1 /*
2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2012, 2019 SAP SE. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 // no precompiled headers
27 #include "jvm.h"
28 #include "asm/assembler.inline.hpp"
29 #include "classfile/classLoader.hpp"
30 #include "classfile/systemDictionary.hpp"
31 #include "classfile/vmSymbols.hpp"
32 #include "code/codeCache.hpp"
33 #include "code/icBuffer.hpp"
34 #include "code/vtableStubs.hpp"
35 #include "interpreter/interpreter.hpp"
36 #include "memory/allocation.inline.hpp"
37 #include "nativeInst_ppc.hpp"
38 #include "os_share_linux.hpp"
39 #include "prims/jniFastGetField.hpp"
40 #include "prims/jvm_misc.hpp"
41 #include "runtime/arguments.hpp"
42 #include "runtime/extendedPC.hpp"
43 #include "runtime/frame.inline.hpp"
44 #include "runtime/interfaceSupport.inline.hpp"
45 #include "runtime/java.hpp"
46 #include "runtime/javaCalls.hpp"
47 #include "runtime/mutexLocker.hpp"
48 #include "runtime/osThread.hpp"
49 #include "runtime/safepointMechanism.hpp"
50 #include "runtime/sharedRuntime.hpp"
51 #include "runtime/stubRoutines.hpp"
52 #include "runtime/thread.inline.hpp"
53 #include "runtime/timer.hpp"
54 #include "utilities/debug.hpp"
55 #include "utilities/events.hpp"
56 #include "utilities/vmError.hpp"
57 
58 // put OS-includes here
59 # include <sys/types.h>
60 # include <sys/mman.h>
61 # include <pthread.h>
62 # include <signal.h>
63 # include <errno.h>
64 # include <dlfcn.h>
65 # include <stdlib.h>
66 # include <stdio.h>
67 # include <unistd.h>
68 # include <sys/resource.h>
69 # include <pthread.h>
70 # include <sys/stat.h>
71 # include <sys/time.h>
72 # include <sys/utsname.h>
73 # include <sys/socket.h>
74 # include <sys/wait.h>
75 # include <pwd.h>
76 # include <poll.h>
77 # include <ucontext.h>
78 
79 
current_stack_pointer()80 address os::current_stack_pointer() {
81   intptr_t* csp;
82 
83   // inline assembly `mr regno(csp), R1_SP':
84   __asm__ __volatile__ ("mr %0, 1":"=r"(csp):);
85 
86   return (address) csp;
87 }
88 
non_memory_address_word()89 char* os::non_memory_address_word() {
90   // Must never look like an address returned by reserve_memory,
91   // even in its subfields (as defined by the CPU immediate fields,
92   // if the CPU splits constants across multiple instructions).
93 
94   return (char*) -1;
95 }
96 
97 // Frame information (pc, sp, fp) retrieved via ucontext
98 // always looks like a C-frame according to the frame
99 // conventions in frame_ppc64.hpp.
ucontext_get_pc(const ucontext_t * uc)100 address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
101   // On powerpc64, ucontext_t is not selfcontained but contains
102   // a pointer to an optional substructure (mcontext_t.regs) containing the volatile
103   // registers - NIP, among others.
104   // This substructure may or may not be there depending where uc came from:
105   // - if uc was handed over as the argument to a sigaction handler, a pointer to the
106   //   substructure was provided by the kernel when calling the signal handler, and
107   //   regs->nip can be accessed.
108   // - if uc was filled by getcontext(), it is undefined - getcontext() does not fill
109   //   it because the volatile registers are not needed to make setcontext() work.
110   //   Hopefully it was zero'd out beforehand.
111   guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_get_pc in sigaction context");
112   return (address)uc->uc_mcontext.regs->nip;
113 }
114 
115 // modify PC in ucontext.
116 // Note: Only use this for an ucontext handed down to a signal handler. See comment
117 // in ucontext_get_pc.
ucontext_set_pc(ucontext_t * uc,address pc)118 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
119   guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_set_pc in sigaction context");
120   uc->uc_mcontext.regs->nip = (unsigned long)pc;
121 }
122 
ucontext_get_lr(const ucontext_t * uc)123 static address ucontext_get_lr(const ucontext_t * uc) {
124   return (address)uc->uc_mcontext.regs->link;
125 }
126 
ucontext_get_sp(const ucontext_t * uc)127 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
128   return (intptr_t*)uc->uc_mcontext.regs->gpr[1/*REG_SP*/];
129 }
130 
ucontext_get_fp(const ucontext_t * uc)131 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
132   return NULL;
133 }
134 
ucontext_get_trap(const ucontext_t * uc)135 static unsigned long ucontext_get_trap(const ucontext_t * uc) {
136   return uc->uc_mcontext.regs->trap;
137 }
138 
fetch_frame_from_context(const void * ucVoid,intptr_t ** ret_sp,intptr_t ** ret_fp)139 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
140                     intptr_t** ret_sp, intptr_t** ret_fp) {
141 
142   ExtendedPC  epc;
143   const ucontext_t* uc = (const ucontext_t*)ucVoid;
144 
145   if (uc != NULL) {
146     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
147     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
148     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
149   } else {
150     // construct empty ExtendedPC for return value checking
151     epc = ExtendedPC(NULL);
152     if (ret_sp) *ret_sp = (intptr_t *)NULL;
153     if (ret_fp) *ret_fp = (intptr_t *)NULL;
154   }
155 
156   return epc;
157 }
158 
fetch_frame_from_context(const void * ucVoid)159 frame os::fetch_frame_from_context(const void* ucVoid) {
160   intptr_t* sp;
161   intptr_t* fp;
162   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
163   return frame(sp, epc.pc());
164 }
165 
get_frame_at_stack_banging_point(JavaThread * thread,ucontext_t * uc,frame * fr)166 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
167   address pc = (address) os::Linux::ucontext_get_pc(uc);
168   if (Interpreter::contains(pc)) {
169     // Interpreter performs stack banging after the fixed frame header has
170     // been generated while the compilers perform it before. To maintain
171     // semantic consistency between interpreted and compiled frames, the
172     // method returns the Java sender of the current frame.
173     *fr = os::fetch_frame_from_context(uc);
174     if (!fr->is_first_java_frame()) {
175       assert(fr->safe_for_sender(thread), "Safety check");
176       *fr = fr->java_sender();
177     }
178   } else {
179     // More complex code with compiled code.
180     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
181     CodeBlob* cb = CodeCache::find_blob(pc);
182     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
183       // Not sure where the pc points to, fallback to default
184       // stack overflow handling. In compiled code, we bang before
185       // the frame is complete.
186       return false;
187     } else {
188       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
189       address lr = ucontext_get_lr(uc);
190       *fr = frame(sp, lr);
191       if (!fr->is_java_frame()) {
192         assert(fr->safe_for_sender(thread), "Safety check");
193         assert(!fr->is_first_frame(), "Safety check");
194         *fr = fr->java_sender();
195       }
196     }
197   }
198   assert(fr->is_java_frame(), "Safety check");
199   return true;
200 }
201 
get_sender_for_C_frame(frame * fr)202 frame os::get_sender_for_C_frame(frame* fr) {
203   if (*fr->sp() == 0) {
204     // fr is the last C frame
205     return frame(NULL, NULL);
206   }
207   return frame(fr->sender_sp(), fr->sender_pc());
208 }
209 
210 
current_frame()211 frame os::current_frame() {
212   intptr_t* csp = (intptr_t*) *((intptr_t*) os::current_stack_pointer());
213   // hack.
214   frame topframe(csp, (address)0x8);
215   // Return sender of sender of current topframe which hopefully
216   // both have pc != NULL.
217   frame tmp = os::get_sender_for_C_frame(&topframe);
218   return os::get_sender_for_C_frame(&tmp);
219 }
220 
221 // Utility functions
222 
223 extern "C" JNIEXPORT int
JVM_handle_linux_signal(int sig,siginfo_t * info,void * ucVoid,int abort_if_unrecognized)224 JVM_handle_linux_signal(int sig,
225                         siginfo_t* info,
226                         void* ucVoid,
227                         int abort_if_unrecognized) {
228   ucontext_t* uc = (ucontext_t*) ucVoid;
229 
230   Thread* t = Thread::current_or_null_safe();
231 
232   SignalHandlerMark shm(t);
233 
234   // Note: it's not uncommon that JNI code uses signal/sigset to install
235   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
236   // or have a SIGILL handler when detecting CPU type). When that happens,
237   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
238   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
239   // that do not require siginfo/ucontext first.
240 
241   if (sig == SIGPIPE || sig == SIGXFSZ) {
242     if (os::Linux::chained_handler(sig, info, ucVoid)) {
243       return true;
244     } else {
245       // Ignoring SIGPIPE - see bugs 4229104
246       return true;
247     }
248   }
249 
250   // Make the signal handler transaction-aware by checking the existence of a
251   // second (transactional) context with MSR TS bits active. If the signal is
252   // caught during a transaction, then just return to the HTM abort handler.
253   // Please refer to Linux kernel document powerpc/transactional_memory.txt,
254   // section "Signals".
255   if (uc && uc->uc_link) {
256     ucontext_t* second_uc = uc->uc_link;
257 
258     // MSR TS bits are 29 and 30 (Power ISA, v2.07B, Book III-S, pp. 857-858,
259     // 3.2.1 "Machine State Register"), however note that ISA notation for bit
260     // numbering is MSB 0, so for normal bit numbering (LSB 0) they come to be
261     // bits 33 and 34. It's not related to endianness, just a notation matter.
262     if (second_uc->uc_mcontext.regs->msr & 0x600000000) {
263       if (TraceTraps) {
264         tty->print_cr("caught signal in transaction, "
265                         "ignoring to jump to abort handler");
266       }
267       // Return control to the HTM abort handler.
268       return true;
269     }
270   }
271 
272 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
273   if ((sig == SIGSEGV || sig == SIGBUS) && info != NULL && info->si_addr == g_assert_poison) {
274     if (handle_assert_poison_fault(ucVoid, info->si_addr)) {
275       return 1;
276     }
277   }
278 #endif
279 
280   JavaThread* thread = NULL;
281   VMThread* vmthread = NULL;
282   if (os::Linux::signal_handlers_are_installed) {
283     if (t != NULL) {
284       if(t->is_Java_thread()) {
285         thread = (JavaThread*)t;
286       } else if(t->is_VM_thread()) {
287         vmthread = (VMThread *)t;
288       }
289     }
290   }
291 
292   // Moved SafeFetch32 handling outside thread!=NULL conditional block to make
293   // it work if no associated JavaThread object exists.
294   if (uc) {
295     address const pc = os::Linux::ucontext_get_pc(uc);
296     if (pc && StubRoutines::is_safefetch_fault(pc)) {
297       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
298       return true;
299     }
300   }
301 
302   // decide if this trap can be handled by a stub
303   address stub = NULL;
304   address pc   = NULL;
305 
306   if (info != NULL && uc != NULL && thread != NULL) {
307     pc = (address) os::Linux::ucontext_get_pc(uc);
308 
309     // Handle ALL stack overflow variations here
310     if (sig == SIGSEGV) {
311       // si_addr may not be valid due to a bug in the linux-ppc64 kernel (see
312       // comment below). Use get_stack_bang_address instead of si_addr.
313       // If SIGSEGV is caused due to a branch to an invalid address an
314       // "Instruction Storage Interrupt" is generated and 'pc' (NIP) already
315       // contains the invalid address. Otherwise, the SIGSEGV is caused due to
316       // load/store instruction trying to load/store from/to an invalid address
317       // and causing a "Data Storage Interrupt", so we inspect the intruction
318       // in order to extract the faulty data addresss.
319       address addr;
320       if ((ucontext_get_trap(uc) & 0x0F00 /* no IRQ reply bits */) == 0x0400) {
321         // Instruction Storage Interrupt (ISI)
322         addr = pc;
323       } else {
324         // Data Storage Interrupt (DSI), i.e. 0x0300: extract faulty data address
325         addr = ((NativeInstruction*)pc)->get_stack_bang_address(uc);
326       }
327 
328       // Check if fault address is within thread stack.
329       if (thread->on_local_stack(addr)) {
330         // stack overflow
331         if (thread->in_stack_yellow_reserved_zone(addr)) {
332           if (thread->thread_state() == _thread_in_Java) {
333             if (thread->in_stack_reserved_zone(addr)) {
334               frame fr;
335               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
336                 assert(fr.is_java_frame(), "Must be a Javac frame");
337                 frame activation =
338                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
339                 if (activation.sp() != NULL) {
340                   thread->disable_stack_reserved_zone();
341                   if (activation.is_interpreted_frame()) {
342                     thread->set_reserved_stack_activation((address)activation.fp());
343                   } else {
344                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
345                   }
346                   return 1;
347                 }
348               }
349             }
350             // Throw a stack overflow exception.
351             // Guard pages will be reenabled while unwinding the stack.
352             thread->disable_stack_yellow_reserved_zone();
353             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
354           } else {
355             // Thread was in the vm or native code. Return and try to finish.
356             thread->disable_stack_yellow_reserved_zone();
357             return 1;
358           }
359         } else if (thread->in_stack_red_zone(addr)) {
360           // Fatal red zone violation.  Disable the guard pages and fall through
361           // to handle_unexpected_exception way down below.
362           thread->disable_stack_red_zone();
363           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
364 
365           // This is a likely cause, but hard to verify. Let's just print
366           // it as a hint.
367           tty->print_raw_cr("Please check if any of your loaded .so files has "
368                             "enabled executable stack (see man page execstack(8))");
369         } else {
370           // Accessing stack address below sp may cause SEGV if current
371           // thread has MAP_GROWSDOWN stack. This should only happen when
372           // current thread was created by user code with MAP_GROWSDOWN flag
373           // and then attached to VM. See notes in os_linux.cpp.
374           if (thread->osthread()->expanding_stack() == 0) {
375              thread->osthread()->set_expanding_stack();
376              if (os::Linux::manually_expand_stack(thread, addr)) {
377                thread->osthread()->clear_expanding_stack();
378                return 1;
379              }
380              thread->osthread()->clear_expanding_stack();
381           } else {
382              fatal("recursive segv. expanding stack.");
383           }
384         }
385       }
386     }
387 
388     if (thread->thread_state() == _thread_in_Java) {
389       // Java thread running in Java code => find exception handler if any
390       // a fault inside compiled code, the interpreter, or a stub
391 
392       // A VM-related SIGILL may only occur if we are not in the zero page.
393       // On AIX, we get a SIGILL if we jump to 0x0 or to somewhere else
394       // in the zero page, because it is filled with 0x0. We ignore
395       // explicit SIGILLs in the zero page.
396       if (sig == SIGILL && (pc < (address) 0x200)) {
397         if (TraceTraps) {
398           tty->print_raw_cr("SIGILL happened inside zero page.");
399         }
400         goto report_and_die;
401       }
402 
403       CodeBlob *cb = NULL;
404       // Handle signal from NativeJump::patch_verified_entry().
405       if (( TrapBasedNotEntrantChecks && sig == SIGTRAP && nativeInstruction_at(pc)->is_sigtrap_zombie_not_entrant()) ||
406           (!TrapBasedNotEntrantChecks && sig == SIGILL  && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant())) {
407         if (TraceTraps) {
408           tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
409         }
410         stub = SharedRuntime::get_handle_wrong_method_stub();
411       }
412 
413       else if (sig == ((SafepointMechanism::uses_thread_local_poll() && USE_POLL_BIT_ONLY) ? SIGTRAP : SIGSEGV) &&
414                // A linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults
415                // in 64bit mode (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6),
416                // especially when we try to read from the safepoint polling page. So the check
417                //   (address)info->si_addr == os::get_standard_polling_page()
418                // doesn't work for us. We use:
419                ((NativeInstruction*)pc)->is_safepoint_poll() &&
420                CodeCache::contains((void*) pc) &&
421                ((cb = CodeCache::find_blob(pc)) != NULL) &&
422                cb->is_compiled()) {
423         if (TraceTraps) {
424           tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (%s)", p2i(pc),
425                         (SafepointMechanism::uses_thread_local_poll() && USE_POLL_BIT_ONLY) ? "SIGTRAP" : "SIGSEGV");
426         }
427         stub = SharedRuntime::get_poll_stub(pc);
428       }
429 
430       // SIGTRAP-based ic miss check in compiled code.
431       else if (sig == SIGTRAP && TrapBasedICMissChecks &&
432                nativeInstruction_at(pc)->is_sigtrap_ic_miss_check()) {
433         if (TraceTraps) {
434           tty->print_cr("trap: ic_miss_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
435         }
436         stub = SharedRuntime::get_ic_miss_stub();
437       }
438 
439       // SIGTRAP-based implicit null check in compiled code.
440       else if (sig == SIGTRAP && TrapBasedNullChecks &&
441                nativeInstruction_at(pc)->is_sigtrap_null_check()) {
442         if (TraceTraps) {
443           tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
444         }
445         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
446       }
447 
448       // SIGSEGV-based implicit null check in compiled code.
449       else if (sig == SIGSEGV && ImplicitNullChecks &&
450                CodeCache::contains((void*) pc) &&
451                !MacroAssembler::needs_explicit_null_check((intptr_t) info->si_addr)) {
452         if (TraceTraps) {
453           tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
454         }
455         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
456       }
457 
458 #ifdef COMPILER2
459       // SIGTRAP-based implicit range check in compiled code.
460       else if (sig == SIGTRAP && TrapBasedRangeChecks &&
461                nativeInstruction_at(pc)->is_sigtrap_range_check()) {
462         if (TraceTraps) {
463           tty->print_cr("trap: range_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
464         }
465         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
466       }
467 #endif
468       else if (sig == SIGBUS) {
469         // BugId 4454115: A read from a MappedByteBuffer can fault here if the
470         // underlying file has been truncated. Do not crash the VM in such a case.
471         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
472         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
473         if (nm != NULL && nm->has_unsafe_access()) {
474           address next_pc = pc + 4;
475           next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
476           os::Linux::ucontext_set_pc(uc, next_pc);
477           return true;
478         }
479       }
480     }
481 
482     else { // thread->thread_state() != _thread_in_Java
483       if (sig == SIGILL && VM_Version::is_determine_features_test_running()) {
484         // SIGILL must be caused by VM_Version::determine_features().
485         *(int *)pc = 0; // patch instruction to 0 to indicate that it causes a SIGILL,
486                         // flushing of icache is not necessary.
487         stub = pc + 4;  // continue with next instruction.
488       }
489       else if (thread->thread_state() == _thread_in_vm &&
490                sig == SIGBUS && thread->doing_unsafe_access()) {
491         address next_pc = pc + 4;
492         next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
493         os::Linux::ucontext_set_pc(uc, pc + 4);
494         return true;
495       }
496     }
497 
498     // Check to see if we caught the safepoint code in the
499     // process of write protecting the memory serialization page.
500     // It write enables the page immediately after protecting it
501     // so we can just return to retry the write.
502     if ((sig == SIGSEGV) &&
503         // si_addr may not be valid due to a bug in the linux-ppc64 kernel (see comments above).
504         // So first check if it's indeed a "Data Storage Interrupt" (DSI), caused by load/store,
505         // and only then use is_memory_serialization instead of si_addr.
506         (ucontext_get_trap(uc) & 0x0F00 == 0x0300) &&
507         ((NativeInstruction*)pc)->is_memory_serialization(thread, ucVoid)) {
508       // Synchronization problem in the pseudo memory barrier code (bug id 6546278)
509       // Block current thread until the memory serialize page permission restored.
510       os::block_on_serialize_page_trap();
511       return true;
512     }
513   }
514 
515   if (stub != NULL) {
516     // Save all thread context in case we need to restore it.
517     if (thread != NULL) thread->set_saved_exception_pc(pc);
518     os::Linux::ucontext_set_pc(uc, stub);
519     return true;
520   }
521 
522   // signal-chaining
523   if (os::Linux::chained_handler(sig, info, ucVoid)) {
524     return true;
525   }
526 
527   if (!abort_if_unrecognized) {
528     // caller wants another chance, so give it to him
529     return false;
530   }
531 
532   if (pc == NULL && uc != NULL) {
533     pc = os::Linux::ucontext_get_pc(uc);
534   }
535 
536 report_and_die:
537   // unmask current signal
538   sigset_t newset;
539   sigemptyset(&newset);
540   sigaddset(&newset, sig);
541   sigprocmask(SIG_UNBLOCK, &newset, NULL);
542 
543   VMError::report_and_die(t, sig, pc, info, ucVoid);
544 
545   ShouldNotReachHere();
546   return false;
547 }
548 
init_thread_fpu_state(void)549 void os::Linux::init_thread_fpu_state(void) {
550   // Disable FP exceptions.
551   __asm__ __volatile__ ("mtfsfi 6,0");
552 }
553 
get_fpu_control_word(void)554 int os::Linux::get_fpu_control_word(void) {
555   // x86 has problems with FPU precision after pthread_cond_timedwait().
556   // nothing to do on ppc64.
557   return 0;
558 }
559 
set_fpu_control_word(int fpu_control)560 void os::Linux::set_fpu_control_word(int fpu_control) {
561   // x86 has problems with FPU precision after pthread_cond_timedwait().
562   // nothing to do on ppc64.
563 }
564 
565 ////////////////////////////////////////////////////////////////////////////////
566 // thread stack
567 
568 // Minimum usable stack sizes required to get to user code. Space for
569 // HotSpot guard pages is added later.
570 size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K;
571 size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
572 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
573 
574 // Return default stack size for thr_type.
default_stack_size(os::ThreadType thr_type)575 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
576   // Default stack size (compiler thread needs larger stack).
577   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1024 * K);
578   return s;
579 }
580 
581 /////////////////////////////////////////////////////////////////////////////
582 // helper functions for fatal error handler
583 
print_context(outputStream * st,const void * context)584 void os::print_context(outputStream *st, const void *context) {
585   if (context == NULL) return;
586 
587   const ucontext_t* uc = (const ucontext_t*)context;
588 
589   st->print_cr("Registers:");
590   st->print("pc =" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->nip);
591   st->print("lr =" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->link);
592   st->print("ctr=" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->ctr);
593   st->cr();
594   for (int i = 0; i < 32; i++) {
595     st->print("r%-2d=" INTPTR_FORMAT "  ", i, uc->uc_mcontext.regs->gpr[i]);
596     if (i % 3 == 2) st->cr();
597   }
598   st->cr();
599   st->cr();
600 
601   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
602   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
603   print_hex_dump(st, (address)sp, (address)(sp + 128), sizeof(intptr_t));
604   st->cr();
605 
606   // Note: it may be unsafe to inspect memory near pc. For example, pc may
607   // point to garbage if entry point in an nmethod is corrupted. Leave
608   // this at the end, and hope for the best.
609   address pc = os::Linux::ucontext_get_pc(uc);
610   print_instructions(st, pc, /*instrsize=*/4);
611   st->cr();
612 }
613 
print_register_info(outputStream * st,const void * context)614 void os::print_register_info(outputStream *st, const void *context) {
615   if (context == NULL) return;
616 
617   const ucontext_t *uc = (const ucontext_t*)context;
618 
619   st->print_cr("Register to memory mapping:");
620   st->cr();
621 
622   st->print("pc ="); print_location(st, (intptr_t)uc->uc_mcontext.regs->nip);
623   st->print("lr ="); print_location(st, (intptr_t)uc->uc_mcontext.regs->link);
624   st->print("ctr ="); print_location(st, (intptr_t)uc->uc_mcontext.regs->ctr);
625   for (int i = 0; i < 32; i++) {
626     st->print("r%-2d=", i);
627     print_location(st, uc->uc_mcontext.regs->gpr[i]);
628   }
629   st->cr();
630 }
631 
632 extern "C" {
SpinPause()633   int SpinPause() {
634     return 0;
635   }
636 }
637 
638 #ifndef PRODUCT
verify_stack_alignment()639 void os::verify_stack_alignment() {
640   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
641 }
642 #endif
643 
extra_bang_size_in_bytes()644 int os::extra_bang_size_in_bytes() {
645   // PPC does not require the additional stack bang.
646   return 0;
647 }
648