
3577 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3578                                   const struct brw_vue_map *vue_map)
3579 {
3580    struct gl_context *ctx = &brw->ctx;
3581    /* BRW_NEW_TRANSFORM_FEEDBACK */
3582    struct gl_transform_feedback_object *xfb_obj =
3583       ctx->TransformFeedback.CurrentObject;
3584    const struct gl_transform_feedback_info *linked_xfb_info =
3585       xfb_obj->program->sh.LinkedTransformFeedback;
3586    struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3587    int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3588    int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3589    int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3590    int max_decls = 0;
3591    STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3592 
3593    memset(so_decl, 0, sizeof(so_decl));
3594 
3595    /* Construct the list of SO_DECLs to be emitted.  The formatting of the
3596     * command feels strange -- each dword pair contains a SO_DECL per stream.
3597     */
3598    for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3599       const struct gl_transform_feedback_output *output =
3600          &linked_xfb_info->Outputs[i];
3601       const int buffer = output->OutputBuffer;
3602       const int varying = output->OutputRegister;
3603       const unsigned stream_id = output->StreamId;
3604       assert(stream_id < MAX_VERTEX_STREAMS);
3605 
3606       buffer_mask[stream_id] |= 1 << buffer;
3607 
3608       assert(vue_map->varying_to_slot[varying] >= 0);
3609 
3610       /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3611        * array.  Instead, it simply increments DstOffset for the following
3612        * input by the number of components that should be skipped.
3613        *
3614        * Our hardware is unusual in that it requires us to program SO_DECLs
3615        * for fake "hole" components, rather than simply taking the offset
3616        * for each real varying.  Each hole can have size 1, 2, 3, or 4; we
3617        * program as many size = 4 holes as we can, then a final hole to
3618        * accommodate the final 1, 2, or 3 remaining.
3619        */
3620       int skip_components = output->DstOffset - next_offset[buffer];
3621 
3622       while (skip_components > 0) {
3623          so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3624             .HoleFlag = 1,
3625             .OutputBufferSlot = output->OutputBuffer,
3626             .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3627          };
3628          skip_components -= 4;
3629       }
3630 
3631       next_offset[buffer] = output->DstOffset + output->NumComponents;
3632 
3633       so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3634          .OutputBufferSlot = output->OutputBuffer,
3635          .RegisterIndex = vue_map->varying_to_slot[varying],
3636          .ComponentMask =
3637             ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3638       };
3639 
3640       if (decls[stream_id] > max_decls)
3641          max_decls = decls[stream_id];
3642    }
3643 
3644    uint32_t *dw;
3645    dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3646                         .StreamtoBufferSelects0 = buffer_mask[0],
3647                         .StreamtoBufferSelects1 = buffer_mask[1],
3648                         .StreamtoBufferSelects2 = buffer_mask[2],
3649                         .StreamtoBufferSelects3 = buffer_mask[3],
3650                         .NumEntries0 = decls[0],
3651                         .NumEntries1 = decls[1],
3652                         .NumEntries2 = decls[2],
3653                         .NumEntries3 = decls[3]);
3654 
3655    for (int i = 0; i < max_decls; i++) {
3656       GENX(SO_DECL_ENTRY_pack)(
3657          brw, dw + 2 + i * 2,
3658          &(struct GENX(SO_DECL_ENTRY)) {
3659             .Stream0Decl = so_decl[0][i],
3660             .Stream1Decl = so_decl[1][i],
3661             .Stream2Decl = so_decl[2][i],
3662             .Stream3Decl = so_decl[3][i],
3663          });
3664    }
3665 }
3666 
3667 static void
3668 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3669 {
3670    struct gl_context *ctx = &brw->ctx;
3671    /* BRW_NEW_TRANSFORM_FEEDBACK */
3672    struct gl_transform_feedback_object *xfb_obj =
3673       ctx->TransformFeedback.CurrentObject;
3674 #if GFX_VER < 8
3675    const struct gl_transform_feedback_info *linked_xfb_info =
3676       xfb_obj->program->sh.LinkedTransformFeedback;
3677 #else
3678    struct brw_transform_feedback_object *brw_obj =
3679       (struct brw_transform_feedback_object *) xfb_obj;
3680    uint32_t mocs_wb = GFX_VER >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3681 #endif
3682 
3683    /* Set up the up to 4 output buffers.  These are the ranges defined in the
3684     * gl_transform_feedback_object.
3685     */
3686    for (int i = 0; i < 4; i++) {
3687       struct brw_buffer_object *bufferobj =
3688          brw_buffer_object(xfb_obj->Buffers[i]);
3689       uint32_t start = xfb_obj->Offset[i];
3690       uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3691       uint32_t const size = end - start;
3692 
3693       if (!bufferobj || !size) {
3694          brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3695             sob.SOBufferIndex = i;
3696          }
3697          continue;
3698       }
3699 
3700       assert(start % 4 == 0);
3701       struct brw_bo *bo =
3702          brw_bufferobj_buffer(brw, bufferobj, start, size, true);
3703       assert(end <= bo->size);
3704 
3705       brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3706          sob.SOBufferIndex = i;
3707 
3708          sob.SurfaceBaseAddress = rw_bo(bo, start);
3709 #if GFX_VER < 8
3710          sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3711          sob.SurfaceEndAddress = rw_bo(bo, end);
3712 #else
3713          sob.SOBufferEnable = true;
3714          sob.StreamOffsetWriteEnable = true;
3715          sob.StreamOutputBufferOffsetAddressEnable = true;
3716          sob.MOCS = mocs_wb;
3717 
3718          sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3719          sob.StreamOutputBufferOffsetAddress =
3720             rw_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3721 
3722          if (brw_obj->zero_offsets) {
3723             /* Zero out the offset and write that to offset_bo */
3724             sob.StreamOffset = 0;
3725          } else {
3726             /* Use offset_bo as the "Stream Offset." */
3727             sob.StreamOffset = 0xFFFFFFFF;
3728          }
3729 #endif
3730       }
3731    }
3732 
3733 #if GFX_VER >= 8
3734    brw_obj->zero_offsets = false;
3735 #endif
3736 }
3737 
3738 static bool
3739 query_active(struct gl_query_object *q)
3740 {
3741    return q && q->Active;
3742 }
3743 
3744 static void
3745 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3746                                const struct brw_vue_map *vue_map)
3747 {
3748    struct gl_context *ctx = &brw->ctx;
3749    /* BRW_NEW_TRANSFORM_FEEDBACK */
3750    struct gl_transform_feedback_object *xfb_obj =
3751       ctx->TransformFeedback.CurrentObject;
3752 
3753    brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3754       if (active) {
3755          int urb_entry_read_offset = 0;
3756          int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3757             urb_entry_read_offset;
3758 
3759          sos.SOFunctionEnable = true;
3760          sos.SOStatisticsEnable = true;
3761 
3762          /* BRW_NEW_RASTERIZER_DISCARD */
3763          if (ctx->RasterDiscard) {
3764             if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3765                sos.RenderingDisable = true;
3766             } else {
3767                perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3768                           "query active relies on the clipper.\n");
3769             }
3770          }
3771 
3772          /* _NEW_LIGHT */
3773          if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3774             sos.ReorderMode = TRAILING;
3775 
3776 #if GFX_VER < 8
3777          sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3778          sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3779          sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3780          sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3781 #else
3782          const struct gl_transform_feedback_info *linked_xfb_info =
3783             xfb_obj->program->sh.LinkedTransformFeedback;
3784          /* Set buffer pitches; 0 means unbound. */
3785          if (xfb_obj->Buffers[0])
3786             sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3787          if (xfb_obj->Buffers[1])
3788             sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3789          if (xfb_obj->Buffers[2])
3790             sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3791          if (xfb_obj->Buffers[3])
3792             sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3793 #endif
3794 
3795          /* We always read the whole vertex.  This could be reduced at some
3796           * point by reading less and offsetting the register index in the
3797           * SO_DECLs.
3798           */
3799          sos.Stream0VertexReadOffset = urb_entry_read_offset;
3800          sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3801          sos.Stream1VertexReadOffset = urb_entry_read_offset;
3802          sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3803          sos.Stream2VertexReadOffset = urb_entry_read_offset;
3804          sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3805          sos.Stream3VertexReadOffset = urb_entry_read_offset;
3806          sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3807       }
3808    }
3809 }
3810 
3811 static void
3812 genX(upload_sol)(struct brw_context *brw)
3813 {
3814    struct gl_context *ctx = &brw->ctx;
3815    /* BRW_NEW_TRANSFORM_FEEDBACK */
3816    bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3817 
3818    if (active) {
3819       genX(upload_3dstate_so_buffers)(brw);
3820 
3821       /* BRW_NEW_VUE_MAP_GEOM_OUT */
3822       genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3823    }
3824 
3825    /* Finally, set up the SOL stage.  This command must always follow updates to
3826     * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3827     * MMIO register updates (current performed by the kernel at each batch
3828     * emit).
3829     */
3830    genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3831 }
3832 
3833 static const struct brw_tracked_state genX(sol_state) = {
3834    .dirty = {
3835       .mesa  = _NEW_LIGHT,
3836       .brw   = BRW_NEW_BATCH |
3837                BRW_NEW_BLORP |
3838                BRW_NEW_RASTERIZER_DISCARD |
3839                BRW_NEW_VUE_MAP_GEOM_OUT |
3840                BRW_NEW_TRANSFORM_FEEDBACK,
3841    },
3842    .emit = genX(upload_sol),
3843 };
3844 #endif
3845 
3846 /* ---------------------------------------------------------------------- */
3847 
3848 #if GFX_VER >= 7
3849 static void
3850 genX(upload_ps)(struct brw_context *brw)
3851 {
3852    UNUSED const struct gl_context *ctx = &brw->ctx;
3853    UNUSED const struct intel_device_info *devinfo = &brw->screen->devinfo;
3854 
3855    /* BRW_NEW_FS_PROG_DATA */
3856    const struct brw_wm_prog_data *prog_data =
3857       brw_wm_prog_data(brw->wm.base.prog_data);
3858    const struct brw_stage_state *stage_state = &brw->wm.base;
3859 
3860 #if GFX_VER < 8
3861 #endif
3862 
3863    brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3864       /* Initialize the execution mask with VMask.  Otherwise, derivatives are
3865        * incorrect for subspans where some of the pixels are unlit.  We believe
3866        * the bit just didn't take effect in previous generations.
3867        */
3868       ps.VectorMaskEnable = GFX_VER >= 8;
3869 
3870       /* Wa_1606682166:
3871        * "Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes.
3872        * Disable the Sampler state prefetch functionality in the SARB by
3873        * programming 0xB000[30] to '1'."
3874        */
3875       ps.SamplerCount = GFX_VER == 11 ?
3876          0 : DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3877 
3878       /* BRW_NEW_FS_PROG_DATA */
3879       ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3880 
3881       if (prog_data->base.use_alt_mode)
3882          ps.FloatingPointMode = Alternate;
3883 
3884       /* Haswell requires the sample mask to be set in this packet as well as
3885        * in 3DSTATE_SAMPLE_MASK; the values should match.
3886        */
3887 
3888       /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3889 #if GFX_VERx10 == 75
3890       ps.SampleMask = genX(determine_sample_mask(brw));
3891 #endif
3892 
3893       /* 3DSTATE_PS expects the number of threads per PSD, which is always 64
3894        * for pre Gfx11 and 128 for gfx11+; On gfx11+ If a programmed value is
3895        * k, it implies 2(k+1) threads. It implicitly scales for different GT
3896        * levels (which have some # of PSDs).
3897        *
3898        * In Gfx8 the format is U8-2 whereas in Gfx9+ it is U9-1.
3899        */
3900 #if GFX_VER >= 9
3901       ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3902 #elif GFX_VER >= 8
3903       ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3904 #else
3905       ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3906 #endif
3907 
3908       if (prog_data->base.nr_params > 0 ||
3909           prog_data->base.ubo_ranges[0].length > 0)
3910          ps.PushConstantEnable = true;
3911 
3912 #if GFX_VER < 8
3913       /* From the IVB PRM, volume 2 part 1, page 287:
3914        * "This bit is inserted in the PS payload header and made available to
3915        * the DataPort (either via the message header or via header bypass) to
3916        * indicate that oMask data (one or two phases) is included in Render
3917        * Target Write messages. If present, the oMask data is used to mask off
3918        * samples."
3919        */
3920       ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3921 
3922       /* The hardware wedges if you have this bit set but don't turn on any
3923        * dual source blend factors.
3924        *
3925        * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3926        */
3927       ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3928                                  (ctx->Color.BlendEnabled & 1) &&
3929                                  ctx->Color._BlendUsesDualSrc & 0x1;
3930 
3931       /* BRW_NEW_FS_PROG_DATA */
3932       ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3933 #endif
3934 
3935       /* From the documentation for this packet:
3936        * "If the PS kernel does not need the Position XY Offsets to
3937        *  compute a Position Value, then this field should be programmed
3938        *  to POSOFFSET_NONE."
3939        *
3940        * "SW Recommendation: If the PS kernel needs the Position Offsets
3941        *  to compute a Position XY value, this field should match Position
3942        *  ZW Interpolation Mode to ensure a consistent position.xyzw
3943        *  computation."
3944        *
3945        * We only require XY sample offsets. So, this recommendation doesn't
3946        * look useful at the moment. We might need this in future.
3947        */
3948       if (prog_data->uses_pos_offset)
3949          ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3950       else
3951          ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3952 
3953       ps._8PixelDispatchEnable = prog_data->dispatch_8;
3954       ps._16PixelDispatchEnable = prog_data->dispatch_16;
3955       ps._32PixelDispatchEnable = prog_data->dispatch_32;
3956 
3957       /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
3958        *
3959        *    "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
3960        *    Dispatch must not be enabled for PER_PIXEL dispatch mode."
3961        *
3962        * Since 16x MSAA is first introduced on SKL, we don't need to apply
3963        * the workaround on any older hardware.
3964        *
3965        * BRW_NEW_NUM_SAMPLES
3966        */
3967       if (GFX_VER >= 9 && !prog_data->persample_dispatch &&
3968           brw->num_samples == 16) {
3969          assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
3970          ps._32PixelDispatchEnable = false;
3971       }
3972 
3973       ps.DispatchGRFStartRegisterForConstantSetupData0 =
3974          brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 0);
3975       ps.DispatchGRFStartRegisterForConstantSetupData1 =
3976          brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 1);
3977       ps.DispatchGRFStartRegisterForConstantSetupData2 =
3978          brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 2);
3979 
3980       ps.KernelStartPointer0 = stage_state->prog_offset +
3981                                brw_wm_prog_data_prog_offset(prog_data, ps, 0);
3982       ps.KernelStartPointer1 = stage_state->prog_offset +
3983                                brw_wm_prog_data_prog_offset(prog_data, ps, 1);
3984       ps.KernelStartPointer2 = stage_state->prog_offset +
3985                                brw_wm_prog_data_prog_offset(prog_data, ps, 2);
3986 
3987       if (prog_data->base.total_scratch) {
3988          ps.ScratchSpaceBasePointer =
3989             rw_32_bo(stage_state->scratch_bo,
3990                      ffs(stage_state->per_thread_scratch) - 11);
3991       }
3992    }
3993 }
3994 
3995 static const struct brw_tracked_state genX(ps_state) = {
3996    .dirty = {
3997       .mesa  = _NEW_MULTISAMPLE |
3998                (GFX_VER < 8 ? _NEW_BUFFERS |
3999                               _NEW_COLOR
4000                             : 0),
4001       .brw   = BRW_NEW_BATCH |
4002                BRW_NEW_BLORP |
4003                BRW_NEW_FS_PROG_DATA |
4004                (GFX_VER >= 9 ? BRW_NEW_NUM_SAMPLES : 0),
4005    },
4006    .emit = genX(upload_ps),
4007 };
4008 #endif
4009 
4010 /* ---------------------------------------------------------------------- */
4011 
4012 #if GFX_VER >= 7
4013 static void
4014 genX(upload_hs_state)(struct brw_context *brw)
4015 {
4016    const struct intel_device_info *devinfo = &brw->screen->devinfo;
4017    struct brw_stage_state *stage_state = &brw->tcs.base;
4018    struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
4019    const struct brw_vue_prog_data *vue_prog_data =
4020       brw_vue_prog_data(stage_prog_data);
4021 
4022    /* BRW_NEW_TES_PROG_DATA */
4023    struct brw_tcs_prog_data *tcs_prog_data =
4024       brw_tcs_prog_data(stage_prog_data);
4025 
4026    if (!tcs_prog_data) {
4027       brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
4028    } else {
4029       brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
4030          INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
4031 
4032          hs.InstanceCount = tcs_prog_data->instances - 1;
4033          hs.IncludeVertexHandles = true;
4034 
4035          hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
4036 
4037 #if GFX_VER >= 9
4038          hs.DispatchMode = vue_prog_data->dispatch_mode;
4039          hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
4040 #endif
4041       }
4042    }
4043 }
4044 
4045 static const struct brw_tracked_state genX(hs_state) = {
4046    .dirty = {
4047       .mesa  = 0,
4048       .brw   = BRW_NEW_BATCH |
4049                BRW_NEW_BLORP |
4050                BRW_NEW_TCS_PROG_DATA |
4051                BRW_NEW_TESS_PROGRAMS,
4052    },
4053    .emit = genX(upload_hs_state),
4054 };
4055 
4056 static void
4057 genX(upload_ds_state)(struct brw_context *brw)
4058 {
4059    const struct intel_device_info *devinfo = &brw->screen->devinfo;
4060    const struct brw_stage_state *stage_state = &brw->tes.base;
4061    struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
4062 
4063    /* BRW_NEW_TES_PROG_DATA */
4064    const struct brw_tes_prog_data *tes_prog_data =
4065       brw_tes_prog_data(stage_prog_data);
4066    const struct brw_vue_prog_data *vue_prog_data =
4067       brw_vue_prog_data(stage_prog_data);
4068 
4069    if (!tes_prog_data) {
4070       brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
4071    } else {
4072       assert(GFX_VER < 11 ||
4073              vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8);
4074 
4075       brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
4076          INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
4077 
4078         ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
4079         ds.ComputeWCoordinateEnable =
4080            tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
4081 
4082 #if GFX_VER >= 8
4083         if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
4084            ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
4085         ds.UserClipDistanceCullTestEnableBitmask =
4086             vue_prog_data->cull_distance_mask;
4087 #endif
4088       }
4089    }
4090 }
4091 
4092 static const struct brw_tracked_state genX(ds_state) = {
4093    .dirty = {
4094       .mesa  = 0,
4095       .brw   = BRW_NEW_BATCH |
4096                BRW_NEW_BLORP |
4097                BRW_NEW_TESS_PROGRAMS |
4098                BRW_NEW_TES_PROG_DATA,
4099    },
4100    .emit = genX(upload_ds_state),
4101 };
4102 
4103 /* ---------------------------------------------------------------------- */
4104 
4105 static void
4106 upload_te_state(struct brw_context *brw)
4107 {
4108    /* BRW_NEW_TESS_PROGRAMS */
4109    bool active = brw->programs[MESA_SHADER_TESS_EVAL];
4110 
4111    /* BRW_NEW_TES_PROG_DATA */
4112    const struct brw_tes_prog_data *tes_prog_data =
4113       brw_tes_prog_data(brw->tes.base.prog_data);
4114 
4115    if (active) {
4116       brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
4117          te.Partitioning = tes_prog_data->partitioning;
4118          te.OutputTopology = tes_prog_data->output_topology;
4119          te.TEDomain = tes_prog_data->domain;
4120          te.TEEnable = true;
4121          te.MaximumTessellationFactorOdd = 63.0;
4122          te.MaximumTessellationFactorNotOdd = 64.0;
4123       }
4124    } else {
4125       brw_batch_emit(brw, GENX(3DSTATE_TE), te);
4126    }
4127 }
4128 
4129 static const struct brw_tracked_state genX(te_state) = {
4130    .dirty = {
4131       .mesa  = 0,
4132       .brw   = BRW_NEW_BLORP |
4133                BRW_NEW_CONTEXT |
4134                BRW_NEW_TES_PROG_DATA |
4135                BRW_NEW_TESS_PROGRAMS,
4136    },
4137    .emit = upload_te_state,
4138 };
4139 
4140 /* ---------------------------------------------------------------------- */
4141 
4142 static void
4143 genX(upload_tes_push_constants)(struct brw_context *brw)
4144 {
4145    struct brw_stage_state *stage_state = &brw->tes.base;
4146    /* BRW_NEW_TESS_PROGRAMS */
4147    const struct gl_program *tep = brw->programs[MESA_SHADER_TESS_EVAL];
4148 
4149    /* BRW_NEW_TES_PROG_DATA */
4150    const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
4151    gfx6_upload_push_constants(brw, tep, prog_data, stage_state);
4152 }
4153 
4154 static const struct brw_tracked_state genX(tes_push_constants) = {
4155    .dirty = {
4156       .mesa  = _NEW_PROGRAM_CONSTANTS,
4157       .brw   = BRW_NEW_BATCH |
4158                BRW_NEW_BLORP |
4159                BRW_NEW_TESS_PROGRAMS |
4160                BRW_NEW_TES_PROG_DATA,
4161    },
4162    .emit = genX(upload_tes_push_constants),
4163 };
4164 
4165 static void
4166 genX(upload_tcs_push_constants)(struct brw_context *brw)
4167 {
4168    struct brw_stage_state *stage_state = &brw->tcs.base;
4169    /* BRW_NEW_TESS_PROGRAMS */
4170    const struct gl_program *tcp = brw->programs[MESA_SHADER_TESS_CTRL];
4171 
4172    /* BRW_NEW_TCS_PROG_DATA */
4173    const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
4174 
4175    gfx6_upload_push_constants(brw, tcp, prog_data, stage_state);
4176 }
4177 
4178 static const struct brw_tracked_state genX(tcs_push_constants) = {
4179    .dirty = {
4180       .mesa  = _NEW_PROGRAM_CONSTANTS,
4181       .brw   = BRW_NEW_BATCH |
4182                BRW_NEW_BLORP |
4183                BRW_NEW_DEFAULT_TESS_LEVELS |
4184                BRW_NEW_TESS_PROGRAMS |
4185                BRW_NEW_TCS_PROG_DATA,
4186    },
4187    .emit = genX(upload_tcs_push_constants),
4188 };
4189 
4190 #endif
4191 
4192 /* ---------------------------------------------------------------------- */
4193 
4194 #if GFX_VER >= 7
4195 static void
4196 genX(upload_cs_push_constants)(struct brw_context *brw)
4197 {
4198    struct brw_stage_state *stage_state = &brw->cs.base;
4199 
4200    /* BRW_NEW_COMPUTE_PROGRAM */
4201    const struct gl_program *cp = brw->programs[MESA_SHADER_COMPUTE];
4202 
4203    if (cp) {
4204       /* BRW_NEW_CS_PROG_DATA */
4205       struct brw_cs_prog_data *cs_prog_data =
4206          brw_cs_prog_data(brw->cs.base.prog_data);
4207 
4208       _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4209       brw_upload_cs_push_constants(brw, cp, cs_prog_data, stage_state);
4210    }
4211 }
4212 
4213 const struct brw_tracked_state genX(cs_push_constants) = {
4214    .dirty = {
4215       .mesa = _NEW_PROGRAM_CONSTANTS,
4216       .brw = BRW_NEW_BATCH |
4217              BRW_NEW_BLORP |
4218              BRW_NEW_COMPUTE_PROGRAM |
4219              BRW_NEW_CS_PROG_DATA,
4220    },
4221    .emit = genX(upload_cs_push_constants),
4222 };
4223 
4224 /**
4225  * Creates a new CS constant buffer reflecting the current CS program's
4226  * constants, if needed by the CS program.
4227  */
4228 static void
4229 genX(upload_cs_pull_constants)(struct brw_context *brw)
4230 {
4231    struct brw_stage_state *stage_state = &brw->cs.base;
4232 
4233    /* BRW_NEW_COMPUTE_PROGRAM */
4234    struct brw_program *cp =
4235       (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
4236 
4237    /* BRW_NEW_CS_PROG_DATA */
4238    const struct brw_stage_prog_data *prog_data = brw->cs.base.prog_data;
4239 
4240    _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4241    /* _NEW_PROGRAM_CONSTANTS */
4242    brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &cp->program,
4243                              stage_state, prog_data);
4244 }
4245 
4246 const struct brw_tracked_state genX(cs_pull_constants) = {
4247    .dirty = {
4248       .mesa = _NEW_PROGRAM_CONSTANTS,
4249       .brw = BRW_NEW_BATCH |
4250              BRW_NEW_BLORP |
4251              BRW_NEW_COMPUTE_PROGRAM |
4252              BRW_NEW_CS_PROG_DATA,
4253    },
4254    .emit = genX(upload_cs_pull_constants),
4255 };
4256 
4257 static void
4258 genX(upload_cs_state)(struct brw_context *brw)
4259 {
4260    if (!brw->cs.base.prog_data)
4261       return;
4262 
4263    uint32_t offset;
4264    uint32_t *desc = (uint32_t*) brw_state_batch(
4265       brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
4266       &offset);
4267 
4268    struct brw_stage_state *stage_state = &brw->cs.base;
4269    struct brw_stage_prog_data *prog_data = stage_state->prog_data;
4270    struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
4271    const struct intel_device_info *devinfo = &brw->screen->devinfo;
4272 
4273    const struct brw_cs_dispatch_info dispatch =
4274       brw_cs_get_dispatch_info(devinfo, cs_prog_data, brw->compute.group_size);
4275 
4276    if (INTEL_DEBUG(DEBUG_SHADER_TIME)) {
4277       brw_emit_buffer_surface_state(
4278          brw, &stage_state->surf_offset[
4279                  prog_data->binding_table.shader_time_start],
4280          brw->shader_time.bo, 0, ISL_FORMAT_RAW,
4281          brw->shader_time.bo->size, 1,
4282          RELOC_WRITE);
4283    }
4284 
4285    uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
4286                                     32, &stage_state->bind_bo_offset);
4287 
4288    /* The MEDIA_VFE_STATE documentation for Gfx8+ says:
4289     *
4290     * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4291     *  the only bits that are changed are scoreboard related: Scoreboard
4292     *  Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4293     *  these scoreboard related states, a MEDIA_STATE_FLUSH is sufficient."
4294     *
4295     * Earlier generations say "MI_FLUSH" instead of "stalling PIPE_CONTROL",
4296     * but MI_FLUSH isn't really a thing, so we assume they meant PIPE_CONTROL.
4297     */
4298    brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
4299 
4300    brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
4301       if (prog_data->total_scratch) {
4302          uint32_t per_thread_scratch_value;
4303 
4304          if (GFX_VER >= 8) {
4305             /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
4306              * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
4307              */
4308             per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 11;
4309          } else if (GFX_VERx10 == 75) {
4310             /* Haswell's Per Thread Scratch Space is in the range [0, 10]
4311              * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
4312              */
4313             per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 12;
4314          } else {
4315             /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
4316              * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
4317              */
4318             per_thread_scratch_value = stage_state->per_thread_scratch / 1024 - 1;
4319          }
4320          vfe.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0);
4321          vfe.PerThreadScratchSpace = per_thread_scratch_value;
4322       }
4323 
4324       vfe.MaximumNumberofThreads =
4325          devinfo->max_cs_threads * devinfo->subslice_total - 1;
4326       vfe.NumberofURBEntries = GFX_VER >= 8 ? 2 : 0;
4327 #if GFX_VER < 11
4328       vfe.ResetGatewayTimer =
4329          Resettingrelativetimerandlatchingtheglobaltimestamp;
4330 #endif
4331 #if GFX_VER < 9
4332       vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
4333 #endif
4334 #if GFX_VER == 7
4335       vfe.GPGPUMode = true;
4336 #endif
4337 
4338       /* We are uploading duplicated copies of push constant uniforms for each
4339        * thread. Although the local id data needs to vary per thread, it won't
4340        * change for other uniform data. Unfortunately this duplication is
4341        * required for gfx7. As of Haswell, this duplication can be avoided,
4342        * but this older mechanism with duplicated data continues to work.
4343        *
4344        * FINISHME: As of Haswell, we could make use of the
4345        * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
4346        * field to only store one copy of uniform data.
4347        *
4348        * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
4349        * which is described in the GPGPU_WALKER command and in the Broadwell
4350        * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
4351        * Operations => GPGPU Mode => Indirect Payload Storage.
4352        *
4353        * Note: The constant data is built in brw_upload_cs_push_constants
4354        * below.
4355        */
4356       vfe.URBEntryAllocationSize = GFX_VER >= 8 ? 2 : 0;
4357 
4358       const uint32_t vfe_curbe_allocation =
4359          ALIGN(cs_prog_data->push.per_thread.regs * dispatch.threads +
4360                cs_prog_data->push.cross_thread.regs, 2);
4361       vfe.CURBEAllocationSize = vfe_curbe_allocation;
4362    }
4363 
4364    const unsigned push_const_size =
4365       brw_cs_push_const_total_size(cs_prog_data, dispatch.threads);
4366    if (push_const_size > 0) {
4367       brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
4368          curbe.CURBETotalDataLength = ALIGN(push_const_size, 64);
4369          curbe.CURBEDataStartAddress = stage_state->push_const_offset;
4370       }
4371    }
4372 
4373    /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
4374    memcpy(bind, stage_state->surf_offset,
4375           prog_data->binding_table.size_bytes);
4376    const uint64_t ksp = brw->cs.base.prog_offset +
4377                         brw_cs_prog_data_prog_offset(cs_prog_data,
4378                                                      dispatch.simd_size);
4379    const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
4380       .KernelStartPointer = ksp,
4381       .SamplerStatePointer = stage_state->sampler_offset,
4382       /* Wa_1606682166 */
4383       .SamplerCount = GFX_VER == 11 ? 0 :
4384                       DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4),
4385       .BindingTablePointer = stage_state->bind_bo_offset,
4386       .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
4387       .NumberofThreadsinGPGPUThreadGroup = dispatch.threads,
4388       .SharedLocalMemorySize = encode_slm_size(GFX_VER,
4389                                                prog_data->total_shared),
4390       .BarrierEnable = cs_prog_data->uses_barrier,
4391 #if GFX_VERx10 >= 75
4392       .CrossThreadConstantDataReadLength =
4393          cs_prog_data->push.cross_thread.regs,
4394 #endif
4395    };
4396 
4397    GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
4398 
4399    brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4400       load.InterfaceDescriptorTotalLength =
4401          GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4402       load.InterfaceDescriptorDataStartAddress = offset;
4403    }
4404 }
4405 
4406 static const struct brw_tracked_state genX(cs_state) = {
4407    .dirty = {
4408       .mesa = _NEW_PROGRAM_CONSTANTS,
4409       .brw = BRW_NEW_BATCH |
4410              BRW_NEW_BLORP |
4411              BRW_NEW_CS_PROG_DATA |
4412              BRW_NEW_SAMPLER_STATE_TABLE |
4413              BRW_NEW_SURFACES,
4414    },
4415    .emit = genX(upload_cs_state)
4416 };
4417 
4418 #define GPGPU_DISPATCHDIMX 0x2500
4419 #define GPGPU_DISPATCHDIMY 0x2504
4420 #define GPGPU_DISPATCHDIMZ 0x2508
4421 
4422 #define MI_PREDICATE_SRC0  0x2400
4423 #define MI_PREDICATE_SRC1  0x2408
4424 
4425 static void
4426 prepare_indirect_gpgpu_walker(struct brw_context *brw)
4427 {
4428    GLintptr indirect_offset = brw->compute.num_work_groups_offset;
4429    struct brw_bo *bo = brw->compute.num_work_groups_bo;
4430 
4431    emit_lrm(brw, GPGPU_DISPATCHDIMX, ro_bo(bo, indirect_offset + 0));
4432    emit_lrm(brw, GPGPU_DISPATCHDIMY, ro_bo(bo, indirect_offset + 4));
4433    emit_lrm(brw, GPGPU_DISPATCHDIMZ, ro_bo(bo, indirect_offset + 8));
4434 
4435 #if GFX_VER <= 7
4436    /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
4437    emit_lri(brw, MI_PREDICATE_SRC0 + 4, 0);
4438    emit_lri(brw, MI_PREDICATE_SRC1    , 0);
4439    emit_lri(brw, MI_PREDICATE_SRC1 + 4, 0);
4440 
4441    /* Load compute_dispatch_indirect_x_size into SRC0 */
4442    emit_lrm(brw, MI_PREDICATE_SRC0, ro_bo(bo, indirect_offset + 0));
4443 
4444    /* predicate = (compute_dispatch_indirect_x_size == 0); */
4445    brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4446       mip.LoadOperation    = LOAD_LOAD;
4447       mip.CombineOperation = COMBINE_SET;
4448       mip.CompareOperation = COMPARE_SRCS_EQUAL;
4449    }
4450 
4451    /* Load compute_dispatch_indirect_y_size into SRC0 */
4452    emit_lrm(brw, MI_PREDICATE_SRC0, ro_bo(bo, indirect_offset + 4));
4453 
4454    /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4455    brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4456       mip.LoadOperation    = LOAD_LOAD;
4457       mip.CombineOperation = COMBINE_OR;
4458       mip.CompareOperation = COMPARE_SRCS_EQUAL;
4459    }
4460 
4461    /* Load compute_dispatch_indirect_z_size into SRC0 */
4462    emit_lrm(brw, MI_PREDICATE_SRC0, ro_bo(bo, indirect_offset + 8));
4463 
4464    /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4465    brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4466       mip.LoadOperation    = LOAD_LOAD;
4467       mip.CombineOperation = COMBINE_OR;
4468       mip.CompareOperation = COMPARE_SRCS_EQUAL;
4469    }
4470 
4471    /* predicate = !predicate; */
4472 #define COMPARE_FALSE                           1
4473    brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4474       mip.LoadOperation    = LOAD_LOADINV;
4475       mip.CombineOperation = COMBINE_OR;
4476       mip.CompareOperation = COMPARE_FALSE;
4477    }
4478 #endif
4479 }
4480 
4481 static void
4482 genX(emit_gpgpu_walker)(struct brw_context *brw)
4483 {
4484    const GLuint *num_groups = brw->compute.num_work_groups;
4485 
4486    bool indirect = brw->compute.num_work_groups_bo != NULL;
4487    if (indirect)
4488       prepare_indirect_gpgpu_walker(brw);
4489 
4490    const struct brw_cs_dispatch_info dispatch =
4491       brw_cs_get_dispatch_info(&brw->screen->devinfo,
4492                                brw_cs_prog_data(brw->cs.base.prog_data),
4493                                brw->compute.group_size);
4494 
4495    brw_batch_emit(brw, GENX(GPGPU_WALKER), ggw) {
4496       ggw.IndirectParameterEnable      = indirect;
4497       ggw.PredicateEnable              = GFX_VER <= 7 && indirect;
4498       ggw.SIMDSize                     = dispatch.simd_size / 16;
4499       ggw.ThreadDepthCounterMaximum    = 0;
4500       ggw.ThreadHeightCounterMaximum   = 0;
4501       ggw.ThreadWidthCounterMaximum    = dispatch.threads - 1;
4502       ggw.ThreadGroupIDXDimension      = num_groups[0];
4503       ggw.ThreadGroupIDYDimension      = num_groups[1];
4504       ggw.ThreadGroupIDZDimension      = num_groups[2];
4505       ggw.RightExecutionMask           = dispatch.right_mask;
4506       ggw.BottomExecutionMask          = 0xffffffff;
4507    }
4508 
4509    brw_batch_emit(brw, GENX(MEDIA_STATE_FLUSH), msf);
4510 }
4511 
4512 #endif
4513 
4514 /* ---------------------------------------------------------------------- */
4515 
4516 #if GFX_VER >= 8
4517 static void
4518 genX(upload_raster)(struct brw_context *brw)
4519 {
4520    const struct gl_context *ctx = &brw->ctx;
4521 
4522    /* _NEW_BUFFERS */
4523    const bool flip_y = ctx->DrawBuffer->FlipY;
4524 
4525    /* _NEW_POLYGON */
4526    const struct gl_polygon_attrib *polygon = &ctx->Polygon;
4527 
4528    /* _NEW_POINT */
4529    const struct gl_point_attrib *point = &ctx->Point;
4530 
4531    brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
4532       if (brw->polygon_front_bit != flip_y)
4533          raster.FrontWinding = CounterClockwise;
4534 
4535       if (polygon->CullFlag) {
4536          switch (polygon->CullFaceMode) {
4537          case GL_FRONT:
4538             raster.CullMode = CULLMODE_FRONT;
4539             break;
4540          case GL_BACK:
4541             raster.CullMode = CULLMODE_BACK;
4542             break;
4543          case GL_FRONT_AND_BACK:
4544             raster.CullMode = CULLMODE_BOTH;
4545             break;
4546          default:
4547             unreachable("not reached");
4548          }
4549       } else {
4550          raster.CullMode = CULLMODE_NONE;
4551       }
4552 
4553       raster.SmoothPointEnable = point->SmoothFlag;
4554 
4555       raster.DXMultisampleRasterizationEnable =
4556          _mesa_is_multisample_enabled(ctx);
4557 
4558       raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4559       raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4560       raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4561 
4562       switch (polygon->FrontMode) {
4563       case GL_FILL:
4564          raster.FrontFaceFillMode = FILL_MODE_SOLID;
4565          break;
4566       case GL_LINE:
4567          raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4568          break;
4569       case GL_POINT:
4570          raster.FrontFaceFillMode = FILL_MODE_POINT;
4571          break;
4572       default:
4573          unreachable("not reached");
4574       }
4575 
4576       switch (polygon->BackMode) {
4577       case GL_FILL:
4578          raster.BackFaceFillMode = FILL_MODE_SOLID;
4579          break;
4580       case GL_LINE:
4581          raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4582          break;
4583       case GL_POINT:
4584          raster.BackFaceFillMode = FILL_MODE_POINT;
4585          break;
4586       default:
4587          unreachable("not reached");
4588       }
4589 
4590       /* _NEW_LINE */
4591       raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4592 
4593 #if GFX_VER == 10
4594       /* _NEW_BUFFERS
4595        * Antialiasing Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
4596        */
4597       const bool multisampled_fbo =
4598          _mesa_geometric_samples(ctx->DrawBuffer) > 1;
4599       if (multisampled_fbo)
4600          raster.AntialiasingEnable = false;
4601 #endif
4602 
4603       /* _NEW_SCISSOR */
4604       raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4605 
4606       /* _NEW_TRANSFORM */
4607 #if GFX_VER < 9
4608       if (!(ctx->Transform.DepthClampNear &&
4609             ctx->Transform.DepthClampFar))
4610          raster.ViewportZClipTestEnable = true;
4611 #endif
4612 
4613 #if GFX_VER >= 9
4614       if (!ctx->Transform.DepthClampNear)
4615          raster.ViewportZNearClipTestEnable = true;
4616 
4617       if (!ctx->Transform.DepthClampFar)
4618          raster.ViewportZFarClipTestEnable = true;
4619 #endif
4620 
4621       /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4622 #if GFX_VER >= 9
4623       raster.ConservativeRasterizationEnable =
4624          ctx->IntelConservativeRasterization;
4625 #endif
4626 
4627       raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4628       raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4629 
4630       raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4631    }
4632 }
4633 
4634 static const struct brw_tracked_state genX(raster_state) = {
4635    .dirty = {
4636       .mesa  = _NEW_BUFFERS |
4637                _NEW_LINE |
4638                _NEW_MULTISAMPLE |
4639                _NEW_POINT |
4640                _NEW_POLYGON |
4641                _NEW_SCISSOR |
4642                _NEW_TRANSFORM,
4643       .brw   = BRW_NEW_BLORP |
4644                BRW_NEW_CONTEXT |
4645                BRW_NEW_CONSERVATIVE_RASTERIZATION,
4646    },
4647    .emit = genX(upload_raster),
4648 };
4649 #endif
4650 
4651 /* ---------------------------------------------------------------------- */
4652 
4653 #if GFX_VER >= 8
4654 static void
4655 genX(upload_ps_extra)(struct brw_context *brw)
4656 {
4657    UNUSED struct gl_context *ctx = &brw->ctx;
4658 
4659    const struct brw_wm_prog_data *prog_data =
4660       brw_wm_prog_data(brw->wm.base.prog_data);
4661 
4662    brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4663       psx.PixelShaderValid = true;
4664       psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4665       psx.PixelShaderKillsPixel = prog_data->uses_kill;
4666       psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4667       psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4668       psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4669       psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4670 
4671       /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4672       if (prog_data->uses_sample_mask) {
4673 #if GFX_VER >= 9
4674          if (prog_data->post_depth_coverage)
4675             psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4676          else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4677             psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4678          else
4679             psx.InputCoverageMaskState = ICMS_NORMAL;
4680 #else
4681          psx.PixelShaderUsesInputCoverageMask = true;
4682 #endif
4683       }
4684 
4685       psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4686 #if GFX_VER >= 9
4687       psx.PixelShaderPullsBary = prog_data->pulls_bary;
4688       psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4689 #endif
4690 
4691       /* The stricter cross-primitive coherency guarantees that the hardware
4692        * gives us with the "Accesses UAV" bit set for at least one shader stage
4693        * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4694        * are redundant within the current image, atomic counter and SSBO GL
4695        * APIs, which all have very loose ordering and coherency requirements
4696        * and generally rely on the application to insert explicit barriers when
4697        * a shader invocation is expected to see the memory writes performed by
4698        * the invocations of some previous primitive.  Regardless of the value
4699        * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4700        * cause an in most cases useless DC flush when the lowermost stage with
4701        * the bit set finishes execution.
4702        *
4703        * It would be nice to disable it, but in some cases we can't because on
4704        * Gfx8+ it also has an influence on rasterization via the PS UAV-only
4705        * signal (which could be set independently from the coherency mechanism
4706        * in the 3DSTATE_WM command on Gfx7), and because in some cases it will
4707        * determine whether the hardware skips execution of the fragment shader
4708        * or not via the ThreadDispatchEnable signal.  However if we know that
4709        * GFX8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4710        * GFX8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4711        * difference so we may just disable it here.
4712        *
4713        * Gfx8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4714        * take into account KillPixels when no depth or stencil writes are
4715        * enabled.  In order for occlusion queries to work correctly with no
4716        * attachments, we need to force-enable here.
4717        *
4718        * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4719        * _NEW_COLOR
4720        */
4721       if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4722           !brw_color_buffer_write_enabled(brw))
4723          psx.PixelShaderHasUAV = true;
4724    }
4725 }
4726 
4727 const struct brw_tracked_state genX(ps_extra) = {
4728    .dirty = {
4729       .mesa  = _NEW_BUFFERS | _NEW_COLOR,
4730       .brw   = BRW_NEW_BLORP |
4731                BRW_NEW_CONTEXT |
4732                BRW_NEW_FRAGMENT_PROGRAM |
4733                BRW_NEW_FS_PROG_DATA |
4734                BRW_NEW_CONSERVATIVE_RASTERIZATION,
4735    },
4736    .emit = genX(upload_ps_extra),
4737 };
4738 #endif
4739 
4740 /* ---------------------------------------------------------------------- */
4741 
4742 #if GFX_VER >= 8
4743 static void
4744 genX(upload_ps_blend)(struct brw_context *brw)
4745 {
4746    struct gl_context *ctx = &brw->ctx;
4747 
4748    /* _NEW_BUFFERS */
4749    struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4750    const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4751 
4752    /* _NEW_COLOR */
4753    struct gl_colorbuffer_attrib *color = &ctx->Color;
4754 
4755    brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4756       /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4757       pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4758 
4759       bool alpha_to_one = false;
4760 
4761       if (!buffer0_is_integer) {
4762          /* _NEW_MULTISAMPLE */
4763 
4764          if (_mesa_is_multisample_enabled(ctx)) {
4765             pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4766             alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4767          }
4768 
4769          pb.AlphaTestEnable = color->AlphaEnabled;
4770       }
4771 
4772       /* Used for implementing the following bit of GL_EXT_texture_integer:
4773        * "Per-fragment operations that require floating-point color
4774        *  components, including multisample alpha operations, alpha test,
4775        *  blending, and dithering, have no effect when the corresponding
4776        *  colors are written to an integer color buffer."
4777        *
4778        * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4779        * "If drawbuffer zero is not NONE and the buffer it references has an
4780        *  integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4781        *  operations are skipped."
4782        */
4783       if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4784          GLenum eqRGB = color->Blend[0].EquationRGB;
4785          GLenum eqA = color->Blend[0].EquationA;
4786          GLenum srcRGB = color->Blend[0].SrcRGB;
4787          GLenum dstRGB = color->Blend[0].DstRGB;
4788          GLenum srcA = color->Blend[0].SrcA;
4789          GLenum dstA = color->Blend[0].DstA;
4790 
4791          if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4792             srcRGB = dstRGB = GL_ONE;
4793 
4794          if (eqA == GL_MIN || eqA == GL_MAX)
4795             srcA = dstA = GL_ONE;
4796 
4797          /* Due to hardware limitations, the destination may have information
4798           * in an alpha channel even when the format specifies no alpha
4799           * channel. In order to avoid getting any incorrect blending due to
4800           * that alpha channel, coerce the blend factors to values that will
4801           * not read the alpha channel, but will instead use the correct
4802           * implicit value for alpha.
4803           */
4804          if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4805                                             GL_TEXTURE_ALPHA_TYPE)) {
4806             srcRGB = brw_fix_xRGB_alpha(srcRGB);
4807             srcA = brw_fix_xRGB_alpha(srcA);
4808             dstRGB = brw_fix_xRGB_alpha(dstRGB);
4809             dstA = brw_fix_xRGB_alpha(dstA);
4810          }
4811 
4812          /* Alpha to One doesn't work with Dual Color Blending.  Override
4813           * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4814           */
4815          if (alpha_to_one && color->_BlendUsesDualSrc & 0x1) {
4816             srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4817             srcA = fix_dual_blend_alpha_to_one(srcA);
4818             dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4819             dstA = fix_dual_blend_alpha_to_one(dstA);
4820          }
4821 
4822          /* BRW_NEW_FS_PROG_DATA */
4823          const struct brw_wm_prog_data *wm_prog_data =
4824             brw_wm_prog_data(brw->wm.base.prog_data);
4825 
4826          /* The Dual Source Blending documentation says:
4827           *
4828           * "If SRC1 is included in a src/dst blend factor and
4829           * a DualSource RT Write message is not used, results
4830           * are UNDEFINED. (This reflects the same restriction in DX APIs,
4831           * where undefined results are produced if “o1” is not written
4832           * by a PS – there are no default values defined).
4833           * If SRC1 is not included in a src/dst blend factor,
4834           * dual source blending must be disabled."
4835           *
4836           * There is no way to gracefully fix this undefined situation
4837           * so we just disable the blending to prevent possible issues.
4838           */
4839          pb.ColorBufferBlendEnable =
4840             !(color->_BlendUsesDualSrc & 0x1) || wm_prog_data->dual_src_blend;
4841          pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4842          pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4843          pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4844          pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4845 
4846          pb.IndependentAlphaBlendEnable =
4847             srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4848       }
4849    }
4850 }
4851 
4852 static const struct brw_tracked_state genX(ps_blend) = {
4853    .dirty = {
4854       .mesa = _NEW_BUFFERS |
4855               _NEW_COLOR |
4856               _NEW_MULTISAMPLE,
4857       .brw = BRW_NEW_BLORP |
4858              BRW_NEW_CONTEXT |
4859              BRW_NEW_FRAGMENT_PROGRAM |
4860              BRW_NEW_FS_PROG_DATA,
4861    },
4862    .emit = genX(upload_ps_blend)
4863 };
4864 #endif
4865 
4866 /* ---------------------------------------------------------------------- */
4867 
4868 #if GFX_VER >= 8
4869 static void
4870 genX(emit_vf_topology)(struct brw_context *brw)
4871 {
4872    brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4873       vftopo.PrimitiveTopologyType = brw->primitive;
4874    }
4875 }
4876 
4877 static const struct brw_tracked_state genX(vf_topology) = {
4878    .dirty = {
4879       .mesa = 0,
4880       .brw = BRW_NEW_BLORP |
4881              BRW_NEW_PRIMITIVE,
4882    },
4883    .emit = genX(emit_vf_topology),
4884 };
4885 #endif
4886 
4887 /* ---------------------------------------------------------------------- */
4888 
4889 #if GFX_VER >= 7
4890 static void
4891 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4892                                 struct brw_bo *bo,
4893                                 uint32_t offset_in_bytes,
4894                                 uint32_t report_id)
4895 {
4896    brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4897       mi_rpc.MemoryAddress = ggtt_bo(bo, offset_in_bytes);
4898       mi_rpc.ReportID = report_id;
4899    }
4900 }
4901 #endif
4902 
4903 /* ---------------------------------------------------------------------- */
4904 
4905 /**
4906  * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4907  */
4908 static void
4909 genX(emit_sampler_state_pointers_xs)(UNUSED struct brw_context *brw,
4910                                      UNUSED struct brw_stage_state *stage_state)
4911 {
4912 #if GFX_VER >= 7
4913    static const uint16_t packet_headers[] = {
4914       [MESA_SHADER_VERTEX] = 43,
4915       [MESA_SHADER_TESS_CTRL] = 44,
4916       [MESA_SHADER_TESS_EVAL] = 45,
4917       [MESA_SHADER_GEOMETRY] = 46,
4918       [MESA_SHADER_FRAGMENT] = 47,
4919    };
4920 
4921    /* Ivybridge requires a workaround flush before VS packets. */
4922    if (GFX_VERx10 == 70 &&
4923        stage_state->stage == MESA_SHADER_VERTEX) {
4924       gfx7_emit_vs_workaround_flush(brw);
4925    }
4926 
4927    brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4928       ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
4929       ptr.PointertoVSSamplerState = stage_state->sampler_offset;
4930    }
4931 #endif
4932 }
4933 
4934 UNUSED static bool
4935 has_component(mesa_format format, int i)
4936 {
4937    if (_mesa_is_format_color_format(format))
4938       return _mesa_format_has_color_component(format, i);
4939 
4940    /* depth and stencil have only one component */
4941    return i == 0;
4942 }
4943 
4944 /**
4945  * Upload SAMPLER_BORDER_COLOR_STATE.
4946  */
4947 static void
4948 genX(upload_default_color)(struct brw_context *brw,
4949                            const struct gl_sampler_object *sampler,
4950                            UNUSED mesa_format format,
4951                            GLenum base_format,
4952                            bool is_integer_format, bool is_stencil_sampling,
4953                            uint32_t *sdc_offset)
4954 {
4955    union gl_color_union color;
4956 
4957    switch (base_format) {
4958    case GL_DEPTH_COMPONENT:
4959       /* GL specs that border color for depth textures is taken from the
4960        * R channel, while the hardware uses A.  Spam R into all the
4961        * channels for safety.
4962        */
4963       color.ui[0] = sampler->Attrib.state.border_color.ui[0];
4964       color.ui[1] = sampler->Attrib.state.border_color.ui[0];
4965       color.ui[2] = sampler->Attrib.state.border_color.ui[0];
4966       color.ui[3] = sampler->Attrib.state.border_color.ui[0];
4967       break;
4968    case GL_ALPHA:
4969       color.ui[0] = 0u;
4970       color.ui[1] = 0u;
4971       color.ui[2] = 0u;
4972       color.ui[3] = sampler->Attrib.state.border_color.ui[3];
4973       break;
4974    case GL_INTENSITY:
4975       color.ui[0] = sampler->Attrib.state.border_color.ui[0];
4976       color.ui[1] = sampler->Attrib.state.border_color.ui[0];
4977       color.ui[2] = sampler->Attrib.state.border_color.ui[0];
4978       color.ui[3] = sampler->Attrib.state.border_color.ui[0];
4979       break;
4980    case GL_LUMINANCE:
4981       color.ui[0] = sampler->Attrib.state.border_color.ui[0];
4982       color.ui[1] = sampler->Attrib.state.border_color.ui[0];
4983       color.ui[2] = sampler->Attrib.state.border_color.ui[0];
4984       color.ui[3] = float_as_int(1.0);
4985       break;
4986    case GL_LUMINANCE_ALPHA:
4987       color.ui[0] = sampler->Attrib.state.border_color.ui[0];
4988       color.ui[1] = sampler->Attrib.state.border_color.ui[0];
4989       color.ui[2] = sampler->Attrib.state.border_color.ui[0];
4990       color.ui[3] = sampler->Attrib.state.border_color.ui[3];
4991       break;
4992    default:
4993       color.ui[0] = sampler->Attrib.state.border_color.ui[0];
4994       color.ui[1] = sampler->Attrib.state.border_color.ui[1];
4995       color.ui[2] = sampler->Attrib.state.border_color.ui[2];
4996       color.ui[3] = sampler->Attrib.state.border_color.ui[3];
4997       break;
4998    }
4999 
5000    /* In some cases we use an RGBA surface format for GL RGB textures,
5001     * where we've initialized the A channel to 1.0.  We also have to set
5002     * the border color alpha to 1.0 in that case.
5003     */
5004    if (base_format == GL_RGB)
5005       color.ui[3] = float_as_int(1.0);
5006 
5007    int alignment = 32;
5008    if (GFX_VER >= 8) {
5009       alignment = 64;
5010    } else if (GFX_VERx10 == 75 && (is_integer_format || is_stencil_sampling)) {
5011       alignment = 512;
5012    }
5013 
5014    uint32_t *sdc = brw_state_batch(
5015       brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
5016       alignment, sdc_offset);
5017 
5018    struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
5019 
5020 #define ASSIGN(dst, src) \
5021    do {                  \
5022       dst = src;         \
5023    } while (0)
5024 
5025 #define ASSIGNu16(dst, src) \
5026    do {                     \
5027       dst = (uint16_t)src;  \
5028    } while (0)
5029 
5030 #define ASSIGNu8(dst, src) \
5031    do {                    \
5032       dst = (uint8_t)src;  \
5033    } while (0)
5034 
5035 #define BORDER_COLOR_ATTR(macro, _color_type, src)              \
5036    macro(state.BorderColor ## _color_type ## Red, src[0]);   \
5037    macro(state.BorderColor ## _color_type ## Green, src[1]);   \
5038    macro(state.BorderColor ## _color_type ## Blue, src[2]);   \
5039    macro(state.BorderColor ## _color_type ## Alpha, src[3]);
5040 
5041 #if GFX_VER >= 8
5042    /* On Broadwell, the border color is represented as four 32-bit floats,
5043     * integers, or unsigned values, interpreted according to the surface
5044     * format.  This matches the sampler->BorderColor union exactly; just
5045     * memcpy the values.
5046     */
5047    BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
5048 #elif GFX_VERx10 == 75
5049    if (is_integer_format || is_stencil_sampling) {
5050       bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
5051       const int bits_per_channel =
5052          _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
5053 
5054       /* From the Haswell PRM, "Command Reference: Structures", Page 36:
5055        * "If any color channel is missing from the surface format,
5056        *  corresponding border color should be programmed as zero and if
5057        *  alpha channel is missing, corresponding Alpha border color should
5058        *  be programmed as 1."
5059        */
5060       unsigned c[4] = { 0, 0, 0, 1 };
5061       for (int i = 0; i < 4; i++) {
5062          if (has_component(format, i))
5063             c[i] = color.ui[i];
5064       }
5065 
5066       switch (bits_per_channel) {
5067       case 8:
5068          /* Copy RGBA in order. */
5069          BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
5070          break;
5071       case 10:
5072          /* R10G10B10A2_UINT is treated like a 16-bit format. */
5073       case 16:
5074          BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
5075          break;
5076       case 32:
5077          if (base_format == GL_RG) {
5078             /* Careful inspection of the tables reveals that for RG32 formats,
5079              * the green channel needs to go where blue normally belongs.
5080              */
5081             state.BorderColor32bitRed = c[0];
5082             state.BorderColor32bitBlue = c[1];
5083             state.BorderColor32bitAlpha = 1;
5084          } else {
5085             /* Copy RGBA in order. */
5086             BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
5087          }
5088          break;
5089       default:
5090          assert(!"Invalid number of bits per channel in integer format.");
5091          break;
5092       }
5093    } else {
5094       BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5095    }
5096 #elif GFX_VER == 5 || GFX_VER == 6
5097    BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
5098    BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
5099    BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
5100 
5101 #define MESA_FLOAT_TO_HALF(dst, src) \
5102    dst = _mesa_float_to_half(src);
5103 
5104    BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
5105 
5106 #undef MESA_FLOAT_TO_HALF
5107 
5108    state.BorderColorSnorm8Red   = state.BorderColorSnorm16Red >> 8;
5109    state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
5110    state.BorderColorSnorm8Blue  = state.BorderColorSnorm16Blue >> 8;
5111    state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
5112 
5113    BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5114 #elif GFX_VER == 4
5115    BORDER_COLOR_ATTR(ASSIGN, , color.f);
5116 #else
5117    BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5118 #endif
5119 
5120 #undef ASSIGN
5121 #undef BORDER_COLOR_ATTR
5122 
5123    GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
5124 }
5125 
5126 static uint32_t
5127 translate_wrap_mode(GLenum wrap, UNUSED bool using_nearest)
5128 {
5129    switch (wrap) {
5130    case GL_REPEAT:
5131       return TCM_WRAP;
5132    case GL_CLAMP:
5133 #if GFX_VER >= 8
5134       /* GL_CLAMP is the weird mode where coordinates are clamped to
5135        * [0.0, 1.0], so linear filtering of coordinates outside of
5136        * [0.0, 1.0] give you half edge texel value and half border
5137        * color.
5138        *
5139        * Gfx8+ supports this natively.
5140        */
5141       return TCM_HALF_BORDER;
5142 #else
5143       /* On Gfx4-7.5, we clamp the coordinates in the fragment shader
5144        * and set clamp_border here, which gets the result desired.
5145        * We just use clamp(_to_edge) for nearest, because for nearest
5146        * clamping to 1.0 gives border color instead of the desired
5147        * edge texels.
5148        */
5149       if (using_nearest)
5150          return TCM_CLAMP;
5151       else
5152          return TCM_CLAMP_BORDER;
5153 #endif
5154    case GL_CLAMP_TO_EDGE:
5155       return TCM_CLAMP;
5156    case GL_CLAMP_TO_BORDER:
5157       return TCM_CLAMP_BORDER;
5158    case GL_MIRRORED_REPEAT:
5159       return TCM_MIRROR;
5160    case GL_MIRROR_CLAMP_TO_EDGE:
5161       return TCM_MIRROR_ONCE;
5162    default:
5163       return TCM_WRAP;
5164    }
5165 }
5166 
5167 /**
5168  * Return true if the given wrap mode requires the border color to exist.
5169  */
5170 static bool
5171 wrap_mode_needs_border_color(unsigned wrap_mode)
5172 {
5173 #if GFX_VER >= 8
5174    return wrap_mode == TCM_CLAMP_BORDER ||
5175           wrap_mode == TCM_HALF_BORDER;
5176 #else
5177    return wrap_mode == TCM_CLAMP_BORDER;
5178 #endif
5179 }
5180 
5181 /**
5182  * Sets the sampler state for a single unit based off of the sampler key
5183  * entry.
5184  */
5185 static void
5186 genX(update_sampler_state)(struct brw_context *brw,
5187                            GLenum target, bool tex_cube_map_seamless,
5188                            GLfloat tex_unit_lod_bias,
5189                            mesa_format format, GLenum base_format,
5190                            const struct gl_texture_object *texObj,
5191                            const struct gl_sampler_object *sampler,
5192                            uint32_t *sampler_state)
5193 {
5194    struct GENX(SAMPLER_STATE) samp_st = { 0 };
5195 
5196    /* Select min and mip filters. */
5197    switch (sampler->Attrib.MinFilter) {
5198    case GL_NEAREST:
5199       samp_st.MinModeFilter = MAPFILTER_NEAREST;
5200       samp_st.MipModeFilter = MIPFILTER_NONE;
5201       break;
5202    case GL_LINEAR:
5203       samp_st.MinModeFilter = MAPFILTER_LINEAR;
5204       samp_st.MipModeFilter = MIPFILTER_NONE;
5205       break;
5206    case GL_NEAREST_MIPMAP_NEAREST:
5207       samp_st.MinModeFilter = MAPFILTER_NEAREST;
5208       samp_st.MipModeFilter = MIPFILTER_NEAREST;
5209       break;
5210    case GL_LINEAR_MIPMAP_NEAREST:
5211       samp_st.MinModeFilter = MAPFILTER_LINEAR;
5212       samp_st.MipModeFilter = MIPFILTER_NEAREST;
5213       break;
5214    case GL_NEAREST_MIPMAP_LINEAR:
5215       samp_st.MinModeFilter = MAPFILTER_NEAREST;
5216       samp_st.MipModeFilter = MIPFILTER_LINEAR;
5217       break;
5218    case GL_LINEAR_MIPMAP_LINEAR:
5219       samp_st.MinModeFilter = MAPFILTER_LINEAR;
5220       samp_st.MipModeFilter = MIPFILTER_LINEAR;
5221       break;
5222    default:
5223       unreachable("not reached");
5224    }
5225 
5226    /* Select mag filter. */
5227    samp_st.MagModeFilter = sampler->Attrib.MagFilter == GL_LINEAR ?
5228       MAPFILTER_LINEAR : MAPFILTER_NEAREST;
5229 
5230    /* Enable anisotropic filtering if desired. */
5231    samp_st.MaximumAnisotropy = RATIO21;
5232 
5233    if (sampler->Attrib.MaxAnisotropy > 1.0f) {
5234       if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
5235          samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
5236       if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
5237          samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
5238 
5239       if (sampler->Attrib.MaxAnisotropy > 2.0f) {
5240          samp_st.MaximumAnisotropy =
5241             MIN2((sampler->Attrib.MaxAnisotropy - 2) / 2, RATIO161);
5242       }
5243    }
5244 
5245    /* Set address rounding bits if not using nearest filtering. */
5246    if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
5247       samp_st.UAddressMinFilterRoundingEnable = true;
5248       samp_st.VAddressMinFilterRoundingEnable = true;
5249       samp_st.RAddressMinFilterRoundingEnable = true;
5250    }
5251 
5252    if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
5253       samp_st.UAddressMagFilterRoundingEnable = true;
5254       samp_st.VAddressMagFilterRoundingEnable = true;
5255       samp_st.RAddressMagFilterRoundingEnable = true;
5256    }
5257 
5258    bool either_nearest =
5259       sampler->Attrib.MinFilter == GL_NEAREST || sampler->Attrib.MagFilter == GL_NEAREST;
5260    unsigned wrap_s = translate_wrap_mode(sampler->Attrib.WrapS, either_nearest);
5261    unsigned wrap_t = translate_wrap_mode(sampler->Attrib.WrapT, either_nearest);
5262    unsigned wrap_r = translate_wrap_mode(sampler->Attrib.WrapR, either_nearest);
5263 
5264    if (target == GL_TEXTURE_CUBE_MAP ||
5265        target == GL_TEXTURE_CUBE_MAP_ARRAY) {
5266       /* Cube maps must use the same wrap mode for all three coordinate
5267        * dimensions.  Prior to Haswell, only CUBE and CLAMP are valid.
5268        *
5269        * Ivybridge and Baytrail seem to have problems with CUBE mode and
5270        * integer formats.  Fall back to CLAMP for now.
5271        */
5272       if ((tex_cube_map_seamless || sampler->Attrib.CubeMapSeamless) &&
5273           !(GFX_VERx10 == 70 && texObj->_IsIntegerFormat)) {
5274          wrap_s = TCM_CUBE;
5275          wrap_t = TCM_CUBE;
5276          wrap_r = TCM_CUBE;
5277       } else {
5278          wrap_s = TCM_CLAMP;
5279          wrap_t = TCM_CLAMP;
5280          wrap_r = TCM_CLAMP;
5281       }
5282    } else if (target == GL_TEXTURE_1D) {
5283       /* There's a bug in 1D texture sampling - it actually pays
5284        * attention to the wrap_t value, though it should not.
5285        * Override the wrap_t value here to GL_REPEAT to keep
5286        * any nonexistent border pixels from floating in.
5287        */
5288       wrap_t = TCM_WRAP;
5289    }
5290 
5291    samp_st.TCXAddressControlMode = wrap_s;
5292    samp_st.TCYAddressControlMode = wrap_t;
5293    samp_st.TCZAddressControlMode = wrap_r;
5294 
5295    samp_st.ShadowFunction =
5296       sampler->Attrib.CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
5297       brw_translate_shadow_compare_func(sampler->Attrib.CompareFunc) : 0;
5298 
5299 #if GFX_VER >= 7
5300    /* Set shadow function. */
5301    samp_st.AnisotropicAlgorithm =
5302       samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
5303       EWAApproximation : LEGACY;
5304 #endif
5305 
5306 #if GFX_VER >= 6
5307    samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
5308 #endif
5309 
5310    const float hw_max_lod = GFX_VER >= 7 ? 14 : 13;
5311    samp_st.MinLOD = CLAMP(sampler->Attrib.MinLod, 0, hw_max_lod);
5312    samp_st.MaxLOD = CLAMP(sampler->Attrib.MaxLod, 0, hw_max_lod);
5313    samp_st.TextureLODBias =
5314       CLAMP(tex_unit_lod_bias + sampler->Attrib.LodBias, -16, 15);
5315 
5316 #if GFX_VER == 6
5317    samp_st.BaseMipLevel =
5318       CLAMP(texObj->Attrib.MinLevel + texObj->Attrib.BaseLevel, 0, hw_max_lod);
5319    samp_st.MinandMagStateNotEqual =
5320       samp_st.MinModeFilter != samp_st.MagModeFilter;
5321 #endif
5322 
5323    /* Upload the border color if necessary.  If not, just point it at
5324     * offset 0 (the start of the batch) - the color should be ignored,
5325     * but that address won't fault in case something reads it anyway.
5326     */
5327    uint32_t border_color_offset = 0;
5328    if (wrap_mode_needs_border_color(wrap_s) ||
5329        wrap_mode_needs_border_color(wrap_t) ||
5330        wrap_mode_needs_border_color(wrap_r)) {
5331       genX(upload_default_color)(brw, sampler, format, base_format,
5332                                  texObj->_IsIntegerFormat,
5333                                  texObj->StencilSampling,
5334                                  &border_color_offset);
5335    }
5336 #if GFX_VER < 6
5337       samp_st.BorderColorPointer =
5338          ro_bo(brw->batch.state.bo, border_color_offset);
5339 #else
5340       samp_st.BorderColorPointer = border_color_offset;
5341 #endif
5342 
5343 #if GFX_VER >= 8
5344    samp_st.LODPreClampMode = CLAMP_MODE_OGL;
5345 #else
5346    samp_st.LODPreClampEnable = true;
5347 #endif
5348 
5349    GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
5350 }
5351 
5352 static void
5353 update_sampler_state(struct brw_context *brw,
5354                      int unit,
5355                      uint32_t *sampler_state)
5356 {
5357    struct gl_context *ctx = &brw->ctx;
5358    const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
5359    const struct gl_texture_object *texObj = texUnit->_Current;
5360    const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
5361 
5362    /* These don't use samplers at all. */
5363    if (texObj->Target == GL_TEXTURE_BUFFER)
5364       return;
5365 
5366    struct gl_texture_image *firstImage = texObj->Image[0][texObj->Attrib.BaseLevel];
5367    genX(update_sampler_state)(brw, texObj->Target,
5368                               ctx->Texture.CubeMapSeamless,
5369                               texUnit->LodBias,
5370                               firstImage->TexFormat, firstImage->_BaseFormat,
5371                               texObj, sampler,
5372                               sampler_state);
5373 }
5374 
5375 static void
5376 genX(upload_sampler_state_table)(struct brw_context *brw,
5377                                  struct gl_program *prog,
5378                                  struct brw_stage_state *stage_state)
5379 {
5380    struct gl_context *ctx = &brw->ctx;
5381    uint32_t sampler_count = stage_state->sampler_count;
5382 
5383    GLbitfield SamplersUsed = prog->SamplersUsed;
5384 
5385    if (sampler_count == 0)
5386       return;
5387 
5388    /* SAMPLER_STATE is 4 DWords on all platforms. */
5389    const int dwords = GENX(SAMPLER_STATE_length);
5390    const int size_in_bytes = dwords * sizeof(uint32_t);
5391 
5392    uint32_t *sampler_state = brw_state_batch(brw,
5393                                              sampler_count * size_in_bytes,
5394                                              32, &stage_state->sampler_offset);
5395    /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
5396 
5397    for (unsigned s = 0; s < sampler_count; s++) {
5398       if (SamplersUsed & (1 << s)) {
5399          const unsigned unit = prog->SamplerUnits[s];
5400          if (ctx->Texture.Unit[unit]._Current) {
5401             update_sampler_state(brw, unit, sampler_state);
5402          }
5403       }
5404 
5405       sampler_state += dwords;
5406    }
5407 
5408    if (GFX_VER >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
5409       /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
5410       genX(emit_sampler_state_pointers_xs)(brw, stage_state);
5411    } else {
5412       /* Flag that the sampler state table pointer has changed; later atoms
5413        * will handle it.
5414        */
5415       brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
5416    }
5417 }
5418 
5419 static void
5420 genX(upload_fs_samplers)(struct brw_context *brw)
5421 {
5422    /* BRW_NEW_FRAGMENT_PROGRAM */
5423    struct gl_program *fs = brw->programs[MESA_SHADER_FRAGMENT];
5424    genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
5425 }
5426 
5427 static const struct brw_tracked_state genX(fs_samplers) = {
5428    .dirty = {
5429       .mesa = _NEW_TEXTURE,
5430       .brw = BRW_NEW_BATCH |
5431              BRW_NEW_BLORP |
5432              BRW_NEW_FRAGMENT_PROGRAM,
5433    },
5434    .emit = genX(upload_fs_samplers),
5435 };
5436 
5437 static void
5438 genX(upload_vs_samplers)(struct brw_context *brw)
5439 {
5440    /* BRW_NEW_VERTEX_PROGRAM */
5441    struct gl_program *vs = brw->programs[MESA_SHADER_VERTEX];
5442    genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
5443 }
5444 
5445 static const struct brw_tracked_state genX(vs_samplers) = {
5446    .dirty = {
5447       .mesa = _NEW_TEXTURE,
5448       .brw = BRW_NEW_BATCH |
5449              BRW_NEW_BLORP |
5450              BRW_NEW_VERTEX_PROGRAM,
5451    },
5452    .emit = genX(upload_vs_samplers),
5453 };
5454 
5455 #if GFX_VER >= 6
5456 static void
5457 genX(upload_gs_samplers)(struct brw_context *brw)
5458 {
5459    /* BRW_NEW_GEOMETRY_PROGRAM */
5460    struct gl_program *gs = brw->programs[MESA_SHADER_GEOMETRY];
5461    if (!gs)
5462       return;
5463 
5464    genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
5465 }
5466 
5467 
5468 static const struct brw_tracked_state genX(gs_samplers) = {
5469    .dirty = {
5470       .mesa = _NEW_TEXTURE,
5471       .brw = BRW_NEW_BATCH |
5472              BRW_NEW_BLORP |
5473              BRW_NEW_GEOMETRY_PROGRAM,
5474    },
5475    .emit = genX(upload_gs_samplers),
5476 };
5477 #endif
5478 
5479 #if GFX_VER >= 7
5480 static void
5481 genX(upload_tcs_samplers)(struct brw_context *brw)
5482 {
5483    /* BRW_NEW_TESS_PROGRAMS */
5484    struct gl_program *tcs = brw->programs[MESA_SHADER_TESS_CTRL];
5485    if (!tcs)
5486       return;
5487 
5488    genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
5489 }
5490 
5491 static const struct brw_tracked_state genX(tcs_samplers) = {
5492    .dirty = {
5493       .mesa = _NEW_TEXTURE,
5494       .brw = BRW_NEW_BATCH |
5495              BRW_NEW_BLORP |
5496              BRW_NEW_TESS_PROGRAMS,
5497    },
5498    .emit = genX(upload_tcs_samplers),
5499 };
5500 #endif
5501 
5502 #if GFX_VER >= 7
5503 static void
5504 genX(upload_tes_samplers)(struct brw_context *brw)
5505 {
5506    /* BRW_NEW_TESS_PROGRAMS */
5507    struct gl_program *tes = brw->programs[MESA_SHADER_TESS_EVAL];
5508    if (!tes)
5509       return;
5510 
5511    genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
5512 }
5513 
5514 static const struct brw_tracked_state genX(tes_samplers) = {
5515    .dirty = {
5516       .mesa = _NEW_TEXTURE,
5517       .brw = BRW_NEW_BATCH |
5518              BRW_NEW_BLORP |
5519              BRW_NEW_TESS_PROGRAMS,
5520    },
5521    .emit = genX(upload_tes_samplers),
5522 };
5523 #endif
5524 
5525 #if GFX_VER >= 7
5526 static void
5527 genX(upload_cs_samplers)(struct brw_context *brw)
5528 {
5529    /* BRW_NEW_COMPUTE_PROGRAM */
5530    struct gl_program *cs = brw->programs[MESA_SHADER_COMPUTE];
5531    if (!cs)
5532       return;
5533 
5534    genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
5535 }
5536 
5537 const struct brw_tracked_state genX(cs_samplers) = {
5538    .dirty = {
5539       .mesa = _NEW_TEXTURE,
5540       .brw = BRW_NEW_BATCH |
5541              BRW_NEW_BLORP |
5542              BRW_NEW_COMPUTE_PROGRAM,
5543    },
5544    .emit = genX(upload_cs_samplers),
5545 };
5546 #endif
5547 
5548 /* ---------------------------------------------------------------------- */
5549 
5550 #if GFX_VER <= 5
5551 
5552 static void genX(upload_blend_constant_color)(struct brw_context *brw)
5553 {
5554    struct gl_context *ctx = &brw->ctx;
5555 
5556    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
5557       blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
5558       blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
5559       blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
5560       blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
5561    }
5562 }
5563 
5564 static const struct brw_tracked_state genX(blend_constant_color) = {
5565    .dirty = {
5566       .mesa = _NEW_COLOR,
5567       .brw = BRW_NEW_CONTEXT |
5568              BRW_NEW_BLORP,
5569    },
5570    .emit = genX(upload_blend_constant_color)
5571 };
5572 #endif
5573 
5574 /* ---------------------------------------------------------------------- */
5575 
5576 void
5577 genX(init_atoms)(struct brw_context *brw)
5578 {
5579 #if GFX_VER < 6
5580    static const struct brw_tracked_state *render_atoms[] =
5581    {
5582       &genX(vf_statistics),
5583 
5584       /* Once all the programs are done, we know how large urb entry
5585        * sizes need to be and can decide if we need to change the urb
5586        * layout.
5587        */
5588       &brw_curbe_offsets,
5589       &brw_recalculate_urb_fence,
5590 
5591       &genX(cc_vp),
5592       &genX(color_calc_state),
5593 
5594       /* Surface state setup.  Must come before the VS/WM unit.  The binding
5595        * table upload must be last.
5596        */
5597       &brw_vs_pull_constants,
5598       &brw_wm_pull_constants,
5599       &brw_renderbuffer_surfaces,
5600       &brw_renderbuffer_read_surfaces,
5601       &brw_texture_surfaces,
5602       &brw_vs_binding_table,
5603       &brw_wm_binding_table,
5604 
5605       &genX(fs_samplers),
5606       &genX(vs_samplers),
5607 
5608       /* These set up state for brw_psp_urb_cbs */
5609       &genX(wm_state),
5610       &genX(sf_clip_viewport),
5611       &genX(sf_state),
5612       &genX(vs_state), /* always required, enabled or not */
5613       &genX(clip_state),
5614       &genX(gs_state),
5615 
5616       /* Command packets:
5617        */
5618       &brw_binding_table_pointers,
5619       &genX(blend_constant_color),
5620 
5621       &brw_depthbuffer,
5622 
5623       &genX(polygon_stipple),
5624       &genX(polygon_stipple_offset),
5625 
5626       &genX(line_stipple),
5627 
5628       &brw_psp_urb_cbs,
5629 
5630       &genX(drawing_rect),
5631       &brw_indices, /* must come before brw_vertices */
5632       &genX(index_buffer),
5633       &genX(vertices),
5634 
5635       &brw_constant_buffer
5636    };
5637 #elif GFX_VER == 6
5638    static const struct brw_tracked_state *render_atoms[] =
5639    {
5640       &genX(vf_statistics),
5641 
5642       &genX(sf_clip_viewport),
5643 
5644       /* Command packets: */
5645 
5646       &genX(cc_vp),
5647 
5648       &gfx6_urb,
5649       &genX(blend_state),         /* must do before cc unit */
5650       &genX(color_calc_state),    /* must do before cc unit */
5651       &genX(depth_stencil_state), /* must do before cc unit */
5652 
5653       &genX(vs_push_constants), /* Before vs_state */
5654       &genX(gs_push_constants), /* Before gs_state */
5655       &genX(wm_push_constants), /* Before wm_state */
5656 
5657       /* Surface state setup.  Must come before the VS/WM unit.  The binding
5658        * table upload must be last.
5659        */
5660       &brw_vs_pull_constants,
5661       &brw_vs_ubo_surfaces,
5662       &brw_gs_pull_constants,
5663       &brw_gs_ubo_surfaces,
5664       &brw_wm_pull_constants,
5665       &brw_wm_ubo_surfaces,
5666       &gfx6_renderbuffer_surfaces,
5667       &brw_renderbuffer_read_surfaces,
5668       &brw_texture_surfaces,
5669       &gfx6_sol_surface,
5670       &brw_vs_binding_table,
5671       &gfx6_gs_binding_table,
5672       &brw_wm_binding_table,
5673 
5674       &genX(fs_samplers),
5675       &genX(vs_samplers),
5676       &genX(gs_samplers),
5677       &gfx6_sampler_state,
5678       &genX(multisample_state),
5679 
5680       &genX(vs_state),
5681       &genX(gs_state),
5682       &genX(clip_state),
5683       &genX(sf_state),
5684       &genX(wm_state),
5685 
5686       &genX(scissor_state),
5687 
5688       &gfx6_binding_table_pointers,
5689 
5690       &brw_depthbuffer,
5691 
5692       &genX(polygon_stipple),
5693       &genX(polygon_stipple_offset),
5694 
5695       &genX(line_stipple),
5696 
5697       &genX(drawing_rect),
5698 
5699       &brw_indices, /* must come before brw_vertices */
5700       &genX(index_buffer),
5701       &genX(vertices),
5702    };
5703 #elif GFX_VER == 7
5704    static const struct brw_tracked_state *render_atoms[] =
5705    {
5706       &genX(vf_statistics),
5707 
5708       /* Command packets: */
5709 
5710       &genX(cc_vp),
5711       &genX(sf_clip_viewport),
5712 
5713       &gfx7_l3_state,
5714       &gfx7_push_constant_space,
5715       &gfx7_urb,
5716 #if GFX_VERx10 == 75
5717       &genX(cc_and_blend_state),
5718 #else
5719       &genX(blend_state),         /* must do before cc unit */
5720       &genX(color_calc_state),    /* must do before cc unit */
5721 #endif
5722       &genX(depth_stencil_state), /* must do before cc unit */
5723 
5724       &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5725       &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5726       &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5727       &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5728       &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5729 
5730       &genX(vs_push_constants), /* Before vs_state */
5731       &genX(tcs_push_constants),
5732       &genX(tes_push_constants),
5733       &genX(gs_push_constants), /* Before gs_state */
5734       &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5735 
5736       /* Surface state setup.  Must come before the VS/WM unit.  The binding
5737        * table upload must be last.
5738        */
5739       &brw_vs_pull_constants,
5740       &brw_vs_ubo_surfaces,
5741       &brw_tcs_pull_constants,
5742       &brw_tcs_ubo_surfaces,
5743       &brw_tes_pull_constants,
5744       &brw_tes_ubo_surfaces,
5745       &brw_gs_pull_constants,
5746       &brw_gs_ubo_surfaces,
5747       &brw_wm_pull_constants,
5748       &brw_wm_ubo_surfaces,
5749       &gfx6_renderbuffer_surfaces,
5750       &brw_renderbuffer_read_surfaces,
5751       &brw_texture_surfaces,
5752 
5753       &genX(push_constant_packets),
5754 
5755       &brw_vs_binding_table,
5756       &brw_tcs_binding_table,
5757       &brw_tes_binding_table,
5758       &brw_gs_binding_table,
5759       &brw_wm_binding_table,
5760 
5761       &genX(fs_samplers),
5762       &genX(vs_samplers),
5763       &genX(tcs_samplers),
5764       &genX(tes_samplers),
5765       &genX(gs_samplers),
5766       &genX(multisample_state),
5767 
5768       &genX(vs_state),
5769       &genX(hs_state),
5770       &genX(te_state),
5771       &genX(ds_state),
5772       &genX(gs_state),
5773       &genX(sol_state),
5774       &genX(clip_state),
5775       &genX(sbe_state),
5776       &genX(sf_state),
5777       &genX(wm_state),
5778       &genX(ps_state),
5779 
5780       &genX(scissor_state),
5781 
5782       &brw_depthbuffer,
5783 
5784       &genX(polygon_stipple),
5785       &genX(polygon_stipple_offset),
5786 
5787       &genX(line_stipple),
5788 
5789       &genX(drawing_rect),
5790 
5791       &brw_indices, /* must come before brw_vertices */
5792       &genX(index_buffer),
5793       &genX(vertices),
5794 
5795 #if GFX_VERx10 == 75
5796       &genX(cut_index),
5797 #endif
5798    };
5799 #elif GFX_VER >= 8
5800    static const struct brw_tracked_state *render_atoms[] =
5801    {
5802       &genX(vf_statistics),
5803 
5804       &genX(cc_vp),
5805       &genX(sf_clip_viewport),
5806 
5807       &gfx7_l3_state,
5808       &gfx7_push_constant_space,
5809       &gfx7_urb,
5810       &genX(blend_state),
5811       &genX(color_calc_state),
5812 
5813       &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5814       &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5815       &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5816       &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5817       &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5818 
5819       &genX(vs_push_constants), /* Before vs_state */
5820       &genX(tcs_push_constants),
5821       &genX(tes_push_constants),
5822       &genX(gs_push_constants), /* Before gs_state */
5823       &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5824 
5825       /* Surface state setup.  Must come before the VS/WM unit.  The binding
5826        * table upload must be last.
5827        */
5828       &brw_vs_pull_constants,
5829       &brw_vs_ubo_surfaces,
5830       &brw_tcs_pull_constants,
5831       &brw_tcs_ubo_surfaces,
5832       &brw_tes_pull_constants,
5833       &brw_tes_ubo_surfaces,
5834       &brw_gs_pull_constants,
5835       &brw_gs_ubo_surfaces,
5836       &brw_wm_pull_constants,
5837       &brw_wm_ubo_surfaces,
5838       &gfx6_renderbuffer_surfaces,
5839       &brw_renderbuffer_read_surfaces,
5840       &brw_texture_surfaces,
5841 
5842       &genX(push_constant_packets),
5843 
5844       &brw_vs_binding_table,
5845       &brw_tcs_binding_table,
5846       &brw_tes_binding_table,
5847       &brw_gs_binding_table,
5848       &brw_wm_binding_table,
5849 
5850       &genX(fs_samplers),
5851       &genX(vs_samplers),
5852       &genX(tcs_samplers),
5853       &genX(tes_samplers),
5854       &genX(gs_samplers),
5855       &genX(multisample_state),
5856 
5857       &genX(vs_state),
5858       &genX(hs_state),
5859       &genX(te_state),
5860       &genX(ds_state),
5861       &genX(gs_state),
5862       &genX(sol_state),
5863       &genX(clip_state),
5864       &genX(raster_state),
5865       &genX(sbe_state),
5866       &genX(sf_state),
5867       &genX(ps_blend),
5868       &genX(ps_extra),
5869       &genX(ps_state),
5870       &genX(depth_stencil_state),
5871       &genX(wm_state),
5872 
5873       &genX(scissor_state),
5874 
5875       &brw_depthbuffer,
5876 
5877       &genX(polygon_stipple),
5878       &genX(polygon_stipple_offset),
5879 
5880       &genX(line_stipple),
5881 
5882       &genX(drawing_rect),
5883 
5884       &genX(vf_topology),
5885 
5886       &brw_indices,
5887       &genX(index_buffer),
5888       &genX(vertices),
5889 
5890       &genX(cut_index),
5891       &gfx8_pma_fix,
5892    };
5893 #endif
5894 
5895    STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5896    brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5897                            render_atoms, ARRAY_SIZE(render_atoms));
5898 
5899 #if GFX_VER >= 7
5900    static const struct brw_tracked_state *compute_atoms[] =
5901    {
5902       &gfx7_l3_state,
5903       &brw_cs_image_surfaces,
5904       &genX(cs_push_constants),
5905       &genX(cs_pull_constants),
5906       &brw_cs_ubo_surfaces,
5907       &brw_cs_texture_surfaces,
5908       &brw_cs_work_groups_surface,
5909       &genX(cs_samplers),
5910       &genX(cs_state),
5911    };
5912 
5913    STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5914    brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5915                            compute_atoms, ARRAY_SIZE(compute_atoms));
5916 
5917    brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5918    brw->vtbl.emit_compute_walker = genX(emit_gpgpu_walker);
5919 #endif
5920 
5921    assert(brw->screen->devinfo.verx10 == GFX_VERx10);
5922 }
5923