1 //  (C) Copyright John Maddock 2006.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_SF_ERF_INV_HPP
7 #define BOOST_MATH_SF_ERF_INV_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #pragma warning(push)
12 #pragma warning(disable:4127) // Conditional expression is constant
13 #pragma warning(disable:4702) // Unreachable code: optimization warning
14 #endif
15 
16 namespace boost{ namespace math{
17 
18 namespace detail{
19 //
20 // The inverse erf and erfc functions share a common implementation,
21 // this version is for 80-bit long double's and smaller:
22 //
23 template <class T, class Policy>
24 T erf_inv_imp(const T& p, const T& q, const Policy&, const boost::mpl::int_<64>*)
25 {
26    BOOST_MATH_STD_USING // for ADL of std names.
27 
28    T result = 0;
29 
30    if(p <= 0.5)
31    {
32       //
33       // Evaluate inverse erf using the rational approximation:
34       //
35       // x = p(p+10)(Y+R(p))
36       //
37       // Where Y is a constant, and R(p) is optimised for a low
38       // absolute error compared to |Y|.
39       //
40       // double: Max error found: 2.001849e-18
41       // long double: Max error found: 1.017064e-20
42       // Maximum Deviation Found (actual error term at infinite precision) 8.030e-21
43       //
44       static const float Y = 0.0891314744949340820313f;
45       static const T P[] = {
46          BOOST_MATH_BIG_CONSTANT(T, 64, -0.000508781949658280665617),
47          BOOST_MATH_BIG_CONSTANT(T, 64, -0.00836874819741736770379),
48          BOOST_MATH_BIG_CONSTANT(T, 64, 0.0334806625409744615033),
49          BOOST_MATH_BIG_CONSTANT(T, 64, -0.0126926147662974029034),
50          BOOST_MATH_BIG_CONSTANT(T, 64, -0.0365637971411762664006),
51          BOOST_MATH_BIG_CONSTANT(T, 64, 0.0219878681111168899165),
52          BOOST_MATH_BIG_CONSTANT(T, 64, 0.00822687874676915743155),
53          BOOST_MATH_BIG_CONSTANT(T, 64, -0.00538772965071242932965)
54       };
55       static const T Q[] = {
56          BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
57          BOOST_MATH_BIG_CONSTANT(T, 64, -0.970005043303290640362),
58          BOOST_MATH_BIG_CONSTANT(T, 64, -1.56574558234175846809),
59          BOOST_MATH_BIG_CONSTANT(T, 64, 1.56221558398423026363),
60          BOOST_MATH_BIG_CONSTANT(T, 64, 0.662328840472002992063),
61          BOOST_MATH_BIG_CONSTANT(T, 64, -0.71228902341542847553),
62          BOOST_MATH_BIG_CONSTANT(T, 64, -0.0527396382340099713954),
63          BOOST_MATH_BIG_CONSTANT(T, 64, 0.0795283687341571680018),
64          BOOST_MATH_BIG_CONSTANT(T, 64, -0.00233393759374190016776),
65          BOOST_MATH_BIG_CONSTANT(T, 64, 0.000886216390456424707504)
66       };
67       T g = p * (p + 10);
68       T r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);
69       result = g * Y + g * r;
70    }
71    else if(q >= 0.25)
72    {
73       //
74       // Rational approximation for 0.5 > q >= 0.25
75       //
76       // x = sqrt(-2*log(q)) / (Y + R(q))
77       //
78       // Where Y is a constant, and R(q) is optimised for a low
79       // absolute error compared to Y.
80       //
81       // double : Max error found: 7.403372e-17
82       // long double : Max error found: 6.084616e-20
83       // Maximum Deviation Found (error term) 4.811e-20
84       //
85       static const float Y = 2.249481201171875f;
86       static const T P[] = {
87          BOOST_MATH_BIG_CONSTANT(T, 64, -0.202433508355938759655),
88          BOOST_MATH_BIG_CONSTANT(T, 64, 0.105264680699391713268),
89          BOOST_MATH_BIG_CONSTANT(T, 64, 8.37050328343119927838),
90          BOOST_MATH_BIG_CONSTANT(T, 64, 17.6447298408374015486),
91          BOOST_MATH_BIG_CONSTANT(T, 64, -18.8510648058714251895),
92          BOOST_MATH_BIG_CONSTANT(T, 64, -44.6382324441786960818),
93          BOOST_MATH_BIG_CONSTANT(T, 64, 17.445385985570866523),
94          BOOST_MATH_BIG_CONSTANT(T, 64, 21.1294655448340526258),
95          BOOST_MATH_BIG_CONSTANT(T, 64, -3.67192254707729348546)
96       };
97       static const T Q[] = {
98          BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
99          BOOST_MATH_BIG_CONSTANT(T, 64, 6.24264124854247537712),
100          BOOST_MATH_BIG_CONSTANT(T, 64, 3.9713437953343869095),
101          BOOST_MATH_BIG_CONSTANT(T, 64, -28.6608180499800029974),
102          BOOST_MATH_BIG_CONSTANT(T, 64, -20.1432634680485188801),
103          BOOST_MATH_BIG_CONSTANT(T, 64, 48.5609213108739935468),
104          BOOST_MATH_BIG_CONSTANT(T, 64, 10.8268667355460159008),
105          BOOST_MATH_BIG_CONSTANT(T, 64, -22.6436933413139721736),
106          BOOST_MATH_BIG_CONSTANT(T, 64, 1.72114765761200282724)
107       };
108       T g = sqrt(-2 * log(q));
109       T xs = q - 0.25f;
110       T r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
111       result = g / (Y + r);
112    }
113    else
114    {
115       //
116       // For q < 0.25 we have a series of rational approximations all
117       // of the general form:
118       //
119       // let: x = sqrt(-log(q))
120       //
121       // Then the result is given by:
122       //
123       // x(Y+R(x-B))
124       //
125       // where Y is a constant, B is the lowest value of x for which
126       // the approximation is valid, and R(x-B) is optimised for a low
127       // absolute error compared to Y.
128       //
129       // Note that almost all code will really go through the first
130       // or maybe second approximation.  After than we're dealing with very
131       // small input values indeed: 80 and 128 bit long double's go all the
132       // way down to ~ 1e-5000 so the "tail" is rather long...
133       //
134       T x = sqrt(-log(q));
135       if(x < 3)
136       {
137          // Max error found: 1.089051e-20
138          static const float Y = 0.807220458984375f;
139          static const T P[] = {
140             BOOST_MATH_BIG_CONSTANT(T, 64, -0.131102781679951906451),
141             BOOST_MATH_BIG_CONSTANT(T, 64, -0.163794047193317060787),
142             BOOST_MATH_BIG_CONSTANT(T, 64, 0.117030156341995252019),
143             BOOST_MATH_BIG_CONSTANT(T, 64, 0.387079738972604337464),
144             BOOST_MATH_BIG_CONSTANT(T, 64, 0.337785538912035898924),
145             BOOST_MATH_BIG_CONSTANT(T, 64, 0.142869534408157156766),
146             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0290157910005329060432),
147             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00214558995388805277169),
148             BOOST_MATH_BIG_CONSTANT(T, 64, -0.679465575181126350155e-6),
149             BOOST_MATH_BIG_CONSTANT(T, 64, 0.285225331782217055858e-7),
150             BOOST_MATH_BIG_CONSTANT(T, 64, -0.681149956853776992068e-9)
151          };
152          static const T Q[] = {
153             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
154             BOOST_MATH_BIG_CONSTANT(T, 64, 3.46625407242567245975),
155             BOOST_MATH_BIG_CONSTANT(T, 64, 5.38168345707006855425),
156             BOOST_MATH_BIG_CONSTANT(T, 64, 4.77846592945843778382),
157             BOOST_MATH_BIG_CONSTANT(T, 64, 2.59301921623620271374),
158             BOOST_MATH_BIG_CONSTANT(T, 64, 0.848854343457902036425),
159             BOOST_MATH_BIG_CONSTANT(T, 64, 0.152264338295331783612),
160             BOOST_MATH_BIG_CONSTANT(T, 64, 0.01105924229346489121)
161          };
162          T xs = x - 1.125f;
163          T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
164          result = Y * x + R * x;
165       }
166       else if(x < 6)
167       {
168          // Max error found: 8.389174e-21
169          static const float Y = 0.93995571136474609375f;
170          static const T P[] = {
171             BOOST_MATH_BIG_CONSTANT(T, 64, -0.0350353787183177984712),
172             BOOST_MATH_BIG_CONSTANT(T, 64, -0.00222426529213447927281),
173             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0185573306514231072324),
174             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00950804701325919603619),
175             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00187123492819559223345),
176             BOOST_MATH_BIG_CONSTANT(T, 64, 0.000157544617424960554631),
177             BOOST_MATH_BIG_CONSTANT(T, 64, 0.460469890584317994083e-5),
178             BOOST_MATH_BIG_CONSTANT(T, 64, -0.230404776911882601748e-9),
179             BOOST_MATH_BIG_CONSTANT(T, 64, 0.266339227425782031962e-11)
180          };
181          static const T Q[] = {
182             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
183             BOOST_MATH_BIG_CONSTANT(T, 64, 1.3653349817554063097),
184             BOOST_MATH_BIG_CONSTANT(T, 64, 0.762059164553623404043),
185             BOOST_MATH_BIG_CONSTANT(T, 64, 0.220091105764131249824),
186             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0341589143670947727934),
187             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00263861676657015992959),
188             BOOST_MATH_BIG_CONSTANT(T, 64, 0.764675292302794483503e-4)
189          };
190          T xs = x - 3;
191          T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
192          result = Y * x + R * x;
193       }
194       else if(x < 18)
195       {
196          // Max error found: 1.481312e-19
197          static const float Y = 0.98362827301025390625f;
198          static const T P[] = {
199             BOOST_MATH_BIG_CONSTANT(T, 64, -0.0167431005076633737133),
200             BOOST_MATH_BIG_CONSTANT(T, 64, -0.00112951438745580278863),
201             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00105628862152492910091),
202             BOOST_MATH_BIG_CONSTANT(T, 64, 0.000209386317487588078668),
203             BOOST_MATH_BIG_CONSTANT(T, 64, 0.149624783758342370182e-4),
204             BOOST_MATH_BIG_CONSTANT(T, 64, 0.449696789927706453732e-6),
205             BOOST_MATH_BIG_CONSTANT(T, 64, 0.462596163522878599135e-8),
206             BOOST_MATH_BIG_CONSTANT(T, 64, -0.281128735628831791805e-13),
207             BOOST_MATH_BIG_CONSTANT(T, 64, 0.99055709973310326855e-16)
208          };
209          static const T Q[] = {
210             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
211             BOOST_MATH_BIG_CONSTANT(T, 64, 0.591429344886417493481),
212             BOOST_MATH_BIG_CONSTANT(T, 64, 0.138151865749083321638),
213             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0160746087093676504695),
214             BOOST_MATH_BIG_CONSTANT(T, 64, 0.000964011807005165528527),
215             BOOST_MATH_BIG_CONSTANT(T, 64, 0.275335474764726041141e-4),
216             BOOST_MATH_BIG_CONSTANT(T, 64, 0.282243172016108031869e-6)
217          };
218          T xs = x - 6;
219          T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
220          result = Y * x + R * x;
221       }
222       else if(x < 44)
223       {
224          // Max error found: 5.697761e-20
225          static const float Y = 0.99714565277099609375f;
226          static const T P[] = {
227             BOOST_MATH_BIG_CONSTANT(T, 64, -0.0024978212791898131227),
228             BOOST_MATH_BIG_CONSTANT(T, 64, -0.779190719229053954292e-5),
229             BOOST_MATH_BIG_CONSTANT(T, 64, 0.254723037413027451751e-4),
230             BOOST_MATH_BIG_CONSTANT(T, 64, 0.162397777342510920873e-5),
231             BOOST_MATH_BIG_CONSTANT(T, 64, 0.396341011304801168516e-7),
232             BOOST_MATH_BIG_CONSTANT(T, 64, 0.411632831190944208473e-9),
233             BOOST_MATH_BIG_CONSTANT(T, 64, 0.145596286718675035587e-11),
234             BOOST_MATH_BIG_CONSTANT(T, 64, -0.116765012397184275695e-17)
235          };
236          static const T Q[] = {
237             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
238             BOOST_MATH_BIG_CONSTANT(T, 64, 0.207123112214422517181),
239             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0169410838120975906478),
240             BOOST_MATH_BIG_CONSTANT(T, 64, 0.000690538265622684595676),
241             BOOST_MATH_BIG_CONSTANT(T, 64, 0.145007359818232637924e-4),
242             BOOST_MATH_BIG_CONSTANT(T, 64, 0.144437756628144157666e-6),
243             BOOST_MATH_BIG_CONSTANT(T, 64, 0.509761276599778486139e-9)
244          };
245          T xs = x - 18;
246          T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
247          result = Y * x + R * x;
248       }
249       else
250       {
251          // Max error found: 1.279746e-20
252          static const float Y = 0.99941349029541015625f;
253          static const T P[] = {
254             BOOST_MATH_BIG_CONSTANT(T, 64, -0.000539042911019078575891),
255             BOOST_MATH_BIG_CONSTANT(T, 64, -0.28398759004727721098e-6),
256             BOOST_MATH_BIG_CONSTANT(T, 64, 0.899465114892291446442e-6),
257             BOOST_MATH_BIG_CONSTANT(T, 64, 0.229345859265920864296e-7),
258             BOOST_MATH_BIG_CONSTANT(T, 64, 0.225561444863500149219e-9),
259             BOOST_MATH_BIG_CONSTANT(T, 64, 0.947846627503022684216e-12),
260             BOOST_MATH_BIG_CONSTANT(T, 64, 0.135880130108924861008e-14),
261             BOOST_MATH_BIG_CONSTANT(T, 64, -0.348890393399948882918e-21)
262          };
263          static const T Q[] = {
264             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
265             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0845746234001899436914),
266             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00282092984726264681981),
267             BOOST_MATH_BIG_CONSTANT(T, 64, 0.468292921940894236786e-4),
268             BOOST_MATH_BIG_CONSTANT(T, 64, 0.399968812193862100054e-6),
269             BOOST_MATH_BIG_CONSTANT(T, 64, 0.161809290887904476097e-8),
270             BOOST_MATH_BIG_CONSTANT(T, 64, 0.231558608310259605225e-11)
271          };
272          T xs = x - 44;
273          T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
274          result = Y * x + R * x;
275       }
276    }
277    return result;
278 }
279 
280 template <class T, class Policy>
281 struct erf_roots
282 {
operator ()boost::math::detail::erf_roots283    boost::math::tuple<T,T,T> operator()(const T& guess)
284    {
285       BOOST_MATH_STD_USING
286       T derivative = sign * (2 / sqrt(constants::pi<T>())) * exp(-(guess * guess));
287       T derivative2 = -2 * guess * derivative;
288       return boost::math::make_tuple(((sign > 0) ? static_cast<T>(boost::math::erf(guess, Policy()) - target) : static_cast<T>(boost::math::erfc(guess, Policy())) - target), derivative, derivative2);
289    }
erf_rootsboost::math::detail::erf_roots290    erf_roots(T z, int s) : target(z), sign(s) {}
291 private:
292    T target;
293    int sign;
294 };
295 
296 template <class T, class Policy>
297 T erf_inv_imp(const T& p, const T& q, const Policy& pol, const boost::mpl::int_<0>*)
298 {
299    //
300    // Generic version, get a guess that's accurate to 64-bits (10^-19)
301    //
302    T guess = erf_inv_imp(p, q, pol, static_cast<mpl::int_<64> const*>(0));
303    T result;
304    //
305    // If T has more bit's than 64 in it's mantissa then we need to iterate,
306    // otherwise we can just return the result:
307    //
308    if(policies::digits<T, Policy>() > 64)
309    {
310       boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
311       if(p <= 0.5)
312       {
313          result = tools::halley_iterate(detail::erf_roots<typename remove_cv<T>::type, Policy>(p, 1), guess, static_cast<T>(0), tools::max_value<T>(), (policies::digits<T, Policy>() * 2) / 3, max_iter);
314       }
315       else
316       {
317          result = tools::halley_iterate(detail::erf_roots<typename remove_cv<T>::type, Policy>(q, -1), guess, static_cast<T>(0), tools::max_value<T>(), (policies::digits<T, Policy>() * 2) / 3, max_iter);
318       }
319       policies::check_root_iterations<T>("boost::math::erf_inv<%1%>", max_iter, pol);
320    }
321    else
322    {
323       result = guess;
324    }
325    return result;
326 }
327 
328 template <class T, class Policy>
329 struct erf_inv_initializer
330 {
331    struct init
332    {
initboost::math::detail::erf_inv_initializer::init333       init()
334       {
335          do_init();
336       }
337       static bool is_value_non_zero(T);
do_initboost::math::detail::erf_inv_initializer::init338       static void do_init()
339       {
340          // If std::numeric_limits<T>::digits is zero, we must not call
341          // our inituialization code here as the precision presumably
342          // varies at runtime, and will not have been set yet.
343          if(std::numeric_limits<T>::digits)
344          {
345             boost::math::erf_inv(static_cast<T>(0.25), Policy());
346             boost::math::erf_inv(static_cast<T>(0.55), Policy());
347             boost::math::erf_inv(static_cast<T>(0.95), Policy());
348             boost::math::erfc_inv(static_cast<T>(1e-15), Policy());
349             // These following initializations must not be called if
350             // type T can not hold the relevant values without
351             // underflow to zero.  We check this at runtime because
352             // some tools such as valgrind silently change the precision
353             // of T at runtime, and numeric_limits basically lies!
354             if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-130))))
355                boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-130)), Policy());
356 
357             // Some compilers choke on constants that would underflow, even in code that isn't instantiated
358             // so try and filter these cases out in the preprocessor:
359 #if LDBL_MAX_10_EXP >= 800
360             if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-800))))
361                boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-800)), Policy());
362             if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-900))))
363                boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-900)), Policy());
364 #else
365             if(is_value_non_zero(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-800))))
366                boost::math::erfc_inv(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-800)), Policy());
367             if(is_value_non_zero(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-900))))
368                boost::math::erfc_inv(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-900)), Policy());
369 #endif
370          }
371       }
force_instantiateboost::math::detail::erf_inv_initializer::init372       void force_instantiate()const{}
373    };
374    static const init initializer;
force_instantiateboost::math::detail::erf_inv_initializer375    static void force_instantiate()
376    {
377       initializer.force_instantiate();
378    }
379 };
380 
381 template <class T, class Policy>
382 const typename erf_inv_initializer<T, Policy>::init erf_inv_initializer<T, Policy>::initializer;
383 
384 template <class T, class Policy>
is_value_non_zero(T v)385 bool erf_inv_initializer<T, Policy>::init::is_value_non_zero(T v)
386 {
387    // This needs to be non-inline to detect whether v is non zero at runtime
388    // rather than at compile time, only relevant when running under valgrind
389    // which changes long double's to double's on the fly.
390    return v != 0;
391 }
392 
393 } // namespace detail
394 
395 template <class T, class Policy>
erfc_inv(T z,const Policy & pol)396 typename tools::promote_args<T>::type erfc_inv(T z, const Policy& pol)
397 {
398    typedef typename tools::promote_args<T>::type result_type;
399 
400    //
401    // Begin by testing for domain errors, and other special cases:
402    //
403    static const char* function = "boost::math::erfc_inv<%1%>(%1%, %1%)";
404    if((z < 0) || (z > 2))
405       return policies::raise_domain_error<result_type>(function, "Argument outside range [0,2] in inverse erfc function (got p=%1%).", z, pol);
406    if(z == 0)
407       return policies::raise_overflow_error<result_type>(function, 0, pol);
408    if(z == 2)
409       return -policies::raise_overflow_error<result_type>(function, 0, pol);
410    //
411    // Normalise the input, so it's in the range [0,1], we will
412    // negate the result if z is outside that range.  This is a simple
413    // application of the erfc reflection formula: erfc(-z) = 2 - erfc(z)
414    //
415    result_type p, q, s;
416    if(z > 1)
417    {
418       q = 2 - z;
419       p = 1 - q;
420       s = -1;
421    }
422    else
423    {
424       p = 1 - z;
425       q = z;
426       s = 1;
427    }
428    //
429    // A bit of meta-programming to figure out which implementation
430    // to use, based on the number of bits in the mantissa of T:
431    //
432    typedef typename policies::precision<result_type, Policy>::type precision_type;
433    typedef typename mpl::if_<
434       mpl::or_<mpl::less_equal<precision_type, mpl::int_<0> >, mpl::greater<precision_type, mpl::int_<64> > >,
435       mpl::int_<0>,
436       mpl::int_<64>
437    >::type tag_type;
438    //
439    // Likewise use internal promotion, so we evaluate at a higher
440    // precision internally if it's appropriate:
441    //
442    typedef typename policies::evaluation<result_type, Policy>::type eval_type;
443    typedef typename policies::normalise<
444       Policy,
445       policies::promote_float<false>,
446       policies::promote_double<false>,
447       policies::discrete_quantile<>,
448       policies::assert_undefined<> >::type forwarding_policy;
449 
450    detail::erf_inv_initializer<eval_type, forwarding_policy>::force_instantiate();
451 
452    //
453    // And get the result, negating where required:
454    //
455    return s * policies::checked_narrowing_cast<result_type, forwarding_policy>(
456       detail::erf_inv_imp(static_cast<eval_type>(p), static_cast<eval_type>(q), forwarding_policy(), static_cast<tag_type const*>(0)), function);
457 }
458 
459 template <class T, class Policy>
erf_inv(T z,const Policy & pol)460 typename tools::promote_args<T>::type erf_inv(T z, const Policy& pol)
461 {
462    typedef typename tools::promote_args<T>::type result_type;
463 
464    //
465    // Begin by testing for domain errors, and other special cases:
466    //
467    static const char* function = "boost::math::erf_inv<%1%>(%1%, %1%)";
468    if((z < -1) || (z > 1))
469       return policies::raise_domain_error<result_type>(function, "Argument outside range [-1, 1] in inverse erf function (got p=%1%).", z, pol);
470    if(z == 1)
471       return policies::raise_overflow_error<result_type>(function, 0, pol);
472    if(z == -1)
473       return -policies::raise_overflow_error<result_type>(function, 0, pol);
474    if(z == 0)
475       return 0;
476    //
477    // Normalise the input, so it's in the range [0,1], we will
478    // negate the result if z is outside that range.  This is a simple
479    // application of the erf reflection formula: erf(-z) = -erf(z)
480    //
481    result_type p, q, s;
482    if(z < 0)
483    {
484       p = -z;
485       q = 1 - p;
486       s = -1;
487    }
488    else
489    {
490       p = z;
491       q = 1 - z;
492       s = 1;
493    }
494    //
495    // A bit of meta-programming to figure out which implementation
496    // to use, based on the number of bits in the mantissa of T:
497    //
498    typedef typename policies::precision<result_type, Policy>::type precision_type;
499    typedef typename mpl::if_<
500       mpl::or_<mpl::less_equal<precision_type, mpl::int_<0> >, mpl::greater<precision_type, mpl::int_<64> > >,
501       mpl::int_<0>,
502       mpl::int_<64>
503    >::type tag_type;
504    //
505    // Likewise use internal promotion, so we evaluate at a higher
506    // precision internally if it's appropriate:
507    //
508    typedef typename policies::evaluation<result_type, Policy>::type eval_type;
509    typedef typename policies::normalise<
510       Policy,
511       policies::promote_float<false>,
512       policies::promote_double<false>,
513       policies::discrete_quantile<>,
514       policies::assert_undefined<> >::type forwarding_policy;
515    //
516    // Likewise use internal promotion, so we evaluate at a higher
517    // precision internally if it's appropriate:
518    //
519    typedef typename policies::evaluation<result_type, Policy>::type eval_type;
520 
521    detail::erf_inv_initializer<eval_type, forwarding_policy>::force_instantiate();
522    //
523    // And get the result, negating where required:
524    //
525    return s * policies::checked_narrowing_cast<result_type, forwarding_policy>(
526       detail::erf_inv_imp(static_cast<eval_type>(p), static_cast<eval_type>(q), forwarding_policy(), static_cast<tag_type const*>(0)), function);
527 }
528 
529 template <class T>
erfc_inv(T z)530 inline typename tools::promote_args<T>::type erfc_inv(T z)
531 {
532    return erfc_inv(z, policies::policy<>());
533 }
534 
535 template <class T>
erf_inv(T z)536 inline typename tools::promote_args<T>::type erf_inv(T z)
537 {
538    return erf_inv(z, policies::policy<>());
539 }
540 
541 } // namespace math
542 } // namespace boost
543 
544 #ifdef _MSC_VER
545 #pragma warning(pop)
546 #endif
547 
548 #endif // BOOST_MATH_SF_ERF_INV_HPP
549 
550