1 /*
2  * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2016, 2018, SAP SE. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #include "precompiled.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "gc/shared/barrierSetAssembler.hpp"
29 #include "interpreter/abstractInterpreter.hpp"
30 #include "interpreter/bytecodeHistogram.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "interpreter/interpreterRuntime.hpp"
33 #include "interpreter/interp_masm.hpp"
34 #include "interpreter/templateInterpreterGenerator.hpp"
35 #include "interpreter/templateTable.hpp"
36 #include "oops/arrayOop.hpp"
37 #include "oops/oop.inline.hpp"
38 #include "prims/jvmtiExport.hpp"
39 #include "prims/jvmtiThreadState.hpp"
40 #include "runtime/arguments.hpp"
41 #include "runtime/deoptimization.hpp"
42 #include "runtime/frame.inline.hpp"
43 #include "runtime/sharedRuntime.hpp"
44 #include "runtime/stubRoutines.hpp"
45 #include "runtime/synchronizer.hpp"
46 #include "runtime/timer.hpp"
47 #include "runtime/vframeArray.hpp"
48 #include "utilities/debug.hpp"
49 
50 
51 // Size of interpreter code.  Increase if too small.  Interpreter will
52 // fail with a guarantee ("not enough space for interpreter generation");
53 // if too small.
54 // Run with +PrintInterpreter to get the VM to print out the size.
55 // Max size with JVMTI
56 int TemplateInterpreter::InterpreterCodeSize = 320*K;
57 
58 #undef  __
59 #ifdef PRODUCT
60   #define __ _masm->
61 #else
62   #define __ _masm->
63 //  #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
64 #endif
65 
66 #define BLOCK_COMMENT(str) __ block_comment(str)
67 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
68 
69 #define oop_tmp_offset     _z_ijava_state_neg(oop_tmp)
70 
71 //-----------------------------------------------------------------------------
72 
generate_slow_signature_handler()73 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
74   //
75   // New slow_signature handler that respects the z/Architecture
76   // C calling conventions.
77   //
78   // We get called by the native entry code with our output register
79   // area == 8. First we call InterpreterRuntime::get_result_handler
80   // to copy the pointer to the signature string temporarily to the
81   // first C-argument and to return the result_handler in
82   // Z_RET. Since native_entry will copy the jni-pointer to the
83   // first C-argument slot later on, it's OK to occupy this slot
84   // temporarily. Then we copy the argument list on the java
85   // expression stack into native varargs format on the native stack
86   // and load arguments into argument registers. Integer arguments in
87   // the varargs vector will be sign-extended to 8 bytes.
88   //
89   // On entry:
90   //   Z_ARG1  - intptr_t*       Address of java argument list in memory.
91   //   Z_state - cppInterpreter* Address of interpreter state for
92   //                               this method
93   //   Z_method
94   //
95   // On exit (just before return instruction):
96   //   Z_RET contains the address of the result_handler.
97   //   Z_ARG2 is not updated for static methods and contains "this" otherwise.
98   //   Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double.
99   //   Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double.
100 
101   const int LogSizeOfCase = 3;
102 
103   const int max_fp_register_arguments   = Argument::n_float_register_parameters;
104   const int max_int_register_arguments  = Argument::n_register_parameters - 2;  // First 2 are reserved.
105 
106   const Register arg_java       = Z_tmp_2;
107   const Register arg_c          = Z_tmp_3;
108   const Register signature      = Z_R1_scratch; // Is a string.
109   const Register fpcnt          = Z_R0_scratch;
110   const Register argcnt         = Z_tmp_4;
111   const Register intSlot        = Z_tmp_1;
112   const Register sig_end        = Z_tmp_1; // Assumed end of signature (only used in do_object).
113   const Register target_sp      = Z_tmp_1;
114   const FloatRegister floatSlot = Z_F1;
115 
116   const int d_signature         = _z_abi(gpr6); // Only spill space, register contents not affected.
117   const int d_fpcnt             = _z_abi(gpr7); // Only spill space, register contents not affected.
118 
119   unsigned int entry_offset = __ offset();
120 
121   BLOCK_COMMENT("slow_signature_handler {");
122 
123   // We use target_sp for storing arguments in the C frame.
124   __ save_return_pc();
125   __ push_frame_abi160(4*BytesPerWord);                 // Reserve space to save the tmp_[1..4] registers.
126   __ z_stmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // Save registers only after frame is pushed.
127 
128   __ z_lgr(arg_java, Z_ARG1);
129 
130   Register   method = Z_ARG2; // Directly load into correct argument register.
131 
132   __ get_method(method);
133   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method);
134 
135   // Move signature to callee saved register.
136   // Don't directly write to stack. Frame is used by VM call.
137   __ z_lgr(Z_tmp_1, Z_RET);
138 
139   // Reload method. Register may have been altered by VM call.
140   __ get_method(method);
141 
142   // Get address of result handler.
143   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method);
144 
145   // Save signature address to stack.
146   __ z_stg(Z_tmp_1, d_signature, Z_SP);
147 
148   // Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method !
149 
150   {
151     Label   isStatic;
152 
153     // Test if static.
154     // We can test the bit directly.
155     // Path is Z_method->_access_flags._flags.
156     // We only support flag bits in the least significant byte (assert !).
157     // Therefore add 3 to address that byte within "_flags".
158     // Reload method. VM call above may have destroyed register contents
159     __ get_method(method);
160     __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
161     method = noreg;  // end of life
162     __ z_btrue(isStatic);
163 
164     // For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot.
165     // Need to box the Java object here, so we use arg_java
166     // (address of current Java stack slot) as argument and
167     // don't dereference it as in case of ints, floats, etc..
168     __ z_lgr(Z_ARG2, arg_java);
169     __ add2reg(arg_java, -BytesPerWord);
170     __ bind(isStatic);
171   }
172 
173   // argcnt == 0 corresponds to 3rd C argument.
174   //   arg #1 (result handler) and
175   //   arg #2 (this, for non-statics), unused else
176   // are reserved and pre-filled above.
177   // arg_java points to the corresponding Java argument here. It
178   // has been decremented by one argument (this) in case of non-static.
179   __ clear_reg(argcnt, true, false);  // Don't set CC.
180   __ z_lg(target_sp, 0, Z_SP);
181   __ add2reg(arg_c, _z_abi(remaining_cargs), target_sp);
182   // No floating-point args parsed so far.
183   __ clear_mem(Address(Z_SP, d_fpcnt), 8);
184 
185   NearLabel   move_intSlot_to_ARG, move_floatSlot_to_FARG;
186   NearLabel   loop_start, loop_start_restore, loop_end;
187   NearLabel   do_int, do_long, do_float, do_double;
188   NearLabel   do_dontreachhere, do_object, do_array, do_boxed;
189 
190 #ifdef ASSERT
191   // Signature needs to point to '(' (== 0x28) at entry.
192   __ z_lg(signature, d_signature, Z_SP);
193   __ z_cli(0, signature, (int) '(');
194   __ z_brne(do_dontreachhere);
195 #endif
196 
197   __ bind(loop_start_restore);
198   __ z_lg(signature, d_signature, Z_SP);  // Restore signature ptr, destroyed by move_XX_to_ARG.
199 
200   BIND(loop_start);
201   // Advance to next argument type token from the signature.
202   __ add2reg(signature, 1);
203 
204   // Use CLI, works well on all CPU versions.
205     __ z_cli(0, signature, (int) ')');
206     __ z_bre(loop_end);                // end of signature
207     __ z_cli(0, signature, (int) 'L');
208     __ z_bre(do_object);               // object     #9
209     __ z_cli(0, signature, (int) 'F');
210     __ z_bre(do_float);                // float      #7
211     __ z_cli(0, signature, (int) 'J');
212     __ z_bre(do_long);                 // long       #6
213     __ z_cli(0, signature, (int) 'B');
214     __ z_bre(do_int);                  // byte       #1
215     __ z_cli(0, signature, (int) 'Z');
216     __ z_bre(do_int);                  // boolean    #2
217     __ z_cli(0, signature, (int) 'C');
218     __ z_bre(do_int);                  // char       #3
219     __ z_cli(0, signature, (int) 'S');
220     __ z_bre(do_int);                  // short      #4
221     __ z_cli(0, signature, (int) 'I');
222     __ z_bre(do_int);                  // int        #5
223     __ z_cli(0, signature, (int) 'D');
224     __ z_bre(do_double);               // double     #8
225     __ z_cli(0, signature, (int) '[');
226     __ z_bre(do_array);                // array      #10
227 
228   __ bind(do_dontreachhere);
229 
230   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
231 
232   // Array argument
233   BIND(do_array);
234 
235   {
236     Label   start_skip, end_skip;
237 
238     __ bind(start_skip);
239 
240     // Advance to next type tag from signature.
241     __ add2reg(signature, 1);
242 
243     // Use CLI, works well on all CPU versions.
244     __ z_cli(0, signature, (int) '[');
245     __ z_bre(start_skip);               // Skip further brackets.
246 
247     __ z_cli(0, signature, (int) '9');
248     __ z_brh(end_skip);                 // no optional size
249 
250     __ z_cli(0, signature, (int) '0');
251     __ z_brnl(start_skip);              // Skip optional size.
252 
253     __ bind(end_skip);
254 
255     __ z_cli(0, signature, (int) 'L');
256     __ z_brne(do_boxed);                // If not array of objects: go directly to do_boxed.
257   }
258 
259   //  OOP argument
260   BIND(do_object);
261   // Pass by an object's type name.
262   {
263     Label   L;
264 
265     __ add2reg(sig_end, 4095, signature);     // Assume object type name is shorter than 4k.
266     __ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!).
267     __ MacroAssembler::search_string(sig_end, signature);
268     __ z_brl(L);
269     __ z_illtrap();  // No semicolon found: internal error or object name too long.
270     __ bind(L);
271     __ z_lgr(signature, sig_end);
272     // fallthru to do_boxed
273   }
274 
275   // Need to box the Java object here, so we use arg_java
276   // (address of current Java stack slot) as argument and
277   // don't dereference it as in case of ints, floats, etc..
278 
279   // UNBOX argument
280   // Load reference and check for NULL.
281   Label  do_int_Entry4Boxed;
282   __ bind(do_boxed);
283   {
284     __ load_and_test_long(intSlot, Address(arg_java));
285     __ z_bre(do_int_Entry4Boxed);
286     __ z_lgr(intSlot, arg_java);
287     __ z_bru(do_int_Entry4Boxed);
288   }
289 
290   // INT argument
291 
292   // (also for byte, boolean, char, short)
293   // Use lgf for load (sign-extend) and stg for store.
294   BIND(do_int);
295   __ z_lgf(intSlot, 0, arg_java);
296 
297   __ bind(do_int_Entry4Boxed);
298   __ add2reg(arg_java, -BytesPerWord);
299   // If argument fits into argument register, go and handle it, otherwise continue.
300   __ compare32_and_branch(argcnt, max_int_register_arguments,
301                           Assembler::bcondLow, move_intSlot_to_ARG);
302   __ z_stg(intSlot, 0, arg_c);
303   __ add2reg(arg_c, BytesPerWord);
304   __ z_bru(loop_start);
305 
306   // LONG argument
307 
308   BIND(do_long);
309   __ add2reg(arg_java, -2*BytesPerWord);  // Decrement first to have positive displacement for lg.
310   __ z_lg(intSlot, BytesPerWord, arg_java);
311   // If argument fits into argument register, go and handle it, otherwise continue.
312   __ compare32_and_branch(argcnt, max_int_register_arguments,
313                           Assembler::bcondLow, move_intSlot_to_ARG);
314   __ z_stg(intSlot, 0, arg_c);
315   __ add2reg(arg_c, BytesPerWord);
316   __ z_bru(loop_start);
317 
318   // FLOAT argumen
319 
320   BIND(do_float);
321   __ z_le(floatSlot, 0, arg_java);
322   __ add2reg(arg_java, -BytesPerWord);
323   assert(max_fp_register_arguments <= 255, "always true");  // safety net
324   __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
325   __ z_brl(move_floatSlot_to_FARG);
326   __ z_ste(floatSlot, 4, arg_c);
327   __ add2reg(arg_c, BytesPerWord);
328   __ z_bru(loop_start);
329 
330   // DOUBLE argument
331 
332   BIND(do_double);
333   __ add2reg(arg_java, -2*BytesPerWord);  // Decrement first to have positive displacement for lg.
334   __ z_ld(floatSlot, BytesPerWord, arg_java);
335   assert(max_fp_register_arguments <= 255, "always true");  // safety net
336   __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
337   __ z_brl(move_floatSlot_to_FARG);
338   __ z_std(floatSlot, 0, arg_c);
339   __ add2reg(arg_c, BytesPerWord);
340   __ z_bru(loop_start);
341 
342   // Method exit, all arguments proocessed.
343   __ bind(loop_end);
344   __ z_lmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // restore registers before frame is popped.
345   __ pop_frame();
346   __ restore_return_pc();
347   __ z_br(Z_R14);
348 
349   // Copy int arguments.
350 
351   Label  iarg_caselist;   // Distance between each case has to be a power of 2
352                           // (= 1 << LogSizeOfCase).
353   __ align(16);
354   BIND(iarg_caselist);
355   __ z_lgr(Z_ARG3, intSlot);    // 4 bytes
356   __ z_bru(loop_start_restore); // 4 bytes
357 
358   __ z_lgr(Z_ARG4, intSlot);
359   __ z_bru(loop_start_restore);
360 
361   __ z_lgr(Z_ARG5, intSlot);
362   __ z_bru(loop_start_restore);
363 
364   __ align(16);
365   __ bind(move_intSlot_to_ARG);
366   __ z_stg(signature, d_signature, Z_SP);       // Spill since signature == Z_R1_scratch.
367   __ z_larl(Z_R1_scratch, iarg_caselist);
368   __ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase);
369   __ add2reg(argcnt, 1);
370   __ z_agr(Z_R1_scratch, Z_R0_scratch);
371   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
372 
373   // Copy float arguments.
374 
375   Label  farg_caselist;   // Distance between each case has to be a power of 2
376                           // (= 1 << logSizeOfCase, padded with nop.
377   __ align(16);
378   BIND(farg_caselist);
379   __ z_ldr(Z_FARG1, floatSlot); // 2 bytes
380   __ z_bru(loop_start_restore); // 4 bytes
381   __ z_nop();                   // 2 bytes
382 
383   __ z_ldr(Z_FARG2, floatSlot);
384   __ z_bru(loop_start_restore);
385   __ z_nop();
386 
387   __ z_ldr(Z_FARG3, floatSlot);
388   __ z_bru(loop_start_restore);
389   __ z_nop();
390 
391   __ z_ldr(Z_FARG4, floatSlot);
392   __ z_bru(loop_start_restore);
393   __ z_nop();
394 
395   __ align(16);
396   __ bind(move_floatSlot_to_FARG);
397   __ z_stg(signature, d_signature, Z_SP);        // Spill since signature == Z_R1_scratch.
398   __ z_lg(Z_R0_scratch, d_fpcnt, Z_SP);          // Need old value for indexing.
399   __ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index.
400   __ z_larl(Z_R1_scratch, farg_caselist);
401   __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase);
402   __ z_agr(Z_R1_scratch, Z_R0_scratch);
403   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
404 
405   BLOCK_COMMENT("} slow_signature_handler");
406 
407   return __ addr_at(entry_offset);
408 }
409 
generate_result_handler_for(BasicType type)410 address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) {
411   address entry = __ pc();
412 
413   assert(Z_tos == Z_RET, "Result handler: must move result!");
414   assert(Z_ftos == Z_FRET, "Result handler: must move float result!");
415 
416   switch (type) {
417     case T_BOOLEAN:
418       __ c2bool(Z_tos);
419       break;
420     case T_CHAR:
421       __ and_imm(Z_tos, 0xffff);
422       break;
423     case T_BYTE:
424       __ z_lbr(Z_tos, Z_tos);
425       break;
426     case T_SHORT:
427       __ z_lhr(Z_tos, Z_tos);
428       break;
429     case T_INT:
430     case T_LONG:
431     case T_VOID:
432     case T_FLOAT:
433     case T_DOUBLE:
434       break;
435     case T_OBJECT:
436       // Retrieve result from frame...
437       __ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset));
438       // and verify it.
439       __ verify_oop(Z_tos);
440       break;
441     default:
442       ShouldNotReachHere();
443   }
444   __ z_br(Z_R14);      // Return from result handler.
445   return entry;
446 }
447 
448 // Abstract method entry.
449 // Attempt to execute abstract method. Throw exception.
generate_abstract_entry(void)450 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
451   unsigned int entry_offset = __ offset();
452 
453   // Caller could be the call_stub or a compiled method (x86 version is wrong!).
454 
455   BLOCK_COMMENT("abstract_entry {");
456 
457   // Implement call of InterpreterRuntime::throw_AbstractMethodError.
458   __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1);
459   __ save_return_pc();       // Save Z_R14.
460   __ push_frame_abi160(0);   // Without new frame the RT call could overwrite the saved Z_R14.
461 
462   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
463                   Z_thread, Z_method);
464 
465   __ pop_frame();
466   __ restore_return_pc();    // Restore Z_R14.
467   __ reset_last_Java_frame();
468 
469   // Restore caller sp for c2i case.
470   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
471 
472   // branch to SharedRuntime::generate_forward_exception() which handles all possible callers,
473   // i.e. call stub, compiled method, interpreted method.
474   __ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry());
475   __ z_br(Z_tmp_1);
476 
477   BLOCK_COMMENT("} abstract_entry");
478 
479   return __ addr_at(entry_offset);
480 }
481 
generate_Reference_get_entry(void)482 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
483   // Inputs:
484   //  Z_ARG1 - receiver
485   //
486   // What we do:
487   //  - Load the referent field address.
488   //  - Load the value in the referent field.
489   //  - Pass that value to the pre-barrier.
490   //
491   // In the case of G1 this will record the value of the
492   // referent in an SATB buffer if marking is active.
493   // This will cause concurrent marking to mark the referent
494   // field as live.
495 
496   Register  scratch1 = Z_tmp_2;
497   Register  scratch2 = Z_tmp_3;
498   Register  pre_val  = Z_RET;   // return value
499   // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
500   Register  Rargp    = Z_esp;
501 
502   Label     slow_path;
503   address   entry = __ pc();
504 
505   const int referent_offset = java_lang_ref_Reference::referent_offset;
506   guarantee(referent_offset > 0, "referent offset not initialized");
507 
508   BLOCK_COMMENT("Reference_get {");
509 
510   //  If the receiver is null then it is OK to jump to the slow path.
511   __ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver.
512   __ z_bre(slow_path);
513 
514   //  Load the value of the referent field.
515   __ load_heap_oop(pre_val, Address(pre_val, referent_offset), scratch1, scratch2, ON_WEAK_OOP_REF);
516 
517   // Restore caller sp for c2i case.
518   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
519   __ z_br(Z_R14);
520 
521   // Branch to previously generated regular method entry.
522   __ bind(slow_path);
523 
524   address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals);
525   __ jump_to_entry(meth_entry, Z_R1);
526 
527   BLOCK_COMMENT("} Reference_get");
528 
529   return entry;
530 }
531 
generate_StackOverflowError_handler()532 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
533   address entry = __ pc();
534 
535   DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5));
536 
537   // Restore bcp under the assumption that the current frame is still
538   // interpreted.
539   __ restore_bcp();
540 
541   // Expression stack must be empty before entering the VM if an
542   // exception happened.
543   __ empty_expression_stack();
544   // Throw exception.
545   __ call_VM(noreg,
546              CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
547   return entry;
548 }
549 
550 //
551 // Args:
552 //   Z_ARG2: oop of array
553 //   Z_ARG3: aberrant index
554 //
generate_ArrayIndexOutOfBounds_handler()555 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
556   address entry = __ pc();
557   address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException);
558 
559   // Expression stack must be empty before entering the VM if an
560   // exception happened.
561   __ empty_expression_stack();
562 
563   // Setup parameters.
564   // Pass register with array to create more detailed exceptions.
565   __ call_VM(noreg, excp, Z_ARG2, Z_ARG3);
566   return entry;
567 }
568 
generate_ClassCastException_handler()569 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
570   address entry = __ pc();
571 
572   // Object is at TOS.
573   __ pop_ptr(Z_ARG2);
574 
575   // Expression stack must be empty before entering the VM if an
576   // exception happened.
577   __ empty_expression_stack();
578 
579   __ call_VM(Z_ARG1,
580              CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException),
581              Z_ARG2);
582 
583   DEBUG_ONLY(__ should_not_reach_here();)
584 
585   return entry;
586 }
587 
generate_exception_handler_common(const char * name,const char * message,bool pass_oop)588 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
589   assert(!pass_oop || message == NULL, "either oop or message but not both");
590   address entry = __ pc();
591 
592   BLOCK_COMMENT("exception_handler_common {");
593 
594   // Expression stack must be empty before entering the VM if an
595   // exception happened.
596   __ empty_expression_stack();
597   if (name != NULL) {
598     __ load_absolute_address(Z_ARG2, (address)name);
599   } else {
600     __ clear_reg(Z_ARG2, true, false);
601   }
602 
603   if (pass_oop) {
604     __ call_VM(Z_tos,
605                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception),
606                Z_ARG2, Z_tos /*object (see TT::aastore())*/);
607   } else {
608     if (message != NULL) {
609       __ load_absolute_address(Z_ARG3, (address)message);
610     } else {
611       __ clear_reg(Z_ARG3, true, false);
612     }
613     __ call_VM(Z_tos,
614                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
615                Z_ARG2, Z_ARG3);
616   }
617   // Throw exception.
618   __ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry());
619   __ z_br(Z_R1_scratch);
620 
621   BLOCK_COMMENT("} exception_handler_common");
622 
623   return entry;
624 }
625 
generate_return_entry_for(TosState state,int step,size_t index_size)626 address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) {
627   address entry = __ pc();
628 
629   BLOCK_COMMENT("return_entry {");
630 
631   // Pop i2c extension or revert top-2-parent-resize done by interpreted callees.
632   Register sp_before_i2c_extension = Z_bcp;
633   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
634   __ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp)));
635   __ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/);
636 
637   // TODO(ZASM): necessary??
638   //  // and NULL it as marker that esp is now tos until next java call
639   //  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
640 
641   __ restore_bcp();
642   __ restore_locals();
643   __ restore_esp();
644 
645   if (state == atos) {
646     __ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2);
647   }
648 
649   Register cache  = Z_tmp_1;
650   Register size   = Z_tmp_1;
651   Register offset = Z_tmp_2;
652   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
653                                     ConstantPoolCacheEntry::flags_offset());
654   __ get_cache_and_index_at_bcp(cache, offset, 1, index_size);
655 
656   // #args is in rightmost byte of the _flags field.
657   __ z_llgc(size, Address(cache, offset, flags_offset+(sizeof(size_t)-1)));
658   __ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes.
659   __ z_agr(Z_esp, size);                                   // Pop arguments.
660 
661   __ check_and_handle_popframe(Z_thread);
662   __ check_and_handle_earlyret(Z_thread);
663 
664   __ dispatch_next(state, step);
665 
666   BLOCK_COMMENT("} return_entry");
667 
668   return entry;
669 }
670 
generate_deopt_entry_for(TosState state,int step,address continuation)671 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
672                                                                int step,
673                                                                address continuation) {
674   address entry = __ pc();
675 
676   BLOCK_COMMENT("deopt_entry {");
677 
678   // TODO(ZASM): necessary? NULL last_sp until next java call
679   // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
680   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
681   __ restore_bcp();
682   __ restore_locals();
683   __ restore_esp();
684 
685   // Handle exceptions.
686   {
687     Label L;
688     __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
689     __ z_bre(L);
690     __ call_VM(noreg,
691                CAST_FROM_FN_PTR(address,
692                                 InterpreterRuntime::throw_pending_exception));
693     __ should_not_reach_here();
694     __ bind(L);
695   }
696   if (continuation == NULL) {
697     __ dispatch_next(state, step);
698   } else {
699     __ jump_to_entry(continuation, Z_R1_scratch);
700   }
701 
702   BLOCK_COMMENT("} deopt_entry");
703 
704   return entry;
705 }
706 
generate_safept_entry_for(TosState state,address runtime_entry)707 address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state,
708                                                                 address runtime_entry) {
709   address entry = __ pc();
710   __ push(state);
711   __ call_VM(noreg, runtime_entry);
712   __ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos));
713   return entry;
714 }
715 
716 //
717 // Helpers for commoning out cases in the various type of method entries.
718 //
719 
720 // Increment invocation count & check for overflow.
721 //
722 // Note: checking for negative value instead of overflow
723 // so we have a 'sticky' overflow test.
724 //
725 // Z_ARG2: method (see generate_fixed_frame())
726 //
generate_counter_incr(Label * overflow,Label * profile_method,Label * profile_method_continue)727 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
728   Label done;
729   Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2.
730   Register m_counters = Z_ARG4;
731 
732   BLOCK_COMMENT("counter_incr {");
733 
734   // Note: In tiered we increment either counters in method or in MDO depending
735   // if we are profiling or not.
736   if (TieredCompilation) {
737     int increment = InvocationCounter::count_increment;
738     if (ProfileInterpreter) {
739       NearLabel no_mdo;
740       Register mdo = m_counters;
741       // Are we profiling?
742       __ load_and_test_long(mdo, method2_(method, method_data));
743       __ branch_optimized(Assembler::bcondZero, no_mdo);
744       // Increment counter in the MDO.
745       const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() +
746                                            InvocationCounter::counter_offset());
747       const Address mask(mdo, MethodData::invoke_mask_offset());
748       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
749                                  Z_R1_scratch, false, Assembler::bcondZero,
750                                  overflow);
751       __ z_bru(done);
752       __ bind(no_mdo);
753     }
754 
755     // Increment counter in MethodCounters.
756     const Address invocation_counter(m_counters,
757                                      MethodCounters::invocation_counter_offset() +
758                                      InvocationCounter::counter_offset());
759     // Get address of MethodCounters object.
760     __ get_method_counters(method, m_counters, done);
761     const Address mask(m_counters, MethodCounters::invoke_mask_offset());
762     __ increment_mask_and_jump(invocation_counter,
763                                increment, mask,
764                                Z_R1_scratch, false, Assembler::bcondZero,
765                                overflow);
766   } else {
767     Register counter_sum = Z_ARG3; // The result of this piece of code.
768     Register tmp         = Z_R1_scratch;
769 #ifdef ASSERT
770     {
771       NearLabel ok;
772       __ get_method(tmp);
773       __ compare64_and_branch(method, tmp, Assembler::bcondEqual, ok);
774       __ z_illtrap(0x66);
775       __ bind(ok);
776     }
777 #endif
778 
779     // Get address of MethodCounters object.
780     __ get_method_counters(method, m_counters, done);
781     // Update standard invocation counters.
782     __ increment_invocation_counter(m_counters, counter_sum);
783     if (ProfileInterpreter) {
784       __ add2mem_32(Address(m_counters, MethodCounters::interpreter_invocation_counter_offset()), 1, tmp);
785       if (profile_method != NULL) {
786         const Address profile_limit(m_counters, MethodCounters::interpreter_profile_limit_offset());
787         __ z_cl(counter_sum, profile_limit);
788         __ branch_optimized(Assembler::bcondLow, *profile_method_continue);
789         // If no method data exists, go to profile_method.
790         __ test_method_data_pointer(tmp, *profile_method);
791       }
792     }
793 
794     const Address invocation_limit(m_counters, MethodCounters::interpreter_invocation_limit_offset());
795     __ z_cl(counter_sum, invocation_limit);
796     __ branch_optimized(Assembler::bcondNotLow, *overflow);
797   }
798 
799   __ bind(done);
800 
801   BLOCK_COMMENT("} counter_incr");
802 }
803 
generate_counter_overflow(Label & do_continue)804 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
805   // InterpreterRuntime::frequency_counter_overflow takes two
806   // arguments, the first (thread) is passed by call_VM, the second
807   // indicates if the counter overflow occurs at a backwards branch
808   // (NULL bcp). We pass zero for it. The call returns the address
809   // of the verified entry point for the method or NULL if the
810   // compilation did not complete (either went background or bailed
811   // out).
812   __ clear_reg(Z_ARG2);
813   __ call_VM(noreg,
814              CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
815              Z_ARG2);
816   __ z_bru(do_continue);
817 }
818 
generate_stack_overflow_check(Register frame_size,Register tmp1)819 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) {
820   Register tmp2 = Z_R1_scratch;
821   const int page_size = os::vm_page_size();
822   NearLabel after_frame_check;
823 
824   BLOCK_COMMENT("counter_overflow {");
825 
826   assert_different_registers(frame_size, tmp1);
827 
828   // Stack banging is sufficient overflow check if frame_size < page_size.
829   if (Immediate::is_uimm(page_size, 15)) {
830     __ z_chi(frame_size, page_size);
831     __ z_brl(after_frame_check);
832   } else {
833     __ load_const_optimized(tmp1, page_size);
834     __ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check);
835   }
836 
837   // Get the stack base, and in debug, verify it is non-zero.
838   __ z_lg(tmp1, thread_(stack_base));
839 #ifdef ASSERT
840   address reentry = NULL;
841   NearLabel base_not_zero;
842   __ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero);
843   reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check");
844   __ bind(base_not_zero);
845 #endif
846 
847   // Get the stack size, and in debug, verify it is non-zero.
848   assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size");
849   __ z_lg(tmp2, thread_(stack_size));
850 #ifdef ASSERT
851   NearLabel size_not_zero;
852   __ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero);
853   reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check");
854   __ bind(size_not_zero);
855 #endif
856 
857   // Compute the beginning of the protected zone minus the requested frame size.
858   __ z_sgr(tmp1, tmp2);
859   __ add2reg(tmp1, JavaThread::stack_guard_zone_size());
860 
861   // Add in the size of the frame (which is the same as subtracting it from the
862   // SP, which would take another register.
863   __ z_agr(tmp1, frame_size);
864 
865   // The frame is greater than one page in size, so check against
866   // the bottom of the stack.
867   __ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check);
868 
869   // The stack will overflow, throw an exception.
870 
871   // Restore SP to sender's sp. This is necessary if the sender's frame is an
872   // extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of
873   // JSR292 adaptations.
874   __ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/);
875 
876   // Note also that the restored frame is not necessarily interpreted.
877   // Use the shared runtime version of the StackOverflowError.
878   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
879   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
880   __ load_absolute_address(tmp1, StubRoutines::throw_StackOverflowError_entry());
881   __ z_br(tmp1);
882 
883   // If you get to here, then there is enough stack space.
884   __ bind(after_frame_check);
885 
886   BLOCK_COMMENT("} counter_overflow");
887 }
888 
889 // Allocate monitor and lock method (asm interpreter).
890 //
891 // Args:
892 //   Z_locals: locals
893 
lock_method(void)894 void TemplateInterpreterGenerator::lock_method(void) {
895 
896   BLOCK_COMMENT("lock_method {");
897 
898   // Synchronize method.
899   const Register method = Z_tmp_2;
900   __ get_method(method);
901 
902 #ifdef ASSERT
903   address reentry = NULL;
904   {
905     Label L;
906     __ testbit(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
907     __ z_btrue(L);
908     reentry = __ stop_chain_static(reentry, "method doesn't need synchronization");
909     __ bind(L);
910   }
911 #endif // ASSERT
912 
913   // Get synchronization object.
914   const Register object = Z_tmp_2;
915 
916   {
917     Label     done;
918     Label     static_method;
919 
920     __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
921     __ z_btrue(static_method);
922 
923     // non-static method: Load receiver obj from stack.
924     __ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0)));
925     __ z_bru(done);
926 
927     __ bind(static_method);
928 
929     // Lock the java mirror.
930     __ load_mirror(object, method);
931 #ifdef ASSERT
932     {
933       NearLabel L;
934       __ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L);
935       reentry = __ stop_chain_static(reentry, "synchronization object is NULL");
936       __ bind(L);
937     }
938 #endif // ASSERT
939 
940     __ bind(done);
941   }
942 
943   __ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem.
944   // Store object and lock it.
945   __ get_monitors(Z_tmp_1);
946   __ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset_in_bytes()));
947   __ lock_object(Z_tmp_1, object);
948 
949   BLOCK_COMMENT("} lock_method");
950 }
951 
952 // Generate a fixed interpreter frame. This is identical setup for
953 // interpreted methods and for native methods hence the shared code.
954 //
955 // Registers alive
956 //   Z_thread   - JavaThread*
957 //   Z_SP       - old stack pointer
958 //   Z_method   - callee's method
959 //   Z_esp      - parameter list (slot 'above' last param)
960 //   Z_R14      - return pc, to be stored in caller's frame
961 //   Z_R10      - sender sp, note: Z_tmp_1 is Z_R10!
962 //
963 // Registers updated
964 //   Z_SP       - new stack pointer
965 //   Z_esp      - callee's operand stack pointer
966 //                points to the slot above the value on top
967 //   Z_locals   - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
968 //   Z_bcp      - the bytecode pointer
969 //   Z_fp       - the frame pointer, thereby killing Z_method
970 //   Z_ARG2     - copy of Z_method
971 //
generate_fixed_frame(bool native_call)972 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
973 
974   //  stack layout
975   //
976   //   F1 [TOP_IJAVA_FRAME_ABI]              <-- Z_SP, Z_R10 (see note below)
977   //      [F1's operand stack (unused)]
978   //      [F1's outgoing Java arguments]     <-- Z_esp
979   //      [F1's operand stack (non args)]
980   //      [monitors]      (optional)
981   //      [IJAVA_STATE]
982   //
983   //   F2 [PARENT_IJAVA_FRAME_ABI]
984   //      ...
985   //
986   //  0x000
987   //
988   // Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter.
989 
990   //=============================================================================
991   // Allocate space for locals other than the parameters, the
992   // interpreter state, monitors, and the expression stack.
993 
994   const Register local_count     = Z_ARG5;
995   const Register fp              = Z_tmp_2;
996 
997   BLOCK_COMMENT("generate_fixed_frame {");
998 
999   {
1000   // local registers
1001   const Register top_frame_size  = Z_ARG2;
1002   const Register sp_after_resize = Z_ARG3;
1003   const Register max_stack       = Z_ARG4;
1004 
1005   // local_count = method->constMethod->max_locals();
1006   __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1007   __ z_llgh(local_count, Address(Z_R1_scratch, ConstMethod::size_of_locals_offset()));
1008 
1009   if (native_call) {
1010     // If we're calling a native method, we replace max_stack (which is
1011     // zero) with space for the worst-case signature handler varargs
1012     // vector, which is:
1013     //   max_stack = max(Argument::n_register_parameters, parameter_count+2);
1014     //
1015     // We add two slots to the parameter_count, one for the jni
1016     // environment and one for a possible native mirror. We allocate
1017     // space for at least the number of ABI registers, even though
1018     // InterpreterRuntime::slow_signature_handler won't write more than
1019     // parameter_count+2 words when it creates the varargs vector at the
1020     // top of the stack. The generated slow signature handler will just
1021     // load trash into registers beyond the necessary number. We're
1022     // still going to cut the stack back by the ABI register parameter
1023     // count so as to get SP+16 pointing at the ABI outgoing parameter
1024     // area, so we need to allocate at least that much even though we're
1025     // going to throw it away.
1026     //
1027 
1028     __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1029     __ z_llgh(max_stack,  Address(Z_R1_scratch, ConstMethod::size_of_parameters_offset()));
1030     __ add2reg(max_stack, 2);
1031 
1032     NearLabel passing_args_on_stack;
1033 
1034     // max_stack in bytes
1035     __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1036 
1037     int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord;
1038     __ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack);
1039 
1040     __ load_const_optimized(max_stack, argument_registers_in_bytes);
1041 
1042     __ bind(passing_args_on_stack);
1043   } else {
1044     // !native_call
1045     __ z_lg(max_stack, method_(const));
1046 
1047     // Calculate number of non-parameter locals (in slots):
1048     __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1049     __ z_sh(local_count, Address(Z_R1_scratch, ConstMethod::size_of_parameters_offset()));
1050 
1051     // max_stack = method->max_stack();
1052     __ z_llgh(max_stack, Address(max_stack, ConstMethod::max_stack_offset()));
1053     // max_stack in bytes
1054     __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1055   }
1056 
1057   // Resize (i.e. normally shrink) the top frame F1 ...
1058   //   F1      [TOP_IJAVA_FRAME_ABI]          <-- Z_SP, Z_R10
1059   //           F1's operand stack (free)
1060   //           ...
1061   //           F1's operand stack (free)      <-- Z_esp
1062   //           F1's outgoing Java arg m
1063   //           ...
1064   //           F1's outgoing Java arg 0
1065   //           ...
1066   //
1067   //  ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above)
1068   //
1069   //           +......................+
1070   //           :                      :        <-- Z_R10, saved below as F0's z_ijava_state.sender_sp
1071   //           :                      :
1072   //   F1      [PARENT_IJAVA_FRAME_ABI]        <-- Z_SP       \
1073   //           F0's non arg local                             | = delta
1074   //           ...                                            |
1075   //           F0's non arg local              <-- Z_esp      /
1076   //           F1's outgoing Java arg m
1077   //           ...
1078   //           F1's outgoing Java arg 0
1079   //           ...
1080   //
1081   // then push the new top frame F0.
1082   //
1083   //   F0      [TOP_IJAVA_FRAME_ABI]    = frame::z_top_ijava_frame_abi_size \
1084   //           [operand stack]          = max_stack                          | = top_frame_size
1085   //           [IJAVA_STATE]            = frame::z_ijava_state_size         /
1086 
1087   // sp_after_resize = Z_esp - delta
1088   //
1089   // delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count)
1090 
1091   __ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp);
1092   __ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count.
1093   __ z_slgr(sp_after_resize, Z_R0_scratch);
1094 
1095   // top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state
1096   __ add2reg(top_frame_size,
1097              frame::z_top_ijava_frame_abi_size +
1098              frame::z_ijava_state_size +
1099              frame::interpreter_frame_monitor_size() * wordSize,
1100              max_stack);
1101 
1102   if (!native_call) {
1103     // Stack overflow check.
1104     // Native calls don't need the stack size check since they have no
1105     // expression stack and the arguments are already on the stack and
1106     // we only add a handful of words to the stack.
1107     Register frame_size = max_stack; // Reuse the regiser for max_stack.
1108     __ z_lgr(frame_size, Z_SP);
1109     __ z_sgr(frame_size, sp_after_resize);
1110     __ z_agr(frame_size, top_frame_size);
1111     generate_stack_overflow_check(frame_size, fp/*tmp1*/);
1112   }
1113 
1114   DEBUG_ONLY(__ z_cg(Z_R14, _z_abi16(return_pc), Z_SP));
1115   __ asm_assert_eq("killed Z_R14", 0);
1116   __ resize_frame_absolute(sp_after_resize, fp, true);
1117   __ save_return_pc(Z_R14);
1118 
1119   // ... and push the new frame F0.
1120   __ push_frame(top_frame_size, fp, true /*copy_sp*/, false);
1121   }
1122 
1123   //=============================================================================
1124   // Initialize the new frame F0: initialize interpreter state.
1125 
1126   {
1127   // locals
1128   const Register local_addr = Z_ARG4;
1129 
1130   BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {");
1131 
1132 #ifdef ASSERT
1133   // Set the magic number (using local_addr as tmp register).
1134   __ load_const_optimized(local_addr, frame::z_istate_magic_number);
1135   __ z_stg(local_addr, _z_ijava_state_neg(magic), fp);
1136 #endif
1137 
1138   // Save sender SP from F1 (i.e. before it was potentially modified by an
1139   // adapter) into F0's interpreter state. We us it as well to revert
1140   // resizing the frame above.
1141   __ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp);
1142 
1143   // Load cp cache and save it at the and of this block.
1144   __ z_lg(Z_R1_scratch, Address(Z_method,    Method::const_offset()));
1145   __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstMethod::constants_offset()));
1146   __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset_in_bytes()));
1147 
1148   // z_ijava_state->method = method;
1149   __ z_stg(Z_method, _z_ijava_state_neg(method), fp);
1150 
1151   // Point locals at the first argument. Method's locals are the
1152   // parameters on top of caller's expression stack.
1153   // Tos points past last Java argument.
1154 
1155   __ z_lg(Z_locals, Address(Z_method, Method::const_offset()));
1156   __ z_llgh(Z_locals /*parameter_count words*/,
1157             Address(Z_locals, ConstMethod::size_of_parameters_offset()));
1158   __ z_sllg(Z_locals /*parameter_count bytes*/, Z_locals /*parameter_count*/, LogBytesPerWord);
1159   __ z_agr(Z_locals, Z_esp);
1160   // z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0)
1161   // z_ijava_state->locals = Z_esp + parameter_count bytes
1162   __ z_stg(Z_locals, _z_ijava_state_neg(locals), fp);
1163 
1164   // z_ijava_state->oop_temp = NULL;
1165   __ store_const(Address(fp, oop_tmp_offset), 0);
1166 
1167   // Initialize z_ijava_state->mdx.
1168   Register Rmdp = Z_bcp;
1169   // native_call: assert that mdo == NULL
1170   const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call);
1171   if (ProfileInterpreter && check_for_mdo) {
1172     Label get_continue;
1173 
1174     __ load_and_test_long(Rmdp, method_(method_data));
1175     __ z_brz(get_continue);
1176     DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo"));
1177     __ add2reg(Rmdp, in_bytes(MethodData::data_offset()));
1178     __ bind(get_continue);
1179   }
1180   __ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp);
1181 
1182   // Initialize z_ijava_state->bcp and Z_bcp.
1183   if (native_call) {
1184     __ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it.
1185   } else {
1186     __ z_lg(Z_bcp, method_(const));
1187     __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset()));
1188   }
1189   __ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp);
1190 
1191   // no monitors and empty operand stack
1192   // => z_ijava_state->monitors points to the top slot in IJAVA_STATE.
1193   // => Z_ijava_state->esp points one slot above into the operand stack.
1194   // z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize;
1195   // z_ijava_state->esp = Z_esp = z_ijava_state->monitors;
1196   __ add2reg(Z_esp, -frame::z_ijava_state_size, fp);
1197   __ z_stg(Z_esp, _z_ijava_state_neg(monitors), fp);
1198   __ add2reg(Z_esp, -Interpreter::stackElementSize);
1199   __ z_stg(Z_esp, _z_ijava_state_neg(esp), fp);
1200 
1201   // z_ijava_state->cpoolCache = Z_R1_scratch (see load above);
1202   __ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp);
1203 
1204   // Get mirror and store it in the frame as GC root for this Method*.
1205   __ load_mirror(Z_R1_scratch, Z_method);
1206   __ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp);
1207 
1208   BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state");
1209 
1210   //=============================================================================
1211   if (!native_call) {
1212     // Fill locals with 0x0s.
1213     NearLabel locals_zeroed;
1214     NearLabel doXC;
1215 
1216     // Local_count is already num_locals_slots - num_param_slots.
1217     __ compare64_and_branch(local_count, (intptr_t)0L, Assembler::bcondNotHigh, locals_zeroed);
1218 
1219     // Advance local_addr to point behind locals (creates positive incr. in loop).
1220     __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1221     __ z_llgh(Z_R0_scratch, Address(Z_R1_scratch, ConstMethod::size_of_locals_offset()));
1222     __ add2reg(Z_R0_scratch, -1);
1223 
1224     __ z_lgr(local_addr/*locals*/, Z_locals);
1225     __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord);
1226     __ z_sllg(local_count, local_count, LogBytesPerWord); // Local_count are non param locals.
1227     __ z_sgr(local_addr, Z_R0_scratch);
1228 
1229     if (VM_Version::has_Prefetch()) {
1230       __ z_pfd(0x02, 0, Z_R0, local_addr);
1231       __ z_pfd(0x02, 256, Z_R0, local_addr);
1232     }
1233 
1234     // Can't optimise for Z10 using "compare and branch" (immediate value is too big).
1235     __ z_cghi(local_count, 256);
1236     __ z_brnh(doXC);
1237 
1238     // MVCLE: Initialize if quite a lot locals.
1239     //  __ bind(doMVCLE);
1240     __ z_lgr(Z_R0_scratch, local_addr);
1241     __ z_lgr(Z_R1_scratch, local_count);
1242     __ clear_reg(Z_ARG2);        // Src len of MVCLE is zero.
1243 
1244     __ MacroAssembler::move_long_ext(Z_R0_scratch, Z_ARG1, 0);
1245     __ z_bru(locals_zeroed);
1246 
1247     Label  XC_template;
1248     __ bind(XC_template);
1249     __ z_xc(0, 0, local_addr, 0, local_addr);
1250 
1251     __ bind(doXC);
1252     __ z_bctgr(local_count, Z_R0);                  // Get #bytes-1 for EXECUTE.
1253     if (VM_Version::has_ExecuteExtensions()) {
1254       __ z_exrl(local_count, XC_template);          // Execute XC with variable length.
1255     } else {
1256       __ z_larl(Z_R1_scratch, XC_template);
1257       __ z_ex(local_count, 0, Z_R0, Z_R1_scratch);  // Execute XC with variable length.
1258     }
1259 
1260     __ bind(locals_zeroed);
1261   }
1262 
1263   }
1264   // Finally set the frame pointer, destroying Z_method.
1265   assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method");
1266   // Oprofile analysis suggests to keep a copy in a register to be used by
1267   // generate_counter_incr().
1268   __ z_lgr(Z_ARG2, Z_method);
1269   __ z_lgr(Z_fp, fp);
1270 
1271   BLOCK_COMMENT("} generate_fixed_frame");
1272 }
1273 
1274 // Various method entries
1275 
1276 // Math function, frame manager must set up an interpreter state, etc.
generate_math_entry(AbstractInterpreter::MethodKind kind)1277 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1278 
1279   // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1280   bool use_instruction = false;
1281   address runtime_entry = NULL;
1282   int num_args = 1;
1283   bool double_precision = true;
1284 
1285   // s390 specific:
1286   switch (kind) {
1287     case Interpreter::java_lang_math_sqrt:
1288     case Interpreter::java_lang_math_abs:  use_instruction = true; break;
1289     case Interpreter::java_lang_math_fmaF:
1290     case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1291     default: break; // Fall back to runtime call.
1292   }
1293 
1294   switch (kind) {
1295     case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
1296     case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
1297     case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
1298     case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
1299     case Interpreter::java_lang_math_sqrt : /* runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); not available */ break;
1300     case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
1301     case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1302     case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1303     case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
1304     case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1305     case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1306     default: ShouldNotReachHere();
1307   }
1308 
1309   // Use normal entry if neither instruction nor runtime call is used.
1310   if (!use_instruction && runtime_entry == NULL) return NULL;
1311 
1312   address entry = __ pc();
1313 
1314   if (use_instruction) {
1315     switch (kind) {
1316       case Interpreter::java_lang_math_sqrt:
1317         // Can use memory operand directly.
1318         __ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp);
1319         break;
1320       case Interpreter::java_lang_math_abs:
1321         // Load operand from stack.
1322         __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize));
1323         __ z_lpdbr(Z_FRET);
1324         break;
1325       case Interpreter::java_lang_math_fmaF:
1326         __ mem2freg_opt(Z_FRET,  Address(Z_esp,     Interpreter::stackElementSize)); // result reg = arg3
1327         __ mem2freg_opt(Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); // arg1
1328         __ z_maeb(Z_FRET, Z_FARG2, Address(Z_esp, 2 * Interpreter::stackElementSize));
1329         break;
1330       case Interpreter::java_lang_math_fmaD:
1331         __ mem2freg_opt(Z_FRET,  Address(Z_esp,     Interpreter::stackElementSize)); // result reg = arg3
1332         __ mem2freg_opt(Z_FARG2, Address(Z_esp, 5 * Interpreter::stackElementSize)); // arg1
1333         __ z_madb(Z_FRET, Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize));
1334         break;
1335       default: ShouldNotReachHere();
1336     }
1337   } else {
1338     // Load arguments
1339     assert(num_args <= 4, "passed in registers");
1340     if (double_precision) {
1341       int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1342       for (int i = 0; i < num_args; ++i) {
1343         __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset));
1344         offset -= 2 * Interpreter::stackElementSize;
1345       }
1346     } else {
1347       int offset = num_args * Interpreter::stackElementSize;
1348       for (int i = 0; i < num_args; ++i) {
1349         __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset));
1350         offset -= Interpreter::stackElementSize;
1351       }
1352     }
1353     // Call runtime
1354     __ save_return_pc();       // Save Z_R14.
1355     __ push_frame_abi160(0);   // Without new frame the RT call could overwrite the saved Z_R14.
1356 
1357     __ call_VM_leaf(runtime_entry);
1358 
1359     __ pop_frame();
1360     __ restore_return_pc();    // Restore Z_R14.
1361   }
1362 
1363   // Pop c2i arguments (if any) off when we return.
1364   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1365 
1366   __ z_br(Z_R14);
1367 
1368   return entry;
1369 }
1370 
1371 // Interpreter stub for calling a native method. (asm interpreter).
1372 // This sets up a somewhat different looking stack for calling the
1373 // native method than the typical interpreter frame setup.
generate_native_entry(bool synchronized)1374 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1375   // Determine code generation flags.
1376   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1377 
1378   // Interpreter entry for ordinary Java methods.
1379   //
1380   // Registers alive
1381   //   Z_SP          - stack pointer
1382   //   Z_thread      - JavaThread*
1383   //   Z_method      - callee's method (method to be invoked)
1384   //   Z_esp         - operand (or expression) stack pointer of caller. one slot above last arg.
1385   //   Z_R10         - sender sp (before modifications, e.g. by c2i adapter
1386   //                   and as well by generate_fixed_frame below)
1387   //   Z_R14         - return address to caller (call_stub or c2i_adapter)
1388   //
1389   // Registers updated
1390   //   Z_SP          - stack pointer
1391   //   Z_fp          - callee's framepointer
1392   //   Z_esp         - callee's operand stack pointer
1393   //                   points to the slot above the value on top
1394   //   Z_locals      - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1395   //   Z_tos         - integer result, if any
1396   //   z_ftos        - floating point result, if any
1397   //
1398   // Stack layout at this point:
1399   //
1400   //   F1      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1401   //                                                          frame was extended by c2i adapter)
1402   //           [outgoing Java arguments]     <-- Z_esp
1403   //           ...
1404   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
1405   //           ...
1406   //
1407 
1408   address entry_point = __ pc();
1409 
1410   // Make sure registers are different!
1411   assert_different_registers(Z_thread, Z_method, Z_esp);
1412 
1413   BLOCK_COMMENT("native_entry {");
1414 
1415   // Make sure method is native and not abstract.
1416 #ifdef ASSERT
1417   address reentry = NULL;
1418   { Label L;
1419     __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT);
1420     __ z_btrue(L);
1421     reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native");
1422     __ bind(L);
1423   }
1424   { Label L;
1425     __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1426     __ z_bfalse(L);
1427     reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1428     __ bind(L);
1429   }
1430 #endif // ASSERT
1431 
1432 #ifdef ASSERT
1433   // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1434   __ save_return_pc(Z_R14);
1435 #endif
1436 
1437   // Generate the code to allocate the interpreter stack frame.
1438   generate_fixed_frame(true);
1439 
1440   const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1441   // Since at this point in the method invocation the exception handler
1442   // would try to exit the monitor of synchronized methods which hasn't
1443   // been entered yet, we set the thread local variable
1444   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1445   // runtime, exception handling i.e. unlock_if_synchronized_method will
1446   // check this thread local flag.
1447   __ z_mvi(do_not_unlock_if_synchronized, true);
1448 
1449   // Increment invocation count and check for overflow.
1450   NearLabel invocation_counter_overflow;
1451   if (inc_counter) {
1452     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1453   }
1454 
1455   Label continue_after_compile;
1456   __ bind(continue_after_compile);
1457 
1458   bang_stack_shadow_pages(true);
1459 
1460   // Reset the _do_not_unlock_if_synchronized flag.
1461   __ z_mvi(do_not_unlock_if_synchronized, false);
1462 
1463   // Check for synchronized methods.
1464   // This mst happen AFTER invocation_counter check and stack overflow check,
1465   // so method is not locked if overflows.
1466   if (synchronized) {
1467     lock_method();
1468   } else {
1469     // No synchronization necessary.
1470 #ifdef ASSERT
1471     { Label L;
1472       __ get_method(Z_R1_scratch);
1473       __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1474       __ z_bfalse(L);
1475       reentry = __ stop_chain_static(reentry, "method needs synchronization");
1476       __ bind(L);
1477     }
1478 #endif // ASSERT
1479   }
1480 
1481   // start execution
1482 
1483   // jvmti support
1484   __ notify_method_entry();
1485 
1486   //=============================================================================
1487   // Get and call the signature handler.
1488   const Register Rmethod                 = Z_tmp_2;
1489   const Register signature_handler_entry = Z_tmp_1;
1490   const Register Rresult_handler         = Z_tmp_3;
1491   Label call_signature_handler;
1492 
1493   assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler);
1494   assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register");
1495 
1496   // Reload method.
1497   __ get_method(Rmethod);
1498 
1499   // Check for signature handler.
1500   __ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler));
1501   __ z_brne(call_signature_handler);
1502 
1503   // Method has never been called. Either generate a specialized
1504   // handler or point to the slow one.
1505   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call),
1506              Rmethod);
1507 
1508   // Reload method.
1509   __ get_method(Rmethod);
1510 
1511   // Reload signature handler, it must have been created/assigned in the meantime.
1512   __ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler));
1513 
1514   __ bind(call_signature_handler);
1515 
1516   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1517   __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/);
1518 
1519   // Call signature handler and pass locals address in Z_ARG1.
1520   __ z_lgr(Z_ARG1, Z_locals);
1521   __ call_stub(signature_handler_entry);
1522   // Save result handler returned by signature handler.
1523   __ z_lgr(Rresult_handler, Z_RET);
1524 
1525   // Reload method (the slow signature handler may block for GC).
1526   __ get_method(Rmethod);
1527 
1528   // Pass mirror handle if static call.
1529   {
1530     Label method_is_not_static;
1531     __ testbit(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT);
1532     __ z_bfalse(method_is_not_static);
1533     // Get mirror.
1534     __ load_mirror(Z_R1, Rmethod);
1535     // z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror();
1536     __ z_stg(Z_R1, oop_tmp_offset, Z_fp);
1537     // Pass handle to mirror as 2nd argument to JNI method.
1538     __ add2reg(Z_ARG2, oop_tmp_offset, Z_fp);
1539     __ bind(method_is_not_static);
1540   }
1541 
1542   // Pass JNIEnv address as first parameter.
1543   __ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread);
1544 
1545   // Note: last java frame has been set above already. The pc from there
1546   // is precise enough.
1547 
1548   // Get native function entry point before we change the thread state.
1549   __ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function));
1550 
1551   //=============================================================================
1552   // Transition from _thread_in_Java to _thread_in_native. As soon as
1553   // we make this change the safepoint code needs to be certain that
1554   // the last Java frame we established is good. The pc in that frame
1555   // just need to be near here not an actual return address.
1556 #ifdef ASSERT
1557   {
1558     NearLabel L;
1559     __ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/);
1560     __ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L);
1561     reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub");
1562     __ bind(L);
1563   }
1564 #endif
1565 
1566   // Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough.
1567   __ set_thread_state(_thread_in_native);
1568 
1569   //=============================================================================
1570   // Call the native method. Argument registers must not have been
1571   // overwritten since "__ call_stub(signature_handler);" (except for
1572   // ARG1 and ARG2 for static methods).
1573 
1574   __ call_c(Z_R1/*native_method_entry*/);
1575 
1576   // NOTE: frame::interpreter_frame_result() depends on these stores.
1577   __ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp);
1578   __ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1579   const Register Rlresult = signature_handler_entry;
1580   assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register");
1581   __ z_lgr(Rlresult, Z_RET);
1582 
1583   // Z_method may no longer be valid, because of GC.
1584 
1585   // Block, if necessary, before resuming in _thread_in_Java state.
1586   // In order for GC to work, don't clear the last_Java_sp until after
1587   // blocking.
1588 
1589   //=============================================================================
1590   // Switch thread to "native transition" state before reading the
1591   // synchronization state. This additional state is necessary
1592   // because reading and testing the synchronization state is not
1593   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1594   // in _thread_in_native state, loads _not_synchronized and is
1595   // preempted. VM thread changes sync state to synchronizing and
1596   // suspends threads for GC. Thread A is resumed to finish this
1597   // native method, but doesn't block here since it didn't see any
1598   // synchronization is progress, and escapes.
1599 
1600   __ set_thread_state(_thread_in_native_trans);
1601   if (UseMembar) {
1602     __ z_fence();
1603   } else {
1604     // Write serialization page so VM thread can do a pseudo remote
1605     // membar. We use the current thread pointer to calculate a thread
1606     // specific offset to write to within the page. This minimizes bus
1607     // traffic due to cache line collision.
1608     __ serialize_memory(Z_thread, Z_R1, Z_R0);
1609   }
1610   // Now before we return to java we must look for a current safepoint
1611   // (a new safepoint can not start since we entered native_trans).
1612   // We must check here because a current safepoint could be modifying
1613   // the callers registers right this moment.
1614 
1615   // Check for safepoint operation in progress and/or pending suspend requests.
1616   {
1617     Label Continue, do_safepoint;
1618     __ safepoint_poll(do_safepoint, Z_R1);
1619     // Check for suspend.
1620     __ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags));
1621     __ z_bre(Continue); // 0 -> no flag set -> not suspended
1622     __ bind(do_safepoint);
1623     __ z_lgr(Z_ARG1, Z_thread);
1624     __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1625     __ bind(Continue);
1626   }
1627 
1628   //=============================================================================
1629   // Back in Interpreter Frame.
1630 
1631   // We are in thread_in_native_trans here and back in the normal
1632   // interpreter frame. We don't have to do anything special about
1633   // safepoints and we can switch to Java mode anytime we are ready.
1634 
1635   // Note: frame::interpreter_frame_result has a dependency on how the
1636   // method result is saved across the call to post_method_exit. For
1637   // native methods it assumes that the non-FPU/non-void result is
1638   // saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If
1639   // this changes then the interpreter_frame_result implementation
1640   // will need to be updated too.
1641 
1642   //=============================================================================
1643   // Back in Java.
1644 
1645   // Memory ordering: Z does not reorder store/load with subsequent
1646   // load. That's strong enough.
1647   __ set_thread_state(_thread_in_Java);
1648 
1649   __ reset_last_Java_frame();
1650 
1651   // We reset the JNI handle block only after unboxing the result; see below.
1652 
1653   // The method register is junk from after the thread_in_native transition
1654   // until here. Also can't call_VM until the bcp has been
1655   // restored. Need bcp for throwing exception below so get it now.
1656   __ get_method(Rmethod);
1657 
1658   // Restore Z_bcp to have legal interpreter frame,
1659   // i.e., bci == 0 <=> Z_bcp == code_base().
1660   __ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod
1661   __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase
1662 
1663   if (CheckJNICalls) {
1664     // clear_pending_jni_exception_check
1665     __ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop));
1666   }
1667 
1668   // Check if the native method returns an oop, and if so, move it
1669   // from the jni handle to z_ijava_state.oop_temp. This is
1670   // necessary, because we reset the jni handle block below.
1671   // NOTE: frame::interpreter_frame_result() depends on this, too.
1672   { NearLabel no_oop_result;
1673   __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT));
1674   __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result);
1675   __ resolve_jobject(Rlresult, /* tmp1 */ Rmethod, /* tmp2 */ Z_R1);
1676   __ z_stg(Rlresult, oop_tmp_offset, Z_fp);
1677   __ bind(no_oop_result);
1678   }
1679 
1680   // Reset handle block.
1681   __ z_lg(Z_R1/*active_handles*/, thread_(active_handles));
1682   __ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset_in_bytes()), 4);
1683 
1684   // Handle exceptions (exception handling will handle unlocking!).
1685   {
1686     Label L;
1687     __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
1688     __ z_bre(L);
1689     __ MacroAssembler::call_VM(noreg,
1690                                CAST_FROM_FN_PTR(address,
1691                                InterpreterRuntime::throw_pending_exception));
1692     __ should_not_reach_here();
1693     __ bind(L);
1694   }
1695 
1696   if (synchronized) {
1697     Register Rfirst_monitor = Z_ARG2;
1698     __ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp);
1699 #ifdef ASSERT
1700     NearLabel ok;
1701     __ z_lg(Z_R1, _z_ijava_state_neg(monitors), Z_fp);
1702     __ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok);
1703     reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors");
1704     __ bind(ok);
1705 #endif
1706     __ unlock_object(Rfirst_monitor);
1707   }
1708 
1709   // JVMTI support. Result has already been saved above to the frame.
1710   __ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1711 
1712   // Move native method result back into proper registers and return.
1713   __ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1714   __ mem2reg_opt(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult)));
1715   __ call_stub(Rresult_handler);
1716 
1717   // Pop the native method's interpreter frame.
1718   __ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
1719 
1720   // Return to caller.
1721   __ z_br(Z_R14);
1722 
1723   if (inc_counter) {
1724     // Handle overflow of counter and compile method.
1725     __ bind(invocation_counter_overflow);
1726     generate_counter_overflow(continue_after_compile);
1727   }
1728 
1729   BLOCK_COMMENT("} native_entry");
1730 
1731   return entry_point;
1732 }
1733 
1734 //
1735 // Generic interpreted method entry to template interpreter.
1736 //
generate_normal_entry(bool synchronized)1737 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1738   address entry_point = __ pc();
1739 
1740   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1741 
1742   // Interpreter entry for ordinary Java methods.
1743   //
1744   // Registers alive
1745   //   Z_SP       - stack pointer
1746   //   Z_thread   - JavaThread*
1747   //   Z_method   - callee's method (method to be invoked)
1748   //   Z_esp      - operand (or expression) stack pointer of caller. one slot above last arg.
1749   //   Z_R10      - sender sp (before modifications, e.g. by c2i adapter
1750   //                           and as well by generate_fixed_frame below)
1751   //   Z_R14      - return address to caller (call_stub or c2i_adapter)
1752   //
1753   // Registers updated
1754   //   Z_SP       - stack pointer
1755   //   Z_fp       - callee's framepointer
1756   //   Z_esp      - callee's operand stack pointer
1757   //                points to the slot above the value on top
1758   //   Z_locals   - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1759   //   Z_tos      - integer result, if any
1760   //   z_ftos     - floating point result, if any
1761   //
1762   //
1763   // stack layout at this point:
1764   //
1765   //   F1      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1766   //                                                          frame was extended by c2i adapter)
1767   //           [outgoing Java arguments]     <-- Z_esp
1768   //           ...
1769   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
1770   //           ...
1771   //
1772   // stack layout before dispatching the first bytecode:
1773   //
1774   //   F0      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP
1775   //           [operand stack]               <-- Z_esp
1776   //           monitor (optional, can grow)
1777   //           [IJAVA_STATE]
1778   //   F1      [PARENT_IJAVA_FRAME_ABI]      <-- Z_fp (== *Z_SP)
1779   //           [F0's locals]                 <-- Z_locals
1780   //           [F1's operand stack]
1781   //           [F1's monitors] (optional)
1782   //           [IJAVA_STATE]
1783 
1784   // Make sure registers are different!
1785   assert_different_registers(Z_thread, Z_method, Z_esp);
1786 
1787   BLOCK_COMMENT("normal_entry {");
1788 
1789   // Make sure method is not native and not abstract.
1790   // Rethink these assertions - they can be simplified and shared.
1791 #ifdef ASSERT
1792   address reentry = NULL;
1793   { Label L;
1794     __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT);
1795     __ z_bfalse(L);
1796     reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native");
1797     __ bind(L);
1798   }
1799   { Label L;
1800     __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1801     __ z_bfalse(L);
1802     reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1803     __ bind(L);
1804   }
1805 #endif // ASSERT
1806 
1807 #ifdef ASSERT
1808   // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1809   __ save_return_pc(Z_R14);
1810 #endif
1811 
1812   // Generate the code to allocate the interpreter stack frame.
1813   generate_fixed_frame(false);
1814 
1815   const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1816   // Since at this point in the method invocation the exception handler
1817   // would try to exit the monitor of synchronized methods which hasn't
1818   // been entered yet, we set the thread local variable
1819   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1820   // runtime, exception handling i.e. unlock_if_synchronized_method will
1821   // check this thread local flag.
1822   __ z_mvi(do_not_unlock_if_synchronized, true);
1823 
1824   __ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4);
1825 
1826   // Increment invocation counter and check for overflow.
1827   //
1828   // Note: checking for negative value instead of overflow so we have a 'sticky'
1829   // overflow test (may be of importance as soon as we have true MT/MP).
1830   NearLabel invocation_counter_overflow;
1831   NearLabel profile_method;
1832   NearLabel profile_method_continue;
1833   NearLabel Lcontinue;
1834   if (inc_counter) {
1835     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1836     if (ProfileInterpreter) {
1837       __ bind(profile_method_continue);
1838     }
1839   }
1840   __ bind(Lcontinue);
1841 
1842   bang_stack_shadow_pages(false);
1843 
1844   // Reset the _do_not_unlock_if_synchronized flag.
1845   __ z_mvi(do_not_unlock_if_synchronized, false);
1846 
1847   // Check for synchronized methods.
1848   // Must happen AFTER invocation_counter check and stack overflow check,
1849   // so method is not locked if overflows.
1850   if (synchronized) {
1851     // Allocate monitor and lock method.
1852     lock_method();
1853   } else {
1854 #ifdef ASSERT
1855     { Label L;
1856       __ get_method(Z_R1_scratch);
1857       __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1858       __ z_bfalse(L);
1859       reentry = __ stop_chain_static(reentry, "method needs synchronization");
1860       __ bind(L);
1861     }
1862 #endif // ASSERT
1863   }
1864 
1865   // start execution
1866 
1867 #ifdef ASSERT
1868   __ verify_esp(Z_esp, Z_R1_scratch);
1869 
1870   __ verify_thread();
1871 #endif
1872 
1873   // jvmti support
1874   __ notify_method_entry();
1875 
1876   // Start executing instructions.
1877   __ dispatch_next(vtos);
1878   // Dispatch_next does not return.
1879   DEBUG_ONLY(__ should_not_reach_here());
1880 
1881   // Invocation counter overflow.
1882   if (inc_counter) {
1883     if (ProfileInterpreter) {
1884       // We have decided to profile this method in the interpreter.
1885       __ bind(profile_method);
1886 
1887       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1888       __ set_method_data_pointer_for_bcp();
1889       __ z_bru(profile_method_continue);
1890     }
1891 
1892     // Handle invocation counter overflow.
1893     __ bind(invocation_counter_overflow);
1894     generate_counter_overflow(Lcontinue);
1895   }
1896 
1897   BLOCK_COMMENT("} normal_entry");
1898 
1899   return entry_point;
1900 }
1901 
1902 
1903 /**
1904  * Method entry for static native methods:
1905  *   int java.util.zip.CRC32.update(int crc, int b)
1906  */
generate_CRC32_update_entry()1907 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1908 
1909   if (UseCRC32Intrinsics) {
1910     uint64_t entry_off = __ offset();
1911     Label    slow_path;
1912 
1913     // If we need a safepoint check, generate full interpreter entry.
1914     __ safepoint_poll(slow_path, Z_R1);
1915 
1916     BLOCK_COMMENT("CRC32_update {");
1917 
1918     // We don't generate local frame and don't align stack because
1919     // we not even call stub code (we generate the code inline)
1920     // and there is no safepoint on this path.
1921 
1922     // Load java parameters.
1923     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1924     const Register argP    = Z_esp;
1925     const Register crc     = Z_ARG1;  // crc value
1926     const Register data    = Z_ARG2;  // address of java byte value (kernel_crc32 needs address)
1927     const Register dataLen = Z_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1928     const Register table   = Z_ARG4;  // address of crc32 table
1929 
1930     // Arguments are reversed on java expression stack.
1931     __ z_la(data, 3+1*wordSize, argP);  // byte value (stack address).
1932                                         // Being passed as an int, the single byte is at offset +3.
1933     __ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register.
1934 
1935     StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
1936     __ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1, true);
1937 
1938     // Restore caller sp for c2i case.
1939     __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1940 
1941     __ z_br(Z_R14);
1942 
1943     BLOCK_COMMENT("} CRC32_update");
1944 
1945     // Use a previously generated vanilla native entry as the slow path.
1946     BIND(slow_path);
1947     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
1948     return __ addr_at(entry_off);
1949   }
1950 
1951   return NULL;
1952 }
1953 
1954 
1955 /**
1956  * Method entry for static native methods:
1957  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1958  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1959  */
generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind)1960 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1961 
1962   if (UseCRC32Intrinsics) {
1963     uint64_t entry_off = __ offset();
1964     Label    slow_path;
1965 
1966     // If we need a safepoint check, generate full interpreter entry.
1967     __ safepoint_poll(slow_path, Z_R1);
1968 
1969     // We don't generate local frame and don't align stack because
1970     // we call stub code and there is no safepoint on this path.
1971 
1972     // Load parameters.
1973     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1974     const Register argP    = Z_esp;
1975     const Register crc     = Z_ARG1;  // crc value
1976     const Register data    = Z_ARG2;  // address of java byte array
1977     const Register dataLen = Z_ARG3;  // source data len
1978     const Register table   = Z_ARG4;  // address of crc32 table
1979     const Register t0      = Z_R10;   // work reg for kernel* emitters
1980     const Register t1      = Z_R11;   // work reg for kernel* emitters
1981     const Register t2      = Z_R12;   // work reg for kernel* emitters
1982     const Register t3      = Z_R13;   // work reg for kernel* emitters
1983 
1984     // Arguments are reversed on java expression stack.
1985     // Calculate address of start element.
1986     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1987       // crc     @ (SP + 5W) (32bit)
1988       // buf     @ (SP + 3W) (64bit ptr to long array)
1989       // off     @ (SP + 2W) (32bit)
1990       // dataLen @ (SP + 1W) (32bit)
1991       // data = buf + off
1992       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1993       __ z_llgf(crc,    5*wordSize, argP);  // current crc state
1994       __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
1995       __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1996       __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process
1997     } else {                                                         // Used for "updateBytes update".
1998       // crc     @ (SP + 4W) (32bit)
1999       // buf     @ (SP + 3W) (64bit ptr to byte array)
2000       // off     @ (SP + 2W) (32bit)
2001       // dataLen @ (SP + 1W) (32bit)
2002       // data = buf + off + base_offset
2003       BLOCK_COMMENT("CRC32_updateBytes {");
2004       __ z_llgf(crc,    4*wordSize, argP);  // current crc state
2005       __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
2006       __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
2007       __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process
2008       __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
2009     }
2010 
2011     StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
2012 
2013     __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
2014     __ z_stmg(t0, t3, 1*8, Z_SP);        // Spill regs 10..13 to make them available as work registers.
2015     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, true);
2016     __ z_lmg(t0, t3, 1*8, Z_SP);         // Spill regs 10..13 back from stack.
2017 
2018     // Restore caller sp for c2i case.
2019     __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
2020 
2021     __ z_br(Z_R14);
2022 
2023     BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}");
2024 
2025     // Use a previously generated vanilla native entry as the slow path.
2026     BIND(slow_path);
2027     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
2028     return __ addr_at(entry_off);
2029   }
2030 
2031   return NULL;
2032 }
2033 
2034 
2035 /**
2036  * Method entry for intrinsic-candidate (non-native) methods:
2037  *   int java.util.zip.CRC32C.updateBytes(           int crc, byte[] b,  int off, int end)
2038  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
2039  * Unlike CRC32, CRC32C does not have any methods marked as native
2040  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
2041  */
generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind)2042 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
2043 
2044   if (UseCRC32CIntrinsics) {
2045     uint64_t entry_off = __ offset();
2046 
2047     // We don't generate local frame and don't align stack because
2048     // we call stub code and there is no safepoint on this path.
2049 
2050     // Load parameters.
2051     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
2052     const Register argP    = Z_esp;
2053     const Register crc     = Z_ARG1;  // crc value
2054     const Register data    = Z_ARG2;  // address of java byte array
2055     const Register dataLen = Z_ARG3;  // source data len
2056     const Register table   = Z_ARG4;  // address of crc32 table
2057     const Register t0      = Z_R10;   // work reg for kernel* emitters
2058     const Register t1      = Z_R11;   // work reg for kernel* emitters
2059     const Register t2      = Z_R12;   // work reg for kernel* emitters
2060     const Register t3      = Z_R13;   // work reg for kernel* emitters
2061 
2062     // Arguments are reversed on java expression stack.
2063     // Calculate address of start element.
2064     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateByteBuffer direct".
2065       // crc     @ (SP + 5W) (32bit)
2066       // buf     @ (SP + 3W) (64bit ptr to long array)
2067       // off     @ (SP + 2W) (32bit)
2068       // dataLen @ (SP + 1W) (32bit)
2069       // data = buf + off
2070       BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
2071       __ z_llgf(crc,    5*wordSize, argP);  // current crc state
2072       __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
2073       __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
2074       __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process, calculated as
2075       __ z_sgf(dataLen, Address(argP, 2*wordSize));  // (end_index - offset)
2076     } else {                                                                // Used for "updateBytes update".
2077       // crc     @ (SP + 4W) (32bit)
2078       // buf     @ (SP + 3W) (64bit ptr to byte array)
2079       // off     @ (SP + 2W) (32bit)
2080       // dataLen @ (SP + 1W) (32bit)
2081       // data = buf + off + base_offset
2082       BLOCK_COMMENT("CRC32C_updateBytes {");
2083       __ z_llgf(crc,    4*wordSize, argP);  // current crc state
2084       __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
2085       __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
2086       __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process, calculated as
2087       __ z_sgf(dataLen, Address(argP, 2*wordSize));  // (end_index - offset)
2088       __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
2089     }
2090 
2091     StubRoutines::zarch::generate_load_crc32c_table_addr(_masm, table);
2092 
2093     __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
2094     __ z_stmg(t0, t3, 1*8, Z_SP);        // Spill regs 10..13 to make them available as work registers.
2095     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, false);
2096     __ z_lmg(t0, t3, 1*8, Z_SP);         // Spill regs 10..13 back from stack.
2097 
2098     // Restore caller sp for c2i case.
2099     __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
2100 
2101     __ z_br(Z_R14);
2102 
2103     BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
2104     return __ addr_at(entry_off);
2105   }
2106 
2107   return NULL;
2108 }
2109 
bang_stack_shadow_pages(bool native_call)2110 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
2111   // Quick & dirty stack overflow checking: bang the stack & handle trap.
2112   // Note that we do the banging after the frame is setup, since the exception
2113   // handling code expects to find a valid interpreter frame on the stack.
2114   // Doing the banging earlier fails if the caller frame is not an interpreter
2115   // frame.
2116   // (Also, the exception throwing code expects to unlock any synchronized
2117   // method receiver, so do the banging after locking the receiver.)
2118 
2119   // Bang each page in the shadow zone. We can't assume it's been done for
2120   // an interpreter frame with greater than a page of locals, so each page
2121   // needs to be checked. Only true for non-native. For native, we only bang the last page.
2122   if (UseStackBanging) {
2123     const int page_size      = os::vm_page_size();
2124     const int n_shadow_pages = (int)(JavaThread::stack_shadow_zone_size()/page_size);
2125     const int start_page_num = native_call ? n_shadow_pages : 1;
2126     for (int pages = start_page_num; pages <= n_shadow_pages; pages++) {
2127       __ bang_stack_with_offset(pages*page_size);
2128     }
2129   }
2130 }
2131 
2132 //-----------------------------------------------------------------------------
2133 // Exceptions
2134 
generate_throw_exception()2135 void TemplateInterpreterGenerator::generate_throw_exception() {
2136 
2137   BLOCK_COMMENT("throw_exception {");
2138 
2139   // Entry point in previous activation (i.e., if the caller was interpreted).
2140   Interpreter::_rethrow_exception_entry = __ pc();
2141   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp.
2142   // Z_ARG1 (==Z_tos): exception
2143   // Z_ARG2          : Return address/pc that threw exception.
2144   __ restore_bcp();    // R13 points to call/send.
2145   __ restore_locals();
2146 
2147   // Fallthrough, no need to restore Z_esp.
2148 
2149   // Entry point for exceptions thrown within interpreter code.
2150   Interpreter::_throw_exception_entry = __ pc();
2151   // Expression stack is undefined here.
2152   // Z_ARG1 (==Z_tos): exception
2153   // Z_bcp: exception bcp
2154   __ verify_oop(Z_ARG1);
2155   __ z_lgr(Z_ARG2, Z_ARG1);
2156 
2157   // Expression stack must be empty before entering the VM in case of
2158   // an exception.
2159   __ empty_expression_stack();
2160   // Find exception handler address and preserve exception oop.
2161   const Register Rpreserved_exc_oop = Z_tmp_1;
2162   __ call_VM(Rpreserved_exc_oop,
2163              CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception),
2164              Z_ARG2);
2165   // Z_RET: exception handler entry point
2166   // Z_bcp: bcp for exception handler
2167   __ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack.
2168   __ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!).
2169 
2170   // If the exception is not handled in the current frame the frame is
2171   // removed and the exception is rethrown (i.e. exception
2172   // continuation is _rethrow_exception).
2173   //
2174   // Note: At this point the bci is still the bci for the instruction
2175   // which caused the exception and the expression stack is
2176   // empty. Thus, for any VM calls at this point, GC will find a legal
2177   // oop map (with empty expression stack).
2178 
2179   //
2180   // JVMTI PopFrame support
2181   //
2182 
2183   Interpreter::_remove_activation_preserving_args_entry = __ pc();
2184   __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2185   __ empty_expression_stack();
2186   // Set the popframe_processing bit in pending_popframe_condition
2187   // indicating that we are currently handling popframe, so that
2188   // call_VMs that may happen later do not trigger new popframe
2189   // handling cycles.
2190   __ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/);
2191   __ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit);
2192   __ z_sty(Z_tmp_1, thread_(popframe_condition));
2193 
2194   {
2195     // Check to see whether we are returning to a deoptimized frame.
2196     // (The PopFrame call ensures that the caller of the popped frame is
2197     // either interpreted or compiled and deoptimizes it if compiled.)
2198     // In this case, we can't call dispatch_next() after the frame is
2199     // popped, but instead must save the incoming arguments and restore
2200     // them after deoptimization has occurred.
2201     //
2202     // Note that we don't compare the return PC against the
2203     // deoptimization blob's unpack entry because of the presence of
2204     // adapter frames in C2.
2205     NearLabel caller_not_deoptimized;
2206     __ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2207     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1);
2208     __ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized);
2209 
2210     // Compute size of arguments for saving when returning to
2211     // deoptimized caller.
2212     __ get_method(Z_ARG2);
2213     __ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset()));
2214     __ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset()));
2215     __ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes
2216     __ restore_locals();
2217     // Compute address of args to be saved.
2218     __ z_lgr(Z_ARG3, Z_locals);
2219     __ z_slgr(Z_ARG3, Z_ARG2);
2220     __ add2reg(Z_ARG3, wordSize);
2221     // Save these arguments.
2222     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args),
2223                     Z_thread, Z_ARG2, Z_ARG3);
2224 
2225     __ remove_activation(vtos, Z_R14,
2226                          /* throw_monitor_exception */ false,
2227                          /* install_monitor_exception */ false,
2228                          /* notify_jvmdi */ false);
2229 
2230     // Inform deoptimization that it is responsible for restoring
2231     // these arguments.
2232     __ store_const(thread_(popframe_condition),
2233                    JavaThread::popframe_force_deopt_reexecution_bit,
2234                    Z_tmp_1, false);
2235 
2236     // Continue in deoptimization handler.
2237     __ z_br(Z_R14);
2238 
2239     __ bind(caller_not_deoptimized);
2240   }
2241 
2242   // Clear the popframe condition flag.
2243   __ clear_mem(thread_(popframe_condition), sizeof(int));
2244 
2245   __ remove_activation(vtos,
2246                        noreg,  // Retaddr is not used.
2247                        false,  // throw_monitor_exception
2248                        false,  // install_monitor_exception
2249                        false); // notify_jvmdi
2250   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2251   __ restore_bcp();
2252   __ restore_locals();
2253   __ restore_esp();
2254   // The method data pointer was incremented already during
2255   // call profiling. We have to restore the mdp for the current bcp.
2256   if (ProfileInterpreter) {
2257     __ set_method_data_pointer_for_bcp();
2258   }
2259 #if INCLUDE_JVMTI
2260   {
2261     Label L_done;
2262 
2263     __ z_cli(0, Z_bcp, Bytecodes::_invokestatic);
2264     __ z_brc(Assembler::bcondNotEqual, L_done);
2265 
2266     // The member name argument must be restored if _invokestatic is
2267     // re-executed after a PopFrame call.  Detect such a case in the
2268     // InterpreterRuntime function and return the member name
2269     // argument, or NULL.
2270     __ z_lg(Z_ARG2, Address(Z_locals));
2271     __ get_method(Z_ARG3);
2272     __ call_VM(Z_tmp_1,
2273                CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null),
2274                Z_ARG2, Z_ARG3, Z_bcp);
2275 
2276     __ z_ltgr(Z_tmp_1, Z_tmp_1);
2277     __ z_brc(Assembler::bcondEqual, L_done);
2278 
2279     __ z_stg(Z_tmp_1, Address(Z_esp, wordSize));
2280     __ bind(L_done);
2281   }
2282 #endif // INCLUDE_JVMTI
2283   __ dispatch_next(vtos);
2284   // End of PopFrame support.
2285   Interpreter::_remove_activation_entry = __ pc();
2286 
2287   // In between activations - previous activation type unknown yet
2288   // compute continuation point - the continuation point expects the
2289   // following registers set up:
2290   //
2291   // Z_ARG1 (==Z_tos): exception
2292   // Z_ARG2          : return address/pc that threw exception
2293 
2294   Register return_pc = Z_tmp_1;
2295   Register handler   = Z_tmp_2;
2296    assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc");
2297    assert(handler->is_nonvolatile(),   "use non-volatile reg. to handler pc");
2298   __ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame.
2299   __ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2300 
2301   // Moved removing the activation after VM call, because the new top
2302   // frame does not necessarily have the z_abi_160 required for a VM
2303   // call (e.g. if it is compiled).
2304 
2305   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
2306                                          SharedRuntime::exception_handler_for_return_address),
2307                         Z_thread, return_pc);
2308   __ z_lgr(handler, Z_RET); // Save exception handler.
2309 
2310   // Preserve exception over this code sequence.
2311   __ pop_ptr(Z_ARG1);
2312   __ set_vm_result(Z_ARG1);
2313   // Remove the activation (without doing throws on illegalMonitorExceptions).
2314   __ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/);
2315   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2316 
2317   __ get_vm_result(Z_ARG1);     // Restore exception.
2318   __ verify_oop(Z_ARG1);
2319   __ z_lgr(Z_ARG2, return_pc);  // Restore return address.
2320 
2321 #ifdef ASSERT
2322   // The return_pc in the new top frame is dead... at least that's my
2323   // current understanding. To assert this I overwrite it.
2324   // Note: for compiled frames the handler is the deopt blob
2325   // which writes Z_ARG2 into the return_pc slot.
2326   __ load_const_optimized(return_pc, 0xb00b1);
2327   __ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2328 #endif
2329 
2330   // Z_ARG1 (==Z_tos): exception
2331   // Z_ARG2          : return address/pc that threw exception
2332 
2333   // Note that an "issuing PC" is actually the next PC after the call.
2334   __ z_br(handler);         // Jump to exception handler of caller.
2335 
2336   BLOCK_COMMENT("} throw_exception");
2337 }
2338 
2339 //
2340 // JVMTI ForceEarlyReturn support
2341 //
generate_earlyret_entry_for(TosState state)2342 address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) {
2343   address entry = __ pc();
2344 
2345   BLOCK_COMMENT("earlyret_entry {");
2346 
2347   __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2348   __ restore_bcp();
2349   __ restore_locals();
2350   __ restore_esp();
2351   __ empty_expression_stack();
2352   __ load_earlyret_value(state);
2353 
2354   Register RjvmtiState = Z_tmp_1;
2355   __ z_lg(RjvmtiState, thread_(jvmti_thread_state));
2356   __ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()),
2357                  JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch);
2358 
2359   if (state == itos) {
2360     // Narrow result if state is itos but result type is smaller.
2361     // Need to narrow in the return bytecode rather than in generate_return_entry
2362     // since compiled code callers expect the result to already be narrowed.
2363     __ narrow(Z_tos, Z_tmp_1); /* fall through */
2364   }
2365   __ remove_activation(state,
2366                        Z_tmp_1, // retaddr
2367                        false,   // throw_monitor_exception
2368                        false,   // install_monitor_exception
2369                        true);   // notify_jvmdi
2370   __ z_br(Z_tmp_1);
2371 
2372   BLOCK_COMMENT("} earlyret_entry");
2373 
2374   return entry;
2375 }
2376 
2377 //-----------------------------------------------------------------------------
2378 // Helper for vtos entry point generation.
2379 
set_vtos_entry_points(Template * t,address & bep,address & cep,address & sep,address & aep,address & iep,address & lep,address & fep,address & dep,address & vep)2380 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2381                                                          address& bep,
2382                                                          address& cep,
2383                                                          address& sep,
2384                                                          address& aep,
2385                                                          address& iep,
2386                                                          address& lep,
2387                                                          address& fep,
2388                                                          address& dep,
2389                                                          address& vep) {
2390   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2391   Label L;
2392   aep = __ pc(); __ push_ptr(); __ z_bru(L);
2393   fep = __ pc(); __ push_f();   __ z_bru(L);
2394   dep = __ pc(); __ push_d();   __ z_bru(L);
2395   lep = __ pc(); __ push_l();   __ z_bru(L);
2396   bep = cep = sep =
2397   iep = __ pc(); __ push_i();
2398   vep = __ pc();
2399   __ bind(L);
2400   generate_and_dispatch(t);
2401 }
2402 
2403 //-----------------------------------------------------------------------------
2404 
2405 #ifndef PRODUCT
generate_trace_code(TosState state)2406 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2407   address entry = __ pc();
2408   NearLabel counter_below_trace_threshold;
2409 
2410   if (TraceBytecodesAt > 0) {
2411     // Skip runtime call, if the trace threshold is not yet reached.
2412     __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2413     __ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt);
2414     __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
2415     __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2416     __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold);
2417   }
2418 
2419   int offset2 = state == ltos || state == dtos ? 2 : 1;
2420 
2421   __ push(state);
2422   // Preserved return pointer is in Z_R14.
2423   // InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument.
2424   __ z_lgr(Z_ARG2, Z_R14);
2425   __ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)));
2426   if (WizardMode) {
2427     __ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode.
2428   } else {
2429     __ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2)));
2430   }
2431   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4);
2432   __ z_lgr(Z_R14, Z_RET); // Estore return address (see above).
2433   __ pop(state);
2434 
2435   __ bind(counter_below_trace_threshold);
2436   __ z_br(Z_R14); // return
2437 
2438   return entry;
2439 }
2440 
2441 // Make feasible for old CPUs.
count_bytecode()2442 void TemplateInterpreterGenerator::count_bytecode() {
2443   __ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value);
2444   __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2445 }
2446 
histogram_bytecode(Template * t)2447 void TemplateInterpreterGenerator::histogram_bytecode(Template * t) {
2448   __ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]);
2449   __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2450 }
2451 
histogram_bytecode_pair(Template * t)2452 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) {
2453   Address  index_addr(Z_tmp_1, (intptr_t) 0);
2454   Register index = Z_tmp_2;
2455 
2456   // Load previous index.
2457   __ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index);
2458   __ mem2reg_opt(index, index_addr, false);
2459 
2460   // Mask with current bytecode and store as new previous index.
2461   __ z_srl(index, BytecodePairHistogram::log2_number_of_codes);
2462   __ load_const_optimized(Z_R0_scratch,
2463                           (int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes);
2464   __ z_or(index, Z_R0_scratch);
2465   __ reg2mem_opt(index, index_addr, false);
2466 
2467   // Load counter array's address.
2468   __ z_lgfr(index, index);   // Sign extend for addressing.
2469   __ z_sllg(index, index, LogBytesPerInt);  // index2bytes
2470   __ load_absolute_address(Z_R1_scratch,
2471                            (address) &BytecodePairHistogram::_counters);
2472   // Add index and increment counter.
2473   __ z_agr(Z_R1_scratch, index);
2474   __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2475 }
2476 
trace_bytecode(Template * t)2477 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2478   // Call a little run-time stub to avoid blow-up for each bytecode.
2479   // The run-time runtime saves the right registers, depending on
2480   // the tosca in-state for the given template.
2481   address entry = Interpreter::trace_code(t->tos_in());
2482   guarantee(entry != NULL, "entry must have been generated");
2483   __ call_stub(entry);
2484 }
2485 
stop_interpreter_at()2486 void TemplateInterpreterGenerator::stop_interpreter_at() {
2487   NearLabel L;
2488 
2489   __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2490   __ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt);
2491   __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
2492   __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2493   __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L);
2494   assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos");
2495   assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos");
2496   __ z_lgr(Z_tmp_1, Z_tos);      // Save tos.
2497   __ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode.
2498   __ z_ldr(Z_F8, Z_ftos);        // Save ftos.
2499   // Use -XX:StopInterpreterAt=<num> to set the limit
2500   // and break at breakpoint().
2501   __ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false);
2502   __ z_lgr(Z_tos, Z_tmp_1);      // Restore tos.
2503   __ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode.
2504   __ z_ldr(Z_ftos, Z_F8);        // Restore ftos.
2505   __ bind(L);
2506 }
2507 
2508 #endif // !PRODUCT
2509