1 /*M///////////////////////////////////////////////////////////////////////////////////////
2  //
3  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4  //
5  //  By downloading, copying, installing or using the software you agree to this license.
6  //  If you do not agree to this license, do not download, install,
7  //  copy or use the software.
8  //
9  //
10  //                           License Agreement
11  //                For Open Source Computer Vision Library
12  //
13  // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14  // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15  // Third party copyrights are property of their respective owners.
16  //
17  // Redistribution and use in source and binary forms, with or without modification,
18  // are permitted provided that the following conditions are met:
19  //
20  //   * Redistribution's of source code must retain the above copyright notice,
21  //     this list of conditions and the following disclaimer.
22  //
23  //   * Redistribution's in binary form must reproduce the above copyright notice,
24  //     this list of conditions and the following disclaimer in the documentation
25  //     and/or other materials provided with the distribution.
26  //
27  //   * The name of the copyright holders may not be used to endorse or promote products
28  //     derived from this software without specific prior written permission.
29  //
30  // This software is provided by the copyright holders and contributors "as is" and
31  // any express or implied warranties, including, but not limited to, the implied
32  // warranties of merchantability and fitness for a particular purpose are disclaimed.
33  // In no event shall the Intel Corporation or contributors be liable for any direct,
34  // indirect, incidental, special, exemplary, or consequential damages
35  // (including, but not limited to, procurement of substitute goods or services;
36  // loss of use, data, or profits; or business interruption) however caused
37  // and on any theory of liability, whether in contract, strict liability,
38  // or tort (including negligence or otherwise) arising in any way out of
39  // the use of this software, even if advised of the possibility of such damage.
40  //
41  //M*/
42 
43 #include "precomp.hpp"
44 //#include "upnp.h"
45 #include "dls.h"
46 #include "epnp.h"
47 #include "p3p.h"
48 #include "ap3p.h"
49 #include "ippe.hpp"
50 #include "sqpnp.hpp"
51 #include "calib3d_c_api.h"
52 
53 #include "usac.hpp"
54 
55 #include <opencv2/core/utils/logger.hpp>
56 
57 namespace cv
58 {
59 #if defined _DEBUG || defined CV_STATIC_ANALYSIS
isPlanarObjectPoints(InputArray _objectPoints,double threshold)60 static bool isPlanarObjectPoints(InputArray _objectPoints, double threshold)
61 {
62     CV_CheckType(_objectPoints.type(), _objectPoints.type() == CV_32FC3 || _objectPoints.type() == CV_64FC3,
63                  "Type of _objectPoints must be CV_32FC3 or CV_64FC3");
64     Mat objectPoints;
65     if (_objectPoints.type() == CV_32FC3)
66     {
67         _objectPoints.getMat().convertTo(objectPoints, CV_64F);
68     }
69     else
70     {
71         objectPoints = _objectPoints.getMat();
72     }
73 
74     Scalar meanValues = mean(objectPoints);
75     int nbPts = objectPoints.checkVector(3, CV_64F);
76     Mat objectPointsCentred = objectPoints - meanValues;
77     objectPointsCentred = objectPointsCentred.reshape(1, nbPts);
78 
79     Mat w, u, vt;
80     Mat MM = objectPointsCentred.t() * objectPointsCentred;
81     SVDecomp(MM, w, u, vt);
82 
83     return (w.at<double>(2) < w.at<double>(1) * threshold);
84 }
85 
approxEqual(double a,double b,double eps)86 static bool approxEqual(double a, double b, double eps)
87 {
88     return std::fabs(a-b) < eps;
89 }
90 #endif
91 
drawFrameAxes(InputOutputArray image,InputArray cameraMatrix,InputArray distCoeffs,InputArray rvec,InputArray tvec,float length,int thickness)92 void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
93                    InputArray rvec, InputArray tvec, float length, int thickness)
94 {
95     CV_INSTRUMENT_REGION();
96 
97     int type = image.type();
98     int cn = CV_MAT_CN(type);
99     CV_CheckType(type, cn == 1 || cn == 3 || cn == 4,
100                  "Number of channels must be 1, 3 or 4" );
101 
102     CV_Assert(image.getMat().total() > 0);
103     CV_Assert(length > 0);
104 
105     // project axes points
106     vector<Point3f> axesPoints;
107     axesPoints.push_back(Point3f(0, 0, 0));
108     axesPoints.push_back(Point3f(length, 0, 0));
109     axesPoints.push_back(Point3f(0, length, 0));
110     axesPoints.push_back(Point3f(0, 0, length));
111     vector<Point2f> imagePoints;
112     projectPoints(axesPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints);
113 
114     // draw axes lines
115     line(image, imagePoints[0], imagePoints[1], Scalar(0, 0, 255), thickness);
116     line(image, imagePoints[0], imagePoints[2], Scalar(0, 255, 0), thickness);
117     line(image, imagePoints[0], imagePoints[3], Scalar(255, 0, 0), thickness);
118 }
119 
solvePnP(InputArray opoints,InputArray ipoints,InputArray cameraMatrix,InputArray distCoeffs,OutputArray rvec,OutputArray tvec,bool useExtrinsicGuess,int flags)120 bool solvePnP( InputArray opoints, InputArray ipoints,
121                InputArray cameraMatrix, InputArray distCoeffs,
122                OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess, int flags )
123 {
124     CV_INSTRUMENT_REGION();
125 
126     vector<Mat> rvecs, tvecs;
127     int solutions = solvePnPGeneric(opoints, ipoints, cameraMatrix, distCoeffs, rvecs, tvecs, useExtrinsicGuess, (SolvePnPMethod)flags, rvec, tvec);
128 
129     if (solutions > 0)
130     {
131         int rdepth = rvec.empty() ? CV_64F : rvec.depth();
132         int tdepth = tvec.empty() ? CV_64F : tvec.depth();
133         rvecs[0].convertTo(rvec, rdepth);
134         tvecs[0].convertTo(tvec, tdepth);
135     }
136 
137     return solutions > 0;
138 }
139 
140 class PnPRansacCallback CV_FINAL : public PointSetRegistrator::Callback
141 {
142 
143 public:
144 
PnPRansacCallback(Mat _cameraMatrix=Mat (3,3,CV_64F),Mat _distCoeffs=Mat (4,1,CV_64F),int _flags=SOLVEPNP_ITERATIVE,bool _useExtrinsicGuess=false,Mat _rvec=Mat (),Mat _tvec=Mat ())145     PnPRansacCallback(Mat _cameraMatrix=Mat(3,3,CV_64F), Mat _distCoeffs=Mat(4,1,CV_64F), int _flags=SOLVEPNP_ITERATIVE,
146             bool _useExtrinsicGuess=false, Mat _rvec=Mat(), Mat _tvec=Mat() )
147         : cameraMatrix(_cameraMatrix), distCoeffs(_distCoeffs), flags(_flags), useExtrinsicGuess(_useExtrinsicGuess),
148           rvec(_rvec), tvec(_tvec) {}
149 
150     /* Pre: True */
151     /* Post: compute _model with given points and return number of found models */
runKernel(InputArray _m1,InputArray _m2,OutputArray _model) const152     int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const CV_OVERRIDE
153     {
154         Mat opoints = _m1.getMat(), ipoints = _m2.getMat();
155 
156         bool correspondence = solvePnP( _m1, _m2, cameraMatrix, distCoeffs,
157                                             rvec, tvec, useExtrinsicGuess, flags );
158 
159         Mat _local_model;
160         hconcat(rvec, tvec, _local_model);
161         _local_model.copyTo(_model);
162 
163         return correspondence;
164     }
165 
166     /* Pre: True */
167     /* Post: fill _err with projection errors */
computeError(InputArray _m1,InputArray _m2,InputArray _model,OutputArray _err) const168     void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const CV_OVERRIDE
169     {
170 
171         Mat opoints = _m1.getMat(), ipoints = _m2.getMat(), model = _model.getMat();
172 
173         int i, count = opoints.checkVector(3);
174         Mat _rvec = model.col(0);
175         Mat _tvec = model.col(1);
176 
177 
178         Mat projpoints(count, 2, CV_32FC1);
179         projectPoints(opoints, _rvec, _tvec, cameraMatrix, distCoeffs, projpoints);
180 
181         const Point2f* ipoints_ptr = ipoints.ptr<Point2f>();
182         const Point2f* projpoints_ptr = projpoints.ptr<Point2f>();
183 
184         _err.create(count, 1, CV_32FC1);
185         float* err = _err.getMat().ptr<float>();
186 
187         for ( i = 0; i < count; ++i)
188             err[i] = (float)norm( Matx21f(ipoints_ptr[i] - projpoints_ptr[i]), NORM_L2SQR );
189 
190     }
191 
192 
193     Mat cameraMatrix;
194     Mat distCoeffs;
195     int flags;
196     bool useExtrinsicGuess;
197     Mat rvec;
198     Mat tvec;
199 };
200 
UsacParams()201 UsacParams::UsacParams()
202 {
203     confidence = 0.99;
204     isParallel = false;
205     loIterations = 5;
206     loMethod = LocalOptimMethod::LOCAL_OPTIM_INNER_LO;
207     loSampleSize = 14;
208     maxIterations = 5000;
209     neighborsSearch = NeighborSearchMethod::NEIGH_GRID;
210     randomGeneratorState = 0;
211     sampler = SamplingMethod::SAMPLING_UNIFORM;
212     score = ScoreMethod::SCORE_METHOD_MSAC;
213     threshold = 1.5;
214 }
215 
solvePnPRansac(InputArray _opoints,InputArray _ipoints,InputArray _cameraMatrix,InputArray _distCoeffs,OutputArray _rvec,OutputArray _tvec,bool useExtrinsicGuess,int iterationsCount,float reprojectionError,double confidence,OutputArray _inliers,int flags)216 bool solvePnPRansac(InputArray _opoints, InputArray _ipoints,
217                     InputArray _cameraMatrix, InputArray _distCoeffs,
218                     OutputArray _rvec, OutputArray _tvec, bool useExtrinsicGuess,
219                     int iterationsCount, float reprojectionError, double confidence,
220                     OutputArray _inliers, int flags)
221 {
222     CV_INSTRUMENT_REGION();
223 
224     if (flags >= USAC_DEFAULT && flags <= USAC_MAGSAC)
225         return usac::solvePnPRansac(_opoints, _ipoints, _cameraMatrix, _distCoeffs,
226             _rvec, _tvec, useExtrinsicGuess, iterationsCount, reprojectionError,
227             confidence, _inliers, flags);
228 
229     Mat opoints0 = _opoints.getMat(), ipoints0 = _ipoints.getMat();
230     Mat opoints, ipoints;
231     if( opoints0.depth() == CV_64F || !opoints0.isContinuous() )
232         opoints0.convertTo(opoints, CV_32F);
233     else
234         opoints = opoints0;
235     if( ipoints0.depth() == CV_64F || !ipoints0.isContinuous() )
236         ipoints0.convertTo(ipoints, CV_32F);
237     else
238         ipoints = ipoints0;
239 
240     int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
241     CV_Assert( npoints >= 4 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
242 
243     CV_Assert(opoints.isContinuous());
244     CV_Assert(opoints.depth() == CV_32F || opoints.depth() == CV_64F);
245     CV_Assert((opoints.rows == 1 && opoints.channels() == 3) || opoints.cols*opoints.channels() == 3);
246     CV_Assert(ipoints.isContinuous());
247     CV_Assert(ipoints.depth() == CV_32F || ipoints.depth() == CV_64F);
248     CV_Assert((ipoints.rows == 1 && ipoints.channels() == 2) || ipoints.cols*ipoints.channels() == 2);
249 
250     _rvec.create(3, 1, CV_64FC1);
251     _tvec.create(3, 1, CV_64FC1);
252 
253     Mat rvec = useExtrinsicGuess ? _rvec.getMat() : Mat(3, 1, CV_64FC1);
254     Mat tvec = useExtrinsicGuess ? _tvec.getMat() : Mat(3, 1, CV_64FC1);
255     Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
256 
257     int model_points = 5;
258     int ransac_kernel_method = SOLVEPNP_EPNP;
259 
260     if( flags == SOLVEPNP_P3P || flags == SOLVEPNP_AP3P)
261     {
262         model_points = 4;
263         ransac_kernel_method = flags;
264     }
265     else if( npoints == 4 )
266     {
267         model_points = 4;
268         ransac_kernel_method = SOLVEPNP_P3P;
269     }
270 
271     if( model_points == npoints )
272     {
273         opoints = opoints.reshape(3);
274         ipoints = ipoints.reshape(2);
275 
276         bool result = solvePnP(opoints, ipoints, cameraMatrix, distCoeffs, _rvec, _tvec, useExtrinsicGuess, ransac_kernel_method);
277 
278         if(!result)
279         {
280             if( _inliers.needed() )
281                 _inliers.release();
282 
283             return false;
284         }
285 
286         if(_inliers.needed())
287         {
288             _inliers.create(npoints, 1, CV_32S);
289             Mat _local_inliers = _inliers.getMat();
290             for(int i = 0; i < npoints; i++)
291             {
292                 _local_inliers.at<int>(i) = i;
293             }
294         }
295 
296         return true;
297     }
298 
299     Ptr<PointSetRegistrator::Callback> cb; // pointer to callback
300     cb = makePtr<PnPRansacCallback>( cameraMatrix, distCoeffs, ransac_kernel_method, useExtrinsicGuess, rvec, tvec);
301 
302     double param1 = reprojectionError;                // reprojection error
303     double param2 = confidence;                       // confidence
304     int param3 = iterationsCount;                     // number maximum iterations
305 
306     Mat _local_model(3, 2, CV_64FC1);
307     Mat _mask_local_inliers(1, opoints.rows, CV_8UC1);
308 
309     // call Ransac
310     int result = createRANSACPointSetRegistrator(cb, model_points,
311         param1, param2, param3)->run(opoints, ipoints, _local_model, _mask_local_inliers);
312 
313     if( result <= 0 || _local_model.rows <= 0)
314     {
315         _rvec.assign(rvec);    // output rotation vector
316         _tvec.assign(tvec);    // output translation vector
317 
318         if( _inliers.needed() )
319             _inliers.release();
320 
321         return false;
322     }
323 
324     vector<Point3d> opoints_inliers;
325     vector<Point2d> ipoints_inliers;
326     opoints = opoints.reshape(3);
327     ipoints = ipoints.reshape(2);
328     opoints.convertTo(opoints_inliers, CV_64F);
329     ipoints.convertTo(ipoints_inliers, CV_64F);
330 
331     const uchar* mask = _mask_local_inliers.ptr<uchar>();
332     int npoints1 = compressElems(&opoints_inliers[0], mask, 1, npoints);
333     compressElems(&ipoints_inliers[0], mask, 1, npoints);
334 
335     opoints_inliers.resize(npoints1);
336     ipoints_inliers.resize(npoints1);
337     try
338     {
339         result = solvePnP(opoints_inliers, ipoints_inliers, cameraMatrix,
340                           distCoeffs, rvec, tvec, useExtrinsicGuess,
341                           (flags == SOLVEPNP_P3P || flags == SOLVEPNP_AP3P) ? SOLVEPNP_EPNP : flags) ? 1 : -1;
342     }
343     catch (const cv::Exception& e)
344     {
345         if (flags == SOLVEPNP_ITERATIVE &&
346             npoints1 == 5 &&
347             e.what() &&
348             std::string(e.what()).find("DLT algorithm needs at least 6 points") != std::string::npos
349         )
350         {
351             CV_LOG_INFO(NULL, "solvePnPRansac(): solvePnP stage to compute the final pose using points "
352                 "in the consensus set raised DLT 6 points exception, use result from MSS (Minimal Sample Sets) stage instead.");
353             rvec = _local_model.col(0);    // output rotation vector
354             tvec = _local_model.col(1);    // output translation vector
355             result = 1;
356         }
357         else
358         {
359             // raise other exceptions
360             throw;
361         }
362     }
363 
364     if (result <= 0)
365     {
366         _rvec.assign(_local_model.col(0));    // output rotation vector
367         _tvec.assign(_local_model.col(1));    // output translation vector
368 
369         if (_inliers.needed())
370             _inliers.release();
371 
372         CV_LOG_DEBUG(NULL, "solvePnPRansac(): solvePnP stage to compute the final pose using points in the consensus set failed. Return false");
373         return false;
374     }
375     else
376     {
377         _rvec.assign(rvec);    // output rotation vector
378         _tvec.assign(tvec);    // output translation vector
379     }
380 
381     if(_inliers.needed())
382     {
383         Mat _local_inliers;
384         for (int i = 0; i < npoints; ++i)
385         {
386             if((int)_mask_local_inliers.at<uchar>(i) != 0) // inliers mask
387                 _local_inliers.push_back(i);    // output inliers vector
388         }
389         _local_inliers.copyTo(_inliers);
390     }
391     return true;
392 }
393 
394 
solvePnPRansac(InputArray objectPoints,InputArray imagePoints,InputOutputArray cameraMatrix,InputArray distCoeffs,OutputArray rvec,OutputArray tvec,OutputArray inliers,const UsacParams & params)395 bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
396                      InputOutputArray cameraMatrix, InputArray distCoeffs,
397                      OutputArray rvec, OutputArray tvec, OutputArray inliers,
398                      const UsacParams &params) {
399     Ptr<usac::Model> model_params;
400     usac::setParameters(model_params, cameraMatrix.empty() ? usac::EstimationMethod::P6P :
401         usac::EstimationMethod::P3P, params, inliers.needed());
402     Ptr<usac::RansacOutput> ransac_output;
403     if (usac::run(model_params, imagePoints, objectPoints, model_params->getRandomGeneratorState(),
404             ransac_output, cameraMatrix, noArray(), distCoeffs, noArray())) {
405         if (inliers.needed()) {
406             const auto &inliers_mask = ransac_output->getInliersMask();
407             Mat inliers_;
408             for (int i = 0; i < (int)inliers_mask.size(); i++)
409                 if (inliers_mask[i])
410                     inliers_.push_back(i);
411             inliers_.copyTo(inliers);
412         }
413         const Mat &model = ransac_output->getModel();
414         model.col(0).copyTo(rvec);
415         model.col(1).copyTo(tvec);
416         if (cameraMatrix.empty())
417             model.colRange(2, 5).copyTo(cameraMatrix);
418         return true;
419     } else return false;
420 }
421 
422 
solveP3P(InputArray _opoints,InputArray _ipoints,InputArray _cameraMatrix,InputArray _distCoeffs,OutputArrayOfArrays _rvecs,OutputArrayOfArrays _tvecs,int flags)423 int solveP3P( InputArray _opoints, InputArray _ipoints,
424               InputArray _cameraMatrix, InputArray _distCoeffs,
425               OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, int flags) {
426     CV_INSTRUMENT_REGION();
427 
428     Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat();
429     int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
430     CV_Assert( npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
431     CV_Assert( npoints == 3 || npoints == 4 );
432     CV_Assert( flags == SOLVEPNP_P3P || flags == SOLVEPNP_AP3P );
433 
434     if (opoints.cols == 3)
435         opoints = opoints.reshape(3);
436     if (ipoints.cols == 2)
437         ipoints = ipoints.reshape(2);
438 
439     Mat cameraMatrix0 = _cameraMatrix.getMat();
440     Mat distCoeffs0 = _distCoeffs.getMat();
441     Mat cameraMatrix = Mat_<double>(cameraMatrix0);
442     Mat distCoeffs = Mat_<double>(distCoeffs0);
443 
444     Mat undistortedPoints;
445     undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
446     std::vector<Mat> Rs, ts, rvecs;
447 
448     int solutions = 0;
449     if (flags == SOLVEPNP_P3P)
450     {
451         p3p P3Psolver(cameraMatrix);
452         solutions = P3Psolver.solve(Rs, ts, opoints, undistortedPoints);
453     }
454     else if (flags == SOLVEPNP_AP3P)
455     {
456         ap3p P3Psolver(cameraMatrix);
457         solutions = P3Psolver.solve(Rs, ts, opoints, undistortedPoints);
458     }
459 
460     if (solutions == 0) {
461         return 0;
462     }
463 
464     Mat objPts, imgPts;
465     opoints.convertTo(objPts, CV_64F);
466     ipoints.convertTo(imgPts, CV_64F);
467     if (imgPts.cols > 1)
468     {
469         imgPts = imgPts.reshape(1);
470         imgPts = imgPts.t();
471     }
472     else
473         imgPts = imgPts.reshape(1, 2*imgPts.rows);
474 
475     vector<double> reproj_errors(solutions);
476     for (size_t i = 0; i < reproj_errors.size(); i++)
477     {
478         Mat rvec;
479         Rodrigues(Rs[i], rvec);
480         rvecs.push_back(rvec);
481 
482         Mat projPts;
483         projectPoints(objPts, rvec, ts[i], _cameraMatrix, _distCoeffs, projPts);
484 
485         projPts = projPts.reshape(1, 2*projPts.rows);
486         Mat err = imgPts - projPts;
487 
488         err = err.t() * err;
489         reproj_errors[i] = err.at<double>(0,0);
490     }
491 
492     //sort the solutions
493     for (int i = 1; i < solutions; i++)
494     {
495         for (int j = i; j > 0 && reproj_errors[j-1] > reproj_errors[j]; j--)
496         {
497             std::swap(reproj_errors[j], reproj_errors[j-1]);
498             std::swap(rvecs[j], rvecs[j-1]);
499             std::swap(ts[j], ts[j-1]);
500         }
501     }
502 
503     int depthRot = _rvecs.fixedType() ? _rvecs.depth() : CV_64F;
504     int depthTrans = _tvecs.fixedType() ? _tvecs.depth() : CV_64F;
505     _rvecs.create(solutions, 1, CV_MAKETYPE(depthRot, _rvecs.fixedType() && _rvecs.kind() == _InputArray::STD_VECTOR ? 3 : 1));
506     _tvecs.create(solutions, 1, CV_MAKETYPE(depthTrans, _tvecs.fixedType() && _tvecs.kind() == _InputArray::STD_VECTOR ? 3 : 1));
507 
508     for (int i = 0; i < solutions; i++)
509     {
510         Mat rvec0, tvec0;
511         if (depthRot == CV_64F)
512             rvec0 = rvecs[i];
513         else
514             rvecs[i].convertTo(rvec0, depthRot);
515 
516         if (depthTrans == CV_64F)
517             tvec0 = ts[i];
518         else
519             ts[i].convertTo(tvec0, depthTrans);
520 
521         if (_rvecs.fixedType() && _rvecs.kind() == _InputArray::STD_VECTOR)
522         {
523             Mat rref = _rvecs.getMat_();
524 
525             if (_rvecs.depth() == CV_32F)
526                 rref.at<Vec3f>(0,i) = Vec3f(rvec0.at<float>(0,0), rvec0.at<float>(1,0), rvec0.at<float>(2,0));
527             else
528                 rref.at<Vec3d>(0,i) = Vec3d(rvec0.at<double>(0,0), rvec0.at<double>(1,0), rvec0.at<double>(2,0));
529         }
530         else
531         {
532             _rvecs.getMatRef(i) = rvec0;
533         }
534 
535         if (_tvecs.fixedType() && _tvecs.kind() == _InputArray::STD_VECTOR)
536         {
537 
538             Mat tref = _tvecs.getMat_();
539 
540             if (_tvecs.depth() == CV_32F)
541                 tref.at<Vec3f>(0,i) = Vec3f(tvec0.at<float>(0,0), tvec0.at<float>(1,0), tvec0.at<float>(2,0));
542             else
543                 tref.at<Vec3d>(0,i) = Vec3d(tvec0.at<double>(0,0), tvec0.at<double>(1,0), tvec0.at<double>(2,0));
544         }
545         else
546         {
547             _tvecs.getMatRef(i) = tvec0;
548         }
549     }
550 
551     return solutions;
552 }
553 
554 class SolvePnPRefineLMCallback CV_FINAL : public LMSolver::Callback
555 {
556 public:
SolvePnPRefineLMCallback(InputArray _opoints,InputArray _ipoints,InputArray _cameraMatrix,InputArray _distCoeffs)557     SolvePnPRefineLMCallback(InputArray _opoints, InputArray _ipoints, InputArray _cameraMatrix, InputArray _distCoeffs)
558     {
559         objectPoints = _opoints.getMat();
560         imagePoints = _ipoints.getMat();
561         npoints = std::max(objectPoints.checkVector(3, CV_32F), objectPoints.checkVector(3, CV_64F));
562         imagePoints0 = imagePoints.reshape(1, npoints*2);
563         cameraMatrix = _cameraMatrix.getMat();
564         distCoeffs = _distCoeffs.getMat();
565     }
566 
compute(InputArray _param,OutputArray _err,OutputArray _Jac) const567     bool compute(InputArray _param, OutputArray _err, OutputArray _Jac) const CV_OVERRIDE
568     {
569          Mat param = _param.getMat();
570          _err.create(npoints*2, 1, CV_64FC1);
571 
572          if(_Jac.needed())
573          {
574              _Jac.create(npoints*2, param.rows, CV_64FC1);
575          }
576 
577          Mat rvec = param(Rect(0, 0, 1, 3)), tvec = param(Rect(0, 3, 1, 3));
578 
579          Mat J, projectedPts;
580          projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs, projectedPts, _Jac.needed() ? J : noArray());
581 
582          if (_Jac.needed())
583          {
584              Mat Jac = _Jac.getMat();
585              for (int i = 0; i < Jac.rows; i++)
586              {
587                  for (int j = 0; j < Jac.cols; j++)
588                  {
589                      Jac.at<double>(i,j) = J.at<double>(i,j);
590                  }
591              }
592          }
593 
594          Mat err = _err.getMat();
595          projectedPts = projectedPts.reshape(1, npoints*2);
596          err = projectedPts - imagePoints0;
597 
598         return true;
599     }
600 
601     Mat objectPoints, imagePoints, imagePoints0;
602     Mat cameraMatrix, distCoeffs;
603     int npoints;
604 };
605 
606 /**
607  * @brief Compute the Interaction matrix and the residuals for the current pose.
608  * @param objectPoints 3D object points.
609  * @param R Current estimated rotation matrix.
610  * @param tvec Current estimated translation vector.
611  * @param L Interaction matrix for a vector of point features.
612  * @param s Residuals.
613  */
computeInteractionMatrixAndResiduals(const Mat & objectPoints,const Mat & R,const Mat & tvec,Mat & L,Mat & s)614 static void computeInteractionMatrixAndResiduals(const Mat& objectPoints, const Mat& R, const Mat& tvec,
615                                                  Mat& L, Mat& s)
616 {
617     Mat objectPointsInCam;
618 
619     int npoints = objectPoints.rows;
620     for (int i = 0; i < npoints; i++)
621     {
622         Mat curPt = objectPoints.row(i);
623         objectPointsInCam = R * curPt.t() + tvec;
624 
625         double Zi = objectPointsInCam.at<double>(2,0);
626         double xi = objectPointsInCam.at<double>(0,0) / Zi;
627         double yi = objectPointsInCam.at<double>(1,0) / Zi;
628 
629         s.at<double>(2*i,0) = xi;
630         s.at<double>(2*i+1,0) = yi;
631 
632         L.at<double>(2*i,0) = -1 / Zi;
633         L.at<double>(2*i,1) = 0;
634         L.at<double>(2*i,2) = xi / Zi;
635         L.at<double>(2*i,3) = xi*yi;
636         L.at<double>(2*i,4) = -(1 + xi*xi);
637         L.at<double>(2*i,5) = yi;
638 
639         L.at<double>(2*i+1,0) = 0;
640         L.at<double>(2*i+1,1) = -1 / Zi;
641         L.at<double>(2*i+1,2) = yi / Zi;
642         L.at<double>(2*i+1,3) = 1 + yi*yi;
643         L.at<double>(2*i+1,4) = -xi*yi;
644         L.at<double>(2*i+1,5) = -xi;
645     }
646 }
647 
648 /**
649  * @brief The exponential map from se(3) to SE(3).
650  * @param twist A twist (v, w) represents the velocity of a rigid body as an angular velocity
651  * around an axis and a linear velocity along this axis.
652  * @param R1 Resultant rotation matrix from the twist.
653  * @param t1 Resultant translation vector from the twist.
654  */
exponentialMapToSE3Inv(const Mat & twist,Mat & R1,Mat & t1)655 static void exponentialMapToSE3Inv(const Mat& twist, Mat& R1, Mat& t1)
656 {
657     //see Exponential Map in http://ethaneade.com/lie.pdf
658     /*
659     \begin{align*}
660     \boldsymbol{\delta} &= \left( \mathbf{u}, \boldsymbol{\omega} \right ) \in se(3) \\
661     \mathbf{u}, \boldsymbol{\omega} &\in \mathbb{R}^3 \\
662     \theta &= \sqrt{ \boldsymbol{\omega}^T \boldsymbol{\omega} } \\
663     A &= \frac{\sin \theta}{\theta} \\
664     B &= \frac{1 - \cos \theta}{\theta^2} \\
665     C &= \frac{1-A}{\theta^2} \\
666     \mathbf{R} &= \mathbf{I} + A \boldsymbol{\omega}_{\times} + B \boldsymbol{\omega}_{\times}^2 \\
667     \mathbf{V} &= \mathbf{I} + B \boldsymbol{\omega}_{\times} + C \boldsymbol{\omega}_{\times}^2 \\
668     \exp \begin{pmatrix}
669     \mathbf{u} \\
670     \boldsymbol{\omega}
671     \end{pmatrix} &=
672     \left(
673     \begin{array}{c|c}
674     \mathbf{R} & \mathbf{V} \mathbf{u} \\ \hline
675     \mathbf{0} & 1
676     \end{array}
677     \right )
678     \end{align*}
679     */
680     double vx = twist.at<double>(0,0);
681     double vy = twist.at<double>(1,0);
682     double vz = twist.at<double>(2,0);
683     double wx = twist.at<double>(3,0);
684     double wy = twist.at<double>(4,0);
685     double wz = twist.at<double>(5,0);
686 
687     Matx31d rvec(wx, wy, wz);
688     Mat R;
689     Rodrigues(rvec, R);
690 
691     double theta = sqrt(wx*wx + wy*wy + wz*wz);
692     double sinc = std::fabs(theta) < 1e-8 ? 1 : sin(theta) / theta;
693     double mcosc = (std::fabs(theta) < 1e-8) ? 0.5 : (1-cos(theta)) / (theta*theta);
694     double msinc = (std::abs(theta) < 1e-8) ? (1/6.0) : (1-sinc) / (theta*theta);
695 
696     Matx31d dt;
697     dt(0) = vx*(sinc + wx*wx*msinc) + vy*(wx*wy*msinc - wz*mcosc) + vz*(wx*wz*msinc + wy*mcosc);
698     dt(1) = vx*(wx*wy*msinc + wz*mcosc) + vy*(sinc + wy*wy*msinc) + vz*(wy*wz*msinc - wx*mcosc);
699     dt(2) = vx*(wx*wz*msinc - wy*mcosc) + vy*(wy*wz*msinc + wx*mcosc) + vz*(sinc + wz*wz*msinc);
700 
701     R1 = R.t();
702     t1 = -R1 * dt;
703 }
704 
705 enum SolvePnPRefineMethod {
706     SOLVEPNP_REFINE_LM   = 0,
707     SOLVEPNP_REFINE_VVS  = 1
708 };
709 
solvePnPRefine(InputArray _objectPoints,InputArray _imagePoints,InputArray _cameraMatrix,InputArray _distCoeffs,InputOutputArray _rvec,InputOutputArray _tvec,SolvePnPRefineMethod _flags,TermCriteria _criteria=TermCriteria (TermCriteria::EPS+TermCriteria::COUNT,20,FLT_EPSILON),double _vvslambda=1)710 static void solvePnPRefine(InputArray _objectPoints, InputArray _imagePoints,
711                            InputArray _cameraMatrix, InputArray _distCoeffs,
712                            InputOutputArray _rvec, InputOutputArray _tvec,
713                            SolvePnPRefineMethod _flags,
714                            TermCriteria _criteria=TermCriteria(TermCriteria::EPS+TermCriteria::COUNT, 20, FLT_EPSILON),
715                            double _vvslambda=1)
716 {
717     CV_INSTRUMENT_REGION();
718 
719     Mat opoints_ = _objectPoints.getMat(), ipoints_ = _imagePoints.getMat();
720     Mat opoints, ipoints;
721     opoints_.convertTo(opoints, CV_64F);
722     ipoints_.convertTo(ipoints, CV_64F);
723     int npoints = opoints.checkVector(3, CV_64F);
724     CV_Assert( npoints >= 3 && npoints == ipoints.checkVector(2, CV_64F) );
725     CV_Assert( !_rvec.empty() && !_tvec.empty() );
726 
727     int rtype = _rvec.type(), ttype = _tvec.type();
728     Size rsize = _rvec.size(), tsize = _tvec.size();
729     CV_Assert( (rtype == CV_32FC1 || rtype == CV_64FC1) &&
730                (ttype == CV_32FC1 || ttype == CV_64FC1) );
731     CV_Assert( (rsize == Size(1, 3) || rsize == Size(3, 1)) &&
732                (tsize == Size(1, 3) || tsize == Size(3, 1)) );
733 
734     Mat cameraMatrix0 = _cameraMatrix.getMat();
735     Mat distCoeffs0 = _distCoeffs.getMat();
736     Mat cameraMatrix = Mat_<double>(cameraMatrix0);
737     Mat distCoeffs = Mat_<double>(distCoeffs0);
738 
739     if (_flags == SOLVEPNP_REFINE_LM)
740     {
741         Mat rvec0 = _rvec.getMat(), tvec0 = _tvec.getMat();
742         Mat rvec, tvec;
743         rvec0.convertTo(rvec, CV_64F);
744         tvec0.convertTo(tvec, CV_64F);
745 
746         Mat params(6, 1, CV_64FC1);
747         for (int i = 0; i < 3; i++)
748         {
749             params.at<double>(i,0) = rvec.at<double>(i,0);
750             params.at<double>(i+3,0) = tvec.at<double>(i,0);
751         }
752 
753         LMSolver::create(makePtr<SolvePnPRefineLMCallback>(opoints, ipoints, cameraMatrix, distCoeffs), _criteria.maxCount, _criteria.epsilon)->run(params);
754 
755         params.rowRange(0, 3).convertTo(rvec0, rvec0.depth());
756         params.rowRange(3, 6).convertTo(tvec0, tvec0.depth());
757     }
758     else if (_flags == SOLVEPNP_REFINE_VVS)
759     {
760         Mat rvec0 = _rvec.getMat(), tvec0 = _tvec.getMat();
761         Mat rvec, tvec;
762         rvec0.convertTo(rvec, CV_64F);
763         tvec0.convertTo(tvec, CV_64F);
764 
765         vector<Point2d> ipoints_normalized;
766         undistortPoints(ipoints, ipoints_normalized, cameraMatrix, distCoeffs);
767         Mat sd = Mat(ipoints_normalized).reshape(1, npoints*2);
768         Mat objectPoints0 = opoints.reshape(1, npoints);
769         Mat imagePoints0 = ipoints.reshape(1, npoints*2);
770         Mat L(npoints*2, 6, CV_64FC1), s(npoints*2, 1, CV_64FC1);
771 
772         double residuals_1 = std::numeric_limits<double>::max(), residuals = 0;
773         Mat err;
774         Mat R;
775         Rodrigues(rvec, R);
776         for (int iter = 0; iter < _criteria.maxCount; iter++)
777         {
778             computeInteractionMatrixAndResiduals(objectPoints0, R, tvec, L, s);
779             err = s - sd;
780 
781             Mat Lp = L.inv(cv::DECOMP_SVD);
782             Mat dq = -_vvslambda * Lp * err;
783 
784             Mat R1, t1;
785             exponentialMapToSE3Inv(dq, R1, t1);
786             R = R1 * R;
787             tvec = R1 * tvec + t1;
788 
789             residuals_1 = residuals;
790             Mat res = err.t()*err;
791             residuals = res.at<double>(0,0);
792 
793             if (std::fabs(residuals - residuals_1) < _criteria.epsilon)
794                 break;
795         }
796 
797         Rodrigues(R, rvec);
798         rvec.convertTo(rvec0, rvec0.depth());
799         tvec.convertTo(tvec0, tvec0.depth());
800     }
801 }
802 
solvePnPRefineLM(InputArray _objectPoints,InputArray _imagePoints,InputArray _cameraMatrix,InputArray _distCoeffs,InputOutputArray _rvec,InputOutputArray _tvec,TermCriteria _criteria)803 void solvePnPRefineLM(InputArray _objectPoints, InputArray _imagePoints,
804                       InputArray _cameraMatrix, InputArray _distCoeffs,
805                       InputOutputArray _rvec, InputOutputArray _tvec,
806                       TermCriteria _criteria)
807 {
808     CV_INSTRUMENT_REGION();
809     solvePnPRefine(_objectPoints, _imagePoints, _cameraMatrix, _distCoeffs, _rvec, _tvec, SOLVEPNP_REFINE_LM, _criteria);
810 }
811 
solvePnPRefineVVS(InputArray _objectPoints,InputArray _imagePoints,InputArray _cameraMatrix,InputArray _distCoeffs,InputOutputArray _rvec,InputOutputArray _tvec,TermCriteria _criteria,double _VVSlambda)812 void solvePnPRefineVVS(InputArray _objectPoints, InputArray _imagePoints,
813                        InputArray _cameraMatrix, InputArray _distCoeffs,
814                        InputOutputArray _rvec, InputOutputArray _tvec,
815                        TermCriteria _criteria, double _VVSlambda)
816 {
817     CV_INSTRUMENT_REGION();
818     solvePnPRefine(_objectPoints, _imagePoints, _cameraMatrix, _distCoeffs, _rvec, _tvec, SOLVEPNP_REFINE_VVS, _criteria, _VVSlambda);
819 }
820 
solvePnPGeneric(InputArray _opoints,InputArray _ipoints,InputArray _cameraMatrix,InputArray _distCoeffs,OutputArrayOfArrays _rvecs,OutputArrayOfArrays _tvecs,bool useExtrinsicGuess,SolvePnPMethod flags,InputArray _rvec,InputArray _tvec,OutputArray reprojectionError)821 int solvePnPGeneric( InputArray _opoints, InputArray _ipoints,
822                      InputArray _cameraMatrix, InputArray _distCoeffs,
823                      OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs,
824                      bool useExtrinsicGuess, SolvePnPMethod flags,
825                      InputArray _rvec, InputArray _tvec,
826                      OutputArray reprojectionError) {
827     CV_INSTRUMENT_REGION();
828 
829     Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat();
830     int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
831     CV_Assert( ( (npoints >= 4) || (npoints == 3 && flags == SOLVEPNP_ITERATIVE && useExtrinsicGuess)
832                 || (npoints >= 3 && flags == SOLVEPNP_SQPNP) )
833                && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
834 
835     opoints = opoints.reshape(3, npoints);
836     ipoints = ipoints.reshape(2, npoints);
837 
838     if( flags != SOLVEPNP_ITERATIVE )
839         useExtrinsicGuess = false;
840 
841     if (useExtrinsicGuess)
842         CV_Assert( !_rvec.empty() && !_tvec.empty() );
843 
844     if( useExtrinsicGuess )
845     {
846         int rtype = _rvec.type(), ttype = _tvec.type();
847         Size rsize = _rvec.size(), tsize = _tvec.size();
848         CV_Assert( (rtype == CV_32FC1 || rtype == CV_64FC1) &&
849                    (ttype == CV_32FC1 || ttype == CV_64FC1) );
850         CV_Assert( (rsize == Size(1, 3) || rsize == Size(3, 1)) &&
851                    (tsize == Size(1, 3) || tsize == Size(3, 1)) );
852     }
853 
854     Mat cameraMatrix0 = _cameraMatrix.getMat();
855     Mat distCoeffs0 = _distCoeffs.getMat();
856     Mat cameraMatrix = Mat_<double>(cameraMatrix0);
857     Mat distCoeffs = Mat_<double>(distCoeffs0);
858 
859     vector<Mat> vec_rvecs, vec_tvecs;
860     if (flags == SOLVEPNP_EPNP || flags == SOLVEPNP_DLS || flags == SOLVEPNP_UPNP)
861     {
862         if (flags == SOLVEPNP_DLS)
863         {
864             CV_LOG_DEBUG(NULL, "Broken implementation for SOLVEPNP_DLS. Fallback to EPnP.");
865         }
866         else if (flags == SOLVEPNP_UPNP)
867         {
868             CV_LOG_DEBUG(NULL, "Broken implementation for SOLVEPNP_UPNP. Fallback to EPnP.");
869         }
870 
871         Mat undistortedPoints;
872         undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
873         epnp PnP(cameraMatrix, opoints, undistortedPoints);
874 
875         Mat rvec, tvec, R;
876         PnP.compute_pose(R, tvec);
877         Rodrigues(R, rvec);
878 
879         vec_rvecs.push_back(rvec);
880         vec_tvecs.push_back(tvec);
881     }
882     else if (flags == SOLVEPNP_P3P || flags == SOLVEPNP_AP3P)
883     {
884         vector<Mat> rvecs, tvecs;
885         solveP3P(opoints, ipoints, _cameraMatrix, _distCoeffs, rvecs, tvecs, flags);
886         vec_rvecs.insert(vec_rvecs.end(), rvecs.begin(), rvecs.end());
887         vec_tvecs.insert(vec_tvecs.end(), tvecs.begin(), tvecs.end());
888     }
889     else if (flags == SOLVEPNP_ITERATIVE)
890     {
891         Mat rvec, tvec;
892         if (useExtrinsicGuess)
893         {
894             rvec = _rvec.getMat();
895             tvec = _tvec.getMat();
896         }
897         else
898         {
899             rvec.create(3, 1, CV_64FC1);
900             tvec.create(3, 1, CV_64FC1);
901         }
902 
903         CvMat c_objectPoints = cvMat(opoints), c_imagePoints = cvMat(ipoints);
904         CvMat c_cameraMatrix = cvMat(cameraMatrix), c_distCoeffs = cvMat(distCoeffs);
905         CvMat c_rvec = cvMat(rvec), c_tvec = cvMat(tvec);
906         cvFindExtrinsicCameraParams2(&c_objectPoints, &c_imagePoints, &c_cameraMatrix,
907                                      (c_distCoeffs.rows && c_distCoeffs.cols) ? &c_distCoeffs : 0,
908                                      &c_rvec, &c_tvec, useExtrinsicGuess );
909 
910         vec_rvecs.push_back(rvec);
911         vec_tvecs.push_back(tvec);
912     }
913     else if (flags == SOLVEPNP_IPPE)
914     {
915         CV_DbgAssert(isPlanarObjectPoints(opoints, 1e-3));
916         Mat undistortedPoints;
917         undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
918 
919         IPPE::PoseSolver poseSolver;
920         Mat rvec1, tvec1, rvec2, tvec2;
921         float reprojErr1, reprojErr2;
922         try
923         {
924             poseSolver.solveGeneric(opoints, undistortedPoints, rvec1, tvec1, reprojErr1, rvec2, tvec2, reprojErr2);
925 
926             if (reprojErr1 < reprojErr2)
927             {
928                 vec_rvecs.push_back(rvec1);
929                 vec_tvecs.push_back(tvec1);
930 
931                 vec_rvecs.push_back(rvec2);
932                 vec_tvecs.push_back(tvec2);
933             }
934             else
935             {
936                 vec_rvecs.push_back(rvec2);
937                 vec_tvecs.push_back(tvec2);
938 
939                 vec_rvecs.push_back(rvec1);
940                 vec_tvecs.push_back(tvec1);
941             }
942         }
943         catch (...) { }
944     }
945     else if (flags == SOLVEPNP_IPPE_SQUARE)
946     {
947         CV_Assert(npoints == 4);
948 
949 #if defined _DEBUG || defined CV_STATIC_ANALYSIS
950         double Xs[4][3];
951         if (opoints.depth() == CV_32F)
952         {
953             for (int i = 0; i < 4; i++)
954             {
955                 for (int j = 0; j < 3; j++)
956                 {
957                     Xs[i][j] = opoints.ptr<Vec3f>(0)[i](j);
958                 }
959             }
960         }
961         else
962         {
963             for (int i = 0; i < 4; i++)
964             {
965                 for (int j = 0; j < 3; j++)
966                 {
967                     Xs[i][j] = opoints.ptr<Vec3d>(0)[i](j);
968                 }
969             }
970         }
971 
972         const double equalThreshold = 1e-9;
973         //Z must be zero
974         for (int i = 0; i < 4; i++)
975         {
976             CV_DbgCheck(Xs[i][2], approxEqual(Xs[i][2], 0, equalThreshold), "Z object point coordinate must be zero!");
977         }
978         //Y0 == Y1 && Y2 == Y3
979         CV_DbgCheck(Xs[0][1], approxEqual(Xs[0][1], Xs[1][1], equalThreshold), "Object points must be: Y0 == Y1!");
980         CV_DbgCheck(Xs[2][1], approxEqual(Xs[2][1], Xs[3][1], equalThreshold), "Object points must be: Y2 == Y3!");
981         //X0 == X3 && X1 == X2
982         CV_DbgCheck(Xs[0][0], approxEqual(Xs[0][0], Xs[3][0], equalThreshold), "Object points must be: X0 == X3!");
983         CV_DbgCheck(Xs[1][0], approxEqual(Xs[1][0], Xs[2][0], equalThreshold), "Object points must be: X1 == X2!");
984         //X1 == Y1 && X3 == Y3
985         CV_DbgCheck(Xs[1][0], approxEqual(Xs[1][0], Xs[1][1], equalThreshold), "Object points must be: X1 == Y1!");
986         CV_DbgCheck(Xs[3][0], approxEqual(Xs[3][0], Xs[3][1], equalThreshold), "Object points must be: X3 == Y3!");
987 #endif
988 
989         Mat undistortedPoints;
990         undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
991 
992         IPPE::PoseSolver poseSolver;
993         Mat rvec1, tvec1, rvec2, tvec2;
994         float reprojErr1, reprojErr2;
995         try
996         {
997             poseSolver.solveSquare(opoints, undistortedPoints, rvec1, tvec1, reprojErr1, rvec2, tvec2, reprojErr2);
998 
999             if (reprojErr1 < reprojErr2)
1000             {
1001                 vec_rvecs.push_back(rvec1);
1002                 vec_tvecs.push_back(tvec1);
1003 
1004                 vec_rvecs.push_back(rvec2);
1005                 vec_tvecs.push_back(tvec2);
1006             }
1007             else
1008             {
1009                 vec_rvecs.push_back(rvec2);
1010                 vec_tvecs.push_back(tvec2);
1011 
1012                 vec_rvecs.push_back(rvec1);
1013                 vec_tvecs.push_back(tvec1);
1014             }
1015         } catch (...) { }
1016     }
1017     else if (flags == SOLVEPNP_SQPNP)
1018     {
1019         Mat undistortedPoints;
1020         undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
1021 
1022         sqpnp::PoseSolver solver;
1023         solver.solve(opoints, undistortedPoints, vec_rvecs, vec_tvecs);
1024     }
1025     /*else if (flags == SOLVEPNP_DLS)
1026     {
1027         Mat undistortedPoints;
1028         undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
1029 
1030         dls PnP(opoints, undistortedPoints);
1031 
1032         Mat rvec, tvec, R;
1033         bool result = PnP.compute_pose(R, tvec);
1034         if (result)
1035         {
1036             Rodrigues(R, rvec);
1037             vec_rvecs.push_back(rvec);
1038             vec_tvecs.push_back(tvec);
1039         }
1040     }
1041     else if (flags == SOLVEPNP_UPNP)
1042     {
1043         upnp PnP(cameraMatrix, opoints, ipoints);
1044 
1045         Mat rvec, tvec, R;
1046         PnP.compute_pose(R, tvec);
1047         Rodrigues(R, rvec);
1048         vec_rvecs.push_back(rvec);
1049         vec_tvecs.push_back(tvec);
1050     }*/
1051     else
1052         CV_Error(CV_StsBadArg, "The flags argument must be one of SOLVEPNP_ITERATIVE, SOLVEPNP_P3P, "
1053             "SOLVEPNP_EPNP, SOLVEPNP_DLS, SOLVEPNP_UPNP, SOLVEPNP_AP3P, SOLVEPNP_IPPE, SOLVEPNP_IPPE_SQUARE or SOLVEPNP_SQPNP");
1054 
1055     CV_Assert(vec_rvecs.size() == vec_tvecs.size());
1056 
1057     int solutions = static_cast<int>(vec_rvecs.size());
1058 
1059     int depthRot = _rvecs.fixedType() ? _rvecs.depth() : CV_64F;
1060     int depthTrans = _tvecs.fixedType() ? _tvecs.depth() : CV_64F;
1061     _rvecs.create(solutions, 1, CV_MAKETYPE(depthRot, _rvecs.fixedType() && _rvecs.kind() == _InputArray::STD_VECTOR ? 3 : 1));
1062     _tvecs.create(solutions, 1, CV_MAKETYPE(depthTrans, _tvecs.fixedType() && _tvecs.kind() == _InputArray::STD_VECTOR ? 3 : 1));
1063 
1064     for (int i = 0; i < solutions; i++)
1065     {
1066         Mat rvec0, tvec0;
1067         if (depthRot == CV_64F)
1068             rvec0 = vec_rvecs[i];
1069         else
1070             vec_rvecs[i].convertTo(rvec0, depthRot);
1071 
1072         if (depthTrans == CV_64F)
1073             tvec0 = vec_tvecs[i];
1074         else
1075             vec_tvecs[i].convertTo(tvec0, depthTrans);
1076 
1077         if (_rvecs.fixedType() && _rvecs.kind() == _InputArray::STD_VECTOR)
1078         {
1079             Mat rref = _rvecs.getMat_();
1080 
1081             if (_rvecs.depth() == CV_32F)
1082                 rref.at<Vec3f>(0,i) = Vec3f(rvec0.at<float>(0,0), rvec0.at<float>(1,0), rvec0.at<float>(2,0));
1083             else
1084                 rref.at<Vec3d>(0,i) = Vec3d(rvec0.at<double>(0,0), rvec0.at<double>(1,0), rvec0.at<double>(2,0));
1085         }
1086         else
1087         {
1088             _rvecs.getMatRef(i) = rvec0;
1089         }
1090 
1091         if (_tvecs.fixedType() && _tvecs.kind() == _InputArray::STD_VECTOR)
1092         {
1093 
1094             Mat tref = _tvecs.getMat_();
1095 
1096             if (_tvecs.depth() == CV_32F)
1097                 tref.at<Vec3f>(0,i) = Vec3f(tvec0.at<float>(0,0), tvec0.at<float>(1,0), tvec0.at<float>(2,0));
1098             else
1099                 tref.at<Vec3d>(0,i) = Vec3d(tvec0.at<double>(0,0), tvec0.at<double>(1,0), tvec0.at<double>(2,0));
1100         }
1101         else
1102         {
1103             _tvecs.getMatRef(i) = tvec0;
1104         }
1105     }
1106 
1107     if (reprojectionError.needed())
1108     {
1109         int type = (reprojectionError.fixedType() || !reprojectionError.empty())
1110                 ? reprojectionError.type()
1111                 : (max(_ipoints.depth(), _opoints.depth()) == CV_64F ? CV_64F : CV_32F);
1112 
1113         reprojectionError.create(solutions, 1, type);
1114         CV_CheckType(reprojectionError.type(), type == CV_32FC1 || type == CV_64FC1,
1115                      "Type of reprojectionError must be CV_32FC1 or CV_64FC1!");
1116 
1117         Mat objectPoints, imagePoints;
1118         if (opoints.depth() == CV_32F)
1119         {
1120             opoints.convertTo(objectPoints, CV_64F);
1121         }
1122         else
1123         {
1124             objectPoints = opoints;
1125         }
1126         if (ipoints.depth() == CV_32F)
1127         {
1128             ipoints.convertTo(imagePoints, CV_64F);
1129         }
1130         else
1131         {
1132             imagePoints = ipoints;
1133         }
1134 
1135         for (size_t i = 0; i < vec_rvecs.size(); i++)
1136         {
1137             vector<Point2d> projectedPoints;
1138             projectPoints(objectPoints, vec_rvecs[i], vec_tvecs[i], cameraMatrix, distCoeffs, projectedPoints);
1139             double rmse = norm(Mat(projectedPoints, false), imagePoints, NORM_L2) / sqrt(2*projectedPoints.size());
1140 
1141             Mat err = reprojectionError.getMat();
1142             if (type == CV_32F)
1143             {
1144                 err.at<float>(static_cast<int>(i)) = static_cast<float>(rmse);
1145             }
1146             else
1147             {
1148                 err.at<double>(static_cast<int>(i)) = rmse;
1149             }
1150         }
1151     }
1152 
1153     return solutions;
1154 }
1155 
1156 }
1157