1 /***********************************************************************
2  * Software License Agreement (BSD License)
3  *
4  * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
5  * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
6  *
7  * THE BSD LICENSE
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *************************************************************************/
30 
31 #ifndef OPENCV_FLANN_KMEANS_INDEX_H_
32 #define OPENCV_FLANN_KMEANS_INDEX_H_
33 
34 //! @cond IGNORED
35 
36 #include <algorithm>
37 #include <map>
38 #include <limits>
39 #include <cmath>
40 
41 #include "general.h"
42 #include "nn_index.h"
43 #include "dist.h"
44 #include "matrix.h"
45 #include "result_set.h"
46 #include "heap.h"
47 #include "allocator.h"
48 #include "random.h"
49 #include "saving.h"
50 #include "logger.h"
51 
52 #define BITS_PER_CHAR 8
53 #define BITS_PER_BASE 2 // for DNA/RNA sequences
54 #define BASE_PER_CHAR (BITS_PER_CHAR/BITS_PER_BASE)
55 #define HISTOS_PER_BASE (1<<BITS_PER_BASE)
56 
57 
58 namespace cvflann
59 {
60 
61 struct KMeansIndexParams : public IndexParams
62 {
63     KMeansIndexParams(int branching = 32, int iterations = 11,
64                       flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
65                       float cb_index = 0.2, int trees = 1 )
66     {
67         (*this)["algorithm"] = FLANN_INDEX_KMEANS;
68         // branching factor
69         (*this)["branching"] = branching;
70         // max iterations to perform in one kmeans clustering (kmeans tree)
71         (*this)["iterations"] = iterations;
72         // algorithm used for picking the initial cluster centers for kmeans tree
73         (*this)["centers_init"] = centers_init;
74         // cluster boundary index. Used when searching the kmeans tree
75         (*this)["cb_index"] = cb_index;
76         // number of kmeans trees to search in
77         (*this)["trees"] = trees;
78     }
79 };
80 
81 
82 /**
83  * Hierarchical kmeans index
84  *
85  * Contains a tree constructed through a hierarchical kmeans clustering
86  * and other information for indexing a set of points for nearest-neighbour matching.
87  */
88 template <typename Distance>
89 class KMeansIndex : public NNIndex<Distance>
90 {
91 public:
92     typedef typename Distance::ElementType ElementType;
93     typedef typename Distance::ResultType DistanceType;
94     typedef typename Distance::CentersType CentersType;
95 
96     typedef typename Distance::is_kdtree_distance is_kdtree_distance;
97     typedef typename Distance::is_vector_space_distance is_vector_space_distance;
98 
99 
100 
101     typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);
102 
103     /**
104      * The function used for choosing the cluster centers.
105      */
106     centersAlgFunction chooseCenters;
107 
108 
109 
110     /**
111      * Chooses the initial centers in the k-means clustering in a random manner.
112      *
113      * Params:
114      *     k = number of centers
115      *     vecs = the dataset of points
116      *     indices = indices in the dataset
117      *     indices_length = length of indices vector
118      *
119      */
chooseCentersRandom(int k,int * indices,int indices_length,int * centers,int & centers_length)120     void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
121     {
122         UniqueRandom r(indices_length);
123 
124         int index;
125         for (index=0; index<k; ++index) {
126             bool duplicate = true;
127             int rnd;
128             while (duplicate) {
129                 duplicate = false;
130                 rnd = r.next();
131                 if (rnd<0) {
132                     centers_length = index;
133                     return;
134                 }
135 
136                 centers[index] = indices[rnd];
137 
138                 for (int j=0; j<index; ++j) {
139                     DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
140                     if (sq<1e-16) {
141                         duplicate = true;
142                     }
143                 }
144             }
145         }
146 
147         centers_length = index;
148     }
149 
150 
151     /**
152      * Chooses the initial centers in the k-means using Gonzales' algorithm
153      * so that the centers are spaced apart from each other.
154      *
155      * Params:
156      *     k = number of centers
157      *     vecs = the dataset of points
158      *     indices = indices in the dataset
159      * Returns:
160      */
chooseCentersGonzales(int k,int * indices,int indices_length,int * centers,int & centers_length)161     void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
162     {
163         int n = indices_length;
164 
165         int rnd = rand_int(n);
166         CV_DbgAssert(rnd >=0 && rnd < n);
167 
168         centers[0] = indices[rnd];
169 
170         int index;
171         for (index=1; index<k; ++index) {
172 
173             int best_index = -1;
174             DistanceType best_val = 0;
175             for (int j=0; j<n; ++j) {
176                 DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
177                 for (int i=1; i<index; ++i) {
178                     DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
179                     if (tmp_dist<dist) {
180                         dist = tmp_dist;
181                     }
182                 }
183                 if (dist>best_val) {
184                     best_val = dist;
185                     best_index = j;
186                 }
187             }
188             if (best_index!=-1) {
189                 centers[index] = indices[best_index];
190             }
191             else {
192                 break;
193             }
194         }
195         centers_length = index;
196     }
197 
198 
199     /**
200      * Chooses the initial centers in the k-means using the algorithm
201      * proposed in the KMeans++ paper:
202      * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
203      *
204      * Implementation of this function was converted from the one provided in Arthur's code.
205      *
206      * Params:
207      *     k = number of centers
208      *     vecs = the dataset of points
209      *     indices = indices in the dataset
210      * Returns:
211      */
chooseCentersKMeanspp(int k,int * indices,int indices_length,int * centers,int & centers_length)212     void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
213     {
214         int n = indices_length;
215 
216         double currentPot = 0;
217         DistanceType* closestDistSq = new DistanceType[n];
218 
219         // Choose one random center and set the closestDistSq values
220         int index = rand_int(n);
221         CV_DbgAssert(index >=0 && index < n);
222         centers[0] = indices[index];
223 
224         for (int i = 0; i < n; i++) {
225             closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
226             closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
227             currentPot += closestDistSq[i];
228         }
229 
230 
231         const int numLocalTries = 1;
232 
233         // Choose each center
234         int centerCount;
235         for (centerCount = 1; centerCount < k; centerCount++) {
236 
237             // Repeat several trials
238             double bestNewPot = -1;
239             int bestNewIndex = -1;
240             for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
241 
242                 // Choose our center - have to be slightly careful to return a valid answer even accounting
243                 // for possible rounding errors
244                 double randVal = rand_double(currentPot);
245                 for (index = 0; index < n-1; index++) {
246                     if (randVal <= closestDistSq[index]) break;
247                     else randVal -= closestDistSq[index];
248                 }
249 
250                 // Compute the new potential
251                 double newPot = 0;
252                 for (int i = 0; i < n; i++) {
253                     DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
254                     newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
255                 }
256 
257                 // Store the best result
258                 if ((bestNewPot < 0)||(newPot < bestNewPot)) {
259                     bestNewPot = newPot;
260                     bestNewIndex = index;
261                 }
262             }
263 
264             // Add the appropriate center
265             centers[centerCount] = indices[bestNewIndex];
266             currentPot = bestNewPot;
267             for (int i = 0; i < n; i++) {
268                 DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
269                 closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
270             }
271         }
272 
273         centers_length = centerCount;
274 
275         delete[] closestDistSq;
276     }
277 
278 
279 
280 public:
281 
getType()282     flann_algorithm_t getType() const CV_OVERRIDE
283     {
284         return FLANN_INDEX_KMEANS;
285     }
286 
287     template<class CentersContainerType>
288     class KMeansDistanceComputer : public cv::ParallelLoopBody
289     {
290     public:
KMeansDistanceComputer(Distance _distance,const Matrix<ElementType> & _dataset,const int _branching,const int * _indices,const CentersContainerType & _dcenters,const size_t _veclen,std::vector<int> & _new_centroids,std::vector<DistanceType> & _sq_dists)291         KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,
292             const int _branching, const int* _indices, const CentersContainerType& _dcenters,
293             const size_t _veclen, std::vector<int> &_new_centroids,
294             std::vector<DistanceType> &_sq_dists)
295             : distance(_distance)
296             , dataset(_dataset)
297             , branching(_branching)
298             , indices(_indices)
299             , dcenters(_dcenters)
300             , veclen(_veclen)
301             , new_centroids(_new_centroids)
302             , sq_dists(_sq_dists)
303         {
304         }
305 
operator()306         void operator()(const cv::Range& range) const CV_OVERRIDE
307         {
308             const int begin = range.start;
309             const int end = range.end;
310 
311             for( int i = begin; i<end; ++i)
312             {
313                 DistanceType sq_dist(distance(dataset[indices[i]], dcenters[0], veclen));
314                 int new_centroid(0);
315                 for (int j=1; j<branching; ++j) {
316                     DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen);
317                     if (sq_dist>new_sq_dist) {
318                         new_centroid = j;
319                         sq_dist = new_sq_dist;
320                     }
321                 }
322                 sq_dists[i] = sq_dist;
323                 new_centroids[i] = new_centroid;
324             }
325         }
326 
327     private:
328         Distance distance;
329         const Matrix<ElementType>& dataset;
330         const int branching;
331         const int* indices;
332         const CentersContainerType& dcenters;
333         const size_t veclen;
334         std::vector<int> &new_centroids;
335         std::vector<DistanceType> &sq_dists;
336         KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; }
337     };
338 
339     /**
340      * Index constructor
341      *
342      * Params:
343      *          inputData = dataset with the input features
344      *          params = parameters passed to the hierarchical k-means algorithm
345      */
346     KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
347                 Distance d = Distance())
dataset_(inputData)348         : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
349     {
350         memoryCounter_ = 0;
351 
352         size_ = dataset_.rows;
353         veclen_ = dataset_.cols;
354 
355         branching_ = get_param(params,"branching",32);
356         trees_ = get_param(params,"trees",1);
357         iterations_ = get_param(params,"iterations",11);
358         if (iterations_<0) {
359             iterations_ = (std::numeric_limits<int>::max)();
360         }
361         centers_init_  = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
362 
363         if (centers_init_==FLANN_CENTERS_RANDOM) {
364             chooseCenters = &KMeansIndex::chooseCentersRandom;
365         }
366         else if (centers_init_==FLANN_CENTERS_GONZALES) {
367             chooseCenters = &KMeansIndex::chooseCentersGonzales;
368         }
369         else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
370             chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
371         }
372         else {
373             FLANN_THROW(cv::Error::StsBadArg, "Unknown algorithm for choosing initial centers.");
374         }
375         cb_index_ = 0.4f;
376 
377         root_ = new KMeansNodePtr[trees_];
378         indices_ = new int*[trees_];
379 
380         for (int i=0; i<trees_; ++i) {
381             root_[i] = NULL;
382             indices_[i] = NULL;
383         }
384     }
385 
386 
387     KMeansIndex(const KMeansIndex&);
388     KMeansIndex& operator=(const KMeansIndex&);
389 
390 
391     /**
392      * Index destructor.
393      *
394      * Release the memory used by the index.
395      */
~KMeansIndex()396     virtual ~KMeansIndex()
397     {
398         if (root_ != NULL) {
399             free_centers();
400             delete[] root_;
401         }
402         if (indices_!=NULL) {
403             free_indices();
404             delete[] indices_;
405         }
406     }
407 
408     /**
409      *  Returns size of index.
410      */
size()411     size_t size() const CV_OVERRIDE
412     {
413         return size_;
414     }
415 
416     /**
417      * Returns the length of an index feature.
418      */
veclen()419     size_t veclen() const CV_OVERRIDE
420     {
421         return veclen_;
422     }
423 
424 
set_cb_index(float index)425     void set_cb_index( float index)
426     {
427         cb_index_ = index;
428     }
429 
430     /**
431      * Computes the inde memory usage
432      * Returns: memory used by the index
433      */
usedMemory()434     int usedMemory() const CV_OVERRIDE
435     {
436         return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
437     }
438 
439     /**
440      * Builds the index
441      */
buildIndex()442     void buildIndex() CV_OVERRIDE
443     {
444         if (branching_<2) {
445             FLANN_THROW(cv::Error::StsError, "Branching factor must be at least 2");
446         }
447 
448         free_indices();
449 
450         for (int i=0; i<trees_; ++i) {
451             indices_[i] = new int[size_];
452             for (size_t j=0; j<size_; ++j) {
453                 indices_[i][j] = int(j);
454             }
455             root_[i] = pool_.allocate<KMeansNode>();
456             std::memset(root_[i], 0, sizeof(KMeansNode));
457 
458             Distance* dummy = NULL;
459             computeNodeStatistics(root_[i], indices_[i], (unsigned int)size_, dummy);
460 
461             computeClustering(root_[i], indices_[i], (int)size_, branching_,0);
462         }
463     }
464 
465 
saveIndex(FILE * stream)466     void saveIndex(FILE* stream) CV_OVERRIDE
467     {
468         save_value(stream, branching_);
469         save_value(stream, iterations_);
470         save_value(stream, memoryCounter_);
471         save_value(stream, cb_index_);
472         save_value(stream, trees_);
473         for (int i=0; i<trees_; ++i) {
474             save_value(stream, *indices_[i], (int)size_);
475             save_tree(stream, root_[i], i);
476         }
477     }
478 
479 
loadIndex(FILE * stream)480     void loadIndex(FILE* stream) CV_OVERRIDE
481     {
482         if (indices_!=NULL) {
483             free_indices();
484             delete[] indices_;
485         }
486         if (root_!=NULL) {
487             free_centers();
488         }
489 
490         load_value(stream, branching_);
491         load_value(stream, iterations_);
492         load_value(stream, memoryCounter_);
493         load_value(stream, cb_index_);
494         load_value(stream, trees_);
495 
496         indices_ = new int*[trees_];
497         for (int i=0; i<trees_; ++i) {
498             indices_[i] = new int[size_];
499             load_value(stream, *indices_[i], size_);
500             load_tree(stream, root_[i], i);
501         }
502 
503         index_params_["algorithm"] = getType();
504         index_params_["branching"] = branching_;
505         index_params_["trees"] = trees_;
506         index_params_["iterations"] = iterations_;
507         index_params_["centers_init"] = centers_init_;
508         index_params_["cb_index"] = cb_index_;
509     }
510 
511 
512     /**
513      * Find set of nearest neighbors to vec. Their indices are stored inside
514      * the result object.
515      *
516      * Params:
517      *     result = the result object in which the indices of the nearest-neighbors are stored
518      *     vec = the vector for which to search the nearest neighbors
519      *     searchParams = parameters that influence the search algorithm (checks, cb_index)
520      */
findNeighbors(ResultSet<DistanceType> & result,const ElementType * vec,const SearchParams & searchParams)521     void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
522     {
523 
524         const int maxChecks = get_param(searchParams,"checks",32);
525 
526         if (maxChecks==FLANN_CHECKS_UNLIMITED) {
527             findExactNN(root_[0], result, vec);
528         }
529         else {
530             // Priority queue storing intermediate branches in the best-bin-first search
531             Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
532 
533             int checks = 0;
534             for (int i=0; i<trees_; ++i) {
535                 findNN(root_[i], result, vec, checks, maxChecks, heap);
536                 if ((checks >= maxChecks) && result.full())
537                     break;
538             }
539 
540             BranchSt branch;
541             while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
542                 KMeansNodePtr node = branch.node;
543                 findNN(node, result, vec, checks, maxChecks, heap);
544             }
545             delete heap;
546 
547             CV_Assert(result.full());
548         }
549     }
550 
551     /**
552      * Clustering function that takes a cut in the hierarchical k-means
553      * tree and return the clusters centers of that clustering.
554      * Params:
555      *     numClusters = number of clusters to have in the clustering computed
556      * Returns: number of cluster centers
557      */
getClusterCenters(Matrix<CentersType> & centers)558     int getClusterCenters(Matrix<CentersType>& centers)
559     {
560         int numClusters = centers.rows;
561         if (numClusters<1) {
562             FLANN_THROW(cv::Error::StsBadArg, "Number of clusters must be at least 1");
563         }
564 
565         DistanceType variance;
566         KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];
567 
568         int clusterCount = getMinVarianceClusters(root_[0], clusters, numClusters, variance);
569 
570         Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
571 
572         for (int i=0; i<clusterCount; ++i) {
573             CentersType* center = clusters[i]->pivot;
574             for (size_t j=0; j<veclen_; ++j) {
575                 centers[i][j] = center[j];
576             }
577         }
578         delete[] clusters;
579 
580         return clusterCount;
581     }
582 
getParameters()583     IndexParams getParameters() const CV_OVERRIDE
584     {
585         return index_params_;
586     }
587 
588 
589 private:
590     /**
591      * Structure representing a node in the hierarchical k-means tree.
592      */
593     struct KMeansNode
594     {
595         /**
596          * The cluster center.
597          */
598         CentersType* pivot;
599         /**
600          * The cluster radius.
601          */
602         DistanceType radius;
603         /**
604          * The cluster mean radius.
605          */
606         DistanceType mean_radius;
607         /**
608          * The cluster variance.
609          */
610         DistanceType variance;
611         /**
612          * The cluster size (number of points in the cluster)
613          */
614         int size;
615         /**
616          * Child nodes (only for non-terminal nodes)
617          */
618         KMeansNode** childs;
619         /**
620          * Node points (only for terminal nodes)
621          */
622         int* indices;
623         /**
624          * Level
625          */
626         int level;
627     };
628     typedef KMeansNode* KMeansNodePtr;
629 
630     /**
631      * Alias definition for a nicer syntax.
632      */
633     typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;
634 
635 
636 
637 
save_tree(FILE * stream,KMeansNodePtr node,int num)638     void save_tree(FILE* stream, KMeansNodePtr node, int num)
639     {
640         save_value(stream, *node);
641         save_value(stream, *(node->pivot), (int)veclen_);
642         if (node->childs==NULL) {
643             int indices_offset = (int)(node->indices - indices_[num]);
644             save_value(stream, indices_offset);
645         }
646         else {
647             for(int i=0; i<branching_; ++i) {
648                 save_tree(stream, node->childs[i], num);
649             }
650         }
651     }
652 
653 
load_tree(FILE * stream,KMeansNodePtr & node,int num)654     void load_tree(FILE* stream, KMeansNodePtr& node, int num)
655     {
656         node = pool_.allocate<KMeansNode>();
657         load_value(stream, *node);
658         node->pivot = new CentersType[veclen_];
659         load_value(stream, *(node->pivot), (int)veclen_);
660         if (node->childs==NULL) {
661             int indices_offset;
662             load_value(stream, indices_offset);
663             node->indices = indices_[num] + indices_offset;
664         }
665         else {
666             node->childs = pool_.allocate<KMeansNodePtr>(branching_);
667             for(int i=0; i<branching_; ++i) {
668                 load_tree(stream, node->childs[i], num);
669             }
670         }
671     }
672 
673 
674     /**
675      * Helper function
676      */
free_centers(KMeansNodePtr node)677     void free_centers(KMeansNodePtr node)
678     {
679         delete[] node->pivot;
680         if (node->childs!=NULL) {
681             for (int k=0; k<branching_; ++k) {
682                 free_centers(node->childs[k]);
683             }
684         }
685     }
686 
free_centers()687     void free_centers()
688     {
689        if (root_ != NULL) {
690            for(int i=0; i<trees_; ++i) {
691                if (root_[i] != NULL) {
692                    free_centers(root_[i]);
693                }
694            }
695        }
696     }
697 
698     /**
699      * Release the inner elements of indices[]
700      */
free_indices()701     void free_indices()
702     {
703         if (indices_!=NULL) {
704             for(int i=0; i<trees_; ++i) {
705                 if (indices_[i]!=NULL) {
706                     delete[] indices_[i];
707                     indices_[i] = NULL;
708                 }
709             }
710         }
711     }
712 
713     /**
714      * Computes the statistics of a node (mean, radius, variance).
715      *
716      * Params:
717      *     node = the node to use
718      *     indices = array of indices of the points belonging to the node
719      *     indices_length = number of indices in the array
720      */
computeNodeStatistics(KMeansNodePtr node,int * indices,unsigned int indices_length)721     void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length)
722     {
723         DistanceType variance = 0;
724         CentersType* mean = new CentersType[veclen_];
725         memoryCounter_ += int(veclen_*sizeof(CentersType));
726 
727         memset(mean,0,veclen_*sizeof(CentersType));
728 
729         for (unsigned int i=0; i<indices_length; ++i) {
730             ElementType* vec = dataset_[indices[i]];
731             for (size_t j=0; j<veclen_; ++j) {
732                 mean[j] += vec[j];
733             }
734             variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
735         }
736         float length = static_cast<float>(indices_length);
737         for (size_t j=0; j<veclen_; ++j) {
738             mean[j] = cvflann::round<CentersType>( mean[j] / static_cast<double>(indices_length) );
739         }
740         variance /= static_cast<DistanceType>( length );
741         variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);
742 
743         DistanceType radius = 0;
744         for (unsigned int i=0; i<indices_length; ++i) {
745             DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
746             if (tmp>radius) {
747                 radius = tmp;
748             }
749         }
750 
751         node->variance = variance;
752         node->radius = radius;
753         node->pivot = mean;
754     }
755 
756 
computeBitfieldNodeStatistics(KMeansNodePtr node,int * indices,unsigned int indices_length)757     void computeBitfieldNodeStatistics(KMeansNodePtr node, int* indices,
758                                        unsigned int indices_length)
759     {
760         const unsigned int accumulator_veclen = static_cast<unsigned int>(
761                                                 veclen_*sizeof(CentersType)*BITS_PER_CHAR);
762 
763         unsigned long long variance = 0ull;
764         CentersType* mean = new CentersType[veclen_];
765         memoryCounter_ += int(veclen_*sizeof(CentersType));
766         unsigned int* mean_accumulator = new unsigned int[accumulator_veclen];
767 
768         memset(mean_accumulator, 0, sizeof(unsigned int)*accumulator_veclen);
769 
770         for (unsigned int i=0; i<indices_length; ++i) {
771             variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(
772                         distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_)));
773             unsigned char* vec = (unsigned char*)dataset_[indices[i]];
774             for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
775                 mean_accumulator[k]   += (vec[l])    & 0x01;
776                 mean_accumulator[k+1] += (vec[l]>>1) & 0x01;
777                 mean_accumulator[k+2] += (vec[l]>>2) & 0x01;
778                 mean_accumulator[k+3] += (vec[l]>>3) & 0x01;
779                 mean_accumulator[k+4] += (vec[l]>>4) & 0x01;
780                 mean_accumulator[k+5] += (vec[l]>>5) & 0x01;
781                 mean_accumulator[k+6] += (vec[l]>>6) & 0x01;
782                 mean_accumulator[k+7] += (vec[l]>>7) & 0x01;
783             }
784         }
785         double cnt = static_cast<double>(indices_length);
786         unsigned char* char_mean = (unsigned char*)mean;
787         for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
788             char_mean[l] = static_cast<unsigned char>(
789                               (((int)(0.5 + (double)(mean_accumulator[k])   / cnt)))
790                             | (((int)(0.5 + (double)(mean_accumulator[k+1]) / cnt))<<1)
791                             | (((int)(0.5 + (double)(mean_accumulator[k+2]) / cnt))<<2)
792                             | (((int)(0.5 + (double)(mean_accumulator[k+3]) / cnt))<<3)
793                             | (((int)(0.5 + (double)(mean_accumulator[k+4]) / cnt))<<4)
794                             | (((int)(0.5 + (double)(mean_accumulator[k+5]) / cnt))<<5)
795                             | (((int)(0.5 + (double)(mean_accumulator[k+6]) / cnt))<<6)
796                             | (((int)(0.5 + (double)(mean_accumulator[k+7]) / cnt))<<7));
797         }
798         variance = static_cast<unsigned long long>(
799                     0.5 + static_cast<double>(variance) / static_cast<double>(indices_length));
800         variance -= static_cast<unsigned long long>(
801                     ensureSquareDistance<Distance>(
802                         distance_(mean, ZeroIterator<ElementType>(), veclen_)));
803 
804         DistanceType radius = 0;
805         for (unsigned int i=0; i<indices_length; ++i) {
806             DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
807             if (tmp>radius) {
808                 radius = tmp;
809             }
810         }
811 
812         node->variance = static_cast<DistanceType>(variance);
813         node->radius = radius;
814         node->pivot = mean;
815 
816         delete[] mean_accumulator;
817     }
818 
819 
computeDnaNodeStatistics(KMeansNodePtr node,int * indices,unsigned int indices_length)820     void computeDnaNodeStatistics(KMeansNodePtr node, int* indices,
821                                        unsigned int indices_length)
822     {
823         const unsigned int histos_veclen = static_cast<unsigned int>(
824                     veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
825 
826         unsigned long long variance = 0ull;
827         unsigned int* histograms = new unsigned int[histos_veclen];
828         memset(histograms, 0, sizeof(unsigned int)*histos_veclen);
829 
830         for (unsigned int i=0; i<indices_length; ++i) {
831             variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(
832                         distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_)));
833 
834             unsigned char* vec = (unsigned char*)dataset_[indices[i]];
835             for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
836                 histograms[k +     ((vec[l])    & 0x03)]++;
837                 histograms[k + 4 + ((vec[l]>>2) & 0x03)]++;
838                 histograms[k + 8 + ((vec[l]>>4) & 0x03)]++;
839                 histograms[k +12 + ((vec[l]>>6) & 0x03)]++;
840             }
841         }
842 
843         CentersType* mean = new CentersType[veclen_];
844         memoryCounter_ += int(veclen_*sizeof(CentersType));
845         unsigned char* char_mean = (unsigned char*)mean;
846         unsigned int* h = histograms;
847         for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
848             char_mean[l] = (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k]   > h[k+2] ? 0x00 : 0x10
849                                                             : h[k]   > h[k+3] ? 0x00 : 0x11
850                                           : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
851                                                             : h[k+1] > h[k+3] ? 0x01 : 0x11)
852                          | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00   : 0x1000
853                                                             : h[k+4] > h[k+7] ? 0x00   : 0x1100
854                                           : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
855                                                             : h[k+5] > h[k+7] ? 0x0100 : 0x1100)
856                          | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00   : 0x100000
857                                                             : h[k+8] >h[k+11] ? 0x00   : 0x110000
858                                           : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
859                                                             : h[k+9] >h[k+11] ? 0x010000 : 0x110000)
860                          | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00   : 0x10000000
861                                                               : h[k+12] >h[k+15] ? 0x00   : 0x11000000
862                                             : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
863                                                               : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
864         }
865         variance = static_cast<unsigned long long>(
866                     0.5 + static_cast<double>(variance) / static_cast<double>(indices_length));
867         variance -= static_cast<unsigned long long>(
868                     ensureSquareDistance<Distance>(
869                         distance_(mean, ZeroIterator<ElementType>(), veclen_)));
870 
871         DistanceType radius = 0;
872         for (unsigned int i=0; i<indices_length; ++i) {
873             DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
874             if (tmp>radius) {
875                 radius = tmp;
876             }
877         }
878 
879         node->variance = static_cast<DistanceType>(variance);
880         node->radius = radius;
881         node->pivot = mean;
882 
883         delete[] histograms;
884     }
885 
886 
887     template<typename DistType>
computeNodeStatistics(KMeansNodePtr node,int * indices,unsigned int indices_length,const DistType * identifier)888     void computeNodeStatistics(KMeansNodePtr node, int* indices,
889                                unsigned int indices_length,
890                                const DistType* identifier)
891     {
892         (void)identifier;
893         computeNodeStatistics(node, indices, indices_length);
894     }
895 
computeNodeStatistics(KMeansNodePtr node,int * indices,unsigned int indices_length,const cvflann::HammingLUT * identifier)896     void computeNodeStatistics(KMeansNodePtr node, int* indices,
897                                unsigned int indices_length,
898                                const cvflann::HammingLUT* identifier)
899     {
900         (void)identifier;
901         computeBitfieldNodeStatistics(node, indices, indices_length);
902     }
903 
computeNodeStatistics(KMeansNodePtr node,int * indices,unsigned int indices_length,const cvflann::Hamming<unsigned char> * identifier)904     void computeNodeStatistics(KMeansNodePtr node, int* indices,
905                                unsigned int indices_length,
906                                const cvflann::Hamming<unsigned char>* identifier)
907     {
908         (void)identifier;
909         computeBitfieldNodeStatistics(node, indices, indices_length);
910     }
911 
computeNodeStatistics(KMeansNodePtr node,int * indices,unsigned int indices_length,const cvflann::Hamming2<unsigned char> * identifier)912     void computeNodeStatistics(KMeansNodePtr node, int* indices,
913                                unsigned int indices_length,
914                                const cvflann::Hamming2<unsigned char>* identifier)
915     {
916         (void)identifier;
917         computeBitfieldNodeStatistics(node, indices, indices_length);
918     }
919 
computeNodeStatistics(KMeansNodePtr node,int * indices,unsigned int indices_length,const cvflann::DNAmmingLUT * identifier)920     void computeNodeStatistics(KMeansNodePtr node, int* indices,
921                                unsigned int indices_length,
922                                const cvflann::DNAmmingLUT* identifier)
923     {
924         (void)identifier;
925         computeDnaNodeStatistics(node, indices, indices_length);
926     }
927 
computeNodeStatistics(KMeansNodePtr node,int * indices,unsigned int indices_length,const cvflann::DNAmming2<unsigned char> * identifier)928     void computeNodeStatistics(KMeansNodePtr node, int* indices,
929                                unsigned int indices_length,
930                                const cvflann::DNAmming2<unsigned char>* identifier)
931     {
932         (void)identifier;
933         computeDnaNodeStatistics(node, indices, indices_length);
934     }
935 
936 
refineClustering(int * indices,int indices_length,int branching,CentersType ** centers,std::vector<DistanceType> & radiuses,int * belongs_to,int * count)937     void refineClustering(int* indices, int indices_length, int branching, CentersType** centers,
938                           std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
939     {
940         cv::AutoBuffer<double> dcenters_buf(branching*veclen_);
941         Matrix<double> dcenters(dcenters_buf.data(), branching, veclen_);
942 
943         bool converged = false;
944         int iteration = 0;
945         while (!converged && iteration<iterations_) {
946             converged = true;
947             iteration++;
948 
949             // compute the new cluster centers
950             for (int i=0; i<branching; ++i) {
951                 memset(dcenters[i],0,sizeof(double)*veclen_);
952                 radiuses[i] = 0;
953             }
954             for (int i=0; i<indices_length; ++i) {
955                 ElementType* vec = dataset_[indices[i]];
956                 double* center = dcenters[belongs_to[i]];
957                 for (size_t k=0; k<veclen_; ++k) {
958                     center[k] += vec[k];
959                 }
960             }
961             for (int i=0; i<branching; ++i) {
962                 int cnt = count[i];
963                 for (size_t k=0; k<veclen_; ++k) {
964                     dcenters[i][k] /= cnt;
965                 }
966             }
967 
968             std::vector<int> new_centroids(indices_length);
969             std::vector<DistanceType> sq_dists(indices_length);
970 
971             // reassign points to clusters
972             KMeansDistanceComputer<Matrix<double> > invoker(
973                         distance_, dataset_, branching, indices, dcenters, veclen_, new_centroids, sq_dists);
974             parallel_for_(cv::Range(0, (int)indices_length), invoker);
975 
976             for (int i=0; i < (int)indices_length; ++i) {
977                 DistanceType sq_dist(sq_dists[i]);
978                 int new_centroid(new_centroids[i]);
979                 if (sq_dist > radiuses[new_centroid]) {
980                     radiuses[new_centroid] = sq_dist;
981                 }
982                 if (new_centroid != belongs_to[i]) {
983                     count[belongs_to[i]]--;
984                     count[new_centroid]++;
985                     belongs_to[i] = new_centroid;
986                     converged = false;
987                 }
988             }
989 
990             for (int i=0; i<branching; ++i) {
991                 // if one cluster converges to an empty cluster,
992                 // move an element into that cluster
993                 if (count[i]==0) {
994                     int j = (i+1)%branching;
995                     while (count[j]<=1) {
996                         j = (j+1)%branching;
997                     }
998 
999                     for (int k=0; k<indices_length; ++k) {
1000                         if (belongs_to[k]==j) {
1001                             // for cluster j, we move the furthest element from the center to the empty cluster i
1002                             if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) {
1003                                 belongs_to[k] = i;
1004                                 count[j]--;
1005                                 count[i]++;
1006                                 break;
1007                             }
1008                         }
1009                     }
1010                     converged = false;
1011                 }
1012             }
1013         }
1014 
1015        for (int i=0; i<branching; ++i) {
1016            centers[i] = new CentersType[veclen_];
1017            memoryCounter_ += (int)(veclen_*sizeof(CentersType));
1018            for (size_t k=0; k<veclen_; ++k) {
1019                centers[i][k] = (CentersType)dcenters[i][k];
1020            }
1021        }
1022     }
1023 
1024 
refineBitfieldClustering(int * indices,int indices_length,int branching,CentersType ** centers,std::vector<DistanceType> & radiuses,int * belongs_to,int * count)1025     void refineBitfieldClustering(int* indices, int indices_length, int branching, CentersType** centers,
1026                                   std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
1027     {
1028         for (int i=0; i<branching; ++i) {
1029             centers[i] = new CentersType[veclen_];
1030             memoryCounter_ += (int)(veclen_*sizeof(CentersType));
1031         }
1032 
1033         const unsigned int accumulator_veclen = static_cast<unsigned int>(
1034                                                 veclen_*sizeof(ElementType)*BITS_PER_CHAR);
1035         cv::AutoBuffer<unsigned int> dcenters_buf(branching*accumulator_veclen);
1036         Matrix<unsigned int> dcenters(dcenters_buf.data(), branching, accumulator_veclen);
1037 
1038         bool converged = false;
1039         int iteration = 0;
1040         while (!converged && iteration<iterations_) {
1041             converged = true;
1042             iteration++;
1043 
1044             // compute the new cluster centers
1045             for (int i=0; i<branching; ++i) {
1046                 memset(dcenters[i],0,sizeof(unsigned int)*accumulator_veclen);
1047                 radiuses[i] = 0;
1048             }
1049             for (int i=0; i<indices_length; ++i) {
1050                 unsigned char* vec = (unsigned char*)dataset_[indices[i]];
1051                 unsigned int* dcenter = dcenters[belongs_to[i]];
1052                 for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
1053                     dcenter[k]   += (vec[l])    & 0x01;
1054                     dcenter[k+1] += (vec[l]>>1) & 0x01;
1055                     dcenter[k+2] += (vec[l]>>2) & 0x01;
1056                     dcenter[k+3] += (vec[l]>>3) & 0x01;
1057                     dcenter[k+4] += (vec[l]>>4) & 0x01;
1058                     dcenter[k+5] += (vec[l]>>5) & 0x01;
1059                     dcenter[k+6] += (vec[l]>>6) & 0x01;
1060                     dcenter[k+7] += (vec[l]>>7) & 0x01;
1061                 }
1062             }
1063             for (int i=0; i<branching; ++i) {
1064                 double cnt = static_cast<double>(count[i]);
1065                 unsigned int* dcenter = dcenters[i];
1066                 unsigned char* charCenter = (unsigned char*)centers[i];
1067                 for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
1068                     charCenter[l] = static_cast<unsigned char>(
1069                                       (((int)(0.5 + (double)(dcenter[k])   / cnt)))
1070                                     | (((int)(0.5 + (double)(dcenter[k+1]) / cnt))<<1)
1071                                     | (((int)(0.5 + (double)(dcenter[k+2]) / cnt))<<2)
1072                                     | (((int)(0.5 + (double)(dcenter[k+3]) / cnt))<<3)
1073                                     | (((int)(0.5 + (double)(dcenter[k+4]) / cnt))<<4)
1074                                     | (((int)(0.5 + (double)(dcenter[k+5]) / cnt))<<5)
1075                                     | (((int)(0.5 + (double)(dcenter[k+6]) / cnt))<<6)
1076                                     | (((int)(0.5 + (double)(dcenter[k+7]) / cnt))<<7));
1077                 }
1078             }
1079 
1080             std::vector<int> new_centroids(indices_length);
1081             std::vector<DistanceType> dists(indices_length);
1082 
1083             // reassign points to clusters
1084             KMeansDistanceComputer<ElementType**> invoker(
1085                         distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists);
1086             parallel_for_(cv::Range(0, (int)indices_length), invoker);
1087 
1088             for (int i=0; i < indices_length; ++i) {
1089                 DistanceType dist(dists[i]);
1090                 int new_centroid(new_centroids[i]);
1091                 if (dist > radiuses[new_centroid]) {
1092                     radiuses[new_centroid] = dist;
1093                 }
1094                 if (new_centroid != belongs_to[i]) {
1095                     count[belongs_to[i]]--;
1096                     count[new_centroid]++;
1097                     belongs_to[i] = new_centroid;
1098                     converged = false;
1099                 }
1100             }
1101 
1102             for (int i=0; i<branching; ++i) {
1103                 // if one cluster converges to an empty cluster,
1104                 // move an element into that cluster
1105                 if (count[i]==0) {
1106                     int j = (i+1)%branching;
1107                     while (count[j]<=1) {
1108                         j = (j+1)%branching;
1109                     }
1110 
1111                     for (int k=0; k<indices_length; ++k) {
1112                         if (belongs_to[k]==j) {
1113                             // for cluster j, we move the furthest element from the center to the empty cluster i
1114                             if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) {
1115                                 belongs_to[k] = i;
1116                                 count[j]--;
1117                                 count[i]++;
1118                                 break;
1119                             }
1120                         }
1121                     }
1122                     converged = false;
1123                 }
1124             }
1125         }
1126     }
1127 
1128 
refineDnaClustering(int * indices,int indices_length,int branching,CentersType ** centers,std::vector<DistanceType> & radiuses,int * belongs_to,int * count)1129     void refineDnaClustering(int* indices, int indices_length, int branching, CentersType** centers,
1130                                   std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
1131     {
1132         for (int i=0; i<branching; ++i) {
1133             centers[i] = new CentersType[veclen_];
1134             memoryCounter_ += (int)(veclen_*sizeof(CentersType));
1135         }
1136 
1137         const unsigned int histos_veclen = static_cast<unsigned int>(
1138                     veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
1139         cv::AutoBuffer<unsigned int> histos_buf(branching*histos_veclen);
1140         Matrix<unsigned int> histos(histos_buf.data(), branching, histos_veclen);
1141 
1142         bool converged = false;
1143         int iteration = 0;
1144         while (!converged && iteration<iterations_) {
1145             converged = true;
1146             iteration++;
1147 
1148             // compute the new cluster centers
1149             for (int i=0; i<branching; ++i) {
1150                 memset(histos[i],0,sizeof(unsigned int)*histos_veclen);
1151                 radiuses[i] = 0;
1152             }
1153             for (int i=0; i<indices_length; ++i) {
1154                 unsigned char* vec = (unsigned char*)dataset_[indices[i]];
1155                 unsigned int* h = histos[belongs_to[i]];
1156                 for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
1157                     h[k +     ((vec[l])    & 0x03)]++;
1158                     h[k + 4 + ((vec[l]>>2) & 0x03)]++;
1159                     h[k + 8 + ((vec[l]>>4) & 0x03)]++;
1160                     h[k +12 + ((vec[l]>>6) & 0x03)]++;
1161                 }
1162             }
1163             for (int i=0; i<branching; ++i) {
1164                 unsigned int* h = histos[i];
1165                 unsigned char* charCenter = (unsigned char*)centers[i];
1166                 for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
1167                     charCenter[l]= (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k]   > h[k+2] ? 0x00 : 0x10
1168                                                                     : h[k]   > h[k+3] ? 0x00 : 0x11
1169                                                   : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
1170                                                                     : h[k+1] > h[k+3] ? 0x01 : 0x11)
1171                                  | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00   : 0x1000
1172                                                                     : h[k+4] > h[k+7] ? 0x00   : 0x1100
1173                                                   : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
1174                                                                     : h[k+5] > h[k+7] ? 0x0100 : 0x1100)
1175                                  | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00   : 0x100000
1176                                                                     : h[k+8] >h[k+11] ? 0x00   : 0x110000
1177                                                   : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
1178                                                                     : h[k+9] >h[k+11] ? 0x010000 : 0x110000)
1179                                  | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00   : 0x10000000
1180                                                                       : h[k+12] >h[k+15] ? 0x00   : 0x11000000
1181                                                     : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
1182                                                                       : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
1183                 }
1184             }
1185 
1186             std::vector<int> new_centroids(indices_length);
1187             std::vector<DistanceType> dists(indices_length);
1188 
1189             // reassign points to clusters
1190             KMeansDistanceComputer<ElementType**> invoker(
1191                         distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists);
1192             parallel_for_(cv::Range(0, (int)indices_length), invoker);
1193 
1194             for (int i=0; i < indices_length; ++i) {
1195                 DistanceType dist(dists[i]);
1196                 int new_centroid(new_centroids[i]);
1197                 if (dist > radiuses[new_centroid]) {
1198                     radiuses[new_centroid] = dist;
1199                 }
1200                 if (new_centroid != belongs_to[i]) {
1201                     count[belongs_to[i]]--;
1202                     count[new_centroid]++;
1203                     belongs_to[i] = new_centroid;
1204                     converged = false;
1205                 }
1206             }
1207 
1208             for (int i=0; i<branching; ++i) {
1209                 // if one cluster converges to an empty cluster,
1210                 // move an element into that cluster
1211                 if (count[i]==0) {
1212                     int j = (i+1)%branching;
1213                     while (count[j]<=1) {
1214                         j = (j+1)%branching;
1215                     }
1216 
1217                     for (int k=0; k<indices_length; ++k) {
1218                         if (belongs_to[k]==j) {
1219                             // for cluster j, we move the furthest element from the center to the empty cluster i
1220                             if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) {
1221                                 belongs_to[k] = i;
1222                                 count[j]--;
1223                                 count[i]++;
1224                                 break;
1225                             }
1226                         }
1227                     }
1228                     converged = false;
1229                 }
1230             }
1231         }
1232     }
1233 
1234 
computeSubClustering(KMeansNodePtr node,int * indices,int indices_length,int branching,int level,CentersType ** centers,std::vector<DistanceType> & radiuses,int * belongs_to,int * count)1235     void computeSubClustering(KMeansNodePtr node, int* indices, int indices_length,
1236                               int branching, int level, CentersType** centers,
1237                               std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
1238     {
1239         // compute kmeans clustering for each of the resulting clusters
1240         node->childs = pool_.allocate<KMeansNodePtr>(branching);
1241         int start = 0;
1242         int end = start;
1243         for (int c=0; c<branching; ++c) {
1244             int s = count[c];
1245 
1246             DistanceType variance = 0;
1247             DistanceType mean_radius =0;
1248             for (int i=0; i<indices_length; ++i) {
1249                 if (belongs_to[i]==c) {
1250                     DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
1251                     variance += d;
1252                     mean_radius += static_cast<DistanceType>( sqrt(d) );
1253                     std::swap(indices[i],indices[end]);
1254                     std::swap(belongs_to[i],belongs_to[end]);
1255                     end++;
1256                 }
1257             }
1258             variance /= s;
1259             mean_radius /= s;
1260             variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);
1261 
1262             node->childs[c] = pool_.allocate<KMeansNode>();
1263             std::memset(node->childs[c], 0, sizeof(KMeansNode));
1264             node->childs[c]->radius = radiuses[c];
1265             node->childs[c]->pivot = centers[c];
1266             node->childs[c]->variance = variance;
1267             node->childs[c]->mean_radius = mean_radius;
1268             computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
1269             start=end;
1270         }
1271     }
1272 
1273 
computeAnyBitfieldSubClustering(KMeansNodePtr node,int * indices,int indices_length,int branching,int level,CentersType ** centers,std::vector<DistanceType> & radiuses,int * belongs_to,int * count)1274     void computeAnyBitfieldSubClustering(KMeansNodePtr node, int* indices, int indices_length,
1275                               int branching, int level, CentersType** centers,
1276                               std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
1277     {
1278         // compute kmeans clustering for each of the resulting clusters
1279         node->childs = pool_.allocate<KMeansNodePtr>(branching);
1280         int start = 0;
1281         int end = start;
1282         for (int c=0; c<branching; ++c) {
1283             int s = count[c];
1284 
1285             unsigned long long variance = 0ull;
1286             DistanceType mean_radius =0;
1287             for (int i=0; i<indices_length; ++i) {
1288                 if (belongs_to[i]==c) {
1289                     DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
1290                     variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(d) );
1291                     mean_radius += ensureSimpleDistance<Distance>(d);
1292                     std::swap(indices[i],indices[end]);
1293                     std::swap(belongs_to[i],belongs_to[end]);
1294                     end++;
1295                 }
1296             }
1297             mean_radius = static_cast<DistanceType>(
1298                         0.5f + static_cast<float>(mean_radius) / static_cast<float>(s));
1299             variance = static_cast<unsigned long long>(
1300                         0.5 + static_cast<double>(variance) / static_cast<double>(s));
1301             variance -= static_cast<unsigned long long>(
1302                         ensureSquareDistance<Distance>(
1303                             distance_(centers[c], ZeroIterator<ElementType>(), veclen_)));
1304 
1305             node->childs[c] = pool_.allocate<KMeansNode>();
1306             std::memset(node->childs[c], 0, sizeof(KMeansNode));
1307             node->childs[c]->radius = radiuses[c];
1308             node->childs[c]->pivot = centers[c];
1309             node->childs[c]->variance = static_cast<DistanceType>(variance);
1310             node->childs[c]->mean_radius = mean_radius;
1311             computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
1312             start=end;
1313         }
1314     }
1315 
1316 
1317     template<typename DistType>
refineAndSplitClustering(KMeansNodePtr node,int * indices,int indices_length,int branching,int level,CentersType ** centers,std::vector<DistanceType> & radiuses,int * belongs_to,int * count,const DistType * identifier)1318     void refineAndSplitClustering(
1319             KMeansNodePtr node, int* indices, int indices_length, int branching,
1320             int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1321             int* belongs_to, int* count, const DistType* identifier)
1322     {
1323         (void)identifier;
1324         refineClustering(indices, indices_length, branching, centers, radiuses, belongs_to, count);
1325 
1326         computeSubClustering(node, indices, indices_length, branching,
1327                              level, centers, radiuses, belongs_to, count);
1328     }
1329 
1330 
1331     /**
1332      * The methods responsible with doing the recursive hierarchical clustering on
1333      * binary vectors.
1334      * As some might have heard that KMeans on binary data doesn't make sense,
1335      * it's worth a little explanation why it actually fairly works. As
1336      * with the Hierarchical Clustering algortihm, we seed several centers for the
1337      * current node by picking some of its points. Then in a first pass each point
1338      * of the node is then related to its closest center. Now let's have a look at
1339      * the 5 central dimensions of the 9 following points:
1340      *
1341      * xxxxxx11100xxxxx (1)
1342      * xxxxxx11010xxxxx (2)
1343      * xxxxxx11001xxxxx (3)
1344      * xxxxxx10110xxxxx (4)
1345      * xxxxxx10101xxxxx (5)
1346      * xxxxxx10011xxxxx (6)
1347      * xxxxxx01110xxxxx (7)
1348      * xxxxxx01101xxxxx (8)
1349      * xxxxxx01011xxxxx (9)
1350      * sum   _____
1351      * of 1: 66555
1352      *
1353      * Even if the barycenter notion doesn't apply, we can set a center
1354      * xxxxxx11111xxxxx that will better fit the five dimensions we are focusing
1355      * on for these points.
1356      *
1357      * Note that convergence isn't ensured anymore. In practice, using Gonzales
1358      * as seeding algorithm should be fine for getting convergence ("iterations"
1359      * value can be set to -1). But with KMeans++ seeding you should definitely
1360      * set a maximum number of iterations (but make it higher than the "iterations"
1361      * default value of 11).
1362      *
1363      * Params:
1364      *     node = the node to cluster
1365      *     indices = indices of the points belonging to the current node
1366      *     indices_length = number of points in the current node
1367      *     branching = the branching factor to use in the clustering
1368      *     level = 0 for the root node, it increases with the subdivision levels
1369      *     centers = clusters centers to compute
1370      *     radiuses = radiuses of clusters
1371      *     belongs_to = LookUp Table returning, for a given indice id, the center id it belongs to
1372      *     count = array storing the number of indices for a given center id
1373      *     identifier = dummy pointer on an instance of Distance (use to branch correctly among templates)
1374      */
refineAndSplitClustering(KMeansNodePtr node,int * indices,int indices_length,int branching,int level,CentersType ** centers,std::vector<DistanceType> & radiuses,int * belongs_to,int * count,const cvflann::HammingLUT * identifier)1375     void refineAndSplitClustering(
1376             KMeansNodePtr node, int* indices, int indices_length, int branching,
1377             int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1378             int* belongs_to, int* count, const cvflann::HammingLUT* identifier)
1379     {
1380         (void)identifier;
1381         refineBitfieldClustering(
1382                     indices, indices_length, branching, centers, radiuses, belongs_to, count);
1383 
1384         computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
1385                                         level, centers, radiuses, belongs_to, count);
1386     }
1387 
1388 
refineAndSplitClustering(KMeansNodePtr node,int * indices,int indices_length,int branching,int level,CentersType ** centers,std::vector<DistanceType> & radiuses,int * belongs_to,int * count,const cvflann::Hamming<unsigned char> * identifier)1389     void refineAndSplitClustering(
1390             KMeansNodePtr node, int* indices, int indices_length, int branching,
1391             int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1392             int* belongs_to, int* count, const cvflann::Hamming<unsigned char>* identifier)
1393     {
1394         (void)identifier;
1395         refineBitfieldClustering(
1396                     indices, indices_length, branching, centers, radiuses, belongs_to, count);
1397 
1398         computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
1399                                         level, centers, radiuses, belongs_to, count);
1400     }
1401 
1402 
refineAndSplitClustering(KMeansNodePtr node,int * indices,int indices_length,int branching,int level,CentersType ** centers,std::vector<DistanceType> & radiuses,int * belongs_to,int * count,const cvflann::Hamming2<unsigned char> * identifier)1403     void refineAndSplitClustering(
1404             KMeansNodePtr node, int* indices, int indices_length, int branching,
1405             int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1406             int* belongs_to, int* count, const cvflann::Hamming2<unsigned char>* identifier)
1407     {
1408         (void)identifier;
1409         refineBitfieldClustering(
1410                     indices, indices_length, branching, centers, radiuses, belongs_to, count);
1411 
1412         computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
1413                                         level, centers, radiuses, belongs_to, count);
1414     }
1415 
1416 
refineAndSplitClustering(KMeansNodePtr node,int * indices,int indices_length,int branching,int level,CentersType ** centers,std::vector<DistanceType> & radiuses,int * belongs_to,int * count,const cvflann::DNAmmingLUT * identifier)1417     void refineAndSplitClustering(
1418             KMeansNodePtr node, int* indices, int indices_length, int branching,
1419             int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1420             int* belongs_to, int* count, const cvflann::DNAmmingLUT* identifier)
1421     {
1422         (void)identifier;
1423         refineDnaClustering(
1424                     indices, indices_length, branching, centers, radiuses, belongs_to, count);
1425 
1426         computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
1427                                         level, centers, radiuses, belongs_to, count);
1428     }
1429 
1430 
refineAndSplitClustering(KMeansNodePtr node,int * indices,int indices_length,int branching,int level,CentersType ** centers,std::vector<DistanceType> & radiuses,int * belongs_to,int * count,const cvflann::DNAmming2<unsigned char> * identifier)1431     void refineAndSplitClustering(
1432             KMeansNodePtr node, int* indices, int indices_length, int branching,
1433             int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1434             int* belongs_to, int* count, const cvflann::DNAmming2<unsigned char>* identifier)
1435     {
1436         (void)identifier;
1437         refineDnaClustering(
1438                     indices, indices_length, branching, centers, radiuses, belongs_to, count);
1439 
1440         computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
1441                                         level, centers, radiuses, belongs_to, count);
1442     }
1443 
1444 
1445     /**
1446      * The method responsible with actually doing the recursive hierarchical
1447      * clustering
1448      *
1449      * Params:
1450      *     node = the node to cluster
1451      *     indices = indices of the points belonging to the current node
1452      *     branching = the branching factor to use in the clustering
1453      *
1454      * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
1455      */
computeClustering(KMeansNodePtr node,int * indices,int indices_length,int branching,int level)1456     void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
1457     {
1458         node->size = indices_length;
1459         node->level = level;
1460 
1461         if (indices_length < branching) {
1462             node->indices = indices;
1463             std::sort(node->indices,node->indices+indices_length);
1464             node->childs = NULL;
1465             return;
1466         }
1467 
1468         cv::AutoBuffer<int> centers_idx_buf(branching);
1469         int* centers_idx = centers_idx_buf.data();
1470         int centers_length;
1471         (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
1472 
1473         if (centers_length<branching) {
1474             node->indices = indices;
1475             std::sort(node->indices,node->indices+indices_length);
1476             node->childs = NULL;
1477             return;
1478         }
1479 
1480 
1481         std::vector<DistanceType> radiuses(branching);
1482         cv::AutoBuffer<int> count_buf(branching);
1483         int* count = count_buf.data();
1484         for (int i=0; i<branching; ++i) {
1485             radiuses[i] = 0;
1486             count[i] = 0;
1487         }
1488 
1489         //	assign points to clusters
1490         cv::AutoBuffer<int> belongs_to_buf(indices_length);
1491         int* belongs_to = belongs_to_buf.data();
1492         for (int i=0; i<indices_length; ++i) {
1493             DistanceType sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[0]], veclen_);
1494             belongs_to[i] = 0;
1495             for (int j=1; j<branching; ++j) {
1496                 DistanceType new_sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[j]], veclen_);
1497                 if (sq_dist>new_sq_dist) {
1498                     belongs_to[i] = j;
1499                     sq_dist = new_sq_dist;
1500                 }
1501             }
1502             if (sq_dist>radiuses[belongs_to[i]]) {
1503                 radiuses[belongs_to[i]] = sq_dist;
1504             }
1505             count[belongs_to[i]]++;
1506         }
1507 
1508         CentersType** centers = new CentersType*[branching];
1509 
1510         Distance* dummy = NULL;
1511         refineAndSplitClustering(node, indices, indices_length, branching, level,
1512                                  centers, radiuses, belongs_to, count, dummy);
1513 
1514         delete[] centers;
1515     }
1516 
1517 
1518     /**
1519      * Performs one descent in the hierarchical k-means tree. The branches not
1520      * visited are stored in a priority queue.
1521      *
1522      * Params:
1523      *      node = node to explore
1524      *      result = container for the k-nearest neighbors found
1525      *      vec = query points
1526      *      checks = how many points in the dataset have been checked so far
1527      *      maxChecks = maximum dataset points to checks
1528      */
1529 
1530 
findNN(KMeansNodePtr node,ResultSet<DistanceType> & result,const ElementType * vec,int & checks,int maxChecks,Heap<BranchSt> * heap)1531     void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
1532                 Heap<BranchSt>* heap)
1533     {
1534         // Ignore those clusters that are too far away
1535         {
1536             DistanceType bsq = distance_(vec, node->pivot, veclen_);
1537             DistanceType rsq = node->radius;
1538             DistanceType wsq = result.worstDist();
1539 
1540             if (isSquareDistance<Distance>())
1541             {
1542                 DistanceType val = bsq-rsq-wsq;
1543                 if ((val>0) && (val*val > 4*rsq*wsq))
1544                     return;
1545             }
1546             else
1547             {
1548                 if (bsq-rsq > wsq)
1549                     return;
1550             }
1551         }
1552 
1553         if (node->childs==NULL) {
1554             if ((checks>=maxChecks) && result.full()) {
1555                 return;
1556             }
1557             checks += node->size;
1558             for (int i=0; i<node->size; ++i) {
1559                 int index = node->indices[i];
1560                 DistanceType dist = distance_(dataset_[index], vec, veclen_);
1561                 result.addPoint(dist, index);
1562             }
1563         }
1564         else {
1565             DistanceType* domain_distances = new DistanceType[branching_];
1566             int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
1567             delete[] domain_distances;
1568             findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
1569         }
1570     }
1571 
1572     /**
1573      * Helper function that computes the nearest childs of a node to a given query point.
1574      * Params:
1575      *     node = the node
1576      *     q = the query point
1577      *     distances = array with the distances to each child node.
1578      * Returns:
1579      */
exploreNodeBranches(KMeansNodePtr node,const ElementType * q,DistanceType * domain_distances,Heap<BranchSt> * heap)1580     int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap)
1581     {
1582 
1583         int best_index = 0;
1584         domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
1585         for (int i=1; i<branching_; ++i) {
1586             domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
1587             if (domain_distances[i]<domain_distances[best_index]) {
1588                 best_index = i;
1589             }
1590         }
1591 
1592         //		float* best_center = node->childs[best_index]->pivot;
1593         for (int i=0; i<branching_; ++i) {
1594             if (i != best_index) {
1595                 domain_distances[i] -= cvflann::round<DistanceType>(
1596                                         cb_index_*node->childs[i]->variance );
1597 
1598                 //				float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
1599                 //				if (domain_distances[i]<dist_to_border) {
1600                 //					domain_distances[i] = dist_to_border;
1601                 //				}
1602                 heap->insert(BranchSt(node->childs[i],domain_distances[i]));
1603             }
1604         }
1605 
1606         return best_index;
1607     }
1608 
1609 
1610     /**
1611      * Function the performs exact nearest neighbor search by traversing the entire tree.
1612      */
findExactNN(KMeansNodePtr node,ResultSet<DistanceType> & result,const ElementType * vec)1613     void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
1614     {
1615         // Ignore those clusters that are too far away
1616         {
1617             DistanceType bsq = distance_(vec, node->pivot, veclen_);
1618             DistanceType rsq = node->radius;
1619             DistanceType wsq = result.worstDist();
1620 
1621             if (isSquareDistance<Distance>())
1622             {
1623                 DistanceType val = bsq-rsq-wsq;
1624                 if ((val>0) && (val*val > 4*rsq*wsq))
1625                     return;
1626             }
1627             else
1628             {
1629                 if (bsq-rsq > wsq)
1630                     return;
1631             }
1632         }
1633 
1634 
1635         if (node->childs==NULL) {
1636             for (int i=0; i<node->size; ++i) {
1637                 int index = node->indices[i];
1638                 DistanceType dist = distance_(dataset_[index], vec, veclen_);
1639                 result.addPoint(dist, index);
1640             }
1641         }
1642         else {
1643             int* sort_indices = new int[branching_];
1644 
1645             getCenterOrdering(node, vec, sort_indices);
1646 
1647             for (int i=0; i<branching_; ++i) {
1648                 findExactNN(node->childs[sort_indices[i]],result,vec);
1649             }
1650 
1651             delete[] sort_indices;
1652         }
1653     }
1654 
1655 
1656     /**
1657      * Helper function.
1658      *
1659      * I computes the order in which to traverse the child nodes of a particular node.
1660      */
getCenterOrdering(KMeansNodePtr node,const ElementType * q,int * sort_indices)1661     void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
1662     {
1663         DistanceType* domain_distances = new DistanceType[branching_];
1664         for (int i=0; i<branching_; ++i) {
1665             DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);
1666 
1667             int j=0;
1668             while (domain_distances[j]<dist && j<i)
1669                 j++;
1670             for (int k=i; k>j; --k) {
1671                 domain_distances[k] = domain_distances[k-1];
1672                 sort_indices[k] = sort_indices[k-1];
1673             }
1674             domain_distances[j] = dist;
1675             sort_indices[j] = i;
1676         }
1677         delete[] domain_distances;
1678     }
1679 
1680     /**
1681      * Method that computes the squared distance from the query point q
1682      * from inside region with center c to the border between this
1683      * region and the region with center p
1684      */
getDistanceToBorder(DistanceType * p,DistanceType * c,DistanceType * q)1685     DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
1686     {
1687         DistanceType sum = 0;
1688         DistanceType sum2 = 0;
1689 
1690         for (int i=0; i<veclen_; ++i) {
1691             DistanceType t = c[i]-p[i];
1692             sum += t*(q[i]-(c[i]+p[i])/2);
1693             sum2 += t*t;
1694         }
1695 
1696         return sum*sum/sum2;
1697     }
1698 
1699 
1700     /**
1701      * Helper function the descends in the hierarchical k-means tree by splitting those clusters that minimize
1702      * the overall variance of the clustering.
1703      * Params:
1704      *     root = root node
1705      *     clusters = array with clusters centers (return value)
1706      *     varianceValue = variance of the clustering (return value)
1707      * Returns:
1708      */
getMinVarianceClusters(KMeansNodePtr root,KMeansNodePtr * clusters,int clusters_length,DistanceType & varianceValue)1709     int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
1710     {
1711         int clusterCount = 1;
1712         clusters[0] = root;
1713 
1714         DistanceType meanVariance = root->variance*root->size;
1715 
1716         while (clusterCount<clusters_length) {
1717             DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
1718             int splitIndex = -1;
1719 
1720             for (int i=0; i<clusterCount; ++i) {
1721                 if (clusters[i]->childs != NULL) {
1722 
1723                     DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;
1724 
1725                     for (int j=0; j<branching_; ++j) {
1726                         variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
1727                     }
1728                     if (variance<minVariance) {
1729                         minVariance = variance;
1730                         splitIndex = i;
1731                     }
1732                 }
1733             }
1734 
1735             if (splitIndex==-1) break;
1736             if ( (branching_+clusterCount-1) > clusters_length) break;
1737 
1738             meanVariance = minVariance;
1739 
1740             // split node
1741             KMeansNodePtr toSplit = clusters[splitIndex];
1742             clusters[splitIndex] = toSplit->childs[0];
1743             for (int i=1; i<branching_; ++i) {
1744                 clusters[clusterCount++] = toSplit->childs[i];
1745             }
1746         }
1747 
1748         varianceValue = meanVariance/root->size;
1749         return clusterCount;
1750     }
1751 
1752 private:
1753     /** The branching factor used in the hierarchical k-means clustering */
1754     int branching_;
1755 
1756     /** Number of kmeans trees (default is one) */
1757     int trees_;
1758 
1759     /** Maximum number of iterations to use when performing k-means clustering */
1760     int iterations_;
1761 
1762     /** Algorithm for choosing the cluster centers */
1763     flann_centers_init_t centers_init_;
1764 
1765     /**
1766      * Cluster border index. This is used in the tree search phase when determining
1767      * the closest cluster to explore next. A zero value takes into account only
1768      * the cluster centres, a value greater then zero also take into account the size
1769      * of the cluster.
1770      */
1771     float cb_index_;
1772 
1773     /**
1774      * The dataset used by this index
1775      */
1776     const Matrix<ElementType> dataset_;
1777 
1778     /** Index parameters */
1779     IndexParams index_params_;
1780 
1781     /**
1782      * Number of features in the dataset.
1783      */
1784     size_t size_;
1785 
1786     /**
1787      * Length of each feature.
1788      */
1789     size_t veclen_;
1790 
1791     /**
1792      * The root node in the tree.
1793      */
1794     KMeansNodePtr* root_;
1795 
1796     /**
1797      *  Array of indices to vectors in the dataset.
1798      */
1799     int** indices_;
1800 
1801     /**
1802      * The distance
1803      */
1804     Distance distance_;
1805 
1806     /**
1807      * Pooled memory allocator.
1808      */
1809     PooledAllocator pool_;
1810 
1811     /**
1812      * Memory occupied by the index.
1813      */
1814     int memoryCounter_;
1815 };
1816 
1817 }
1818 
1819 //! @endcond
1820 
1821 #endif //OPENCV_FLANN_KMEANS_INDEX_H_
1822