1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 #include "precomp.hpp"
43 #include "opencl_kernels_imgproc.hpp"
44 #include "opencv2/core/hal/intrin.hpp"
45 
46 namespace cv
47 {
48 
49 // The function calculates center of gravity and the central second order moments
completeMomentState(Moments * moments)50 static void completeMomentState( Moments* moments )
51 {
52     double cx = 0, cy = 0;
53     double mu20, mu11, mu02;
54     double inv_m00 = 0.0;
55     assert( moments != 0 );
56 
57     if( fabs(moments->m00) > DBL_EPSILON )
58     {
59         inv_m00 = 1. / moments->m00;
60         cx = moments->m10 * inv_m00;
61         cy = moments->m01 * inv_m00;
62     }
63 
64     // mu20 = m20 - m10*cx
65     mu20 = moments->m20 - moments->m10 * cx;
66     // mu11 = m11 - m10*cy
67     mu11 = moments->m11 - moments->m10 * cy;
68     // mu02 = m02 - m01*cy
69     mu02 = moments->m02 - moments->m01 * cy;
70 
71     moments->mu20 = mu20;
72     moments->mu11 = mu11;
73     moments->mu02 = mu02;
74 
75     // mu30 = m30 - cx*(3*mu20 + cx*m10)
76     moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10);
77     mu11 += mu11;
78     // mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20
79     moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20;
80     // mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02
81     moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02;
82     // mu03 = m03 - cy*(3*mu02 + cy*m01)
83     moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01);
84 
85 
86     double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00));
87     double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00;
88 
89     moments->nu20 = moments->mu20*s2; moments->nu11 = moments->mu11*s2; moments->nu02 = moments->mu02*s2;
90     moments->nu30 = moments->mu30*s3; moments->nu21 = moments->mu21*s3; moments->nu12 = moments->mu12*s3; moments->nu03 = moments->mu03*s3;
91 
92 }
93 
94 
contourMoments(const Mat & contour)95 static Moments contourMoments( const Mat& contour )
96 {
97     Moments m;
98     int lpt = contour.checkVector(2);
99     int is_float = contour.depth() == CV_32F;
100     const Point* ptsi = contour.ptr<Point>();
101     const Point2f* ptsf = contour.ptr<Point2f>();
102 
103     CV_Assert( contour.depth() == CV_32S || contour.depth() == CV_32F );
104 
105     if( lpt == 0 )
106         return m;
107 
108     double a00 = 0, a10 = 0, a01 = 0, a20 = 0, a11 = 0, a02 = 0, a30 = 0, a21 = 0, a12 = 0, a03 = 0;
109     double xi, yi, xi2, yi2, xi_1, yi_1, xi_12, yi_12, dxy, xii_1, yii_1;
110 
111     if( !is_float )
112     {
113         xi_1 = ptsi[lpt-1].x;
114         yi_1 = ptsi[lpt-1].y;
115     }
116     else
117     {
118         xi_1 = ptsf[lpt-1].x;
119         yi_1 = ptsf[lpt-1].y;
120     }
121 
122     xi_12 = xi_1 * xi_1;
123     yi_12 = yi_1 * yi_1;
124 
125     for( int i = 0; i < lpt; i++ )
126     {
127         if( !is_float )
128         {
129             xi = ptsi[i].x;
130             yi = ptsi[i].y;
131         }
132         else
133         {
134             xi = ptsf[i].x;
135             yi = ptsf[i].y;
136         }
137 
138         xi2 = xi * xi;
139         yi2 = yi * yi;
140         dxy = xi_1 * yi - xi * yi_1;
141         xii_1 = xi_1 + xi;
142         yii_1 = yi_1 + yi;
143 
144         a00 += dxy;
145         a10 += dxy * xii_1;
146         a01 += dxy * yii_1;
147         a20 += dxy * (xi_1 * xii_1 + xi2);
148         a11 += dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi));
149         a02 += dxy * (yi_1 * yii_1 + yi2);
150         a30 += dxy * xii_1 * (xi_12 + xi2);
151         a03 += dxy * yii_1 * (yi_12 + yi2);
152         a21 += dxy * (xi_12 * (3 * yi_1 + yi) + 2 * xi * xi_1 * yii_1 +
153                    xi2 * (yi_1 + 3 * yi));
154         a12 += dxy * (yi_12 * (3 * xi_1 + xi) + 2 * yi * yi_1 * xii_1 +
155                    yi2 * (xi_1 + 3 * xi));
156         xi_1 = xi;
157         yi_1 = yi;
158         xi_12 = xi2;
159         yi_12 = yi2;
160     }
161 
162     if( fabs(a00) > FLT_EPSILON )
163     {
164         double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60;
165 
166         if( a00 > 0 )
167         {
168             db1_2 = 0.5;
169             db1_6 = 0.16666666666666666666666666666667;
170             db1_12 = 0.083333333333333333333333333333333;
171             db1_24 = 0.041666666666666666666666666666667;
172             db1_20 = 0.05;
173             db1_60 = 0.016666666666666666666666666666667;
174         }
175         else
176         {
177             db1_2 = -0.5;
178             db1_6 = -0.16666666666666666666666666666667;
179             db1_12 = -0.083333333333333333333333333333333;
180             db1_24 = -0.041666666666666666666666666666667;
181             db1_20 = -0.05;
182             db1_60 = -0.016666666666666666666666666666667;
183         }
184 
185         // spatial moments
186         m.m00 = a00 * db1_2;
187         m.m10 = a10 * db1_6;
188         m.m01 = a01 * db1_6;
189         m.m20 = a20 * db1_12;
190         m.m11 = a11 * db1_24;
191         m.m02 = a02 * db1_12;
192         m.m30 = a30 * db1_20;
193         m.m21 = a21 * db1_60;
194         m.m12 = a12 * db1_60;
195         m.m03 = a03 * db1_20;
196 
197         completeMomentState( &m );
198     }
199     return m;
200 }
201 
202 
203 /****************************************************************************************\
204 *                                Spatial Raster Moments                                  *
205 \****************************************************************************************/
206 
207 template<typename T, typename WT, typename MT>
208 struct MomentsInTile_SIMD
209 {
operator ()cv::MomentsInTile_SIMD210     int operator() (const T *, int, WT &, WT &, WT &, MT &)
211     {
212         return 0;
213     }
214 };
215 
216 #if CV_SIMD128
217 
218 template <>
219 struct MomentsInTile_SIMD<uchar, int, int>
220 {
MomentsInTile_SIMDcv::MomentsInTile_SIMD221     MomentsInTile_SIMD()
222     {
223         // nothing
224     }
225 
operator ()cv::MomentsInTile_SIMD226     int operator() (const uchar * ptr, int len, int & x0, int & x1, int & x2, int & x3)
227     {
228         int x = 0;
229 
230         {
231             v_int16x8 dx = v_setall_s16(8), qx = v_int16x8(0, 1, 2, 3, 4, 5, 6, 7);
232             v_uint32x4 z = v_setzero_u32(), qx0 = z, qx1 = z, qx2 = z, qx3 = z;
233 
234             for( ; x <= len - 8; x += 8 )
235             {
236                 v_int16x8 p = v_reinterpret_as_s16(v_load_expand(ptr + x));
237                 v_int16x8 sx = v_mul_wrap(qx, qx);
238 
239                 qx0 += v_reinterpret_as_u32(p);
240                 qx1 = v_reinterpret_as_u32(v_dotprod(p, qx, v_reinterpret_as_s32(qx1)));
241                 qx2 = v_reinterpret_as_u32(v_dotprod(p, sx, v_reinterpret_as_s32(qx2)));
242                 qx3 = v_reinterpret_as_u32(v_dotprod(v_mul_wrap(p, qx), sx, v_reinterpret_as_s32(qx3)));
243 
244                 qx += dx;
245             }
246 
247             x0 = v_reduce_sum(qx0);
248             x0 = (x0 & 0xffff) + (x0 >> 16);
249             x1 = v_reduce_sum(qx1);
250             x2 = v_reduce_sum(qx2);
251             x3 = v_reduce_sum(qx3);
252         }
253 
254         return x;
255     }
256 };
257 
258 template <>
259 struct MomentsInTile_SIMD<ushort, int, int64>
260 {
MomentsInTile_SIMDcv::MomentsInTile_SIMD261     MomentsInTile_SIMD()
262     {
263         // nothing
264     }
265 
operator ()cv::MomentsInTile_SIMD266     int operator() (const ushort * ptr, int len, int & x0, int & x1, int & x2, int64 & x3)
267     {
268         int x = 0;
269 
270         {
271             v_int32x4 v_delta = v_setall_s32(4), v_ix0 = v_int32x4(0, 1, 2, 3);
272             v_uint32x4 z = v_setzero_u32(), v_x0 = z, v_x1 = z, v_x2 = z;
273             v_uint64x2 v_x3 = v_reinterpret_as_u64(z);
274 
275             for( ; x <= len - 4; x += 4 )
276             {
277                 v_int32x4 v_src = v_reinterpret_as_s32(v_load_expand(ptr + x));
278 
279                 v_x0 += v_reinterpret_as_u32(v_src);
280                 v_x1 += v_reinterpret_as_u32(v_src * v_ix0);
281 
282                 v_int32x4 v_ix1 = v_ix0 * v_ix0;
283                 v_x2 += v_reinterpret_as_u32(v_src * v_ix1);
284 
285                 v_ix1 = v_ix0 * v_ix1;
286                 v_src = v_src * v_ix1;
287                 v_uint64x2 v_lo, v_hi;
288                 v_expand(v_reinterpret_as_u32(v_src), v_lo, v_hi);
289                 v_x3 += v_lo + v_hi;
290 
291                 v_ix0 += v_delta;
292             }
293 
294             x0 = v_reduce_sum(v_x0);
295             x1 = v_reduce_sum(v_x1);
296             x2 = v_reduce_sum(v_x2);
297             v_store_aligned(buf64, v_reinterpret_as_s64(v_x3));
298             x3 = buf64[0] + buf64[1];
299         }
300 
301         return x;
302     }
303 
304     int64 CV_DECL_ALIGNED(16) buf64[2];
305 };
306 
307 #endif
308 
309 template<typename T, typename WT, typename MT>
310 #if defined __GNUC__ && __GNUC__ == 4 && __GNUC_MINOR__ >= 5 && __GNUC_MINOR__ < 9
311 // Workaround for http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60196
312 __attribute__((optimize("no-tree-vectorize")))
313 #endif
momentsInTile(const Mat & img,double * moments)314 static void momentsInTile( const Mat& img, double* moments )
315 {
316     Size size = img.size();
317     int x, y;
318     MT mom[10] = {0,0,0,0,0,0,0,0,0,0};
319     MomentsInTile_SIMD<T, WT, MT> vop;
320 
321     for( y = 0; y < size.height; y++ )
322     {
323         const T* ptr = img.ptr<T>(y);
324         WT x0 = 0, x1 = 0, x2 = 0;
325         MT x3 = 0;
326         x = vop(ptr, size.width, x0, x1, x2, x3);
327 
328         for( ; x < size.width; x++ )
329         {
330             WT p = ptr[x];
331             WT xp = x * p, xxp;
332 
333             x0 += p;
334             x1 += xp;
335             xxp = xp * x;
336             x2 += xxp;
337             x3 += xxp * x;
338         }
339 
340         WT py = y * x0, sy = y*y;
341 
342         mom[9] += ((MT)py) * sy;  // m03
343         mom[8] += ((MT)x1) * sy;  // m12
344         mom[7] += ((MT)x2) * y;  // m21
345         mom[6] += x3;             // m30
346         mom[5] += x0 * sy;        // m02
347         mom[4] += x1 * y;         // m11
348         mom[3] += x2;             // m20
349         mom[2] += py;             // m01
350         mom[1] += x1;             // m10
351         mom[0] += x0;             // m00
352     }
353 
354     for( x = 0; x < 10; x++ )
355         moments[x] = (double)mom[x];
356 }
357 
358 typedef void (*MomentsInTileFunc)(const Mat& img, double* moments);
359 
Moments()360 Moments::Moments()
361 {
362     m00 = m10 = m01 = m20 = m11 = m02 = m30 = m21 = m12 = m03 =
363     mu20 = mu11 = mu02 = mu30 = mu21 = mu12 = mu03 =
364     nu20 = nu11 = nu02 = nu30 = nu21 = nu12 = nu03 = 0.;
365 }
366 
Moments(double _m00,double _m10,double _m01,double _m20,double _m11,double _m02,double _m30,double _m21,double _m12,double _m03)367 Moments::Moments( double _m00, double _m10, double _m01, double _m20, double _m11,
368                   double _m02, double _m30, double _m21, double _m12, double _m03 )
369 {
370     m00 = _m00; m10 = _m10; m01 = _m01;
371     m20 = _m20; m11 = _m11; m02 = _m02;
372     m30 = _m30; m21 = _m21; m12 = _m12; m03 = _m03;
373 
374     double cx = 0, cy = 0, inv_m00 = 0;
375     if( std::abs(m00) > DBL_EPSILON )
376     {
377         inv_m00 = 1./m00;
378         cx = m10*inv_m00; cy = m01*inv_m00;
379     }
380 
381     mu20 = m20 - m10*cx;
382     mu11 = m11 - m10*cy;
383     mu02 = m02 - m01*cy;
384 
385     mu30 = m30 - cx*(3*mu20 + cx*m10);
386     mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20;
387     mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02;
388     mu03 = m03 - cy*(3*mu02 + cy*m01);
389 
390     double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00));
391     double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00;
392 
393     nu20 = mu20*s2; nu11 = mu11*s2; nu02 = mu02*s2;
394     nu30 = mu30*s3; nu21 = mu21*s3; nu12 = mu12*s3; nu03 = mu03*s3;
395 }
396 
397 #ifdef HAVE_OPENCL
398 
ocl_moments(InputArray _src,Moments & m,bool binary)399 static bool ocl_moments( InputArray _src, Moments& m, bool binary)
400 {
401     const int TILE_SIZE = 32;
402     const int K = 10;
403 
404     Size sz = _src.getSz();
405     int xtiles = divUp(sz.width, TILE_SIZE);
406     int ytiles = divUp(sz.height, TILE_SIZE);
407     int ntiles = xtiles*ytiles;
408     if (ntiles == 0)
409         return false;
410 
411     ocl::Kernel k = ocl::Kernel("moments", ocl::imgproc::moments_oclsrc,
412         format("-D TILE_SIZE=%d%s",
413         TILE_SIZE,
414         binary ? " -D OP_MOMENTS_BINARY" : ""));
415 
416     if( k.empty() )
417         return false;
418 
419     UMat src = _src.getUMat();
420     UMat umbuf(1, ntiles*K, CV_32S);
421 
422     size_t globalsize[] = {(size_t)xtiles, std::max((size_t)TILE_SIZE, (size_t)sz.height)};
423     size_t localsize[] = {1, TILE_SIZE};
424     bool ok = k.args(ocl::KernelArg::ReadOnly(src),
425                      ocl::KernelArg::PtrWriteOnly(umbuf),
426                      xtiles).run(2, globalsize, localsize, true);
427     if(!ok)
428         return false;
429     Mat mbuf = umbuf.getMat(ACCESS_READ);
430     for( int i = 0; i < ntiles; i++ )
431     {
432         double x = (i % xtiles)*TILE_SIZE, y = (i / xtiles)*TILE_SIZE;
433         const int* mom = mbuf.ptr<int>() + i*K;
434         double xm = x * mom[0], ym = y * mom[0];
435 
436         // accumulate moments computed in each tile
437 
438         // + m00 ( = m00' )
439         m.m00 += mom[0];
440 
441         // + m10 ( = m10' + x*m00' )
442         m.m10 += mom[1] + xm;
443 
444         // + m01 ( = m01' + y*m00' )
445         m.m01 += mom[2] + ym;
446 
447         // + m20 ( = m20' + 2*x*m10' + x*x*m00' )
448         m.m20 += mom[3] + x * (mom[1] * 2 + xm);
449 
450         // + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
451         m.m11 += mom[4] + x * (mom[2] + ym) + y * mom[1];
452 
453         // + m02 ( = m02' + 2*y*m01' + y*y*m00' )
454         m.m02 += mom[5] + y * (mom[2] * 2 + ym);
455 
456         // + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
457         m.m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
458 
459         // + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
460         m.m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
461 
462         // + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
463         m.m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
464 
465         // + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
466         m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
467     }
468 
469     completeMomentState( &m );
470 
471     return true;
472 }
473 
474 #endif
475 
476 #ifdef HAVE_IPP
477 typedef IppStatus (CV_STDCALL * ippiMoments)(const void* pSrc, int srcStep, IppiSize roiSize, IppiMomentState_64f* pCtx);
478 
ipp_moments(Mat & src,Moments & m)479 static bool ipp_moments(Mat &src, Moments &m )
480 {
481 #if IPP_VERSION_X100 >= 900
482     CV_INSTRUMENT_REGION_IPP();
483 
484 #if IPP_VERSION_X100 < 201801
485     // Degradations for CV_8UC1
486     if(src.type() == CV_8UC1)
487         return false;
488 #endif
489 
490     IppiSize  roi      = { src.cols, src.rows };
491     IppiPoint point    = { 0, 0 };
492     int       type     = src.type();
493     IppStatus ippStatus;
494 
495     IppAutoBuffer<IppiMomentState_64f> state;
496     int stateSize = 0;
497 
498     ippiMoments ippiMoments64f =
499         (type == CV_8UC1)?(ippiMoments)ippiMoments64f_8u_C1R:
500         (type == CV_16UC1)?(ippiMoments)ippiMoments64f_16u_C1R:
501         (type == CV_32FC1)?(ippiMoments)ippiMoments64f_32f_C1R:
502         NULL;
503     if(!ippiMoments64f)
504         return false;
505 
506     ippStatus = ippiMomentGetStateSize_64f(ippAlgHintAccurate, &stateSize);
507     if(ippStatus < 0)
508         return false;
509 
510     if(!state.allocate(stateSize) && stateSize)
511         return false;
512 
513     ippStatus = ippiMomentInit_64f(state, ippAlgHintAccurate);
514     if(ippStatus < 0)
515         return false;
516 
517     ippStatus = CV_INSTRUMENT_FUN_IPP(ippiMoments64f, src.ptr<Ipp8u>(), (int)src.step, roi, state);
518     if(ippStatus < 0)
519         return false;
520 
521     ippStatus = ippiGetSpatialMoment_64f(state, 0, 0, 0, point, &m.m00);
522     if(ippStatus < 0)
523         return false;
524     ippiGetSpatialMoment_64f(state, 1, 0, 0, point, &m.m10);
525     ippiGetSpatialMoment_64f(state, 0, 1, 0, point, &m.m01);
526     ippiGetSpatialMoment_64f(state, 2, 0, 0, point, &m.m20);
527     ippiGetSpatialMoment_64f(state, 1, 1, 0, point, &m.m11);
528     ippiGetSpatialMoment_64f(state, 0, 2, 0, point, &m.m02);
529     ippiGetSpatialMoment_64f(state, 3, 0, 0, point, &m.m30);
530     ippiGetSpatialMoment_64f(state, 2, 1, 0, point, &m.m21);
531     ippiGetSpatialMoment_64f(state, 1, 2, 0, point, &m.m12);
532     ippiGetSpatialMoment_64f(state, 0, 3, 0, point, &m.m03);
533 
534     ippStatus = ippiGetCentralMoment_64f(state, 2, 0, 0, &m.mu20);
535     if(ippStatus < 0)
536         return false;
537     ippiGetCentralMoment_64f(state, 1, 1, 0, &m.mu11);
538     ippiGetCentralMoment_64f(state, 0, 2, 0, &m.mu02);
539     ippiGetCentralMoment_64f(state, 3, 0, 0, &m.mu30);
540     ippiGetCentralMoment_64f(state, 2, 1, 0, &m.mu21);
541     ippiGetCentralMoment_64f(state, 1, 2, 0, &m.mu12);
542     ippiGetCentralMoment_64f(state, 0, 3, 0, &m.mu03);
543 
544     ippStatus = ippiGetNormalizedCentralMoment_64f(state, 2, 0, 0, &m.nu20);
545     if(ippStatus < 0)
546         return false;
547     ippiGetNormalizedCentralMoment_64f(state, 1, 1, 0, &m.nu11);
548     ippiGetNormalizedCentralMoment_64f(state, 0, 2, 0, &m.nu02);
549     ippiGetNormalizedCentralMoment_64f(state, 3, 0, 0, &m.nu30);
550     ippiGetNormalizedCentralMoment_64f(state, 2, 1, 0, &m.nu21);
551     ippiGetNormalizedCentralMoment_64f(state, 1, 2, 0, &m.nu12);
552     ippiGetNormalizedCentralMoment_64f(state, 0, 3, 0, &m.nu03);
553 
554     return true;
555 #else
556     CV_UNUSED(src); CV_UNUSED(m);
557     return false;
558 #endif
559 }
560 #endif
561 
562 }
563 
moments(InputArray _src,bool binary)564 cv::Moments cv::moments( InputArray _src, bool binary )
565 {
566     CV_INSTRUMENT_REGION();
567 
568     const int TILE_SIZE = 32;
569     MomentsInTileFunc func = 0;
570     uchar nzbuf[TILE_SIZE*TILE_SIZE];
571     Moments m;
572     int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
573     Size size = _src.size();
574 
575     if( size.width <= 0 || size.height <= 0 )
576         return m;
577 
578 #ifdef HAVE_OPENCL
579     CV_OCL_RUN_(type == CV_8UC1 && _src.isUMat(), ocl_moments(_src, m, binary), m);
580 #endif
581 
582     Mat mat = _src.getMat();
583     if( mat.checkVector(2) >= 0 && (depth == CV_32F || depth == CV_32S))
584         return contourMoments(mat);
585 
586     if( cn > 1 )
587         CV_Error( CV_StsBadArg, "Invalid image type (must be single-channel)" );
588 
589     CV_IPP_RUN(!binary, ipp_moments(mat, m), m);
590 
591     if( binary || depth == CV_8U )
592         func = momentsInTile<uchar, int, int>;
593     else if( depth == CV_16U )
594         func = momentsInTile<ushort, int, int64>;
595     else if( depth == CV_16S )
596         func = momentsInTile<short, int, int64>;
597     else if( depth == CV_32F )
598         func = momentsInTile<float, double, double>;
599     else if( depth == CV_64F )
600         func = momentsInTile<double, double, double>;
601     else
602         CV_Error( CV_StsUnsupportedFormat, "" );
603 
604     Mat src0(mat);
605 
606     for( int y = 0; y < size.height; y += TILE_SIZE )
607     {
608         Size tileSize;
609         tileSize.height = std::min(TILE_SIZE, size.height - y);
610 
611         for( int x = 0; x < size.width; x += TILE_SIZE )
612         {
613             tileSize.width = std::min(TILE_SIZE, size.width - x);
614             Mat src(src0, cv::Rect(x, y, tileSize.width, tileSize.height));
615 
616             if( binary )
617             {
618                 cv::Mat tmp(tileSize, CV_8U, nzbuf);
619                 cv::compare( src, 0, tmp, CV_CMP_NE );
620                 src = tmp;
621             }
622 
623             double mom[10];
624             func( src, mom );
625 
626             if(binary)
627             {
628                 double s = 1./255;
629                 for( int k = 0; k < 10; k++ )
630                     mom[k] *= s;
631             }
632 
633             double xm = x * mom[0], ym = y * mom[0];
634 
635             // accumulate moments computed in each tile
636 
637             // + m00 ( = m00' )
638             m.m00 += mom[0];
639 
640             // + m10 ( = m10' + x*m00' )
641             m.m10 += mom[1] + xm;
642 
643             // + m01 ( = m01' + y*m00' )
644             m.m01 += mom[2] + ym;
645 
646             // + m20 ( = m20' + 2*x*m10' + x*x*m00' )
647             m.m20 += mom[3] + x * (mom[1] * 2 + xm);
648 
649             // + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
650             m.m11 += mom[4] + x * (mom[2] + ym) + y * mom[1];
651 
652             // + m02 ( = m02' + 2*y*m01' + y*y*m00' )
653             m.m02 += mom[5] + y * (mom[2] * 2 + ym);
654 
655             // + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
656             m.m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
657 
658             // + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
659             m.m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
660 
661             // + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
662             m.m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
663 
664             // + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
665             m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
666         }
667     }
668 
669     completeMomentState( &m );
670     return m;
671 }
672 
673 
HuMoments(const Moments & m,double hu[7])674 void cv::HuMoments( const Moments& m, double hu[7] )
675 {
676     CV_INSTRUMENT_REGION();
677 
678     double t0 = m.nu30 + m.nu12;
679     double t1 = m.nu21 + m.nu03;
680 
681     double q0 = t0 * t0, q1 = t1 * t1;
682 
683     double n4 = 4 * m.nu11;
684     double s = m.nu20 + m.nu02;
685     double d = m.nu20 - m.nu02;
686 
687     hu[0] = s;
688     hu[1] = d * d + n4 * m.nu11;
689     hu[3] = q0 + q1;
690     hu[5] = d * (q0 - q1) + n4 * t0 * t1;
691 
692     t0 *= q0 - 3 * q1;
693     t1 *= 3 * q0 - q1;
694 
695     q0 = m.nu30 - 3 * m.nu12;
696     q1 = 3 * m.nu21 - m.nu03;
697 
698     hu[2] = q0 * q0 + q1 * q1;
699     hu[4] = q0 * t0 + q1 * t1;
700     hu[6] = q1 * t0 - q0 * t1;
701 }
702 
HuMoments(const Moments & m,OutputArray _hu)703 void cv::HuMoments( const Moments& m, OutputArray _hu )
704 {
705     CV_INSTRUMENT_REGION();
706 
707     _hu.create(7, 1, CV_64F);
708     Mat hu = _hu.getMat();
709     CV_Assert( hu.isContinuous() );
710     HuMoments(m, hu.ptr<double>());
711 }
712 
713 
cvMoments(const CvArr * arr,CvMoments * moments,int binary)714 CV_IMPL void cvMoments( const CvArr* arr, CvMoments* moments, int binary )
715 {
716     const IplImage* img = (const IplImage*)arr;
717     cv::Mat src;
718     if( CV_IS_IMAGE(arr) && img->roi && img->roi->coi > 0 )
719         cv::extractImageCOI(arr, src, img->roi->coi-1);
720     else
721         src = cv::cvarrToMat(arr);
722     cv::Moments m = cv::moments(src, binary != 0);
723     CV_Assert( moments != 0 );
724     *moments = cvMoments(m);
725 }
726 
727 
cvGetSpatialMoment(CvMoments * moments,int x_order,int y_order)728 CV_IMPL double cvGetSpatialMoment( CvMoments * moments, int x_order, int y_order )
729 {
730     int order = x_order + y_order;
731 
732     if( !moments )
733         CV_Error( CV_StsNullPtr, "" );
734     if( (x_order | y_order) < 0 || order > 3 )
735         CV_Error( CV_StsOutOfRange, "" );
736 
737     return (&(moments->m00))[order + (order >> 1) + (order > 2) * 2 + y_order];
738 }
739 
740 
cvGetCentralMoment(CvMoments * moments,int x_order,int y_order)741 CV_IMPL double cvGetCentralMoment( CvMoments * moments, int x_order, int y_order )
742 {
743     int order = x_order + y_order;
744 
745     if( !moments )
746         CV_Error( CV_StsNullPtr, "" );
747     if( (x_order | y_order) < 0 || order > 3 )
748         CV_Error( CV_StsOutOfRange, "" );
749 
750     return order >= 2 ? (&(moments->m00))[4 + order * 3 + y_order] :
751     order == 0 ? moments->m00 : 0;
752 }
753 
754 
cvGetNormalizedCentralMoment(CvMoments * moments,int x_order,int y_order)755 CV_IMPL double cvGetNormalizedCentralMoment( CvMoments * moments, int x_order, int y_order )
756 {
757     int order = x_order + y_order;
758 
759     double mu = cvGetCentralMoment( moments, x_order, y_order );
760     double m00s = moments->inv_sqrt_m00;
761 
762     while( --order >= 0 )
763         mu *= m00s;
764     return mu * m00s * m00s;
765 }
766 
767 
cvGetHuMoments(CvMoments * mState,CvHuMoments * HuState)768 CV_IMPL void cvGetHuMoments( CvMoments * mState, CvHuMoments * HuState )
769 {
770     if( !mState || !HuState )
771         CV_Error( CV_StsNullPtr, "" );
772 
773     double m00s = mState->inv_sqrt_m00, m00 = m00s * m00s, s2 = m00 * m00, s3 = s2 * m00s;
774 
775     double nu20 = mState->mu20 * s2,
776     nu11 = mState->mu11 * s2,
777     nu02 = mState->mu02 * s2,
778     nu30 = mState->mu30 * s3,
779     nu21 = mState->mu21 * s3, nu12 = mState->mu12 * s3, nu03 = mState->mu03 * s3;
780 
781     double t0 = nu30 + nu12;
782     double t1 = nu21 + nu03;
783 
784     double q0 = t0 * t0, q1 = t1 * t1;
785 
786     double n4 = 4 * nu11;
787     double s = nu20 + nu02;
788     double d = nu20 - nu02;
789 
790     HuState->hu1 = s;
791     HuState->hu2 = d * d + n4 * nu11;
792     HuState->hu4 = q0 + q1;
793     HuState->hu6 = d * (q0 - q1) + n4 * t0 * t1;
794 
795     t0 *= q0 - 3 * q1;
796     t1 *= 3 * q0 - q1;
797 
798     q0 = nu30 - 3 * nu12;
799     q1 = 3 * nu21 - nu03;
800 
801     HuState->hu3 = q0 * q0 + q1 * q1;
802     HuState->hu5 = q0 * t0 + q1 * t1;
803     HuState->hu7 = q1 * t0 - q0 * t1;
804 }
805 
806 
807 /* End of file. */
808