1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "vtn_private.h"
25 #include "spirv_info.h"
26 #include "nir/nir_vla.h"
27 #include "util/debug.h"
28 
29 static struct vtn_block *
vtn_block(struct vtn_builder * b,uint32_t value_id)30 vtn_block(struct vtn_builder *b, uint32_t value_id)
31 {
32    return vtn_value(b, value_id, vtn_value_type_block)->block;
33 }
34 
35 static unsigned
glsl_type_count_function_params(const struct glsl_type * type)36 glsl_type_count_function_params(const struct glsl_type *type)
37 {
38    if (glsl_type_is_vector_or_scalar(type)) {
39       return 1;
40    } else if (glsl_type_is_array_or_matrix(type)) {
41       return glsl_get_length(type) *
42              glsl_type_count_function_params(glsl_get_array_element(type));
43    } else {
44       assert(glsl_type_is_struct_or_ifc(type));
45       unsigned count = 0;
46       unsigned elems = glsl_get_length(type);
47       for (unsigned i = 0; i < elems; i++) {
48          const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
49          count += glsl_type_count_function_params(elem_type);
50       }
51       return count;
52    }
53 }
54 
55 static void
glsl_type_add_to_function_params(const struct glsl_type * type,nir_function * func,unsigned * param_idx)56 glsl_type_add_to_function_params(const struct glsl_type *type,
57                                  nir_function *func,
58                                  unsigned *param_idx)
59 {
60    if (glsl_type_is_vector_or_scalar(type)) {
61       func->params[(*param_idx)++] = (nir_parameter) {
62          .num_components = glsl_get_vector_elements(type),
63          .bit_size = glsl_get_bit_size(type),
64       };
65    } else if (glsl_type_is_array_or_matrix(type)) {
66       unsigned elems = glsl_get_length(type);
67       const struct glsl_type *elem_type = glsl_get_array_element(type);
68       for (unsigned i = 0; i < elems; i++)
69          glsl_type_add_to_function_params(elem_type,func, param_idx);
70    } else {
71       assert(glsl_type_is_struct_or_ifc(type));
72       unsigned elems = glsl_get_length(type);
73       for (unsigned i = 0; i < elems; i++) {
74          const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
75          glsl_type_add_to_function_params(elem_type, func, param_idx);
76       }
77    }
78 }
79 
80 static void
vtn_ssa_value_add_to_call_params(struct vtn_builder * b,struct vtn_ssa_value * value,nir_call_instr * call,unsigned * param_idx)81 vtn_ssa_value_add_to_call_params(struct vtn_builder *b,
82                                  struct vtn_ssa_value *value,
83                                  nir_call_instr *call,
84                                  unsigned *param_idx)
85 {
86    if (glsl_type_is_vector_or_scalar(value->type)) {
87       call->params[(*param_idx)++] = nir_src_for_ssa(value->def);
88    } else {
89       unsigned elems = glsl_get_length(value->type);
90       for (unsigned i = 0; i < elems; i++) {
91          vtn_ssa_value_add_to_call_params(b, value->elems[i],
92                                           call, param_idx);
93       }
94    }
95 }
96 
97 static void
vtn_ssa_value_load_function_param(struct vtn_builder * b,struct vtn_ssa_value * value,unsigned * param_idx)98 vtn_ssa_value_load_function_param(struct vtn_builder *b,
99                                   struct vtn_ssa_value *value,
100                                   unsigned *param_idx)
101 {
102    if (glsl_type_is_vector_or_scalar(value->type)) {
103       value->def = nir_load_param(&b->nb, (*param_idx)++);
104    } else {
105       unsigned elems = glsl_get_length(value->type);
106       for (unsigned i = 0; i < elems; i++)
107          vtn_ssa_value_load_function_param(b, value->elems[i], param_idx);
108    }
109 }
110 
111 void
vtn_handle_function_call(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)112 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
113                          const uint32_t *w, unsigned count)
114 {
115    struct vtn_function *vtn_callee =
116       vtn_value(b, w[3], vtn_value_type_function)->func;
117 
118    vtn_callee->referenced = true;
119 
120    nir_call_instr *call = nir_call_instr_create(b->nb.shader,
121                                                 vtn_callee->nir_func);
122 
123    unsigned param_idx = 0;
124 
125    nir_deref_instr *ret_deref = NULL;
126    struct vtn_type *ret_type = vtn_callee->type->return_type;
127    if (ret_type->base_type != vtn_base_type_void) {
128       nir_variable *ret_tmp =
129          nir_local_variable_create(b->nb.impl,
130                                    glsl_get_bare_type(ret_type->type),
131                                    "return_tmp");
132       ret_deref = nir_build_deref_var(&b->nb, ret_tmp);
133       call->params[param_idx++] = nir_src_for_ssa(&ret_deref->dest.ssa);
134    }
135 
136    for (unsigned i = 0; i < vtn_callee->type->length; i++) {
137       vtn_ssa_value_add_to_call_params(b, vtn_ssa_value(b, w[4 + i]),
138                                        call, &param_idx);
139    }
140    assert(param_idx == call->num_params);
141 
142    nir_builder_instr_insert(&b->nb, &call->instr);
143 
144    if (ret_type->base_type == vtn_base_type_void) {
145       vtn_push_value(b, w[2], vtn_value_type_undef);
146    } else {
147       vtn_push_ssa_value(b, w[2], vtn_local_load(b, ret_deref, 0));
148    }
149 }
150 
151 static bool
vtn_cfg_handle_prepass_instruction(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)152 vtn_cfg_handle_prepass_instruction(struct vtn_builder *b, SpvOp opcode,
153                                    const uint32_t *w, unsigned count)
154 {
155    switch (opcode) {
156    case SpvOpFunction: {
157       vtn_assert(b->func == NULL);
158       b->func = rzalloc(b, struct vtn_function);
159 
160       b->func->node.type = vtn_cf_node_type_function;
161       b->func->node.parent = NULL;
162       list_inithead(&b->func->body);
163       b->func->control = w[3];
164 
165       UNUSED const struct glsl_type *result_type = vtn_get_type(b, w[1])->type;
166       struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function);
167       val->func = b->func;
168 
169       b->func->type = vtn_get_type(b, w[4]);
170       const struct vtn_type *func_type = b->func->type;
171 
172       vtn_assert(func_type->return_type->type == result_type);
173 
174       nir_function *func =
175          nir_function_create(b->shader, ralloc_strdup(b->shader, val->name));
176 
177       unsigned num_params = 0;
178       for (unsigned i = 0; i < func_type->length; i++)
179          num_params += glsl_type_count_function_params(func_type->params[i]->type);
180 
181       /* Add one parameter for the function return value */
182       if (func_type->return_type->base_type != vtn_base_type_void)
183          num_params++;
184 
185       func->num_params = num_params;
186       func->params = ralloc_array(b->shader, nir_parameter, num_params);
187 
188       unsigned idx = 0;
189       if (func_type->return_type->base_type != vtn_base_type_void) {
190          nir_address_format addr_format =
191             vtn_mode_to_address_format(b, vtn_variable_mode_function);
192          /* The return value is a regular pointer */
193          func->params[idx++] = (nir_parameter) {
194             .num_components = nir_address_format_num_components(addr_format),
195             .bit_size = nir_address_format_bit_size(addr_format),
196          };
197       }
198 
199       for (unsigned i = 0; i < func_type->length; i++)
200          glsl_type_add_to_function_params(func_type->params[i]->type, func, &idx);
201       assert(idx == num_params);
202 
203       b->func->nir_func = func;
204 
205       /* Set up a nir_function_impl and the builder so we can load arguments
206        * directly in our OpFunctionParameter handler.
207        */
208       nir_function_impl *impl = nir_function_impl_create(func);
209       nir_builder_init(&b->nb, impl);
210       b->nb.cursor = nir_before_cf_list(&impl->body);
211       b->nb.exact = b->exact;
212 
213       b->func_param_idx = 0;
214 
215       /* The return value is the first parameter */
216       if (func_type->return_type->base_type != vtn_base_type_void)
217          b->func_param_idx++;
218       break;
219    }
220 
221    case SpvOpFunctionEnd:
222       b->func->end = w;
223       if (b->func->start_block == NULL) {
224          /* In this case, the function didn't have any actual blocks.  It's
225           * just a prototype so delete the function_impl.
226           */
227          b->func->nir_func->impl = NULL;
228       }
229       b->func = NULL;
230       break;
231 
232    case SpvOpFunctionParameter: {
233       vtn_assert(b->func_param_idx < b->func->nir_func->num_params);
234       struct vtn_type *type = vtn_get_type(b, w[1]);
235       struct vtn_ssa_value *value = vtn_create_ssa_value(b, type->type);
236       vtn_ssa_value_load_function_param(b, value, &b->func_param_idx);
237       vtn_push_ssa_value(b, w[2], value);
238       break;
239    }
240 
241    case SpvOpLabel: {
242       vtn_assert(b->block == NULL);
243       b->block = rzalloc(b, struct vtn_block);
244       b->block->node.type = vtn_cf_node_type_block;
245       b->block->label = w;
246       vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block;
247 
248       if (b->func->start_block == NULL) {
249          /* This is the first block encountered for this function.  In this
250           * case, we set the start block and add it to the list of
251           * implemented functions that we'll walk later.
252           */
253          b->func->start_block = b->block;
254          list_addtail(&b->func->node.link, &b->functions);
255       }
256       break;
257    }
258 
259    case SpvOpSelectionMerge:
260    case SpvOpLoopMerge:
261       vtn_assert(b->block && b->block->merge == NULL);
262       b->block->merge = w;
263       break;
264 
265    case SpvOpBranch:
266    case SpvOpBranchConditional:
267    case SpvOpSwitch:
268    case SpvOpKill:
269    case SpvOpTerminateInvocation:
270    case SpvOpIgnoreIntersectionKHR:
271    case SpvOpTerminateRayKHR:
272    case SpvOpReturn:
273    case SpvOpReturnValue:
274    case SpvOpUnreachable:
275       vtn_assert(b->block && b->block->branch == NULL);
276       b->block->branch = w;
277       b->block = NULL;
278       break;
279 
280    default:
281       /* Continue on as per normal */
282       return true;
283    }
284 
285    return true;
286 }
287 
288 /* This function performs a depth-first search of the cases and puts them
289  * in fall-through order.
290  */
291 static void
vtn_order_case(struct vtn_switch * swtch,struct vtn_case * cse)292 vtn_order_case(struct vtn_switch *swtch, struct vtn_case *cse)
293 {
294    if (cse->visited)
295       return;
296 
297    cse->visited = true;
298 
299    list_del(&cse->node.link);
300 
301    if (cse->fallthrough) {
302       vtn_order_case(swtch, cse->fallthrough);
303 
304       /* If we have a fall-through, place this case right before the case it
305        * falls through to.  This ensures that fallthroughs come one after
306        * the other.  These two can never get separated because that would
307        * imply something else falling through to the same case.  Also, this
308        * can't break ordering because the DFS ensures that this case is
309        * visited before anything that falls through to it.
310        */
311       list_addtail(&cse->node.link, &cse->fallthrough->node.link);
312    } else {
313       list_add(&cse->node.link, &swtch->cases);
314    }
315 }
316 
317 static void
vtn_switch_order_cases(struct vtn_switch * swtch)318 vtn_switch_order_cases(struct vtn_switch *swtch)
319 {
320    struct list_head cases;
321    list_replace(&swtch->cases, &cases);
322    list_inithead(&swtch->cases);
323    while (!list_is_empty(&cases)) {
324       struct vtn_case *cse =
325          list_first_entry(&cases, struct vtn_case, node.link);
326       vtn_order_case(swtch, cse);
327    }
328 }
329 
330 static void
vtn_block_set_merge_cf_node(struct vtn_builder * b,struct vtn_block * block,struct vtn_cf_node * cf_node)331 vtn_block_set_merge_cf_node(struct vtn_builder *b, struct vtn_block *block,
332                             struct vtn_cf_node *cf_node)
333 {
334    vtn_fail_if(block->merge_cf_node != NULL,
335                "The merge block declared by a header block cannot be a "
336                "merge block declared by any other header block.");
337 
338    block->merge_cf_node = cf_node;
339 }
340 
341 #define VTN_DECL_CF_NODE_FIND(_type)                        \
342 static inline struct vtn_##_type *                          \
343 vtn_cf_node_find_##_type(struct vtn_cf_node *node)          \
344 {                                                           \
345    while (node && node->type != vtn_cf_node_type_##_type)   \
346       node = node->parent;                                  \
347    return (struct vtn_##_type *)node;                       \
348 }
349 
350 VTN_DECL_CF_NODE_FIND(if)
VTN_DECL_CF_NODE_FIND(loop)351 VTN_DECL_CF_NODE_FIND(loop)
352 VTN_DECL_CF_NODE_FIND(case)
353 VTN_DECL_CF_NODE_FIND(switch)
354 VTN_DECL_CF_NODE_FIND(function)
355 
356 static enum vtn_branch_type
357 vtn_handle_branch(struct vtn_builder *b,
358                   struct vtn_cf_node *cf_parent,
359                   struct vtn_block *target_block)
360 {
361    struct vtn_loop *loop = vtn_cf_node_find_loop(cf_parent);
362 
363    /* Detect a loop back-edge first.  That way none of the code below
364     * accidentally operates on a loop back-edge.
365     */
366    if (loop && target_block == loop->header_block)
367       return vtn_branch_type_loop_back_edge;
368 
369    /* Try to detect fall-through */
370    if (target_block->switch_case) {
371       /* When it comes to handling switch cases, we can break calls to
372        * vtn_handle_branch into two cases: calls from within a case construct
373        * and calls for the jump to each case construct.  In the second case,
374        * cf_parent is the vtn_switch itself and vtn_cf_node_find_case() will
375        * return the outer switch case in which this switch is contained.  It's
376        * fine if the target block is a switch case from an outer switch as
377        * long as it is also the switch break for this switch.
378        */
379       struct vtn_case *switch_case = vtn_cf_node_find_case(cf_parent);
380 
381       /* This doesn't get called for the OpSwitch */
382       vtn_fail_if(switch_case == NULL,
383                   "A switch case can only be entered through an OpSwitch or "
384                   "falling through from another switch case.");
385 
386       /* Because block->switch_case is only set on the entry block for a given
387        * switch case, we only ever get here if we're jumping to the start of a
388        * switch case.  It's possible, however, that a switch case could jump
389        * to itself via a back-edge.  That *should* get caught by the loop
390        * handling case above but if we have a back edge without a loop merge,
391        * we could en up here.
392        */
393       vtn_fail_if(target_block->switch_case == switch_case,
394                   "A switch cannot fall-through to itself.  Likely, there is "
395                   "a back-edge which is not to a loop header.");
396 
397       vtn_fail_if(target_block->switch_case->node.parent !=
398                      switch_case->node.parent,
399                   "A switch case fall-through must come from the same "
400                   "OpSwitch construct");
401 
402       vtn_fail_if(switch_case->fallthrough != NULL &&
403                   switch_case->fallthrough != target_block->switch_case,
404                   "Each case construct can have at most one branch to "
405                   "another case construct");
406 
407       switch_case->fallthrough = target_block->switch_case;
408 
409       /* We don't immediately return vtn_branch_type_switch_fallthrough
410        * because it may also be a loop or switch break for an inner loop or
411        * switch and that takes precedence.
412        */
413    }
414 
415    if (loop && target_block == loop->cont_block)
416       return vtn_branch_type_loop_continue;
417 
418    /* We walk blocks as a breadth-first search on the control-flow construct
419     * tree where, when we find a construct, we add the vtn_cf_node for that
420     * construct and continue iterating at the merge target block (if any).
421     * Therefore, we want merges whose with parent == cf_parent to be treated
422     * as regular branches.  We only want to consider merges if they break out
423     * of the current CF construct.
424     */
425    if (target_block->merge_cf_node != NULL &&
426        target_block->merge_cf_node->parent != cf_parent) {
427       switch (target_block->merge_cf_node->type) {
428       case vtn_cf_node_type_if:
429          for (struct vtn_cf_node *node = cf_parent;
430               node != target_block->merge_cf_node; node = node->parent) {
431             vtn_fail_if(node == NULL || node->type != vtn_cf_node_type_if,
432                         "Branching to the merge block of a selection "
433                         "construct can only be used to break out of a "
434                         "selection construct");
435 
436             struct vtn_if *if_stmt = vtn_cf_node_as_if(node);
437 
438             /* This should be guaranteed by our iteration */
439             assert(if_stmt->merge_block != target_block);
440 
441             vtn_fail_if(if_stmt->merge_block != NULL,
442                         "Branching to the merge block of a selection "
443                         "construct can only be used to break out of the "
444                         "inner most nested selection level");
445          }
446          return vtn_branch_type_if_merge;
447 
448       case vtn_cf_node_type_loop:
449          vtn_fail_if(target_block->merge_cf_node != &loop->node,
450                      "Loop breaks can only break out of the inner most "
451                      "nested loop level");
452          return vtn_branch_type_loop_break;
453 
454       case vtn_cf_node_type_switch: {
455          struct vtn_switch *swtch = vtn_cf_node_find_switch(cf_parent);
456          vtn_fail_if(target_block->merge_cf_node != &swtch->node,
457                      "Switch breaks can only break out of the inner most "
458                      "nested switch level");
459          return vtn_branch_type_switch_break;
460       }
461 
462       default:
463          unreachable("Invalid CF node type for a merge");
464       }
465    }
466 
467    if (target_block->switch_case)
468       return vtn_branch_type_switch_fallthrough;
469 
470    return vtn_branch_type_none;
471 }
472 
473 struct vtn_cfg_work_item {
474    struct list_head link;
475 
476    struct vtn_cf_node *cf_parent;
477    struct list_head *cf_list;
478    struct vtn_block *start_block;
479 };
480 
481 static void
vtn_add_cfg_work_item(struct vtn_builder * b,struct list_head * work_list,struct vtn_cf_node * cf_parent,struct list_head * cf_list,struct vtn_block * start_block)482 vtn_add_cfg_work_item(struct vtn_builder *b,
483                       struct list_head *work_list,
484                       struct vtn_cf_node *cf_parent,
485                       struct list_head *cf_list,
486                       struct vtn_block *start_block)
487 {
488    struct vtn_cfg_work_item *work = ralloc(b, struct vtn_cfg_work_item);
489    work->cf_parent = cf_parent;
490    work->cf_list = cf_list;
491    work->start_block = start_block;
492    list_addtail(&work->link, work_list);
493 }
494 
495 /* returns the default block */
496 static void
vtn_parse_switch(struct vtn_builder * b,struct vtn_switch * swtch,const uint32_t * branch,struct list_head * case_list)497 vtn_parse_switch(struct vtn_builder *b,
498                  struct vtn_switch *swtch,
499                  const uint32_t *branch,
500                  struct list_head *case_list)
501 {
502    const uint32_t *branch_end = branch + (branch[0] >> SpvWordCountShift);
503 
504    struct vtn_value *sel_val = vtn_untyped_value(b, branch[1]);
505    vtn_fail_if(!sel_val->type ||
506                sel_val->type->base_type != vtn_base_type_scalar,
507                "Selector of OpSwitch must have a type of OpTypeInt");
508 
509    nir_alu_type sel_type =
510       nir_get_nir_type_for_glsl_type(sel_val->type->type);
511    vtn_fail_if(nir_alu_type_get_base_type(sel_type) != nir_type_int &&
512                nir_alu_type_get_base_type(sel_type) != nir_type_uint,
513                "Selector of OpSwitch must have a type of OpTypeInt");
514 
515    struct hash_table *block_to_case = _mesa_pointer_hash_table_create(b);
516 
517    bool is_default = true;
518    const unsigned bitsize = nir_alu_type_get_type_size(sel_type);
519    for (const uint32_t *w = branch + 2; w < branch_end;) {
520       uint64_t literal = 0;
521       if (!is_default) {
522          if (bitsize <= 32) {
523             literal = *(w++);
524          } else {
525             assert(bitsize == 64);
526             literal = vtn_u64_literal(w);
527             w += 2;
528          }
529       }
530       struct vtn_block *case_block = vtn_block(b, *(w++));
531 
532       struct hash_entry *case_entry =
533          _mesa_hash_table_search(block_to_case, case_block);
534 
535       struct vtn_case *cse;
536       if (case_entry) {
537          cse = case_entry->data;
538       } else {
539          cse = rzalloc(b, struct vtn_case);
540 
541          cse->node.type = vtn_cf_node_type_case;
542          cse->node.parent = swtch ? &swtch->node : NULL;
543          cse->block = case_block;
544          list_inithead(&cse->body);
545          util_dynarray_init(&cse->values, b);
546 
547          list_addtail(&cse->node.link, case_list);
548          _mesa_hash_table_insert(block_to_case, case_block, cse);
549       }
550 
551       if (is_default) {
552          cse->is_default = true;
553       } else {
554          util_dynarray_append(&cse->values, uint64_t, literal);
555       }
556 
557       is_default = false;
558    }
559 
560    _mesa_hash_table_destroy(block_to_case, NULL);
561 }
562 
563 /* Processes a block and returns the next block to process or NULL if we've
564  * reached the end of the construct.
565  */
566 static struct vtn_block *
vtn_process_block(struct vtn_builder * b,struct list_head * work_list,struct vtn_cf_node * cf_parent,struct list_head * cf_list,struct vtn_block * block)567 vtn_process_block(struct vtn_builder *b,
568                   struct list_head *work_list,
569                   struct vtn_cf_node *cf_parent,
570                   struct list_head *cf_list,
571                   struct vtn_block *block)
572 {
573    if (!list_is_empty(cf_list)) {
574       /* vtn_process_block() acts like an iterator: it processes the given
575        * block and then returns the next block to process.  For a given
576        * control-flow construct, vtn_build_cfg() calls vtn_process_block()
577        * repeatedly until it finally returns NULL.  Therefore, we know that
578        * the only blocks on which vtn_process_block() can be called are either
579        * the first block in a construct or a block that vtn_process_block()
580        * returned for the current construct.  If cf_list is empty then we know
581        * that we're processing the first block in the construct and we have to
582        * add it to the list.
583        *
584        * If cf_list is not empty, then it must be the block returned by the
585        * previous call to vtn_process_block().  We know a priori that
586        * vtn_process_block only returns either normal branches
587        * (vtn_branch_type_none) or merge target blocks.
588        */
589       switch (vtn_handle_branch(b, cf_parent, block)) {
590       case vtn_branch_type_none:
591          /* For normal branches, we want to process them and add them to the
592           * current construct.  Merge target blocks also look like normal
593           * branches from the perspective of this construct.  See also
594           * vtn_handle_branch().
595           */
596          break;
597 
598       case vtn_branch_type_loop_continue:
599       case vtn_branch_type_switch_fallthrough:
600          /* The two cases where we can get early exits from a construct that
601           * are not to that construct's merge target are loop continues and
602           * switch fall-throughs.  In these cases, we need to break out of the
603           * current construct by returning NULL.
604           */
605          return NULL;
606 
607       default:
608          /* The only way we can get here is if something was used as two kinds
609           * of merges at the same time and that's illegal.
610           */
611          vtn_fail("A block was used as a merge target from two or more "
612                   "structured control-flow constructs");
613       }
614    }
615 
616    /* Once a block has been processed, it is placed into and the list link
617     * will point to something non-null.  If we see a node we've already
618     * processed here, it either exists in multiple functions or it's an
619     * invalid back-edge.
620     */
621    if (block->node.parent != NULL) {
622       vtn_fail_if(vtn_cf_node_find_function(&block->node) !=
623                   vtn_cf_node_find_function(cf_parent),
624                   "A block cannot exist in two functions at the "
625                   "same time");
626 
627       vtn_fail("Invalid back or cross-edge in the CFG");
628    }
629 
630    if (block->merge && (*block->merge & SpvOpCodeMask) == SpvOpLoopMerge &&
631        block->loop == NULL) {
632       vtn_fail_if((*block->branch & SpvOpCodeMask) != SpvOpBranch &&
633                   (*block->branch & SpvOpCodeMask) != SpvOpBranchConditional,
634                   "An OpLoopMerge instruction must immediately precede "
635                   "either an OpBranch or OpBranchConditional instruction.");
636 
637       struct vtn_loop *loop = rzalloc(b, struct vtn_loop);
638 
639       loop->node.type = vtn_cf_node_type_loop;
640       loop->node.parent = cf_parent;
641       list_inithead(&loop->body);
642       list_inithead(&loop->cont_body);
643       loop->header_block = block;
644       loop->break_block = vtn_block(b, block->merge[1]);
645       loop->cont_block = vtn_block(b, block->merge[2]);
646       loop->control = block->merge[3];
647 
648       list_addtail(&loop->node.link, cf_list);
649       block->loop = loop;
650 
651       /* Note: The work item for the main loop body will start with the
652        * current block as its start block.  If we weren't careful, we would
653        * get here again and end up in an infinite loop.  This is why we set
654        * block->loop above and check for it before creating one.  This way,
655        * we only create the loop once and the second iteration that tries to
656        * handle this loop goes to the cases below and gets handled as a
657        * regular block.
658        */
659       vtn_add_cfg_work_item(b, work_list, &loop->node,
660                             &loop->body, loop->header_block);
661 
662       /* For continue targets, SPIR-V guarantees the following:
663        *
664        *  - the Continue Target must dominate the back-edge block
665        *  - the back-edge block must post dominate the Continue Target
666        *
667        * If the header block is the same as the continue target, this
668        * condition is trivially satisfied and there is no real continue
669        * section.
670        */
671       if (loop->cont_block != loop->header_block) {
672          vtn_add_cfg_work_item(b, work_list, &loop->node,
673                                &loop->cont_body, loop->cont_block);
674       }
675 
676       vtn_block_set_merge_cf_node(b, loop->break_block, &loop->node);
677 
678       return loop->break_block;
679    }
680 
681    /* Add the block to the CF list */
682    block->node.parent = cf_parent;
683    list_addtail(&block->node.link, cf_list);
684 
685    switch (*block->branch & SpvOpCodeMask) {
686    case SpvOpBranch: {
687       struct vtn_block *branch_block = vtn_block(b, block->branch[1]);
688 
689       block->branch_type = vtn_handle_branch(b, cf_parent, branch_block);
690 
691       if (block->branch_type == vtn_branch_type_none)
692          return branch_block;
693       else
694          return NULL;
695    }
696 
697    case SpvOpReturn:
698    case SpvOpReturnValue:
699       block->branch_type = vtn_branch_type_return;
700       return NULL;
701 
702    case SpvOpKill:
703       block->branch_type = vtn_branch_type_discard;
704       return NULL;
705 
706    case SpvOpTerminateInvocation:
707       block->branch_type = vtn_branch_type_terminate_invocation;
708       return NULL;
709 
710    case SpvOpIgnoreIntersectionKHR:
711       block->branch_type = vtn_branch_type_ignore_intersection;
712       return NULL;
713 
714    case SpvOpTerminateRayKHR:
715       block->branch_type = vtn_branch_type_terminate_ray;
716       return NULL;
717 
718    case SpvOpBranchConditional: {
719       struct vtn_value *cond_val = vtn_untyped_value(b, block->branch[1]);
720       vtn_fail_if(!cond_val->type ||
721                   cond_val->type->base_type != vtn_base_type_scalar ||
722                   cond_val->type->type != glsl_bool_type(),
723                   "Condition must be a Boolean type scalar");
724 
725       struct vtn_if *if_stmt = rzalloc(b, struct vtn_if);
726 
727       if_stmt->node.type = vtn_cf_node_type_if;
728       if_stmt->node.parent = cf_parent;
729       if_stmt->header_block = block;
730       list_inithead(&if_stmt->then_body);
731       list_inithead(&if_stmt->else_body);
732 
733       list_addtail(&if_stmt->node.link, cf_list);
734 
735       if (block->merge &&
736           (*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge) {
737          /* We may not always have a merge block and that merge doesn't
738           * technically have to be an OpSelectionMerge.  We could have a block
739           * with an OpLoopMerge which ends in an OpBranchConditional.
740           */
741          if_stmt->merge_block = vtn_block(b, block->merge[1]);
742          vtn_block_set_merge_cf_node(b, if_stmt->merge_block, &if_stmt->node);
743 
744          if_stmt->control = block->merge[2];
745       }
746 
747       struct vtn_block *then_block = vtn_block(b, block->branch[2]);
748       if_stmt->then_type = vtn_handle_branch(b, &if_stmt->node, then_block);
749       if (if_stmt->then_type == vtn_branch_type_none) {
750          vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
751                                &if_stmt->then_body, then_block);
752       }
753 
754       struct vtn_block *else_block = vtn_block(b, block->branch[3]);
755       if (then_block != else_block) {
756          if_stmt->else_type = vtn_handle_branch(b, &if_stmt->node, else_block);
757          if (if_stmt->else_type == vtn_branch_type_none) {
758             vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
759                                   &if_stmt->else_body, else_block);
760          }
761       }
762 
763       return if_stmt->merge_block;
764    }
765 
766    case SpvOpSwitch: {
767       struct vtn_switch *swtch = rzalloc(b, struct vtn_switch);
768 
769       swtch->node.type = vtn_cf_node_type_switch;
770       swtch->node.parent = cf_parent;
771       swtch->selector = block->branch[1];
772       list_inithead(&swtch->cases);
773 
774       list_addtail(&swtch->node.link, cf_list);
775 
776       /* We may not always have a merge block */
777       if (block->merge) {
778          vtn_fail_if((*block->merge & SpvOpCodeMask) != SpvOpSelectionMerge,
779                      "An OpLoopMerge instruction must immediately precede "
780                      "either an OpBranch or OpBranchConditional "
781                      "instruction.");
782          swtch->break_block = vtn_block(b, block->merge[1]);
783          vtn_block_set_merge_cf_node(b, swtch->break_block, &swtch->node);
784       }
785 
786       /* First, we go through and record all of the cases. */
787       vtn_parse_switch(b, swtch, block->branch, &swtch->cases);
788 
789       /* Gather the branch types for the switch */
790       vtn_foreach_cf_node(case_node, &swtch->cases) {
791          struct vtn_case *cse = vtn_cf_node_as_case(case_node);
792 
793          cse->type = vtn_handle_branch(b, &swtch->node, cse->block);
794          switch (cse->type) {
795          case vtn_branch_type_none:
796             /* This is a "real" cases which has stuff in it */
797             vtn_fail_if(cse->block->switch_case != NULL,
798                         "OpSwitch has a case which is also in another "
799                         "OpSwitch construct");
800             cse->block->switch_case = cse;
801             vtn_add_cfg_work_item(b, work_list, &cse->node,
802                                   &cse->body, cse->block);
803             break;
804 
805          case vtn_branch_type_switch_break:
806          case vtn_branch_type_loop_break:
807          case vtn_branch_type_loop_continue:
808             /* Switch breaks as well as loop breaks and continues can be
809              * used to break out of a switch construct or as direct targets
810              * of the OpSwitch.
811              */
812             break;
813 
814          default:
815             vtn_fail("Target of OpSwitch is not a valid structured exit "
816                      "from the switch construct.");
817          }
818       }
819 
820       return swtch->break_block;
821    }
822 
823    case SpvOpUnreachable:
824       return NULL;
825 
826    default:
827       vtn_fail("Block did not end with a valid branch instruction");
828    }
829 }
830 
831 void
vtn_build_cfg(struct vtn_builder * b,const uint32_t * words,const uint32_t * end)832 vtn_build_cfg(struct vtn_builder *b, const uint32_t *words, const uint32_t *end)
833 {
834    vtn_foreach_instruction(b, words, end,
835                            vtn_cfg_handle_prepass_instruction);
836 
837    if (b->shader->info.stage == MESA_SHADER_KERNEL)
838       return;
839 
840    vtn_foreach_cf_node(func_node, &b->functions) {
841       struct vtn_function *func = vtn_cf_node_as_function(func_node);
842 
843       /* We build the CFG for each function by doing a breadth-first search on
844        * the control-flow graph.  We keep track of our state using a worklist.
845        * Doing a BFS ensures that we visit each structured control-flow
846        * construct and its merge node before we visit the stuff inside the
847        * construct.
848        */
849       struct list_head work_list;
850       list_inithead(&work_list);
851       vtn_add_cfg_work_item(b, &work_list, &func->node, &func->body,
852                             func->start_block);
853 
854       while (!list_is_empty(&work_list)) {
855          struct vtn_cfg_work_item *work =
856             list_first_entry(&work_list, struct vtn_cfg_work_item, link);
857          list_del(&work->link);
858 
859          for (struct vtn_block *block = work->start_block; block; ) {
860             block = vtn_process_block(b, &work_list, work->cf_parent,
861                                       work->cf_list, block);
862          }
863       }
864    }
865 }
866 
867 static bool
vtn_handle_phis_first_pass(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)868 vtn_handle_phis_first_pass(struct vtn_builder *b, SpvOp opcode,
869                            const uint32_t *w, unsigned count)
870 {
871    if (opcode == SpvOpLabel)
872       return true; /* Nothing to do */
873 
874    /* If this isn't a phi node, stop. */
875    if (opcode != SpvOpPhi)
876       return false;
877 
878    /* For handling phi nodes, we do a poor-man's out-of-ssa on the spot.
879     * For each phi, we create a variable with the appropreate type and
880     * do a load from that variable.  Then, in a second pass, we add
881     * stores to that variable to each of the predecessor blocks.
882     *
883     * We could do something more intelligent here.  However, in order to
884     * handle loops and things properly, we really need dominance
885     * information.  It would end up basically being the into-SSA
886     * algorithm all over again.  It's easier if we just let
887     * lower_vars_to_ssa do that for us instead of repeating it here.
888     */
889    struct vtn_type *type = vtn_get_type(b, w[1]);
890    nir_variable *phi_var =
891       nir_local_variable_create(b->nb.impl, type->type, "phi");
892    _mesa_hash_table_insert(b->phi_table, w, phi_var);
893 
894    vtn_push_ssa_value(b, w[2],
895       vtn_local_load(b, nir_build_deref_var(&b->nb, phi_var), 0));
896 
897    return true;
898 }
899 
900 static bool
vtn_handle_phi_second_pass(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)901 vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode,
902                            const uint32_t *w, unsigned count)
903 {
904    if (opcode != SpvOpPhi)
905       return true;
906 
907    struct hash_entry *phi_entry = _mesa_hash_table_search(b->phi_table, w);
908 
909    /* It's possible that this phi is in an unreachable block in which case it
910     * may never have been emitted and therefore may not be in the hash table.
911     * In this case, there's no var for it and it's safe to just bail.
912     */
913    if (phi_entry == NULL)
914       return true;
915 
916    nir_variable *phi_var = phi_entry->data;
917 
918    for (unsigned i = 3; i < count; i += 2) {
919       struct vtn_block *pred = vtn_block(b, w[i + 1]);
920 
921       /* If block does not have end_nop, that is because it is an unreacheable
922        * block, and hence it is not worth to handle it */
923       if (!pred->end_nop)
924          continue;
925 
926       b->nb.cursor = nir_after_instr(&pred->end_nop->instr);
927 
928       struct vtn_ssa_value *src = vtn_ssa_value(b, w[i]);
929 
930       vtn_local_store(b, src, nir_build_deref_var(&b->nb, phi_var), 0);
931    }
932 
933    return true;
934 }
935 
936 static void
vtn_emit_branch(struct vtn_builder * b,enum vtn_branch_type branch_type,nir_variable * switch_fall_var,bool * has_switch_break)937 vtn_emit_branch(struct vtn_builder *b, enum vtn_branch_type branch_type,
938                 nir_variable *switch_fall_var, bool *has_switch_break)
939 {
940    switch (branch_type) {
941    case vtn_branch_type_if_merge:
942       break; /* Nothing to do */
943    case vtn_branch_type_switch_break:
944       nir_store_var(&b->nb, switch_fall_var, nir_imm_false(&b->nb), 1);
945       *has_switch_break = true;
946       break;
947    case vtn_branch_type_switch_fallthrough:
948       break; /* Nothing to do */
949    case vtn_branch_type_loop_break:
950       nir_jump(&b->nb, nir_jump_break);
951       break;
952    case vtn_branch_type_loop_continue:
953       nir_jump(&b->nb, nir_jump_continue);
954       break;
955    case vtn_branch_type_loop_back_edge:
956       break;
957    case vtn_branch_type_return:
958       nir_jump(&b->nb, nir_jump_return);
959       break;
960    case vtn_branch_type_discard:
961       if (b->convert_discard_to_demote)
962          nir_demote(&b->nb);
963       else
964          nir_discard(&b->nb);
965       break;
966    case vtn_branch_type_terminate_invocation:
967       nir_terminate(&b->nb);
968       break;
969    case vtn_branch_type_ignore_intersection:
970       nir_ignore_ray_intersection(&b->nb);
971       nir_jump(&b->nb, nir_jump_halt);
972       break;
973    case vtn_branch_type_terminate_ray:
974       nir_terminate_ray(&b->nb);
975       nir_jump(&b->nb, nir_jump_halt);
976       break;
977    default:
978       vtn_fail("Invalid branch type");
979    }
980 }
981 
982 static nir_ssa_def *
vtn_switch_case_condition(struct vtn_builder * b,struct vtn_switch * swtch,nir_ssa_def * sel,struct vtn_case * cse)983 vtn_switch_case_condition(struct vtn_builder *b, struct vtn_switch *swtch,
984                           nir_ssa_def *sel, struct vtn_case *cse)
985 {
986    if (cse->is_default) {
987       nir_ssa_def *any = nir_imm_false(&b->nb);
988       vtn_foreach_cf_node(other_node, &swtch->cases) {
989          struct vtn_case *other = vtn_cf_node_as_case(other_node);
990          if (other->is_default)
991             continue;
992 
993          any = nir_ior(&b->nb, any,
994                        vtn_switch_case_condition(b, swtch, sel, other));
995       }
996       return nir_inot(&b->nb, any);
997    } else {
998       nir_ssa_def *cond = nir_imm_false(&b->nb);
999       util_dynarray_foreach(&cse->values, uint64_t, val)
1000          cond = nir_ior(&b->nb, cond, nir_ieq_imm(&b->nb, sel, *val));
1001       return cond;
1002    }
1003 }
1004 
1005 static nir_loop_control
vtn_loop_control(struct vtn_builder * b,struct vtn_loop * vtn_loop)1006 vtn_loop_control(struct vtn_builder *b, struct vtn_loop *vtn_loop)
1007 {
1008    if (vtn_loop->control == SpvLoopControlMaskNone)
1009       return nir_loop_control_none;
1010    else if (vtn_loop->control & SpvLoopControlDontUnrollMask)
1011       return nir_loop_control_dont_unroll;
1012    else if (vtn_loop->control & SpvLoopControlUnrollMask)
1013       return nir_loop_control_unroll;
1014    else if (vtn_loop->control & SpvLoopControlDependencyInfiniteMask ||
1015             vtn_loop->control & SpvLoopControlDependencyLengthMask ||
1016             vtn_loop->control & SpvLoopControlMinIterationsMask ||
1017             vtn_loop->control & SpvLoopControlMaxIterationsMask ||
1018             vtn_loop->control & SpvLoopControlIterationMultipleMask ||
1019             vtn_loop->control & SpvLoopControlPeelCountMask ||
1020             vtn_loop->control & SpvLoopControlPartialCountMask) {
1021       /* We do not do anything special with these yet. */
1022       return nir_loop_control_none;
1023    } else {
1024       vtn_fail("Invalid loop control");
1025    }
1026 }
1027 
1028 static nir_selection_control
vtn_selection_control(struct vtn_builder * b,struct vtn_if * vtn_if)1029 vtn_selection_control(struct vtn_builder *b, struct vtn_if *vtn_if)
1030 {
1031    if (vtn_if->control == SpvSelectionControlMaskNone)
1032       return nir_selection_control_none;
1033    else if (vtn_if->control & SpvSelectionControlDontFlattenMask)
1034       return nir_selection_control_dont_flatten;
1035    else if (vtn_if->control & SpvSelectionControlFlattenMask)
1036       return nir_selection_control_flatten;
1037    else
1038       vtn_fail("Invalid selection control");
1039 }
1040 
1041 static void
vtn_emit_ret_store(struct vtn_builder * b,struct vtn_block * block)1042 vtn_emit_ret_store(struct vtn_builder *b, struct vtn_block *block)
1043 {
1044    if ((*block->branch & SpvOpCodeMask) != SpvOpReturnValue)
1045       return;
1046 
1047    vtn_fail_if(b->func->type->return_type->base_type == vtn_base_type_void,
1048                "Return with a value from a function returning void");
1049    struct vtn_ssa_value *src = vtn_ssa_value(b, block->branch[1]);
1050    const struct glsl_type *ret_type =
1051       glsl_get_bare_type(b->func->type->return_type->type);
1052    nir_deref_instr *ret_deref =
1053       nir_build_deref_cast(&b->nb, nir_load_param(&b->nb, 0),
1054                            nir_var_function_temp, ret_type, 0);
1055    vtn_local_store(b, src, ret_deref, 0);
1056 }
1057 
1058 static void
vtn_emit_cf_list_structured(struct vtn_builder * b,struct list_head * cf_list,nir_variable * switch_fall_var,bool * has_switch_break,vtn_instruction_handler handler)1059 vtn_emit_cf_list_structured(struct vtn_builder *b, struct list_head *cf_list,
1060                             nir_variable *switch_fall_var,
1061                             bool *has_switch_break,
1062                             vtn_instruction_handler handler)
1063 {
1064    vtn_foreach_cf_node(node, cf_list) {
1065       switch (node->type) {
1066       case vtn_cf_node_type_block: {
1067          struct vtn_block *block = vtn_cf_node_as_block(node);
1068 
1069          const uint32_t *block_start = block->label;
1070          const uint32_t *block_end = block->merge ? block->merge :
1071                                                     block->branch;
1072 
1073          block_start = vtn_foreach_instruction(b, block_start, block_end,
1074                                                vtn_handle_phis_first_pass);
1075 
1076          vtn_foreach_instruction(b, block_start, block_end, handler);
1077 
1078          block->end_nop = nir_nop(&b->nb);
1079 
1080          vtn_emit_ret_store(b, block);
1081 
1082          if (block->branch_type != vtn_branch_type_none) {
1083             vtn_emit_branch(b, block->branch_type,
1084                             switch_fall_var, has_switch_break);
1085             return;
1086          }
1087 
1088          break;
1089       }
1090 
1091       case vtn_cf_node_type_if: {
1092          struct vtn_if *vtn_if = vtn_cf_node_as_if(node);
1093          const uint32_t *branch = vtn_if->header_block->branch;
1094          vtn_assert((branch[0] & SpvOpCodeMask) == SpvOpBranchConditional);
1095 
1096          /* If both branches are the same, just emit the first block, which is
1097           * the only one we filled when building the CFG.
1098           */
1099          if (branch[2] == branch[3]) {
1100             vtn_emit_cf_list_structured(b, &vtn_if->then_body,
1101                                         switch_fall_var, has_switch_break, handler);
1102             break;
1103          }
1104 
1105          bool sw_break = false;
1106 
1107          nir_if *nif =
1108             nir_push_if(&b->nb, vtn_get_nir_ssa(b, branch[1]));
1109 
1110          nif->control = vtn_selection_control(b, vtn_if);
1111 
1112          if (vtn_if->then_type == vtn_branch_type_none) {
1113             vtn_emit_cf_list_structured(b, &vtn_if->then_body,
1114                                         switch_fall_var, &sw_break, handler);
1115          } else {
1116             vtn_emit_branch(b, vtn_if->then_type, switch_fall_var, &sw_break);
1117          }
1118 
1119          nir_push_else(&b->nb, nif);
1120          if (vtn_if->else_type == vtn_branch_type_none) {
1121             vtn_emit_cf_list_structured(b, &vtn_if->else_body,
1122                                         switch_fall_var, &sw_break, handler);
1123          } else {
1124             vtn_emit_branch(b, vtn_if->else_type, switch_fall_var, &sw_break);
1125          }
1126 
1127          nir_pop_if(&b->nb, nif);
1128 
1129          /* If we encountered a switch break somewhere inside of the if,
1130           * then it would have been handled correctly by calling
1131           * emit_cf_list or emit_branch for the interrior.  However, we
1132           * need to predicate everything following on wether or not we're
1133           * still going.
1134           */
1135          if (sw_break) {
1136             *has_switch_break = true;
1137             nir_push_if(&b->nb, nir_load_var(&b->nb, switch_fall_var));
1138          }
1139          break;
1140       }
1141 
1142       case vtn_cf_node_type_loop: {
1143          struct vtn_loop *vtn_loop = vtn_cf_node_as_loop(node);
1144 
1145          nir_loop *loop = nir_push_loop(&b->nb);
1146          loop->control = vtn_loop_control(b, vtn_loop);
1147 
1148          vtn_emit_cf_list_structured(b, &vtn_loop->body, NULL, NULL, handler);
1149 
1150          if (!list_is_empty(&vtn_loop->cont_body)) {
1151             /* If we have a non-trivial continue body then we need to put
1152              * it at the beginning of the loop with a flag to ensure that
1153              * it doesn't get executed in the first iteration.
1154              */
1155             nir_variable *do_cont =
1156                nir_local_variable_create(b->nb.impl, glsl_bool_type(), "cont");
1157 
1158             b->nb.cursor = nir_before_cf_node(&loop->cf_node);
1159             nir_store_var(&b->nb, do_cont, nir_imm_false(&b->nb), 1);
1160 
1161             b->nb.cursor = nir_before_cf_list(&loop->body);
1162 
1163             nir_if *cont_if =
1164                nir_push_if(&b->nb, nir_load_var(&b->nb, do_cont));
1165 
1166             vtn_emit_cf_list_structured(b, &vtn_loop->cont_body, NULL, NULL,
1167                                         handler);
1168 
1169             nir_pop_if(&b->nb, cont_if);
1170 
1171             nir_store_var(&b->nb, do_cont, nir_imm_true(&b->nb), 1);
1172          }
1173 
1174          nir_pop_loop(&b->nb, loop);
1175          break;
1176       }
1177 
1178       case vtn_cf_node_type_switch: {
1179          struct vtn_switch *vtn_switch = vtn_cf_node_as_switch(node);
1180 
1181          /* Before we can emit anything, we need to sort the list of cases in
1182           * fall-through order.
1183           */
1184          vtn_switch_order_cases(vtn_switch);
1185 
1186          /* First, we create a variable to keep track of whether or not the
1187           * switch is still going at any given point.  Any switch breaks
1188           * will set this variable to false.
1189           */
1190          nir_variable *fall_var =
1191             nir_local_variable_create(b->nb.impl, glsl_bool_type(), "fall");
1192          nir_store_var(&b->nb, fall_var, nir_imm_false(&b->nb), 1);
1193 
1194          nir_ssa_def *sel = vtn_get_nir_ssa(b, vtn_switch->selector);
1195 
1196          /* Now we can walk the list of cases and actually emit code */
1197          vtn_foreach_cf_node(case_node, &vtn_switch->cases) {
1198             struct vtn_case *cse = vtn_cf_node_as_case(case_node);
1199 
1200             /* If this case jumps directly to the break block, we don't have
1201              * to handle the case as the body is empty and doesn't fall
1202              * through.
1203              */
1204             if (cse->block == vtn_switch->break_block)
1205                continue;
1206 
1207             /* Figure out the condition */
1208             nir_ssa_def *cond =
1209                vtn_switch_case_condition(b, vtn_switch, sel, cse);
1210             /* Take fallthrough into account */
1211             cond = nir_ior(&b->nb, cond, nir_load_var(&b->nb, fall_var));
1212 
1213             nir_if *case_if = nir_push_if(&b->nb, cond);
1214 
1215             bool has_break = false;
1216             nir_store_var(&b->nb, fall_var, nir_imm_true(&b->nb), 1);
1217             vtn_emit_cf_list_structured(b, &cse->body, fall_var, &has_break,
1218                                         handler);
1219             (void)has_break; /* We don't care */
1220 
1221             nir_pop_if(&b->nb, case_if);
1222          }
1223 
1224          break;
1225       }
1226 
1227       default:
1228          vtn_fail("Invalid CF node type");
1229       }
1230    }
1231 }
1232 
1233 static struct nir_block *
vtn_new_unstructured_block(struct vtn_builder * b,struct vtn_function * func)1234 vtn_new_unstructured_block(struct vtn_builder *b, struct vtn_function *func)
1235 {
1236    struct nir_block *n = nir_block_create(b->shader);
1237    exec_list_push_tail(&func->nir_func->impl->body, &n->cf_node.node);
1238    n->cf_node.parent = &func->nir_func->impl->cf_node;
1239    return n;
1240 }
1241 
1242 static void
vtn_add_unstructured_block(struct vtn_builder * b,struct vtn_function * func,struct list_head * work_list,struct vtn_block * block)1243 vtn_add_unstructured_block(struct vtn_builder *b,
1244                            struct vtn_function *func,
1245                            struct list_head *work_list,
1246                            struct vtn_block *block)
1247 {
1248    if (!block->block) {
1249       block->block = vtn_new_unstructured_block(b, func);
1250       list_addtail(&block->node.link, work_list);
1251    }
1252 }
1253 
1254 static void
vtn_emit_cf_func_unstructured(struct vtn_builder * b,struct vtn_function * func,vtn_instruction_handler handler)1255 vtn_emit_cf_func_unstructured(struct vtn_builder *b, struct vtn_function *func,
1256                               vtn_instruction_handler handler)
1257 {
1258    struct list_head work_list;
1259    list_inithead(&work_list);
1260 
1261    func->start_block->block = nir_start_block(func->nir_func->impl);
1262    list_addtail(&func->start_block->node.link, &work_list);
1263    while (!list_is_empty(&work_list)) {
1264       struct vtn_block *block =
1265          list_first_entry(&work_list, struct vtn_block, node.link);
1266       list_del(&block->node.link);
1267 
1268       vtn_assert(block->block);
1269 
1270       const uint32_t *block_start = block->label;
1271       const uint32_t *block_end = block->branch;
1272 
1273       b->nb.cursor = nir_after_block(block->block);
1274       block_start = vtn_foreach_instruction(b, block_start, block_end,
1275                                             vtn_handle_phis_first_pass);
1276       vtn_foreach_instruction(b, block_start, block_end, handler);
1277       block->end_nop = nir_nop(&b->nb);
1278 
1279       SpvOp op = *block_end & SpvOpCodeMask;
1280       switch (op) {
1281       case SpvOpBranch: {
1282          struct vtn_block *branch_block = vtn_block(b, block->branch[1]);
1283          vtn_add_unstructured_block(b, func, &work_list, branch_block);
1284          nir_goto(&b->nb, branch_block->block);
1285          break;
1286       }
1287 
1288       case SpvOpBranchConditional: {
1289          nir_ssa_def *cond = vtn_ssa_value(b, block->branch[1])->def;
1290          struct vtn_block *then_block = vtn_block(b, block->branch[2]);
1291          struct vtn_block *else_block = vtn_block(b, block->branch[3]);
1292 
1293          vtn_add_unstructured_block(b, func, &work_list, then_block);
1294          if (then_block == else_block) {
1295             nir_goto(&b->nb, then_block->block);
1296          } else {
1297             vtn_add_unstructured_block(b, func, &work_list, else_block);
1298             nir_goto_if(&b->nb, then_block->block, nir_src_for_ssa(cond),
1299                                 else_block->block);
1300          }
1301 
1302          break;
1303       }
1304 
1305       case SpvOpSwitch: {
1306          struct list_head cases;
1307          list_inithead(&cases);
1308          vtn_parse_switch(b, NULL, block->branch, &cases);
1309 
1310          nir_ssa_def *sel = vtn_get_nir_ssa(b, block->branch[1]);
1311 
1312          struct vtn_case *def = NULL;
1313          vtn_foreach_cf_node(case_node, &cases) {
1314             struct vtn_case *cse = vtn_cf_node_as_case(case_node);
1315             if (cse->is_default) {
1316                assert(def == NULL);
1317                def = cse;
1318                continue;
1319             }
1320 
1321             nir_ssa_def *cond = nir_imm_false(&b->nb);
1322             util_dynarray_foreach(&cse->values, uint64_t, val)
1323                cond = nir_ior(&b->nb, cond, nir_ieq_imm(&b->nb, sel, *val));
1324 
1325             /* block for the next check */
1326             nir_block *e = vtn_new_unstructured_block(b, func);
1327             vtn_add_unstructured_block(b, func, &work_list, cse->block);
1328 
1329             /* add branching */
1330             nir_goto_if(&b->nb, cse->block->block, nir_src_for_ssa(cond), e);
1331             b->nb.cursor = nir_after_block(e);
1332          }
1333 
1334          vtn_assert(def != NULL);
1335          vtn_add_unstructured_block(b, func, &work_list, def->block);
1336 
1337          /* now that all cases are handled, branch into the default block */
1338          nir_goto(&b->nb, def->block->block);
1339          break;
1340       }
1341 
1342       case SpvOpKill: {
1343          nir_discard(&b->nb);
1344          nir_goto(&b->nb, b->func->nir_func->impl->end_block);
1345          break;
1346       }
1347 
1348       case SpvOpUnreachable:
1349       case SpvOpReturn:
1350       case SpvOpReturnValue: {
1351          vtn_emit_ret_store(b, block);
1352          nir_goto(&b->nb, b->func->nir_func->impl->end_block);
1353          break;
1354       }
1355 
1356       default:
1357          vtn_fail("Unhandled opcode %s", spirv_op_to_string(op));
1358       }
1359    }
1360 }
1361 
1362 void
vtn_function_emit(struct vtn_builder * b,struct vtn_function * func,vtn_instruction_handler instruction_handler)1363 vtn_function_emit(struct vtn_builder *b, struct vtn_function *func,
1364                   vtn_instruction_handler instruction_handler)
1365 {
1366    static int force_unstructured = -1;
1367    if (force_unstructured < 0) {
1368       force_unstructured =
1369          env_var_as_boolean("MESA_SPIRV_FORCE_UNSTRUCTURED", false);
1370    }
1371 
1372    nir_function_impl *impl = func->nir_func->impl;
1373    nir_builder_init(&b->nb, impl);
1374    b->func = func;
1375    b->nb.cursor = nir_after_cf_list(&impl->body);
1376    b->nb.exact = b->exact;
1377    b->phi_table = _mesa_pointer_hash_table_create(b);
1378 
1379    if (b->shader->info.stage == MESA_SHADER_KERNEL || force_unstructured) {
1380       impl->structured = false;
1381       vtn_emit_cf_func_unstructured(b, func, instruction_handler);
1382    } else {
1383       vtn_emit_cf_list_structured(b, &func->body, NULL, NULL,
1384                                   instruction_handler);
1385    }
1386 
1387    vtn_foreach_instruction(b, func->start_block->label, func->end,
1388                            vtn_handle_phi_second_pass);
1389 
1390    if (func->nir_func->impl->structured)
1391       nir_copy_prop_impl(impl);
1392    nir_rematerialize_derefs_in_use_blocks_impl(impl);
1393 
1394    /*
1395     * There are some cases where we need to repair SSA to insert
1396     * the needed phi nodes:
1397     *
1398     * - Continue blocks for loops get inserted before the body of the loop
1399     *   but instructions in the continue may use SSA defs in the loop body.
1400     *
1401     * - Early termination instructions `OpKill` and `OpTerminateInvocation`,
1402     *   in NIR. They're represented by regular intrinsics with no control-flow
1403     *   semantics. This means that the SSA form from the SPIR-V may not
1404     *   100% match NIR.
1405     *
1406     * - Switches with only default case may also define SSA which may
1407     *   subsequently be used out of the switch.
1408     */
1409    if (func->nir_func->impl->structured)
1410       nir_repair_ssa_impl(impl);
1411 
1412    func->emitted = true;
1413 }
1414