1 /*
2  * Copyright (c) 1997 Greg Ward Larson
3  * Copyright (c) 1997 Silicon Graphics, Inc.
4  *
5  * Permission to use, copy, modify, distribute, and sell this software and
6  * its documentation for any purpose is hereby granted without fee, provided
7  * that (i) the above copyright notices and this permission notice appear in
8  * all copies of the software and related documentation, and (ii) the names of
9  * Sam Leffler, Greg Larson and Silicon Graphics may not be used in any
10  * advertising or publicity relating to the software without the specific,
11  * prior written permission of Sam Leffler, Greg Larson and Silicon Graphics.
12  *
13  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
14  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
15  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
16  *
17  * IN NO EVENT SHALL SAM LEFFLER, GREG LARSON OR SILICON GRAPHICS BE LIABLE
18  * FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
19  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
20  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
21  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22  * OF THIS SOFTWARE.
23  */
24 
25 #include "tiffiop.h"
26 #ifdef LOGLUV_SUPPORT
27 
28 /*
29  * TIFF Library.
30  * LogLuv compression support for high dynamic range images.
31  *
32  * Contributed by Greg Larson.
33  *
34  * LogLuv image support uses the TIFF library to store 16 or 10-bit
35  * log luminance values with 8 bits each of u and v or a 14-bit index.
36  *
37  * The codec can take as input and produce as output 32-bit IEEE float values
38  * as well as 16-bit integer values.  A 16-bit luminance is interpreted
39  * as a sign bit followed by a 15-bit integer that is converted
40  * to and from a linear magnitude using the transformation:
41  *
42  *	L = 2^( (Le+.5)/256 - 64 )		# real from 15-bit
43  *
44  *	Le = floor( 256*(log2(L) + 64) )	# 15-bit from real
45  *
46  * The actual conversion to world luminance units in candelas per sq. meter
47  * requires an additional multiplier, which is stored in the TIFFTAG_STONITS.
48  * This value is usually set such that a reasonable exposure comes from
49  * clamping decoded luminances above 1 to 1 in the displayed image.
50  *
51  * The 16-bit values for u and v may be converted to real values by dividing
52  * each by 32768.  (This allows for negative values, which aren't useful as
53  * far as we know, but are left in case of future improvements in human
54  * color vision.)
55  *
56  * Conversion from (u,v), which is actually the CIE (u',v') system for
57  * you color scientists, is accomplished by the following transformation:
58  *
59  *	u = 4*x / (-2*x + 12*y + 3)
60  *	v = 9*y / (-2*x + 12*y + 3)
61  *
62  *	x = 9*u / (6*u - 16*v + 12)
63  *	y = 4*v / (6*u - 16*v + 12)
64  *
65  * This process is greatly simplified by passing 32-bit IEEE floats
66  * for each of three CIE XYZ coordinates.  The codec then takes care
67  * of conversion to and from LogLuv, though the application is still
68  * responsible for interpreting the TIFFTAG_STONITS calibration factor.
69  *
70  * By definition, a CIE XYZ vector of [1 1 1] corresponds to a neutral white
71  * point of (x,y)=(1/3,1/3).  However, most color systems assume some other
72  * white point, such as D65, and an absolute color conversion to XYZ then
73  * to another color space with a different white point may introduce an
74  * unwanted color cast to the image.  It is often desirable, therefore, to
75  * perform a white point conversion that maps the input white to [1 1 1]
76  * in XYZ, then record the original white point using the TIFFTAG_WHITEPOINT
77  * tag value.  A decoder that demands absolute color calibration may use
78  * this white point tag to get back the original colors, but usually it
79  * will be ignored and the new white point will be used instead that
80  * matches the output color space.
81  *
82  * Pixel information is compressed into one of two basic encodings, depending
83  * on the setting of the compression tag, which is one of COMPRESSION_SGILOG
84  * or COMPRESSION_SGILOG24.  For COMPRESSION_SGILOG, greyscale data is
85  * stored as:
86  *
87  *	 1       15
88  *	|-+---------------|
89  *
90  * COMPRESSION_SGILOG color data is stored as:
91  *
92  *	 1       15           8        8
93  *	|-+---------------|--------+--------|
94  *	 S       Le           ue       ve
95  *
96  * For the 24-bit COMPRESSION_SGILOG24 color format, the data is stored as:
97  *
98  *	     10           14
99  *	|----------|--------------|
100  *	     Le'          Ce
101  *
102  * There is no sign bit in the 24-bit case, and the (u,v) chromaticity is
103  * encoded as an index for optimal color resolution.  The 10 log bits are
104  * defined by the following conversions:
105  *
106  *	L = 2^((Le'+.5)/64 - 12)		# real from 10-bit
107  *
108  *	Le' = floor( 64*(log2(L) + 12) )	# 10-bit from real
109  *
110  * The 10 bits of the smaller format may be converted into the 15 bits of
111  * the larger format by multiplying by 4 and adding 13314.  Obviously,
112  * a smaller range of magnitudes is covered (about 5 orders of magnitude
113  * instead of 38), and the lack of a sign bit means that negative luminances
114  * are not allowed.  (Well, they aren't allowed in the real world, either,
115  * but they are useful for certain types of image processing.)
116  *
117  * The desired user format is controlled by the setting the internal
118  * pseudo tag TIFFTAG_SGILOGDATAFMT to one of:
119  *  SGILOGDATAFMT_FLOAT       = IEEE 32-bit float XYZ values
120  *  SGILOGDATAFMT_16BIT	      = 16-bit integer encodings of logL, u and v
121  * Raw data i/o is also possible using:
122  *  SGILOGDATAFMT_RAW         = 32-bit unsigned integer with encoded pixel
123  * In addition, the following decoding is provided for ease of display:
124  *  SGILOGDATAFMT_8BIT        = 8-bit default RGB gamma-corrected values
125  *
126  * For grayscale images, we provide the following data formats:
127  *  SGILOGDATAFMT_FLOAT       = IEEE 32-bit float Y values
128  *  SGILOGDATAFMT_16BIT       = 16-bit integer w/ encoded luminance
129  *  SGILOGDATAFMT_8BIT        = 8-bit gray monitor values
130  *
131  * Note that the COMPRESSION_SGILOG applies a simple run-length encoding
132  * scheme by separating the logL, u and v bytes for each row and applying
133  * a PackBits type of compression.  Since the 24-bit encoding is not
134  * adaptive, the 32-bit color format takes less space in many cases.
135  *
136  * Further control is provided over the conversion from higher-resolution
137  * formats to final encoded values through the pseudo tag
138  * TIFFTAG_SGILOGENCODE:
139  *  SGILOGENCODE_NODITHER     = do not dither encoded values
140  *  SGILOGENCODE_RANDITHER    = apply random dithering during encoding
141  *
142  * The default value of this tag is SGILOGENCODE_NODITHER for
143  * COMPRESSION_SGILOG to maximize run-length encoding and
144  * SGILOGENCODE_RANDITHER for COMPRESSION_SGILOG24 to turn
145  * quantization errors into noise.
146  */
147 
148 #include <stdio.h>
149 #include <assert.h>
150 #include <stdlib.h>
151 #include <math.h>
152 
153 /*
154  * State block for each open TIFF
155  * file using LogLuv compression/decompression.
156  */
157 typedef	struct logLuvState LogLuvState;
158 
159 struct logLuvState {
160 	int			user_datafmt;	/* user data format */
161 	int			encode_meth;	/* encoding method */
162 	int			pixel_size;	/* bytes per pixel */
163 
164 	tidata_t*		tbuf;		/* translation buffer */
165 	int			tbuflen;	/* buffer length */
166 	void (*tfunc)(LogLuvState*, tidata_t, int);
167 
168 	TIFFVSetMethod		vgetparent;	/* super-class method */
169 	TIFFVSetMethod		vsetparent;	/* super-class method */
170 };
171 
172 #define	DecoderState(tif)	((LogLuvState*) (tif)->tif_data)
173 #define	EncoderState(tif)	((LogLuvState*) (tif)->tif_data)
174 
175 #define N(a)   (sizeof(a)/sizeof(a[0]))
176 #define SGILOGDATAFMT_UNKNOWN	-1
177 
178 #define MINRUN		4	/* minimum run length */
179 
180 /*
181  * Decode a string of 16-bit gray pixels.
182  */
183 static int
LogL16Decode(TIFF * tif,tidata_t op,tsize_t occ,tsample_t s)184 LogL16Decode(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
185 {
186 	LogLuvState* sp = DecoderState(tif);
187 	int shft, i, npixels;
188 	u_char* bp;
189 	int16* tp;
190 	int16 b;
191 	int cc, rc;
192 
193 	assert(s == 0);
194 	assert(sp != NULL);
195 
196 	npixels = occ / sp->pixel_size;
197 
198 	if (sp->user_datafmt == SGILOGDATAFMT_16BIT)
199 		tp = (int16*) op;
200 	else {
201 		assert(sp->tbuflen >= npixels);
202 		tp = (int16*) sp->tbuf;
203 	}
204 	_TIFFmemset((tdata_t) tp, 0, npixels*sizeof (tp[0]));
205 
206 	bp = (u_char*) tif->tif_rawcp;
207 	cc = tif->tif_rawcc;
208 					/* get each byte string */
209 	for (shft = 2*8; (shft -= 8) >= 0; ) {
210 		for (i = 0; i < npixels && cc > 0; )
211 			if (*bp >= 128) {		/* run */
212 				rc = *bp++ + (2-128);
213 				b = (int16)(*bp++ << shft);
214 				cc -= 2;
215 				while (rc--)
216 					tp[i++] |= b;
217 			} else {			/* non-run */
218 				rc = *bp++;		/* nul is noop */
219 				while (--cc && rc--)
220 					tp[i++] |= (int16)*bp++ << shft;
221 			}
222 		if (i != npixels) {
223 			TIFFError(tif->tif_name,
224 		"LogL16Decode: Not enough data at row %d (short %d pixels)",
225 			    tif->tif_row, npixels - i);
226 			tif->tif_rawcp = (tidata_t) bp;
227 			tif->tif_rawcc = cc;
228 			return (0);
229 		}
230 	}
231 	(*sp->tfunc)(sp, op, npixels);
232 	tif->tif_rawcp = (tidata_t) bp;
233 	tif->tif_rawcc = cc;
234 	return (1);
235 }
236 
237 /*
238  * Decode a string of 24-bit pixels.
239  */
240 static int
LogLuvDecode24(TIFF * tif,tidata_t op,tsize_t occ,tsample_t s)241 LogLuvDecode24(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
242 {
243 	LogLuvState* sp = DecoderState(tif);
244 	int cc, i, npixels;
245 	u_char* bp;
246 	uint32* tp;
247 
248 	assert(s == 0);
249 	assert(sp != NULL);
250 
251 	npixels = occ / sp->pixel_size;
252 
253 	if (sp->user_datafmt == SGILOGDATAFMT_RAW)
254 		tp = (uint32 *)op;
255 	else {
256 		assert(sp->tbuflen >= npixels);
257 		tp = (uint32 *) sp->tbuf;
258 	}
259 					/* copy to array of uint32 */
260 	bp = (u_char*) tif->tif_rawcp;
261 	cc = tif->tif_rawcc;
262 	for (i = 0; i < npixels && cc > 0; i++) {
263 		tp[i] = bp[0] << 16 | bp[1] << 8 | bp[2];
264 		bp += 3;
265 		cc -= 3;
266 	}
267 	tif->tif_rawcp = (tidata_t) bp;
268 	tif->tif_rawcc = cc;
269 	if (i != npixels) {
270 		TIFFError(tif->tif_name,
271 	    "LogLuvDecode24: Not enough data at row %d (short %d pixels)",
272 		    tif->tif_row, npixels - i);
273 		return (0);
274 	}
275 	(*sp->tfunc)(sp, op, npixels);
276 	return (1);
277 }
278 
279 /*
280  * Decode a string of 32-bit pixels.
281  */
282 static int
LogLuvDecode32(TIFF * tif,tidata_t op,tsize_t occ,tsample_t s)283 LogLuvDecode32(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
284 {
285 	LogLuvState* sp;
286 	int shft, i, npixels;
287 	u_char* bp;
288 	uint32* tp;
289 	uint32 b;
290 	int cc, rc;
291 
292 	assert(s == 0);
293 	sp = DecoderState(tif);
294 	assert(sp != NULL);
295 
296 	npixels = occ / sp->pixel_size;
297 
298 	if (sp->user_datafmt == SGILOGDATAFMT_RAW)
299 		tp = (uint32*) op;
300 	else {
301 		assert(sp->tbuflen >= npixels);
302 		tp = (uint32*) sp->tbuf;
303 	}
304 	_TIFFmemset((tdata_t) tp, 0, npixels*sizeof (tp[0]));
305 
306 	bp = (u_char*) tif->tif_rawcp;
307 	cc = tif->tif_rawcc;
308 					/* get each byte string */
309 	for (shft = 4*8; (shft -= 8) >= 0; ) {
310 		for (i = 0; i < npixels && cc > 0; )
311 			if (*bp >= 128) {		/* run */
312 				rc = *bp++ + (2-128);
313 				b = (uint32)*bp++ << shft;
314 				cc -= 2;
315 				while (rc--)
316 					tp[i++] |= b;
317 			} else {			/* non-run */
318 				rc = *bp++;		/* nul is noop */
319 				while (--cc && rc--)
320 					tp[i++] |= (uint32)*bp++ << shft;
321 			}
322 		if (i != npixels) {
323 			TIFFError(tif->tif_name,
324 		"LogLuvDecode32: Not enough data at row %d (short %d pixels)",
325 			    tif->tif_row, npixels - i);
326 			tif->tif_rawcp = (tidata_t) bp;
327 			tif->tif_rawcc = cc;
328 			return (0);
329 		}
330 	}
331 	(*sp->tfunc)(sp, op, npixels);
332 	tif->tif_rawcp = (tidata_t) bp;
333 	tif->tif_rawcc = cc;
334 	return (1);
335 }
336 
337 /*
338  * Decode a strip of pixels.  We break it into rows to
339  * maintain synchrony with the encode algorithm, which
340  * is row by row.
341  */
342 static int
LogLuvDecodeStrip(TIFF * tif,tidata_t bp,tsize_t cc,tsample_t s)343 LogLuvDecodeStrip(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
344 {
345 	tsize_t rowlen = TIFFScanlineSize(tif);
346 
347 	assert(cc%rowlen == 0);
348 	while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s))
349 		bp += rowlen, cc -= rowlen;
350 	return (cc == 0);
351 }
352 
353 /*
354  * Decode a tile of pixels.  We break it into rows to
355  * maintain synchrony with the encode algorithm, which
356  * is row by row.
357  */
358 static int
LogLuvDecodeTile(TIFF * tif,tidata_t bp,tsize_t cc,tsample_t s)359 LogLuvDecodeTile(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
360 {
361 	tsize_t rowlen = TIFFTileRowSize(tif);
362 
363 	assert(cc%rowlen == 0);
364 	while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s))
365 		bp += rowlen, cc -= rowlen;
366 	return (cc == 0);
367 }
368 
369 /*
370  * Encode a row of 16-bit pixels.
371  */
372 static int
LogL16Encode(TIFF * tif,tidata_t bp,tsize_t cc,tsample_t s)373 LogL16Encode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
374 {
375 	LogLuvState* sp = EncoderState(tif);
376 	int shft, i, j, npixels;
377 	tidata_t op;
378 	int16* tp;
379 	int16 b;
380 	int occ, rc=0, mask, beg;
381 
382 	assert(s == 0);
383 	assert(sp != NULL);
384 	npixels = cc / sp->pixel_size;
385 
386 	if (sp->user_datafmt == SGILOGDATAFMT_16BIT)
387 		tp = (int16*) bp;
388 	else {
389 		tp = (int16*) sp->tbuf;
390 		assert(sp->tbuflen >= npixels);
391 		(*sp->tfunc)(sp, bp, npixels);
392 	}
393 					/* compress each byte string */
394 	op = tif->tif_rawcp;
395 	occ = tif->tif_rawdatasize - tif->tif_rawcc;
396 	for (shft = 2*8; (shft -= 8) >= 0; )
397 		for (i = 0; i < npixels; i += rc) {
398 			if (occ < 4) {
399 				tif->tif_rawcp = op;
400 				tif->tif_rawcc = tif->tif_rawdatasize - occ;
401 				if (!TIFFFlushData1(tif))
402 					return (-1);
403 				op = tif->tif_rawcp;
404 				occ = tif->tif_rawdatasize - tif->tif_rawcc;
405 			}
406 			mask = 0xff << shft;		/* find next run */
407 			for (beg = i; beg < npixels; beg += rc) {
408 				b = (int16) (tp[beg] & mask);
409 				rc = 1;
410 				while (rc < 127+2 && beg+rc < npixels &&
411 						(tp[beg+rc] & mask) == b)
412 					rc++;
413 				if (rc >= MINRUN)
414 					break;		/* long enough */
415 			}
416 			if (beg-i > 1 && beg-i < MINRUN) {
417 				b = (int16) (tp[i] & mask);/*check short run */
418 				j = i+1;
419 				while ((tp[j++] & mask) == b)
420                                     if (j == beg) {
421                                         *op++ = (tidataval_t)(128-2+j-i);
422                                         *op++ = (tidataval_t) (b >> shft);
423                                         occ -= 2;
424                                         i = beg;
425                                         break;
426                                     }
427 			}
428 			while (i < beg) {		/* write out non-run */
429 				if ((j = beg-i) > 127) j = 127;
430 				if (occ < j+3) {
431                                     tif->tif_rawcp = op;
432                                     tif->tif_rawcc = tif->tif_rawdatasize - occ;
433                                     if (!TIFFFlushData1(tif))
434                                         return (-1);
435                                     op = tif->tif_rawcp;
436                                     occ = tif->tif_rawdatasize - tif->tif_rawcc;
437 				}
438 				*op++ = (tidataval_t) j; occ--;
439 				while (j--) {
440 					*op++ = (tidataval_t) (tp[i++] >> shft & 0xff);
441 					occ--;
442 				}
443 			}
444 			if (rc >= MINRUN) {		/* write out run */
445 				*op++ = (tidataval_t) (128-2+rc);
446 				*op++ = (tidataval_t) (tp[beg] >> shft & 0xff);
447 				occ -= 2;
448 			} else
449 				rc = 0;
450 		}
451 	tif->tif_rawcp = op;
452 	tif->tif_rawcc = tif->tif_rawdatasize - occ;
453 
454 	return (0);
455 }
456 
457 /*
458  * Encode a row of 24-bit pixels.
459  */
460 static int
LogLuvEncode24(TIFF * tif,tidata_t bp,tsize_t cc,tsample_t s)461 LogLuvEncode24(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
462 {
463 	LogLuvState* sp = EncoderState(tif);
464 	int i, npixels, occ;
465 	tidata_t op;
466 	uint32* tp;
467 
468 	assert(s == 0);
469 	assert(sp != NULL);
470 	npixels = cc / sp->pixel_size;
471 
472 	if (sp->user_datafmt == SGILOGDATAFMT_RAW)
473 		tp = (uint32*) bp;
474 	else {
475 		tp = (uint32*) sp->tbuf;
476 		assert(sp->tbuflen >= npixels);
477 		(*sp->tfunc)(sp, bp, npixels);
478 	}
479 					/* write out encoded pixels */
480 	op = tif->tif_rawcp;
481 	occ = tif->tif_rawdatasize - tif->tif_rawcc;
482 	for (i = npixels; i--; ) {
483 		if (occ < 3) {
484 			tif->tif_rawcp = op;
485 			tif->tif_rawcc = tif->tif_rawdatasize - occ;
486 			if (!TIFFFlushData1(tif))
487 				return (-1);
488 			op = tif->tif_rawcp;
489 			occ = tif->tif_rawdatasize - tif->tif_rawcc;
490 		}
491 		*op++ = (tidataval_t)(*tp >> 16);
492 		*op++ = (tidataval_t)(*tp >> 8 & 0xff);
493 		*op++ = (tidataval_t)(*tp++ & 0xff);
494 		occ -= 3;
495 	}
496 	tif->tif_rawcp = op;
497 	tif->tif_rawcc = tif->tif_rawdatasize - occ;
498 
499 	return (0);
500 }
501 
502 /*
503  * Encode a row of 32-bit pixels.
504  */
505 static int
LogLuvEncode32(TIFF * tif,tidata_t bp,tsize_t cc,tsample_t s)506 LogLuvEncode32(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
507 {
508 	LogLuvState* sp = EncoderState(tif);
509 	int shft, i, j, npixels;
510 	tidata_t op;
511 	uint32* tp;
512 	uint32 b;
513 	int occ, rc=0, mask, beg;
514 
515 	assert(s == 0);
516 	assert(sp != NULL);
517 
518 	npixels = cc / sp->pixel_size;
519 
520 	if (sp->user_datafmt == SGILOGDATAFMT_RAW)
521 		tp = (uint32*) bp;
522 	else {
523 		tp = (uint32*) sp->tbuf;
524 		assert(sp->tbuflen >= npixels);
525 		(*sp->tfunc)(sp, bp, npixels);
526 	}
527 					/* compress each byte string */
528 	op = tif->tif_rawcp;
529 	occ = tif->tif_rawdatasize - tif->tif_rawcc;
530 	for (shft = 4*8; (shft -= 8) >= 0; )
531 		for (i = 0; i < npixels; i += rc) {
532 			if (occ < 4) {
533 				tif->tif_rawcp = op;
534 				tif->tif_rawcc = tif->tif_rawdatasize - occ;
535 				if (!TIFFFlushData1(tif))
536 					return (-1);
537 				op = tif->tif_rawcp;
538 				occ = tif->tif_rawdatasize - tif->tif_rawcc;
539 			}
540 			mask = 0xff << shft;		/* find next run */
541 			for (beg = i; beg < npixels; beg += rc) {
542 				b = tp[beg] & mask;
543 				rc = 1;
544 				while (rc < 127+2 && beg+rc < npixels &&
545 						(tp[beg+rc] & mask) == b)
546 					rc++;
547 				if (rc >= MINRUN)
548 					break;		/* long enough */
549 			}
550 			if (beg-i > 1 && beg-i < MINRUN) {
551 				b = tp[i] & mask;	/* check short run */
552 				j = i+1;
553 				while ((tp[j++] & mask) == b)
554 					if (j == beg) {
555 						*op++ = (tidataval_t)(128-2+j-i);
556 						*op++ = (tidataval_t)(b >> shft);
557 						occ -= 2;
558 						i = beg;
559 						break;
560 					}
561 			}
562 			while (i < beg) {		/* write out non-run */
563 				if ((j = beg-i) > 127) j = 127;
564 				if (occ < j+3) {
565 					tif->tif_rawcp = op;
566 					tif->tif_rawcc = tif->tif_rawdatasize - occ;
567 					if (!TIFFFlushData1(tif))
568 						return (-1);
569 					op = tif->tif_rawcp;
570 					occ = tif->tif_rawdatasize - tif->tif_rawcc;
571 				}
572 				*op++ = (tidataval_t) j; occ--;
573 				while (j--) {
574 					*op++ = (tidataval_t)(tp[i++] >> shft & 0xff);
575 					occ--;
576 				}
577 			}
578 			if (rc >= MINRUN) {		/* write out run */
579 				*op++ = (tidataval_t) (128-2+rc);
580 				*op++ = (tidataval_t)(tp[beg] >> shft & 0xff);
581 				occ -= 2;
582 			} else
583 				rc = 0;
584 		}
585 	tif->tif_rawcp = op;
586 	tif->tif_rawcc = tif->tif_rawdatasize - occ;
587 
588 	return (0);
589 }
590 
591 /*
592  * Encode a strip of pixels.  We break it into rows to
593  * avoid encoding runs across row boundaries.
594  */
595 static int
LogLuvEncodeStrip(TIFF * tif,tidata_t bp,tsize_t cc,tsample_t s)596 LogLuvEncodeStrip(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
597 {
598 	tsize_t rowlen = TIFFScanlineSize(tif);
599 
600 	assert(cc%rowlen == 0);
601 	while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 0)
602 		bp += rowlen, cc -= rowlen;
603 	return (cc == 0);
604 }
605 
606 /*
607  * Encode a tile of pixels.  We break it into rows to
608  * avoid encoding runs across row boundaries.
609  */
610 static int
LogLuvEncodeTile(TIFF * tif,tidata_t bp,tsize_t cc,tsample_t s)611 LogLuvEncodeTile(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
612 {
613 	tsize_t rowlen = TIFFTileRowSize(tif);
614 
615 	assert(cc%rowlen == 0);
616 	while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 0)
617 		bp += rowlen, cc -= rowlen;
618 	return (cc == 0);
619 }
620 
621 /*
622  * Encode/Decode functions for converting to and from user formats.
623  */
624 
625 #include "uvcode.h"
626 
627 #ifndef UVSCALE
628 #define U_NEU		0.210526316
629 #define V_NEU		0.473684211
630 #define UVSCALE		410.
631 #endif
632 
633 #ifndef	M_LN2
634 #define M_LN2		0.69314718055994530942
635 #endif
636 #ifndef M_PI
637 #define M_PI		3.14159265358979323846
638 #endif
639 #define log2(x)		((1./M_LN2)*log(x))
640 #define exp2(x)		exp(M_LN2*(x))
641 
642 #define itrunc(x,m)	((m)==SGILOGENCODE_NODITHER ? \
643 				(int)(x) : \
644 				(int)((x) + rand()*(1./RAND_MAX) - .5))
645 
646 #if !LOGLUV_PUBLIC
647 static
648 #endif
649 double
LogL16toY(int p16)650 LogL16toY(int p16)		/* compute luminance from 16-bit LogL */
651 {
652 	int	Le = p16 & 0x7fff;
653 	double	Y;
654 
655 	if (!Le)
656 		return (0.);
657 	Y = exp(M_LN2/256.*(Le+.5) - M_LN2*64.);
658 	return (!(p16 & 0x8000) ? Y : -Y);
659 }
660 
661 #if !LOGLUV_PUBLIC
662 static
663 #endif
664 int
LogL16fromY(double Y,int em)665 LogL16fromY(double Y, int em)	/* get 16-bit LogL from Y */
666 {
667 	if (Y >= 1.8371976e19)
668 		return (0x7fff);
669 	if (Y <= -1.8371976e19)
670 		return (0xffff);
671 	if (Y > 5.4136769e-20)
672 		return itrunc(256.*(log2(Y) + 64.), em);
673 	if (Y < -5.4136769e-20)
674 		return (~0x7fff | itrunc(256.*(log2(-Y) + 64.), em));
675 	return (0);
676 }
677 
678 static void
L16toY(LogLuvState * sp,tidata_t op,int n)679 L16toY(LogLuvState* sp, tidata_t op, int n)
680 {
681 	int16* l16 = (int16*) sp->tbuf;
682 	float* yp = (float*) op;
683 
684 	while (n-- > 0)
685 		*yp++ = (float)LogL16toY(*l16++);
686 }
687 
688 static void
L16toGry(LogLuvState * sp,tidata_t op,int n)689 L16toGry(LogLuvState* sp, tidata_t op, int n)
690 {
691 	int16* l16 = (int16*) sp->tbuf;
692 	uint8* gp = (uint8*) op;
693 
694 	while (n-- > 0) {
695 		double Y = LogL16toY(*l16++);
696 		*gp++ = (uint8) ((Y <= 0.) ? 0 : (Y >= 1.) ? 255 : (int)(256.*sqrt(Y)));
697 	}
698 }
699 
700 static void
L16fromY(LogLuvState * sp,tidata_t op,int n)701 L16fromY(LogLuvState* sp, tidata_t op, int n)
702 {
703 	int16* l16 = (int16*) sp->tbuf;
704 	float* yp = (float*) op;
705 
706 	while (n-- > 0)
707 		*l16++ = (int16) (LogL16fromY(*yp++, sp->encode_meth));
708 }
709 
710 #if !LOGLUV_PUBLIC
711 static
712 #endif
713 void
XYZtoRGB24(float xyz[3],uint8 rgb[3])714 XYZtoRGB24(float xyz[3], uint8 rgb[3])
715 {
716 	double	r, g, b;
717 					/* assume CCIR-709 primaries */
718 	r =  2.690*xyz[0] + -1.276*xyz[1] + -0.414*xyz[2];
719 	g = -1.022*xyz[0] +  1.978*xyz[1] +  0.044*xyz[2];
720 	b =  0.061*xyz[0] + -0.224*xyz[1] +  1.163*xyz[2];
721 					/* assume 2.0 gamma for speed */
722 	/* could use integer sqrt approx., but this is probably faster */
723 	rgb[0] = (uint8)((r<=0.) ? 0 : (r >= 1.) ? 255 : (int)(256.*sqrt(r)));
724 	rgb[1] = (uint8)((g<=0.) ? 0 : (g >= 1.) ? 255 : (int)(256.*sqrt(g)));
725 	rgb[2] = (uint8)((b<=0.) ? 0 : (b >= 1.) ? 255 : (int)(256.*sqrt(b)));
726 }
727 
728 #if !LOGLUV_PUBLIC
729 static
730 #endif
731 double
LogL10toY(int p10)732 LogL10toY(int p10)		/* compute luminance from 10-bit LogL */
733 {
734 	if (p10 == 0)
735 		return (0.);
736 	return (exp(M_LN2/64.*(p10+.5) - M_LN2*12.));
737 }
738 
739 #if !LOGLUV_PUBLIC
740 static
741 #endif
742 int
LogL10fromY(double Y,int em)743 LogL10fromY(double Y, int em)	/* get 10-bit LogL from Y */
744 {
745 	if (Y >= 15.742)
746 		return (0x3ff);
747 	else if (Y <= .00024283)
748 		return (0);
749 	else
750 		return itrunc(64.*(log2(Y) + 12.), em);
751 }
752 
753 #define NANGLES		100
754 #define uv2ang(u, v)	( (NANGLES*.499999999/M_PI) \
755 				* atan2((v)-V_NEU,(u)-U_NEU) + .5*NANGLES )
756 
757 static int
oog_encode(double u,double v)758 oog_encode(double u, double v)		/* encode out-of-gamut chroma */
759 {
760 	static int	oog_table[NANGLES];
761 	static int	initialized = 0;
762 	register int	i;
763 
764 	if (!initialized) {		/* set up perimeter table */
765 		double	eps[NANGLES], ua, va, ang, epsa;
766 		int	ui, vi, ustep;
767 		for (i = NANGLES; i--; )
768 			eps[i] = 2.;
769 		for (vi = UV_NVS; vi--; ) {
770 			va = UV_VSTART + (vi+.5)*UV_SQSIZ;
771 			ustep = uv_row[vi].nus-1;
772 			if (vi == UV_NVS-1 || vi == 0 || ustep <= 0)
773 				ustep = 1;
774 			for (ui = uv_row[vi].nus-1; ui >= 0; ui -= ustep) {
775 				ua = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ;
776 				ang = uv2ang(ua, va);
777                                 i = (int) ang;
778 				epsa = fabs(ang - (i+.5));
779 				if (epsa < eps[i]) {
780 					oog_table[i] = uv_row[vi].ncum + ui;
781 					eps[i] = epsa;
782 				}
783 			}
784 		}
785 		for (i = NANGLES; i--; )	/* fill any holes */
786 			if (eps[i] > 1.5) {
787 				int	i1, i2;
788 				for (i1 = 1; i1 < NANGLES/2; i1++)
789 					if (eps[(i+i1)%NANGLES] < 1.5)
790 						break;
791 				for (i2 = 1; i2 < NANGLES/2; i2++)
792 					if (eps[(i+NANGLES-i2)%NANGLES] < 1.5)
793 						break;
794 				if (i1 < i2)
795 					oog_table[i] =
796 						oog_table[(i+i1)%NANGLES];
797 				else
798 					oog_table[i] =
799 						oog_table[(i+NANGLES-i2)%NANGLES];
800 			}
801 		initialized = 1;
802 	}
803 	i = (int) uv2ang(u, v);		/* look up hue angle */
804 	return (oog_table[i]);
805 }
806 
807 #undef uv2ang
808 #undef NANGLES
809 
810 #if !LOGLUV_PUBLIC
811 static
812 #endif
813 int
uv_encode(double u,double v,int em)814 uv_encode(double u, double v, int em)	/* encode (u',v') coordinates */
815 {
816 	register int	vi, ui;
817 
818 	if (v < UV_VSTART)
819 		return oog_encode(u, v);
820 	vi = itrunc((v - UV_VSTART)*(1./UV_SQSIZ), em);
821 	if (vi >= UV_NVS)
822 		return oog_encode(u, v);
823 	if (u < uv_row[vi].ustart)
824 		return oog_encode(u, v);
825 	ui = itrunc((u - uv_row[vi].ustart)*(1./UV_SQSIZ), em);
826 	if (ui >= uv_row[vi].nus)
827 		return oog_encode(u, v);
828 
829 	return (uv_row[vi].ncum + ui);
830 }
831 
832 #if !LOGLUV_PUBLIC
833 static
834 #endif
835 int
uv_decode(double * up,double * vp,int c)836 uv_decode(double *up, double *vp, int c)	/* decode (u',v') index */
837 {
838 	int	upper, lower;
839 	register int	ui, vi;
840 
841 	if (c < 0 || c >= UV_NDIVS)
842 		return (-1);
843 	lower = 0;				/* binary search */
844 	upper = UV_NVS;
845 	while (upper - lower > 1) {
846 		vi = (lower + upper) >> 1;
847 		ui = c - uv_row[vi].ncum;
848 		if (ui > 0)
849 			lower = vi;
850 		else if (ui < 0)
851 			upper = vi;
852 		else {
853 			lower = vi;
854 			break;
855 		}
856 	}
857 	vi = lower;
858 	ui = c - uv_row[vi].ncum;
859 	*up = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ;
860 	*vp = UV_VSTART + (vi+.5)*UV_SQSIZ;
861 	return (0);
862 }
863 
864 #if !LOGLUV_PUBLIC
865 static
866 #endif
867 void
LogLuv24toXYZ(uint32 p,float XYZ[3])868 LogLuv24toXYZ(uint32 p, float XYZ[3])
869 {
870 	int	Ce;
871 	double	L, u, v, s, x, y;
872 					/* decode luminance */
873 	L = LogL10toY(p>>14 & 0x3ff);
874 	if (L <= 0.) {
875 		XYZ[0] = XYZ[1] = XYZ[2] = 0.;
876 		return;
877 	}
878 					/* decode color */
879 	Ce = p & 0x3fff;
880 	if (uv_decode(&u, &v, Ce) < 0) {
881 		u = U_NEU; v = V_NEU;
882 	}
883 	s = 1./(6.*u - 16.*v + 12.);
884 	x = 9.*u * s;
885 	y = 4.*v * s;
886 					/* convert to XYZ */
887 	XYZ[0] = (float)(x/y * L);
888 	XYZ[1] = (float)L;
889 	XYZ[2] = (float)((1.-x-y)/y * L);
890 }
891 
892 #if !LOGLUV_PUBLIC
893 static
894 #endif
895 uint32
LogLuv24fromXYZ(float XYZ[3],int em)896 LogLuv24fromXYZ(float XYZ[3], int em)
897 {
898 	int	Le, Ce;
899 	double	u, v, s;
900 					/* encode luminance */
901 	Le = LogL10fromY(XYZ[1], em);
902 					/* encode color */
903 	s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2];
904 	if (!Le || s <= 0.) {
905 		u = U_NEU;
906 		v = V_NEU;
907 	} else {
908 		u = 4.*XYZ[0] / s;
909 		v = 9.*XYZ[1] / s;
910 	}
911 	Ce = uv_encode(u, v, em);
912 	if (Ce < 0)			/* never happens */
913 		Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER);
914 					/* combine encodings */
915 	return (Le << 14 | Ce);
916 }
917 
918 static void
Luv24toXYZ(LogLuvState * sp,tidata_t op,int n)919 Luv24toXYZ(LogLuvState* sp, tidata_t op, int n)
920 {
921 	uint32* luv = (uint32*) sp->tbuf;
922 	float* xyz = (float*) op;
923 
924 	while (n-- > 0) {
925 		LogLuv24toXYZ(*luv, xyz);
926 		xyz += 3;
927 		luv++;
928 	}
929 }
930 
931 static void
Luv24toLuv48(LogLuvState * sp,tidata_t op,int n)932 Luv24toLuv48(LogLuvState* sp, tidata_t op, int n)
933 {
934 	uint32* luv = (uint32*) sp->tbuf;
935 	int16* luv3 = (int16*) op;
936 
937 	while (n-- > 0) {
938 		double u, v;
939 
940 		*luv3++ = (int16)((*luv >> 12 & 0xffd) + 13314);
941 		if (uv_decode(&u, &v, *luv&0x3fff) < 0) {
942 			u = U_NEU;
943 			v = V_NEU;
944 		}
945 		*luv3++ = (int16)(u * (1L<<15));
946 		*luv3++ = (int16)(v * (1L<<15));
947 		luv++;
948 	}
949 }
950 
951 static void
Luv24toRGB(LogLuvState * sp,tidata_t op,int n)952 Luv24toRGB(LogLuvState* sp, tidata_t op, int n)
953 {
954 	uint32* luv = (uint32*) sp->tbuf;
955 	uint8* rgb = (uint8*) op;
956 
957 	while (n-- > 0) {
958 		float xyz[3];
959 
960 		LogLuv24toXYZ(*luv++, xyz);
961 		XYZtoRGB24(xyz, rgb);
962 		rgb += 3;
963 	}
964 }
965 
966 static void
Luv24fromXYZ(LogLuvState * sp,tidata_t op,int n)967 Luv24fromXYZ(LogLuvState* sp, tidata_t op, int n)
968 {
969 	uint32* luv = (uint32*) sp->tbuf;
970 	float* xyz = (float*) op;
971 
972 	while (n-- > 0) {
973 		*luv++ = LogLuv24fromXYZ(xyz, sp->encode_meth);
974 		xyz += 3;
975 	}
976 }
977 
978 static void
Luv24fromLuv48(LogLuvState * sp,tidata_t op,int n)979 Luv24fromLuv48(LogLuvState* sp, tidata_t op, int n)
980 {
981 	uint32* luv = (uint32*) sp->tbuf;
982 	int16* luv3 = (int16*) op;
983 
984 	while (n-- > 0) {
985 		int Le, Ce;
986 
987 		if (luv3[0] <= 0)
988 			Le = 0;
989 		else if (luv3[0] >= (1<<12)+3314)
990 			Le = (1<<10) - 1;
991 		else if (sp->encode_meth == SGILOGENCODE_NODITHER)
992 			Le = (luv3[0]-3314) >> 2;
993 		else
994 			Le = itrunc(.25*(luv3[0]-3314.), sp->encode_meth);
995 
996 		Ce = uv_encode((luv3[1]+.5)/(1<<15), (luv3[2]+.5)/(1<<15),
997 					sp->encode_meth);
998 		if (Ce < 0)	/* never happens */
999 			Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER);
1000 		*luv++ = (uint32)Le << 14 | Ce;
1001 		luv3 += 3;
1002 	}
1003 }
1004 
1005 #if !LOGLUV_PUBLIC
1006 static
1007 #endif
1008 void
LogLuv32toXYZ(uint32 p,float XYZ[3])1009 LogLuv32toXYZ(uint32 p, float XYZ[3])
1010 {
1011 	double	L, u, v, s, x, y;
1012 					/* decode luminance */
1013 	L = LogL16toY((int)p >> 16);
1014 	if (L <= 0.) {
1015 		XYZ[0] = XYZ[1] = XYZ[2] = 0.;
1016 		return;
1017 	}
1018 					/* decode color */
1019 	u = 1./UVSCALE * ((p>>8 & 0xff) + .5);
1020 	v = 1./UVSCALE * ((p & 0xff) + .5);
1021 	s = 1./(6.*u - 16.*v + 12.);
1022 	x = 9.*u * s;
1023 	y = 4.*v * s;
1024 					/* convert to XYZ */
1025 	XYZ[0] = (float)(x/y * L);
1026 	XYZ[1] = (float)L;
1027 	XYZ[2] = (float)((1.-x-y)/y * L);
1028 }
1029 
1030 #if !LOGLUV_PUBLIC
1031 static
1032 #endif
1033 uint32
LogLuv32fromXYZ(float XYZ[3],int em)1034 LogLuv32fromXYZ(float XYZ[3], int em)
1035 {
1036 	unsigned int	Le, ue, ve;
1037 	double	u, v, s;
1038 					/* encode luminance */
1039 	Le = (unsigned int)LogL16fromY(XYZ[1], em);
1040 					/* encode color */
1041 	s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2];
1042 	if (!Le || s <= 0.) {
1043 		u = U_NEU;
1044 		v = V_NEU;
1045 	} else {
1046 		u = 4.*XYZ[0] / s;
1047 		v = 9.*XYZ[1] / s;
1048 	}
1049 	if (u <= 0.) ue = 0;
1050 	else ue = itrunc(UVSCALE*u, em);
1051 	if (ue > 255) ue = 255;
1052 	if (v <= 0.) ve = 0;
1053 	else ve = itrunc(UVSCALE*v, em);
1054 	if (ve > 255) ve = 255;
1055 					/* combine encodings */
1056 	return (Le << 16 | ue << 8 | ve);
1057 }
1058 
1059 static void
Luv32toXYZ(LogLuvState * sp,tidata_t op,int n)1060 Luv32toXYZ(LogLuvState* sp, tidata_t op, int n)
1061 {
1062 	uint32* luv = (uint32*) sp->tbuf;
1063 	float* xyz = (float*) op;
1064 
1065 	while (n-- > 0) {
1066 		LogLuv32toXYZ(*luv++, xyz);
1067 		xyz += 3;
1068 	}
1069 }
1070 
1071 static void
Luv32toLuv48(LogLuvState * sp,tidata_t op,int n)1072 Luv32toLuv48(LogLuvState* sp, tidata_t op, int n)
1073 {
1074 	uint32* luv = (uint32*) sp->tbuf;
1075 	int16* luv3 = (int16*) op;
1076 
1077 	while (n-- > 0) {
1078 		double u, v;
1079 
1080 		*luv3++ = (int16)(*luv >> 16);
1081 		u = 1./UVSCALE * ((*luv>>8 & 0xff) + .5);
1082 		v = 1./UVSCALE * ((*luv & 0xff) + .5);
1083 		*luv3++ = (int16)(u * (1L<<15));
1084 		*luv3++ = (int16)(v * (1L<<15));
1085 		luv++;
1086 	}
1087 }
1088 
1089 static void
Luv32toRGB(LogLuvState * sp,tidata_t op,int n)1090 Luv32toRGB(LogLuvState* sp, tidata_t op, int n)
1091 {
1092 	uint32* luv = (uint32*) sp->tbuf;
1093 	uint8* rgb = (uint8*) op;
1094 
1095 	while (n-- > 0) {
1096 		float xyz[3];
1097 
1098 		LogLuv32toXYZ(*luv++, xyz);
1099 		XYZtoRGB24(xyz, rgb);
1100 		rgb += 3;
1101 	}
1102 }
1103 
1104 static void
Luv32fromXYZ(LogLuvState * sp,tidata_t op,int n)1105 Luv32fromXYZ(LogLuvState* sp, tidata_t op, int n)
1106 {
1107 	uint32* luv = (uint32*) sp->tbuf;
1108 	float* xyz = (float*) op;
1109 
1110 	while (n-- > 0) {
1111 		*luv++ = LogLuv32fromXYZ(xyz, sp->encode_meth);
1112 		xyz += 3;
1113 	}
1114 }
1115 
1116 static void
Luv32fromLuv48(LogLuvState * sp,tidata_t op,int n)1117 Luv32fromLuv48(LogLuvState* sp, tidata_t op, int n)
1118 {
1119 	uint32* luv = (uint32*) sp->tbuf;
1120 	int16* luv3 = (int16*) op;
1121 
1122 	if (sp->encode_meth == SGILOGENCODE_NODITHER) {
1123 		while (n-- > 0) {
1124 			*luv++ = (uint32)luv3[0] << 16 |
1125 				(luv3[1]*(uint32)(UVSCALE+.5) >> 7 & 0xff00) |
1126 				(luv3[2]*(uint32)(UVSCALE+.5) >> 15 & 0xff);
1127 			luv3 += 3;
1128 		}
1129 		return;
1130 	}
1131 	while (n-- > 0) {
1132 		*luv++ = (uint32)luv3[0] << 16 |
1133 	(itrunc(luv3[1]*(UVSCALE/(1<<15)), sp->encode_meth) << 8 & 0xff00) |
1134 		(itrunc(luv3[2]*(UVSCALE/(1<<15)), sp->encode_meth) & 0xff);
1135 		luv3 += 3;
1136 	}
1137 }
1138 
1139 static void
_logLuvNop(LogLuvState * sp,tidata_t op,int n)1140 _logLuvNop(LogLuvState* sp, tidata_t op, int n)
1141 {
1142 	(void) sp; (void) op; (void) n;
1143 }
1144 
1145 static int
LogL16GuessDataFmt(TIFFDirectory * td)1146 LogL16GuessDataFmt(TIFFDirectory *td)
1147 {
1148 #define	PACK(s,b,f)	(((b)<<6)|((s)<<3)|(f))
1149 	switch (PACK(td->td_samplesperpixel, td->td_bitspersample, td->td_sampleformat)) {
1150 	case PACK(1, 32, SAMPLEFORMAT_IEEEFP):
1151 		return (SGILOGDATAFMT_FLOAT);
1152 	case PACK(1, 16, SAMPLEFORMAT_VOID):
1153 	case PACK(1, 16, SAMPLEFORMAT_INT):
1154 	case PACK(1, 16, SAMPLEFORMAT_UINT):
1155 		return (SGILOGDATAFMT_16BIT);
1156 	case PACK(1,  8, SAMPLEFORMAT_VOID):
1157 	case PACK(1,  8, SAMPLEFORMAT_UINT):
1158 		return (SGILOGDATAFMT_8BIT);
1159 	}
1160 #undef PACK
1161 	return (SGILOGDATAFMT_UNKNOWN);
1162 }
1163 
1164 static int
LogL16InitState(TIFF * tif)1165 LogL16InitState(TIFF* tif)
1166 {
1167 	TIFFDirectory *td = &tif->tif_dir;
1168 	LogLuvState* sp = DecoderState(tif);
1169 	static const char module[] = "LogL16InitState";
1170 
1171 	assert(sp != NULL);
1172 	assert(td->td_photometric == PHOTOMETRIC_LOGL);
1173 
1174 	/* for some reason, we can't do this in TIFFInitLogL16 */
1175 	if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN)
1176 		sp->user_datafmt = LogL16GuessDataFmt(td);
1177 	switch (sp->user_datafmt) {
1178 	case SGILOGDATAFMT_FLOAT:
1179 		sp->pixel_size = sizeof (float);
1180 		break;
1181 	case SGILOGDATAFMT_16BIT:
1182 		sp->pixel_size = sizeof (int16);
1183 		break;
1184 	case SGILOGDATAFMT_8BIT:
1185 		sp->pixel_size = sizeof (uint8);
1186 		break;
1187 	default:
1188 		TIFFError(tif->tif_name,
1189 		    "No support for converting user data format to LogL");
1190 		return (0);
1191 	}
1192 	sp->tbuflen = td->td_imagewidth * td->td_rowsperstrip;
1193 	sp->tbuf = (tidata_t*) _TIFFmalloc(sp->tbuflen * sizeof (int16));
1194 	if (sp->tbuf == NULL) {
1195 		TIFFError(module, "%s: No space for SGILog translation buffer",
1196 		    tif->tif_name);
1197 		return (0);
1198 	}
1199 	return (1);
1200 }
1201 
1202 static int
LogLuvGuessDataFmt(TIFFDirectory * td)1203 LogLuvGuessDataFmt(TIFFDirectory *td)
1204 {
1205 	int guess;
1206 
1207 	/*
1208 	 * If the user didn't tell us their datafmt,
1209 	 * take our best guess from the bitspersample.
1210 	 */
1211 #define	PACK(a,b)	(((a)<<3)|(b))
1212 	switch (PACK(td->td_bitspersample, td->td_sampleformat)) {
1213 	case PACK(32, SAMPLEFORMAT_IEEEFP):
1214 		guess = SGILOGDATAFMT_FLOAT;
1215 		break;
1216 	case PACK(32, SAMPLEFORMAT_VOID):
1217 	case PACK(32, SAMPLEFORMAT_UINT):
1218 	case PACK(32, SAMPLEFORMAT_INT):
1219 		guess = SGILOGDATAFMT_RAW;
1220 		break;
1221 	case PACK(16, SAMPLEFORMAT_VOID):
1222 	case PACK(16, SAMPLEFORMAT_INT):
1223 	case PACK(16, SAMPLEFORMAT_UINT):
1224 		guess = SGILOGDATAFMT_16BIT;
1225 		break;
1226 	case PACK( 8, SAMPLEFORMAT_VOID):
1227 	case PACK( 8, SAMPLEFORMAT_UINT):
1228 		guess = SGILOGDATAFMT_8BIT;
1229 		break;
1230 	default:
1231 		guess = SGILOGDATAFMT_UNKNOWN;
1232 		break;
1233 #undef PACK
1234 	}
1235 	/*
1236 	 * Double-check samples per pixel.
1237 	 */
1238 	switch (td->td_samplesperpixel) {
1239 	case 1:
1240 		if (guess != SGILOGDATAFMT_RAW)
1241 			guess = SGILOGDATAFMT_UNKNOWN;
1242 		break;
1243 	case 3:
1244 		if (guess == SGILOGDATAFMT_RAW)
1245 			guess = SGILOGDATAFMT_UNKNOWN;
1246 		break;
1247 	default:
1248 		guess = SGILOGDATAFMT_UNKNOWN;
1249 		break;
1250 	}
1251 	return (guess);
1252 }
1253 
1254 static int
LogLuvInitState(TIFF * tif)1255 LogLuvInitState(TIFF* tif)
1256 {
1257 	TIFFDirectory* td = &tif->tif_dir;
1258 	LogLuvState* sp = DecoderState(tif);
1259 	static const char module[] = "LogLuvInitState";
1260 
1261 	assert(sp != NULL);
1262 	assert(td->td_photometric == PHOTOMETRIC_LOGLUV);
1263 
1264 	/* for some reason, we can't do this in TIFFInitLogLuv */
1265 	if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
1266 		TIFFError(module,
1267 		    "SGILog compression cannot handle non-contiguous data");
1268 		return (0);
1269 	}
1270 	if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN)
1271 		sp->user_datafmt = LogLuvGuessDataFmt(td);
1272 	switch (sp->user_datafmt) {
1273 	case SGILOGDATAFMT_FLOAT:
1274 		sp->pixel_size = 3*sizeof (float);
1275 		break;
1276 	case SGILOGDATAFMT_16BIT:
1277 		sp->pixel_size = 3*sizeof (int16);
1278 		break;
1279 	case SGILOGDATAFMT_RAW:
1280 		sp->pixel_size = sizeof (uint32);
1281 		break;
1282 	case SGILOGDATAFMT_8BIT:
1283 		sp->pixel_size = 3*sizeof (uint8);
1284 		break;
1285 	default:
1286 		TIFFError(tif->tif_name,
1287 		    "No support for converting user data format to LogLuv");
1288 		return (0);
1289 	}
1290 	sp->tbuflen = td->td_imagewidth * td->td_rowsperstrip;
1291 	sp->tbuf = (tidata_t*) _TIFFmalloc(sp->tbuflen * sizeof (uint32));
1292 	if (sp->tbuf == NULL) {
1293 		TIFFError(module, "%s: No space for SGILog translation buffer",
1294 		    tif->tif_name);
1295 		return (0);
1296 	}
1297 	return (1);
1298 }
1299 
1300 static int
LogLuvSetupDecode(TIFF * tif)1301 LogLuvSetupDecode(TIFF* tif)
1302 {
1303 	LogLuvState* sp = DecoderState(tif);
1304 	TIFFDirectory* td = &tif->tif_dir;
1305 
1306 	tif->tif_postdecode = _TIFFNoPostDecode;
1307 	switch (td->td_photometric) {
1308 	case PHOTOMETRIC_LOGLUV:
1309 		if (!LogLuvInitState(tif))
1310 			break;
1311 		if (td->td_compression == COMPRESSION_SGILOG24) {
1312 			tif->tif_decoderow = LogLuvDecode24;
1313 			switch (sp->user_datafmt) {
1314 			case SGILOGDATAFMT_FLOAT:
1315 				sp->tfunc = Luv24toXYZ;
1316 				break;
1317 			case SGILOGDATAFMT_16BIT:
1318 				sp->tfunc = Luv24toLuv48;
1319 				break;
1320 			case SGILOGDATAFMT_8BIT:
1321 				sp->tfunc = Luv24toRGB;
1322 				break;
1323 			}
1324 		} else {
1325 			tif->tif_decoderow = LogLuvDecode32;
1326 			switch (sp->user_datafmt) {
1327 			case SGILOGDATAFMT_FLOAT:
1328 				sp->tfunc = Luv32toXYZ;
1329 				break;
1330 			case SGILOGDATAFMT_16BIT:
1331 				sp->tfunc = Luv32toLuv48;
1332 				break;
1333 			case SGILOGDATAFMT_8BIT:
1334 				sp->tfunc = Luv32toRGB;
1335 				break;
1336 			}
1337 		}
1338 		return (1);
1339 	case PHOTOMETRIC_LOGL:
1340 		if (!LogL16InitState(tif))
1341 			break;
1342 		tif->tif_decoderow = LogL16Decode;
1343 		switch (sp->user_datafmt) {
1344 		case SGILOGDATAFMT_FLOAT:
1345 			sp->tfunc = L16toY;
1346 			break;
1347 		case SGILOGDATAFMT_8BIT:
1348 			sp->tfunc = L16toGry;
1349 			break;
1350 		}
1351 		return (1);
1352 	default:
1353 		TIFFError(tif->tif_name,
1354     "Inappropriate photometric interpretation %d for SGILog compression; %s",
1355 		    td->td_photometric, "must be either LogLUV or LogL");
1356 		break;
1357 	}
1358 	return (0);
1359 }
1360 
1361 static int
LogLuvSetupEncode(TIFF * tif)1362 LogLuvSetupEncode(TIFF* tif)
1363 {
1364 	LogLuvState* sp = EncoderState(tif);
1365 	TIFFDirectory* td = &tif->tif_dir;
1366 
1367 	switch (td->td_photometric) {
1368 	case PHOTOMETRIC_LOGLUV:
1369 		if (!LogLuvInitState(tif))
1370 			break;
1371 		if (td->td_compression == COMPRESSION_SGILOG24) {
1372 			tif->tif_encoderow = LogLuvEncode24;
1373 			switch (sp->user_datafmt) {
1374 			case SGILOGDATAFMT_FLOAT:
1375 				sp->tfunc = Luv24fromXYZ;
1376 				break;
1377 			case SGILOGDATAFMT_16BIT:
1378 				sp->tfunc = Luv24fromLuv48;
1379 				break;
1380 			case SGILOGDATAFMT_RAW:
1381 				break;
1382 			default:
1383 				goto notsupported;
1384 			}
1385 		} else {
1386 			tif->tif_encoderow = LogLuvEncode32;
1387 			switch (sp->user_datafmt) {
1388 			case SGILOGDATAFMT_FLOAT:
1389 				sp->tfunc = Luv32fromXYZ;
1390 				break;
1391 			case SGILOGDATAFMT_16BIT:
1392 				sp->tfunc = Luv32fromLuv48;
1393 				break;
1394 			case SGILOGDATAFMT_RAW:
1395 				break;
1396 			default:
1397 				goto notsupported;
1398 			}
1399 		}
1400 		break;
1401 	case PHOTOMETRIC_LOGL:
1402 		if (!LogL16InitState(tif))
1403 			break;
1404 		tif->tif_encoderow = LogL16Encode;
1405 		switch (sp->user_datafmt) {
1406 		case SGILOGDATAFMT_FLOAT:
1407 			sp->tfunc = L16fromY;
1408 			break;
1409 		case SGILOGDATAFMT_16BIT:
1410 			break;
1411 		default:
1412 			goto notsupported;
1413 		}
1414 		break;
1415 	default:
1416 		TIFFError(tif->tif_name,
1417     "Inappropriate photometric interpretation %d for SGILog compression; %s",
1418     		    td->td_photometric, "must be either LogLUV or LogL");
1419 		break;
1420 	}
1421 	return (1);
1422 notsupported:
1423 	TIFFError(tif->tif_name,
1424 	    "SGILog compression supported only for %s, or raw data",
1425 	    td->td_photometric == PHOTOMETRIC_LOGL ? "Y, L" : "XYZ, Luv");
1426 	return (0);
1427 }
1428 
1429 static void
LogLuvClose(TIFF * tif)1430 LogLuvClose(TIFF* tif)
1431 {
1432 	TIFFDirectory *td = &tif->tif_dir;
1433 
1434 	/*
1435 	 * For consistency, we always want to write out the same
1436 	 * bitspersample and sampleformat for our TIFF file,
1437 	 * regardless of the data format being used by the application.
1438 	 * Since this routine is called after tags have been set but
1439 	 * before they have been recorded in the file, we reset them here.
1440 	 */
1441 	td->td_samplesperpixel =
1442 	    (td->td_photometric == PHOTOMETRIC_LOGL) ? 1 : 3;
1443 	td->td_bitspersample = 16;
1444 	td->td_sampleformat = SAMPLEFORMAT_INT;
1445 }
1446 
1447 static void
LogLuvCleanup(TIFF * tif)1448 LogLuvCleanup(TIFF* tif)
1449 {
1450 	LogLuvState* sp = (LogLuvState *)tif->tif_data;
1451 
1452 	if (sp) {
1453 		if (sp->tbuf)
1454 			_TIFFfree(sp->tbuf);
1455 		_TIFFfree(sp);
1456 		tif->tif_data = NULL;
1457 	}
1458 }
1459 
1460 static int
LogLuvVSetField(TIFF * tif,ttag_t tag,va_list ap)1461 LogLuvVSetField(TIFF* tif, ttag_t tag, va_list ap)
1462 {
1463 	LogLuvState* sp = DecoderState(tif);
1464 	int bps, fmt;
1465 
1466 	switch (tag) {
1467 	case TIFFTAG_SGILOGDATAFMT:
1468 		sp->user_datafmt = va_arg(ap, int);
1469 		/*
1470 		 * Tweak the TIFF header so that the rest of libtiff knows what
1471 		 * size of data will be passed between app and library, and
1472 		 * assume that the app knows what it is doing and is not
1473 		 * confused by these header manipulations...
1474 		 */
1475 		switch (sp->user_datafmt) {
1476 		case SGILOGDATAFMT_FLOAT:
1477 			bps = 32, fmt = SAMPLEFORMAT_IEEEFP;
1478 			break;
1479 		case SGILOGDATAFMT_16BIT:
1480 			bps = 16, fmt = SAMPLEFORMAT_INT;
1481 			break;
1482 		case SGILOGDATAFMT_RAW:
1483 			bps = 32, fmt = SAMPLEFORMAT_UINT;
1484 			TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1);
1485 			break;
1486 		case SGILOGDATAFMT_8BIT:
1487 			bps = 8, fmt = SAMPLEFORMAT_UINT;
1488 			break;
1489 		default:
1490 			TIFFError(tif->tif_name,
1491 			    "Unknown data format %d for LogLuv compression",
1492 			    sp->user_datafmt);
1493 			return (0);
1494 		}
1495 		TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, bps);
1496 		TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, fmt);
1497 		/*
1498 		 * Must recalculate sizes should bits/sample change.
1499 		 */
1500 		tif->tif_tilesize = TIFFTileSize(tif);
1501 		tif->tif_scanlinesize = TIFFScanlineSize(tif);
1502 		return (1);
1503 	case TIFFTAG_SGILOGENCODE:
1504 		sp->encode_meth = va_arg(ap, int);
1505 		if (sp->encode_meth != SGILOGENCODE_NODITHER &&
1506 				sp->encode_meth != SGILOGENCODE_RANDITHER) {
1507 			TIFFError(tif->tif_name,
1508 				"Unknown encoding %d for LogLuv compression",
1509 				sp->encode_meth);
1510 			return (0);
1511 		}
1512 		return (1);
1513 	default:
1514 		return (*sp->vsetparent)(tif, tag, ap);
1515 	}
1516 }
1517 
1518 static int
LogLuvVGetField(TIFF * tif,ttag_t tag,va_list ap)1519 LogLuvVGetField(TIFF* tif, ttag_t tag, va_list ap)
1520 {
1521 	LogLuvState *sp = (LogLuvState *)tif->tif_data;
1522 
1523 	switch (tag) {
1524 	case TIFFTAG_SGILOGDATAFMT:
1525 		*va_arg(ap, int*) = sp->user_datafmt;
1526 		return (1);
1527 	default:
1528 		return (*sp->vgetparent)(tif, tag, ap);
1529 	}
1530 }
1531 
1532 static const TIFFFieldInfo LogLuvFieldInfo[] = {
1533     { TIFFTAG_SGILOGDATAFMT,	  0, 0,	TIFF_SHORT,	FIELD_PSEUDO,
1534       TRUE,	FALSE,	"SGILogDataFmt"},
1535     { TIFFTAG_SGILOGENCODE,	  0, 0, TIFF_SHORT,	FIELD_PSEUDO,
1536       TRUE,	FALSE,	"SGILogEncode"}
1537 };
1538 
1539 int
TIFFInitSGILog(TIFF * tif,int scheme)1540 TIFFInitSGILog(TIFF* tif, int scheme)
1541 {
1542 	static const char module[] = "TIFFInitSGILog";
1543 	LogLuvState* sp;
1544 
1545 	assert(scheme == COMPRESSION_SGILOG24 || scheme == COMPRESSION_SGILOG);
1546 
1547 	/*
1548 	 * Allocate state block so tag methods have storage to record values.
1549 	 */
1550 	tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (LogLuvState));
1551 	if (tif->tif_data == NULL)
1552 		goto bad;
1553 	sp = (LogLuvState*) tif->tif_data;
1554 	_TIFFmemset((tdata_t)sp, 0, sizeof (*sp));
1555 	sp->user_datafmt = SGILOGDATAFMT_UNKNOWN;
1556 	sp->encode_meth = (scheme == COMPRESSION_SGILOG24) ?
1557 				SGILOGENCODE_RANDITHER : SGILOGENCODE_NODITHER;
1558 	sp->tfunc = _logLuvNop;
1559 
1560 	/*
1561 	 * Install codec methods.
1562 	 * NB: tif_decoderow & tif_encoderow are filled
1563 	 *     in at setup time.
1564 	 */
1565 	tif->tif_setupdecode = LogLuvSetupDecode;
1566 	tif->tif_decodestrip = LogLuvDecodeStrip;
1567 	tif->tif_decodetile = LogLuvDecodeTile;
1568 	tif->tif_setupencode = LogLuvSetupEncode;
1569 	tif->tif_encodestrip = LogLuvEncodeStrip;
1570 	tif->tif_encodetile = LogLuvEncodeTile;
1571 	tif->tif_close = LogLuvClose;
1572 	tif->tif_cleanup = LogLuvCleanup;
1573 
1574 	/* override SetField so we can handle our private pseudo-tag */
1575 	_TIFFMergeFieldInfo(tif, LogLuvFieldInfo, N(LogLuvFieldInfo));
1576 	sp->vgetparent = tif->tif_tagmethods.vgetfield;
1577 	tif->tif_tagmethods.vgetfield = LogLuvVGetField;   /* hook for codec tags */
1578 	sp->vsetparent = tif->tif_tagmethods.vsetfield;
1579 	tif->tif_tagmethods.vsetfield = LogLuvVSetField;   /* hook for codec tags */
1580 
1581 	return (1);
1582 bad:
1583 	TIFFError(module, "%s: No space for LogLuv state block", tif->tif_name);
1584 	return (0);
1585 }
1586 #endif /* LOGLUV_SUPPORT */
1587